
Université Paris-Nord

Mémoire d’habilitation à diriger des recherches
Spécialité : Informatique

Lambda Calculus, Linear Logic and
Symbolic Computation

Giulio Manzonetto

Présenté aux rapporteurs :
Jean Goubault-Larrecq CNRS & ENS de Cachan, France
Martin Hyland King’s College, Royaume-Uni
Jan-Willem Klop Vrije Universiteit, Pays-Bas

afin d’être soutenu devant la commission d’examen formée de :

Henk Barendregt Radboud University, Pays-Bas
Christophe Fouqueré Univ. Paris-Nord, France
Mai Gehrke CNRS & Univ. Paris-Diderot, France
Jean Goubault-Larrecq CNRS & ENS de Cachan, France
Stefano Guerrini Univ. Paris-Nord, France
Martin Hyland King’s College, Royaume-Uni
Delia Kesner Univ. Paris-Diderot, France

Laboratoire d’Informatique de Paris-Nord (LIPN), UMR CNRS 7030
IUT de Villetaneuse et Institut Galilée - Université Paris 13 SPC





Thinking about λ-calculus. . .

Painting by Laura Fontanella, from a picture taken by Paolo Tranquilli in 2011, at the Rocky Mountains, Canada.





Short contents

Short contents · v

Contents · vi

Preface · ix

Acknowledgements · xi

Introduction · 1

Preliminaries · 6

1 The Lambda Calculus and its Type Disciplines · 7

2 The Resource Calculus and its Semantics · 29

3 Nondeterminism in the Quantitative Setting · 45

4 Factor Algebras and Symbolic Computation · 69

Conclusions · 93

Notations · 97

Bibliography · 107

Personal Bibliography · 119

Index · 123

v



Contents

Short contents v

Contents vi

Preface ix

Acknowledgements xi

Introduction 1

Preliminaries 6

1 The Lambda Calculus and its Type Disciplines 7
1.1 The Lambda Calculus in a Nutshell . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Observational Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 The Relational Semantics and its Graph Models . . . . . . . . . . . . . . . 13
1.4 Characterizing Fully Abstract Relational Models ofH+ . . . . . . . . . . 15
1.5 The ω-Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6 Simple Types and Intersection Types . . . . . . . . . . . . . . . . . . . . . 18
1.7 Lambda Definability and Type Inhabitation are Undecidable . . . . . . . 21
1.8 Uniform Intersection Types. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.9 The Monotone Model over P(X) . . . . . . . . . . . . . . . . . . . . . . . 24
1.10 DP and IHP are Equidecidable . . . . . . . . . . . . . . . . . . . . . . . . 25
1.11 Raising ML to the Power of System F . . . . . . . . . . . . . . . . . . . . . 27

2 The Resource Calculus and its Semantics 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 The Resource Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 The Taylor Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 Böhm Theorem for Resource Calculus . . . . . . . . . . . . . . . . . . . . 36
2.5 Differential Categories and Cartesian Closedness . . . . . . . . . . . . . . 37
2.6 Categorical Models of Resource Calculus . . . . . . . . . . . . . . . . . . 39
2.7 Relational Models of Resource Calculus . . . . . . . . . . . . . . . . . . . 41
2.8 Dω is Not Fully Abstract For The Resource Calculus . . . . . . . . . . . . 42
2.9 Adding Convergency Tests to Achieve Full Abstraction . . . . . . . . . . 43

3 Nondeterminism in the Quantitative Setting 45

vi



CONTENTS vii

3.1 Nondeterminism in a Functional Setting . . . . . . . . . . . . . . . . . . . 46
3.2 MRel as Quantitative Semantics of Nondeterminism . . . . . . . . . . . 47
3.3 Constructing Differential Categories . . . . . . . . . . . . . . . . . . . . . 52
3.4 A Differential Category of Games . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 Reconstructing Categories of Games . . . . . . . . . . . . . . . . . . . . . 55
3.6 A Fully Abstract Model of Resource PCF . . . . . . . . . . . . . . . . . . . 56
3.7 The Weighted Relational Semantics . . . . . . . . . . . . . . . . . . . . . . 57
3.8 The CategoryR⊕ and its KleisliR⊕! . . . . . . . . . . . . . . . . . . . . . 58
3.9 PCFR: Nondeterministic PCF with Scalars . . . . . . . . . . . . . . . . . . 61
3.10 Denotational Semantics inR⊕! . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.11 Characterizing Quantitative Properties . . . . . . . . . . . . . . . . . . . . 66

4 Factor Algebras and Symbolic Computation 69
4.1 Algebras and Factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Decomposition operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Church Algebras and Varieties . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Church Algebras at Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5 Algebraizing Logic Through Factor Varieties . . . . . . . . . . . . . . . . 76
4.6 A Comparison With Decision Diagrams . . . . . . . . . . . . . . . . . . . 78
4.7 Multi-Valued Matrix Logics . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.8 Factor Algebras and Factor Varieties . . . . . . . . . . . . . . . . . . . . . 81
4.9 Algebraization of Multi-Valued Logics . . . . . . . . . . . . . . . . . . . . 82
4.10 Term Rewriting System for Factor Axioms . . . . . . . . . . . . . . . . . . 85
4.11 Factor Circuits and Applications to Hardware Design . . . . . . . . . . . 87
4.12 Symbolic Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Conclusions 93

Notations 97

Bibliography 107

Personal Bibliography 119

Index 123





Preface

This document is a synthesis of the research I carried out in the past eight years and is part
of my dossier to obtain the habilitation à diriger les recherches. My research interests lie at the
interface between computer science and mathematical logic. More precisely, my research
focuses on the theory of programming languages, and in particular on the λ-calculus and
its typed, non-deterministic and resource sensitive extensions. Most of my results have
been obtained in collaboration with other researchers, and have been influenced by the
stimulating environments where I was working. I will therefore present a quick overview
of my previous academic positions and of the research teams I was a member of.

I defended my PhD thesis on equational theories and denotational models of the un-
typed λ-calculus in February 2008. After one additional year spent at the University Paris-
Diderot as Attaché Temporaire d’Enseignement et de Recherche, I worked as an INRIA postdoc
in the Moscova project-team leaded by Jean-Jacques Lévy. Subsequently, I spent six months
working as a postdoc in the laboratory LIPN of the Université Paris-Nord, and one year
and a half as a member of the ICIS team, at the Radboud University of Nijmegen. In the
Netherlands, I was the principal investigator of the NWO project Calmoc, and I had the
honour of working with Henk Barendregt and Mai Gehrke. During my years of postdoc,
I enjoyed a priceless freedom that allowed me to work on a wide range of topics, includ-
ing resource sensitive extensions of λ-calculus, several kinds of type systems, universal
algebra and categorical semantics.

In September 2011, I have been employed as a Maître de Conférences at the University
Paris-Nord. Since then, I am a permanent member of the team Logique, calcul, raisonnement
within the laboratory LIPN, and of the department Réseaux et Telecom, IUT de Villetaneuse.

I recently had the opportunity of supervising with Stefano Guerrini a PhD student,
Domenico Ruoppolo, who defended his thesis on December 13, 2016. Ruoppolo worked
on relational models of λ-calculus in connection with Morris’s original observational the-
ory and the ω-rule. I also supervised a number of master students and postdocs on various
topics related to λ-calculus and categorical semantics.

This manuscript was written during a one year délégation CNRS spent at the laboratory
IRIF of the Université Paris-Diderot. I decided to keep a separate bibliography (Page 119)
containing all my articles in order to give a global view of my research.

Giulio Manzonetto,
January 1, 2017, Paris
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Introduction
The purpose of this manuscript is to give an overview of the results we obtained, in col-
laboration with other colleagues, from 2008 to 2016. In order to put things in perspective
and provide some context, we also review some literature that inspired us and we explain
some of the intuitions that are behind our work.

As a matter of presentation, we have regrouped such results into four research axes
that are however deeply interconnected1.

1. The Lambda Calculus and its Type Disciplines

The λ-calculus is a foundational “idealized programming language” that has been exten-
sively studied in theoretical computer science [Bar84]. When focusing on the equivalen-
ces between programs, rather than on the process of computation, particular congruences
called λ-theories become the main object of study. Certain λ-theories are particularly in-
teresting because they arise as observational equivalences — this means that two programs
M and N are considered equivalent whenever it is possible to plug them into any context
CL−M without noticing any difference in the global behaviour: in other words, CLMM pro-
duces a result exactly when CLNM does. Therefore observational equivalences depend on
the notion of result, also called observable, we are interested in. The λ-theory H∗ is by far
the most famous and well studied observational equivalence, and it is obtained by con-
sidering as observables the head normal forms, that represent sufficient stable amount of
information coming out of the computation [Hyl75, Wad76, Hyl76, Gou95b, DFH99, M17].

In [M9], we rather focused on the λ-theory H+ which is obtained by considering com-
pletely defined β-normal forms as observables [Mor68, Lév76, CDZ87, RP04, Lév05, M21].
On the syntactic side, we proved that H+ satisfies a strong form of extensionality, known
as “the ω-rule”, which has been extensively studied in the literature in connection with
several λ-theories [IS09, Bar71, Plo74, BBKV78, IS04]. This result is somehow expected,
but the proof is non trivial and brings us closer to the solution of a conjecture, formulated
by Sallé in the eighties, stating that H+ cannot be obtained just by adding the ω-rule to
the λ-theory equating all terms having the same Böhm tree. On the semantic side, we pro-
vided a characterization of all relational graph models having as theory exactly H+. This
result was inspired by Breuvart’s PhD thesis [Bre15], where he gave sufficient and neces-
sary conditions for a K-model2 to induce as theoryH∗. All previous results concerningH+

andH∗ were much weaker, since researchers were only able to provide individual models
or identify sufficient conditions for a model to induce one of those theories.

Concerning typed λ-calculi [BDS13], we found in [M30] a perhaps unexpected connec-
tion between two major undecidability results. In [Loa01], Loader studied the models of
simply typed λ-calculus with one ground type and proved that, given the full model F
over a finite set, the question whether some element f ∈ F is λ-definable is undecida-
ble. In [Urz99], Urzyczyn studied the intersection type system based on countably many
atoms and proved that it is undecidable to determine whether a type is inhabited. We have
shown that these two results of undecidability follow from each other in a natural way, by
interpreting intersection types as continuous functions logically related to elements of F .

1In particular, techniques like the Taylor expansion coming from the differential or resource calculus (Chap-
ter 2) have been used for studying the untyped λ-calculus (Chapter 1) as well.

2 Using the terminology of [Ber00], Krivine’sK-models constitute a particular subclass of continuous models
of λ-calculus. For instance, Scott’s model D∞ can be presented as a K-model.
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2 INTRODUCTION

From this, and a result by Joly [Jol03] on λ-definability, we get that Urzyczyn’s theorem
also holds for intersection types with at most two atoms.

Concerning second order type systems, we proved in [M28] a strong normalization re-
sult for MLF, an extension of ML with first-class polymorphism as in system F [Gir72]. The
proof of this result was achieved in several steps. We first focused on xMLF, the Church-
style version of MLF, and showed that it can be translated into a calculus of coercions:
terms are mapped into terms and instantiations into coercions. This coercion calculus can
be seen as a decorated version of system F, so that the simulation result entails strong
normalization of xMLF through the same property of system F. We then transferred the
result to all other versions of MLF using the fact that they can be compiled into xMLF and
showing that there is a bisimulation between the two.

2. The Resource Calculus and its Denotational Semantics

The λ-calculus is not resource conscious, in the sense that a λ-term can erase or duplicate
its arguments an arbitrary number of times during its reduction. Inspired by the quanti-
tative semantics of linear logic, Ehrhard defined the differential λ-calculus [ER03], that is a
nondeterministic extension of λ-calculus with a syntactic derivative operator that allows to
improve the control over the consumption of resources. Building on these insights, and in-
spired by Boudol’s λ-calculus with multiplicities [Bou93], Tranquilli designed the resource
calculus where the derivative operator is replaced by a linear application of a term to a
“bag” (multiset) of resources, and reusable resources are annotated with an explicit pro-
motion (·)!. Both calculi have their own interest, but they can be also used to infer proper-
ties of the regular λ-calculus and of nondeterministic calculi through the Taylor expansion
originally defined by Ehrhard and Regnier in [ER03]. The idea behind this expansion is to
expose the amount of resources possibly used by a λ-term M during its execution. This is
done by transformingM into a power series of linear terms that approximate its behaviour.

We studied the resource calculus both from a syntactic and from a semantic perspective.
On the syntactic side, we have shown in [M19] that the resource calculus satisfies a semi-
separability result that can be seen as a reformulation of the Böhm Theorem [Böh68].
On the semantic side, starting from the work of Blute, Cockett and Seely [BCS09], we
proposed the notions of Cartesian closed differential categories [M5] and linear reflex-
ive objects [M18] living in such categories as models of the simply typed and of the
untyped resource calculus, respectively. These notions are general enough to encom-
pass all models of resource calculus that have been individually introduced in the lit-
erature [HNPR06, dC07, M3], and are equationally complete under certain hypotheses. In
particular, the relational semantics can be seen as a Cartesian closed differential category
and the relational graph models induce linear reflexive objects. Therefore, it is natural to
wonder whether the relational graph model3 Dω introduced in [M3], which we proved
to be fully abstract for the regular λ-calculus [M17], is also fully abstract for the resource
calculus. In [Bre13], Breuvart showed that this is not the case by providing an ingenious
counterexample. However, we were able to demonstrate in [M1, M2] that Dω is actually
fully abstract for a resource calculus extended with a convergency test mechanism first
arisen in the context of differential interaction nets [EL10].

3Notice that Dω is not Scott’s pioneering model D∞, but rather its relational version.
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3. Nondeterminism in the Quantitative Setting

The resource calculus is intrinsically nondeterministic because a resource term needs to
choose nondeterministically how to use the different resources contained in its bags. This
opens the way to study differential categories as models of nondeterministic languages as
well. For instance, since in the relational semantics programs are interpreted as relations,
and relations are closed under arbitrary unions, it is natural to interpret nondeterministic
choice in that context as set-theoretical union. As the union of two relations is non-empty
whenever at least one of these relations is non-empty, this approach captures a notion
of may-convergency: the nondeterministic choice between two terms converges if at least
one of the two terms does. In particular reflexive objects, like Dω , an interpretation of the
parallel composition is also at hand and can be obtained by combining the mix-rule of linear
logic with the contraction rule, like Danos and Krivine did in [DK00]. This corresponds to a
notion of must-convergency: the parallel composition between two terms converges if both
terms converge. We have shown in [M6] that Dω is an adequate model of a call-by-name
λ-calculus extended with nondeterministic choice and parallel composition, and in [M12]
that this approach generalizes to the call-by-value setting. In both cases, the models that
we found are adequate but not fully abstract — this is due to the fact that the observational
equivalence is not resource conscious while the semantics of parallel-composition is.

In order to obtain a full abstraction result, we need to consider resource sensitive ex-
tensions of typed λ-calculi with constants. Keeping this purpose in mind, we designed
Resource PCF, a PCF-like language endowed with a linear-head reduction, and proved that
its relational semantics is fully abstract. This result is actually a consequence of a more
general construction we described in [M13, M14] to build a differential category from an
arbitrary symmetric monoidal closed category C. The key steps are the following: we
first perform the free sup-lattice enrichment of C and add freely countable biproducts, if
needed, then we apply the Karoubi envelope and finally we consider the co-Kleisli cate-
gory. This method is general enough to reconstruct known examples like the relational
semantics of linear logic [Gir88] and the category of nondeterministic games defined by
Harmer and McCusker in [HM99], and allows to expose their differential structure.

In [M15], we started from the consideration that the category of sets and relations can be
seen as the biproduct completion of the Boolean ring of truth values. Inspired by the work
done in [M13, M14], we generalized this construction to an arbitrary continuous semiring
R, producing a cpo-enriched category which is a semantics of linear logic. We have shown
that its co-Kleisli category is an adequate model of an extension of PCF, parametrized
by the continuous semiring R: terms in this extended language can be instrumented by
elements ofR, leading to an operational notion of reduction weighted by values inR. Thus
the choice ofR and of how terms are instrumented allowed us to model, both operationally
and denotationally, a range of quantitative properties of program execution. For instance,
we have shown that specific instances of R allow to compare programs not only with
respect to “what they can do", but also “in how many steps" or “in how many different
ways" (for nondeterministic PCF) or even “with what probability" (for probabilistic PCF).

4. Factor Algebras and Symbolic Computation

Algebraic logic investigates the connections between a logic and algebraic properties of
the corresponding class of algebras. The origin of modern algebraic logic goes back to
Tarski’s 1935 paper [Tar35], where he established the correspondence between classical



4 INTRODUCTION

propositional logic and cylindric algebras. Subsequently, a number of different logics were
algebraized in this way, like the intuitionistic logic and the multi-valued logics of Post,
of Gödel and of Łukasiewicz. The idea is to consider a logical formula as an algebraic
term, the tautologies being those expressions that can be proven equivalent to “true”. This
approach is heterogeneous because for each logic one needs to find the corresponding
kind of algebras, study their properties, and find ad hoc methods for proving equivalences
between terms using their axioms.

In the pioneering paper [M29], we proposed a unifying method for determining
whether a propositional formula φ is a tautology. This approach is general enough to
be applicable to any multi-valued matrix logic Lwith truth values v1, . . . , vn among which
there is a designated element t representing the truth value “verum”. The idea is to de-
fine a translation mapping formulas into terms of a factor algebra. Both truth values and
propositional variables, that are static objects in the logic L, become dynamic entities after
the translation: truth values become fresh algebraic variables ξ1, . . . , ξn that can receive
substitutions; a propositional variable P becomes an n-ary decomposition operator fP
whose behaviour is axiomatized by three simple equations; connectives are implemented
via substitutions and logical operations on the indices of the variables ξi. Our main the-
orem states that a formula φ is a tautology exactly when its translation is provable equal
to ξt using the axioms of a factor variety. We then showed that this approach generalizes
to the model theory of quantified matrix logics, and of first order classical logic (with or
without equality) for which we were able to provide a completeness theorem.

The theory of decomposition operators was previously applied to study the denota-
tional models of λ-calculus [M23, M25] and lattices of equational theories [M24].



Preliminaries
We fix some basic notions and notations that will be used in the rest of the manuscript.
Some symbol will be overloaded, but the reader should always be able to understand its
meaning from the context. A comprehensive table of symbols is given on Page 97.

Sets and multisets. We denote by N the set of natural numbers and by R+ the set of
positive real numbers. Given a set A, we denote by |A| its cardinality and by P(A) its
powerset. We write A ⊆f B whenever A is a finite subset of B.

A multiset over A is a partial map a : A → N\{0} and its support is its domain dom(a).
For each α ∈ A, a(α) gives the multiplicity of α in a, that is the number of occurrences
of α in a. Given two multisets a1 and a2 over A, their multiset union a1 ] a2 is defined
as the pointwise sum (a1 ] a2)(α) = a1(α) + a2(α). A multiset a is called finite if it has
a finite support. An infinite sequence (ai)i∈N of finite multisets over A is called quasi-
finite whenever ai is non-empty for finitely many indices i. We writeMf(A) for the set of
all finite multisets over A and Mf(A)(ω) for the set of all quasi-finite sequences of finite
multisets over A.

We will systematically represent a multiset a as an unordered list [α1, α2, . . . , αi, . . . ]
possibly with repetitions. In particular, the empty multiset will be represented by [].

Category theory. We generally use the notation of [Mel09] for category theory. Given
a category C and two objects A,B we denote by C(A,B) or Hom(A,B) the corresponding
homset and by f, g, h, . . . its elements. We write the identity morphism on A as IdA, or
simply A. Composition is written using infix ; in diagrammatic order.

In a symmetric monoidal category (smc) C, we denote by ⊗ the tensor product and by 1
its unit. When C is monoidal closed (smcc), the monoidal exponential object is denoted as
A( B. We use evA,B ∈ C((A( B) ⊗ A,B) for the monoidal evaluation morphism and
λ(f) ∈ C(A,B( C) for the monoidal Currying of a morphism f ∈ C(A⊗B,C).

When C is moreover ?-autonomous with respect to a dualizing object ⊥, we indicate
by A⊥ the dual object A( ⊥. We will often elide the associativity and unit isomorphisms
associated with monoidal categories.

In a Cartesian category C, we write T for the terminal object and TA for the unique
morphism in C(A,T). We useA×B to denote the product ofA andB, 〈f, g〉 for the pairing
of maps f ∈ C(A,B) and g ∈ C(A,C), and π1, π2 for the corresponding projections. In
presence of biproducts A ⊕ B, we denote by [f, g] the copairing of f ∈ C(A,C) and g ∈
C(B,C) and by ι1, ι2 the corresponding injections.

When C is moreover Cartesian closed (ccc), we denote the exponential object byA→ B,
the evaluation map by EvalA,B ∈ C((A→ B)×A,B) and the Currying of f ∈ C(A×B,C)
by Λ(f) ∈ C(A,B → C).

Categorical semantics of linear logic. We now describe in a nutshell the categorical
semantics of linear logic as formulated in Lafont’s thesis [Laf88], that is as Lafont categories.
This is not the most general definition of a model of linear logic, but it has the advantage
of being simple and general enough to encompass all the models we will use in the rest
of the manuscript. Our main reference for categorical models of linear logic is the survey
paper by Melliès [Mel09].

Recall that an object A of an smcc C is a comonoid if it is equipped with a multiplication
c ∈ C(A,A ⊗ A) and a unit w ∈ C(A, 1) satisfying the usual associativity and unit equa-
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6 PRELIMINARIES

tions. A comonoid morphism f from (A1, c1,w1) to (A2, c2,w2) is defined as a morphism
f ∈ C(A1, A2) such that the following two diagrams commute:

A1 A2

A1 ⊗A1 A2 ⊗A2

f

f ⊗ f
c1 c2

A1 A2

1

f

w1 w2

A symmetric monoidal closed category C is a Lafont category whenever:
(i) it has finite products and,

(ii) for every object A, there exists an object !A being the free commutative comonoid
generated by A.

Condition (ii) is equivalent to ask that the forgetful functor U : C⊗ → C, where C⊗
denotes the category of commutative comonoids and comonoid morphisms in C, has a
right adjoint F , and that ! := F ;U is the comonad over C of this adjunction.

Unfolding this definition, one gets that for every objet A, there is an object !A endowed
with a commutative comonoid structure:

contrA ∈ C(!A, !A⊗ !A), weakA ∈ C(!A, 1),

and a morphism derA ∈ C(!A,A) satisfying the following universality property — for ev-
ery commutative comonoid B and for every morphism f ∈ C(B,A) there exists a unique
comonoid morphism f† ∈ C(B, !A) satisfying f†; derA = f . The multiplication and the
unit of !A are called respectively contraction and weakening, while der is called dereliction.

Every Lafont category C is equipped with a comonad (!,der,dig) defined as follows:
• the endofunctor ! sends every object A into the free commutative comonoid !A and

every morphism f ∈ C(A,B) into (derA; f)† ∈ C(!A, !B),

• the multiplication is called digging and defined as digA := (Id!A)† ∈ C(!A, !!A),

• the unit is the morphism derA ∈ C(!A,A) given above.
Moreover, the functor ! is equipped with a monoidal structure turning it into a sym-

metric monoidal functor from the smc (C,⊗) to the smc (C,×): the corresponding two
isomorphisms are given by

mT := (T1)† ∈ C(1, !T), mA,B := 〈(derA⊗weakB), (weakA⊗derB)〉† ∈ C(!A⊗!B, !(A×B)).

The (co)Kleisli C! over the comonad (!,dig,der) is defined as the category having the same
objects of C, while the homset is given by C!(A,B) := C(!A,B). The composition in C! is
denoted by ;! and defined by f ;! g := dig; !f ; g. The identities in C! are given byA := derA.

It is well known that the Kleisli category C! of a Lafont category C is Cartesian closed:
indeed, the structure of cartesian smcc of C is lifted to a Cartesian closed structure in C!
by the m’s isomorphisms. The exponential object A→ B is defined as !A ( B and the
morphism EvalA,B ∈ C!((A→ B)×A,B) is given by

(m!A(B,A)−1; (der!A(B ⊗ !A); ev!A,B .

This defines an exponentiation since for every f ∈ C!(C×A,B) there is a unique morphism
Λ(f) := λ(mC,A; f) ∈ C!(C,A→ B) satisfying Λ(f)×A = f .
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In which we show that a quarter of century after the publication of Barendregt’s bible on
the λ-calculus, there are still interesting problems to solve and new connections to find.

• Loader and Urzyczyn are Logically Related.
S. Salvati, G. Manzonetto, M. Gehrke and H.P. Barendregt.
Automata, Languages and Programming - 39th International Colloquium
(ICALP’12), Proceedings, Part II, ed. A. Czumaj et al., Lecture Notes in Computer
Science, Volume 7392, pages 364-376, Springer, 2012.

• Relational Graph Models, Taylor Expansion and Extensionality.
G. Manzonetto and D. Ruoppolo.
Mathematical Foundations of Programming Semantics XIV (MFPS’14), Electronic
Notes in Theoretical Computer Science, Vol. 308, pages 245-272, 2014.

• New Results on Morris’s Observational Theory.
F. Breuvart, G. Manzonetto, A. Polonsky and D. Ruoppolo.
In Proceedings of Formal Structures for Computation and Deduction (FSCD 2016),
LIPIcs Vol. 52, pages 15:1-15:18, 2016.

• Strong normalization of MLF via a calculus of coercions.
G. Manzonetto and P. Tranquilli.
Theoretical Computer Science, Volume 417, pages 74–94, 2012.

My PhD thesis mainly focused on denotational models and equational theories of
the untyped λ-calculus. Subsequently, I broadened my scientific interests by con-
sidering non-deterministic languages, resource sensitive extensions, first-order

and second-order type systems, and intersection types. However, I still think that the study
of λ-calculus remains central in theoretical computer science, as several proof techniques
originally developed for this system can be exported to other languages and frameworks.

In this chapter I survey the most important properties of λ-calculus, and I present some
results of mine. During my post-doc at INRIA (2010) I studied with Lévy the normalization
of system F. Together with Tranquilli, I proved a strong normalization result for MLF, a
functional programming language extending ML with first-class polymorphism.

During my postdoc in Nijmegen (2011), I worked with Barendregt and Gehrke on a
connection between the λ-definability problem of simply typed λ-calculus and the inhabi-
tation problem of intersection types newly discovered by Salvati. The four of us together,
proved that the two problems are equidecidable: the undecidability of the former follows
from the undecidability of the latter, and vice versa.

In 2012, together with my PhD student Ruoppolo, I started analyzing Morris’s original
extensional observational theory both from a syntactic and from a semantic point of view.
In an extended collaboration with Breuvart and Polonsky, we provided a characterization
of all relational graph models that are fully abstract for Morris’s theory. Moreover, we
answered positively the question whether such a theory satisfies the ω-rule.

7
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1.1 THE LAMBDA CALCULUS IN A NUTSHELL

The λ-calculus was introduced by Church around 1930 as the kernel of an investigation in
the foundation of mathematics and logic, where the notion of function instead of set was
taken as primitive. Subsequently, it became a key tool in the study of computability and,
with the rise of computers, the formal basis of the functional programming paradigm.
Today, the λ-calculus plays an important role as a bridge between logic and computer
science, which explains the general interest in this formalism among computer scientists.

In this section we present the main notions and results concerning the λ-calculus that
will be useful in the rest of the manuscript. We also profit from the occasion to fix some
notations, even if we generally use the ones from Barendregt’s book [Bar84].

The syntax. A beautiful aspect of the λ-calculus is that its syntax is extremely simple
and, despite that, it is powerful enough to represent all partial computable functions. The
set Λ of λ-terms over an infinite set Var of variables is defined by the following grammar:

Λ : M,N,P,Q ::= x | λx.M | MN for all x ∈ Var.

For the sake of simplicity we consider λ-terms up to α-conversion [Bar84, Def. 2.1.11], and
we often focus on closed λ-terms, also called combinators, that are λ-terms M whose set of
free variables FV(M) is empty. It should be understood that all results presented for closed
λ-terms can be generalized to arbitrary terms. The set of closed λ-terms is denoted by Λo.

Concerning specific combinators, we consider fixed:

I := λx.x Ω := (λx.xx)(λx.xx) Y := λf.(λx.f(xx))(λx.f(xx))
K := λxy.x K′ := λxy.y J := Y(λjxy.x(jy))

where I is the identity, K and K′ are the first and second projection, Ω is the paradigmatic
looping λ-term, and Y is Curry’s fixed point combinator. The combinator J will play a
central role in Section 1.2 in connection with the notion of “infinite η-expansions”.

Operational semantics. The main rewriting rule of the λ-calculus is the β-reduction:

(β) (λx.M)N →β M{N/x}

where M{N/x} denotes the capture-free simultaneous substitution of N for all free occur-
rences of x inM . In general, the λ-calculus is an intensional language: this means that there
are different λ-terms having the same extensional behaviour. We are sometimes interested
in considering the extensional version of λ-calculus obtained by adding the η-reduction:

(η) λx.Mx→η M provided x /∈ FV(M).

We write →βη for →β ∪ →η . Given a reduction →R, the multistep R-reduction �R
(resp. the R-conversion =R) is defined as its transitive-reflexive (and symmetric) closure.

The first studies on the λ-calculus concerned its rewriting theory. The system was
proved to be confluent by Church and Rosser [CR36], a property which implies the unique-
ness of the β-normal forms and ultimately the consistency of the calculus. Subsequently,
λ-terms were investigated from the point of view of their capability of interaction with the
environment. The question is whether, given a closed λ-term M , there is a sequence of
arguments P1, . . . , Pn ∈ Λo that are able to transform M into some other closed λ-term N :

MP1 · · ·Pn =β N (1.1)
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More generally, researchers undertook a quest for solutions of systems of equations be-
tween closed λ-terms: M1 ~P1 =β N1 ∧ · · · ∧Mk

~Pk =β Nk. Clearly, a system of equation of
this form is not always satisfiable and the problem of whether a system is satisfiable can be
difficult. For this reason Böhm restricted his attention to M ’s and N ’s in β-normal forms
and systems having only two equations. This kind of investigations led him to the follow-
ing definition of separability: two closed λ-terms M,N are called separable if there exist
~P ∈ Λo such that M ~P =β K and N ~P =β K′. The first and second projections were chosen
because they are very different β-normal forms that cannot be consistently equated.

The Böhm Theorem, which is a fundamental result in λ-calculus, states that all η-
distinct β-normal forms can be separated.

Theorem 1.1.1 (Böhm Theorem [Böh68]).
If M and N are two distinct βη-normal closed λ-terms, then there exist P1, . . . , Pn ∈ Λo such that:

MP1 · · ·Pn =β K and NP1 · · ·Pn =β K′

Solvability. The Böhm Theorem fits in an early tradition that tends to divide the closed
λ-terms into two classes: those with normal forms, whose “values” are perfectly defined,
and those without normal form which are regarded as “undefined”. In the seventies Baren-
dregt realized that such a division was too discrete: there are λ-terms, like Ω, that are com-
pletely undefined and therefore unable of any interaction with the environment, but there
are also λ-terms that are defined in some respects but not in others, which are nevertheless
capable of such an interaction.

To determine whether a closed λ-term M belongs to the first or the second class of
undefined terms, Barendregt identified the following test [Bar71]: M is solvable if there exist
P1, . . . , Pn ∈ Λo such that MP1 · · ·Pn =β I ; M is called unsolvable, otherwise. Notice that
the equation characterizing solvability is just another instance of (1.1) where N is set to I.
An important result due to Wadsworth is the fact that solvable terms can be characterized
from an operational point of view as those terms M having a head normal form (hnf ), that is
such that M =β λx1 . . . xn.xiM1 · · ·Mk for some n, k ≥ 0. Moreover, the hnf of M can be
obtained by head reduction, that is by always contracting the redex of M in head position.

Theorem 1.1.2 (Wadsworth [Wad76]). Given M ∈ Λo, the following are equivalent:
1. M is solvable,

2. M has a head normal form,

3. the head-reduction of M terminates.

Böhm trees. The study of solvability suggests a notion of separability weaker than
the one given by Böhm: two closed λ-terms M,N are semi-separable whenever there are
~P ∈ Λo such that M ~P is solvable, while N ~P is unsolvable. On the other hand, starting
from a solvable λ-term M , one can head-reduce it to its hnf λx1 . . . xn.xiM1 · · ·Mk, and
since “λx1 . . . xn.xi” represents a stable amount of information, one can continue the head-
reduction on the subterms. Clearly, if one of the Mi’s is unsolvable, that particular head-
reduction will not terminate, but otherwise this gives an effective algorithm to extract from
M all the stable pieces of its (possibly infinite) output. By pushing this iteration to the
limit and using an oracle to determine whether a term is solvable, Barendregt defined a
tree representing the whole execution of a λ-term M , namely its Böhm tree. Formally,
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BT(λx.yΩ)
q

λx.y

⊥

BT(J)
q

λxz0.x

λz1.z0

λz2.z1

λz3.z2
...

BT(Y)
q

λf.f

f

f

f
...

BT(P )
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λyx.x
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η1(x)⊥

y

η2(x)⊥ ⊥
. . .

BT(Q)
q

λyx.x

y

x⊥

y

x⊥ ⊥ . . .

Figure 1.1: Examples of Böhm trees. See [Bar84, Lemma 16.4.4] for the definition of P,Q.

the Böhm tree BT(M) of M is coinductively defined as follows: if M is unsolvable then
BT(M) = ⊥; otherwise, if M is solvable and its hnf is λx1 . . . xn.yM1 · · ·Mk then:

BT(M) = λx1 . . . xn.y

BT(M1) BT(Mk)· · ·

Some examples of Böhm trees are given in Figure 1.1. As we will see in Section 1.2, it
is impossible to semi-separate two λ-terms having the same Böhm tree, but there are also
non semi-separable terms having different Böhm trees.

The λ-theories are the equational theories of the λ-calculus, namely those congruences
on the set Λ containing the β-conversion. They become the main object of study when
considering the computational equivalence more important than the process of calculus.
The set of all λ-theories, ordered by inclusion, forms a complete lattice λT of cardinality 2ℵ0

and constitutes a very rich mathematical structure as shown by Salibra in his work [LS04].
When two λ-termsM,N are equated in a λ-theory T we write T `M = N orM =T N .
Some λ-theories are particularly interesting for our discussion since they arise from op-

erational properties of λ-terms. For instance, the least λ-theory λ captures β-convertibility.
A λ-theory is called extensional when it also includes the η-conversion, therefore the least
extensional λ-theory λη captures exactly the βη-convertibility. Certain λ-theories are called
sensible because they equate all unsolvable λ-terms. We indicate by H the least sensible λ-
theory and by B the sensible λ-theory equating all λ-terms having the same Böhm tree. The
next section is devoted to discuss in detail two sensible extensional λ-theories,H∗ andH+,
that are important since they characterize observational equivalences between λ-terms.

A λ-theory may also arise from semantical considerations, that is as the theory induced
by some model. Models of λ-calculus can be defined algebraically as combinatory algebras
satisfying some additional axioms, or categorically as reflexive objects in Cartesian closed
categories. The interpretation of a λ-term M in a modelM will be denoted by JMKM. We
writeM |= M = N to indicate that the λ-terms M,N have the same interpretation inM.
Every model M induces a λ-theory as follows: Th(M) = {M = N | M |= M = N}.
Finally, we say thatM is fully abstract for the λ-theory T whenever Th(M) = T .
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1.2 OBSERVATIONAL EQUIVALENCES

The problem of determining when two programs are equivalent is crucial in computer
science: for instance, it allows to verify that the optimizations performed by a compiler
preserve the meaning of the input program. For λ-calculi, Morris proposed to regard two
λ-terms M and N as equivalent when they are contextually equivalent with respect to
some fixed set O of observables [Mor68]. This means that one can plug either M or N into
any context CL−M without noticing any difference in the global behaviour. Formally, two
closed λ-terms M,N are O-equivalent, written M ≡O N , if for all P1, . . . , Pk ∈ Λo:

MP1 · · ·Pk gives an observable in O exactly when NP1 · · ·Pk does.

The underlying intuition is that the terms in O represent sufficient stable amounts of in-
formation coming out of the computation. The problem of working with this definition, is
that the quantification over all possible contexts is difficult to handle. Therefore, various
researchers undertook a quest for characterizing observational equivalences both semanti-
cally, by defining fully abstract denotational models, and syntactically, by comparing their
Böhm trees up to some extensional equivalence.

The λ-theory H∗. The observational equivalence obtained by considering as observa-
bles the λ-terms in head normal form is by far the most famous and well studied since it
enjoys many interesting properties. For instance, it corresponds to the λ-theory H∗ which
is the greatest sensible consistent λ-theory [Bar84, Lemma 16.2.4]. As shown in [Bar84,
Thm. 16.2.7], two λ-terms are equivalent inH∗ exactly when their Böhm trees are equal up
to denumerably many η-expansions of (possibly) infinite depth. The typical example of an
η-expansion of infinite depth is given by the term J satisfying the following property:

Jx =β λz0.x(Jz0) =β λz0.x(λz1.z0(Jz1)) =β λz0.x(λz1.z0(λz2.z1(Jz2))) =β · · ·

Obviously J and I are βη-distinct, but the Böhm tree of J (depicted in Figure 1.1) is an
infinite η-expansion of the identity I, written BT(J) =η∞ BT(I). ThereforeH∗ ` I = J.

From a semantic perspective, it is now well known that H∗ is the λ-theory induced by
the pioneering model of λ-calculus D∞ introduced by Scott within the continuous seman-
tics [Sco72]. This result, first reported in [Hyl76, Wad76], means that two λ-terms M,N are
equivalent in H∗ exactly when their interpretations JMKD∞ and JNKD∞ coincide. In other
words, this shows that the model D∞ is fully abstract forH∗.

Theorem 1.2.1 (Hyland [Hyl76], Wadsworth [Wad76]).
Given M,N ∈ Λo, the following are equivalent

1. H∗ `M = N ,
2. BT(M) =η∞ BT(N),
3. D∞ |= M = N .

Subsequently, several fully abstract models for H∗ were individually introduced in other
semantics, for instance in the category of coherence spaces and stable functions [HR90], or
in categories of games [DFH99]. Until recently, the most general results consisted in pro-
viding sufficient conditions for models living in some class to be fully abstract [Gou95b,
M17]. A substantial advance was made by Breuvart in [Bre14] where he proposed the
notion of hyperimmune model of λ-calculus, and showed that a continuous K-model (us-
ing the terminology in [Ber00]) is fully abstract for H∗ exactly when it is extensional and
hyperimmune, thus providing a characterization.
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The λ-theory H+. Even if taking the head normal forms as observables has become
standard for λ-calculi, it is not the only reasonable choice. In particular, when Morris
introduced the first observational equivalence in his PhD thesis [Mor68], he considered
as observables the β-normal forms. We will denote by H+ the λ-theory corresponding to
the original Morris’s observational equivalence1. It is easy to check that the λ-theory H+

is extensional and sensible. Therefore, since H∗ is maximal among sensible theories, we
can conclude that H+ ( H∗. Despite the fact that it has been less ubiquitously studied in
the literature, also the equality inH+ has been characterized both syntactically, in terms of
Böhm trees, and semantically by providing a fully abstract model.

More precisely, Hyland proved that two λ-terms M,N are equivalent in H+ ex-
actly when their Böhm trees are equal up to denumerably many η-expansions of finite
depth [Hyl75], written BT(M) =ηfin BT(N). The typical example are the λ-terms P,Q
built in [Bar84, §16.4] whose Böhm trees are depicted in Figure 1.1. In this figure, ηn(x)
denotes the η-expansion of x having depth n, for instance η3(x) = λz1.x(λz2.z1(λz3.z2z3)).
Therefore, the Böhm tree of P is such that at every level 2n the variable x is η-expanded (in
depth) n times. We conclude that H+ ` P = Q because one can perform infinitely many
η-reductions of finite, but increasing, depth in BT(P ) and obtain BT(Q).

As a brief digression, notice that the existence of such λ-terms P,Q also shows that
the λ-theory Bη generated by adding the η-equivalence to B is different form H+. Indeed,
Barendregt proved in [Bar84, Lemma 16.4.3] that by performing one step of η-reduction in
a λ-termM it is possible to erase from BT(M) at most one η-redex at every level. Therefore,
a proof of Bη ` P = Q would require to use =η an infinite number of times, which is
impossible. As a consequence, we get that the λ-theory Bη is strictly included inH+.

A semantic characterization of Morris’s observational theory was provided by Coppo,
Dezani and Zacchi in [CDZ87]. They introduced a filter modelDCDZ and proved, by adapt-
ing Tait’s reducibility technique, that normalizable terms can be recognized from their se-
mantics in that model — a closed λ-term is normalizable if and only if its interpretation
is contained in a specific open subset (with respect to the Scott topology) of DCDZ. By
exploiting this property, and without using the characterization of H+ in terms of Böhm
trees, they were able to prove that two λ-terms are Morris equivalent exactly when they
have the same interpretation in DCDZ. In other words, they proved that DCDZ is a fully ab-
stract model ofH+. This solved negatively the conjecture stated in [Böh75, open prob. II.3]
that all continuous models built as an inverse limit of a chain of projections induce the
maximal theoryH∗. Summing up, the analogous of Theorem 1.2.1 holds.

Theorem 1.2.2 (Hyland [Hyl75], Coppo et Al. [CDZ87]).
Given M,N ∈ Λo, the following are equivalent

1. H+ `M = N

2. BT(M) =ηfin BT(N)
3. DCDZ |= M = N

As far as we know, there have been no attempts to individuate sufficient conditions
for models living in some semantics to be fully abstract for H+. The situation seems even
worse, to the best of our knowledge DCDZ is the only model in the literature capturing
Morris’s equivalence. For this reason, with our PhD student Ruoppolo, we undertook a
quest for fully abstract models ofH+ within the relational semantics of λ-calculus.

1Note however that this λ-theory is denoted by TNF in Barendregt’s book [Bar84].
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1.3 THE RELATIONAL SEMANTICS AND ITS GRAPH MODELS

The relational semantics was introduced by Girard in [Gir88] as a particularly simple quanti-
tative semantics of multiplicative exponential linear logic (MELL, for short). It corresponds
to the category Rel of sets and relations, where the promotion ! is given by the comonad
of finite multisetsMf(−). Since the intuitionistic arrow A → B can be decomposed into
a linear arrow together with the exponential modality !A ( B, a relational semantics for
the λ-calculus is also at hand. Indeed, a program P of type A→ B will be interpreted as a
relation fromMf(A) to B:

JP K ⊆Mf(A)×B

The relational semantics is called quantitative because the multiplicities in the multiset keep
track of how many times a resource is necessary during the computation. In other words,
([α, α], β) ∈ JP K means that the program P needs to make two calls to its input α of type A
in order to produce the output β of type B. Besides an explicit handle of resources, the
interest of working within the relational semantics is that relational models are simpler
than, say, Scott-continuous ones because their elements are not partially ordered.

The underlying category. Formally, the relational semantics of λ-calculus is given by
the co-Kleisli category MRel of the finite multisets comonad on Rel. The category MRel
can be directly described as follows: its objects are all the sets; a morphism f : A→ B is a
relation fromMf(A) to B; the composition of f : A→ B and g : A→ B is given by:

f ; g = {(a1 ] · · · ] ak, γ) | (a1, β1), . . . , (ak, βk) ∈ f and ([β1, . . . , βk], γ) ∈ g}.

From the ?-autonomous structure of Rel, it follows that MRel is Cartesian closed [Gir87,
See89] and since the exponential object [A → B] representing the homset MRel(A,B) is
the setMf(A) × B, the category contains reflexive objects [D → D] / D. Therefore, from
a categorical point of view, MRel constitutes a valid semantics of the untyped λ-calculus.

However the category MRel is not well-pointed: because of the relational nature of its
composition, there are distinct maps f, g : A → B that coincide on all points x : 1→ A.
This was considered a big issue because of a result by Koymans [Koy82] stating that re-
flexive objects living in well-pointed semantics give rise to combinatory algebras that are
moreover λ-models while, without the well-pointed condition, one only obtains λ-algebras2.
The difference is that any λ-model induces a λ-theory through the kernel congruence rela-
tion of its interpretation function, while this might not be the case for arbitrary λ-algebras.
Therefore, some researchers interested in λ-models were reluctant to work with the re-
lational semantics. A first attempt of reconciling the categorical and algebraic point of
views is the article [Sel02] where Selinger shows that also a λ-algebra can induce a λ-
theory, if one considers a different notion of interpretation, called absolute in his terminol-
ogy. Subsequently, together with Bucciarelli and Ehrhard, we overcame the issue in [M3]
by providing a construction, different from the one proposed by Koymans but neverthe-
less canonical, general enough to turn any reflexive object of a Cartesian closed category
into a λ-model. Nowadays the fact that the category MRel constitutes a valid semantics of
λ-calculus is unanimously accepted by the scientific community.

2The notions of λ-algebras and λ-models are two algebraic definitions of a model of λ-calculus. A λ-algebra
is a combinatory algebra satisfying Curry’s axioms [Bar84, Thm. 5.2.5]. A λ-model is a λ-algebra that moreover
satisfies the Meyer-Scott axiom of “weak extensionality” [Bar84, Def. 5.2.7(ii)].
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Relational graph models. Some relational models of λ-calculus were individually in-
troduced in the literature [M3, HNPR06]. In 2012, together with Ruoppolo, we initiated a
systematic study of the models living in the relational semantics. The aim was to provide
some general methods to construct them and to study the induced λ-theories.

In [M21] we defined the class of relational graph models (rgm), that can be seen as the
relational analogue of the graph models living in Scott’s continuous semantics [Ber00].

Definition 1.3.1 (Relational Graph Models). A relational graph model D = (D, i) is given
by an infinite set D and a total injection i :Mf(D)×D → D.

Intuitively, since the exponential object [D → D] of MRel is exactlyMf(D)×D, every
element (a, α) ∈ dom(i) represents an arrow of the form a → α and the map i determines
what arrows are identified (in an injective way) with some elements of D. In other words
i(a, α) = β corresponds to the equality a → α = β. Since the injection i has a unique
inverse, every rgm D univocally induces a reflexive object [D → D] / D in MRel. Notice
that the reflexive object under consideration here is D itself, while for a regular graph
model it is of the form (P(D),⊆). As a consequence, an rgm D is extensional whenever i
is bijective, while there are no extensional graph models in the continuous semantics.

The notion of rgm is general enough to encompass all previously known examples of
relational models. For instance, we can define the relational analogues of:

• Engeler’s model [Eng81]: the rgm E , first defined in [HNPR06], has denumerably
many atoms and the inclusion map as injection;

• Coppo, Dezani and Zacchi’s model [CDZ87]: the extensional rgm D? of [M21] has
only one atom ? and its injection is generated by the equation [?]→ ? = ?.

• Scott’s model [Sco72]: the extensional rgm Dω introduced in [M3] has only one atom
ε and its injection is generated by the equation []→ ε = ε.

The model Dω has been studied in [M17], where we proved that it is fully abstract for H∗.
Together with Ruoppolo, we have shown in [M21] thatD? is fully abstract forH+. The fact
that the λ-theory induced by E is exactly B will appear in his PhD thesis [Ruo16].

In general, when investigating the λ-theory induced by some model, the first step is to
verify whether the model satisfies an approximation theorem. Approximation theorems
state that the interpretation of a λ-term M can be calculated from the interpretations of its
“finite approximants”, by taking some sort of least upper bound. The standard choice con-
sists in considering as approximants of M the set App(M) of all finite subtrees of BT(M).
It turns out that all relational graph models satisfies the following approximation theorem.

Theorem 1.3.2 (The Approximation Theorem for Böhm Trees [M21]).
Given a relational graph model D and a closed λ-term M , we have that:

σ ∈ JMKD ⇐⇒ ∃t ∈ App(M) such that σ ∈ JtKD

As a direct consequence, the λ-theory induced by an rgm D satisfies B ⊆ Th(D). Per-
haps surprisingly, it is enough to have that D is extensional to conclude thatH+ ⊆ Th(D).
The latter result follows easily from a characterization of H+ given by Lévy in terms of
“extensional approximants” of a Böhm tree [Lév05].

Problem 1. The λ-theories representable by relational graph models belong to the interval [B,H∗].
How many distinct λ-theories can be represented by rgms? Is it possible to give a complete charac-
terization of all representable λ-theories?
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Figure 1.2: The Böhm trees of two λ-termsM,N such thatH∗ `M = N , butH+ `M 6= N .

1.4 CHARACTERIZING FULLY ABSTRACT RELATIONAL MODELS OF H+

Together with Ruoppolo, we provided sufficient conditions for an rgm D to induce as λ-
theoryH+. Namely, we proved in [M21] that every extensional rgm preserving the polarities
of the empty multiset (in a technical sense) is fully abstract for H+. In a larger collabora-
tion including Breuvart and Polonsky [M9], we strengthened this result and obtained a
characterization of all relational graph models that are fully abstract forH+.

Since all extensional rgms equate at least as H+, the difficult part is to find a condition
guaranteeing that they do not equate more. In other words, we need to analyze in detail
the equations inH∗ −H+ and establish a separation result.

A new separation theorem. The crucial observation is that whenever two λ-terms
M and N are equal in H∗, but not in H+, their Böhm trees are similar but there exists a
(possibly virtual) position where they differ because of an infinite η-expansion of a vari-
able x. Such an expansion is not always of the form BT(Jx), since J is not the only infinite
η-expansion of I. An example of this situation is depicted in Figure 1.2, where BT(M)
and BT(N) differ at position 〈1〉 because of an infinite η-expansion of x that “follows the
structure” of the complete infinite binary tree.

More generally, for every computable infinite tree T , one can define a combinator JT
whose Böhm tree is an infinite η-expansion of the identity following the structure of T . This
characterization is complete, in the sense that all λ-definable infinite η-expansions of the
identity can be described as the Böhm tree of some JT for a suitable computable infinite T .

Thanks to a refined version of the Böhm-out technique [Böh68], we have shown that
it is always possible to extract such a difference by defining a suitable applicative context.
As usual, finite η-differences can be destroyed during the process of Böhming out. This
theorem shows that infinite η-differences can always be preserved.

Theorem 1.4.1 (Weak Separation Theorem [M9]).
Let M,N ∈ Λo such that H∗ ` M = N while H+ ` M 6= N . Then, there exist P1, . . . , Pk ∈ Λo
such that, for some infinite computable tree T , we have

MP1 · · ·Pk =βη I NP1 · · ·Pk =B JT (or vice versa)

The consequences of this theorem are both semantical and syntactical. On the one side
it is central in the characterization of all relational graph models that are fully abstract for
H+. On the other side it implies that the λ-theoryH+ validates the ω-rule, a result that will
be presented in Section 1.5.
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Lambda-König relational models. Thanks to Theorem 1.4.1, the problem of distin-
guishing all λ-terms M,N that are equal in H∗ and different in H+, boils down to dis-
tinguish the identity I from all the combinators JT , where T is a computable infinite tree.
To ensure that this difference is still detectable in an rgm, we introduce the notion of a
λ-König model. Intuitively, an rgm D is λ-König when every computable infinite tree T has
an infinite path f (which exists by König’s lemma) witnessed by some element of D.

Definition 1.4.2. Let D be an rgm.
(i) Given an infinite tree T and a function f : N→ N representing an infinite path of T , we say

that an element α ∈ D is a witness for T following f whenever:

α = a0 → · · · → af(0) → α′

and there is a witness β ∈ af(0) for the subtree of T rooted at position f(0) following the
function k 7→ f(k + 1).

(ii) We denote by WD(T ) the set of all witnesses for T following some infinite path f .
(iii) We say that D is λ-König whenever WD(T ) 6= ∅ for all infinite computable trees T .

As we will see, the set WD(T ) is inhabited by those α ∈ D such that [α] → α /∈ JJT K.
We try to explain the reasons that are behind such a characterization of WD(T ).

Suppose, by the way of contradiction, that [α] → α ∈ JJT K for some α ∈ WD(T ). By
the approximation theorem, [α] → α belongs to the interpretation of some finite approxi-
mant t of BT(JT ). Now, assume that T at the root has k children T1, . . . , Tk, then JT =β

λxy1 . . . yk.x(JT1y1) · · · (JTk
yk) and its approximant t is of the form λxy1 . . . yk.xt1 · · · tk for

ti ∈ App(JTi
yi). From the fact that α is a witness for T following some path f we know

that α = a0 → · · · → af(0) → α′ and there is β ∈ af(0) which is a witness for Tf(0). The
definition of JtK is such that [α]→ α ∈ JtK implies [β]→ β ∈ Jλyf(0).tf(0)K, which in its turn
entails tf(0) 6= ⊥. (The last implication follows from J⊥K = ∅.) Since this reasoning can be
iterated indefinitely along the path f , at every level ` the term t should have a subterm
tf(`) 6= ⊥, which is impossible because t is a finite approximant.

Proposition 1.4.3. For an rgm D, we have WD(T ) = {α ∈ D | [α] → α /∈ JJT KD}. Therefore,
for any α ∈WD(T ), we have [α]→ α ∈ JIK − JJT K which entails that D |= I 6= JT for all T .

From this proposition and Theorem 1.4.1, we get the following result.

Theorem 1.4.4 (Breuvart et Al. [M9]).
An extensional rgm D is λ-König if and only if D is fully abstract forH+.

Proof sketch. (⇒) Since D is extensional we have H+ ⊆ Th(D), we need to show that
the other inclusion holds. By contradiction, suppose there are two closed λ-terms M
and N such that D |= M = N but H+ ` M 6= N . By maximality of H∗ we must
have H∗ ` M = N , so we can apply Theorem 1.4.1 and obtain ~P ∈ Λo such that, say,
H+ ` M ~P = I and H+ ` N ~P = JT for some infinite computable tree T . By monotonicity
of the interpretation, we get JIKD = JM ~P KD ⊆ JN ~P KD = JJT KD. We derive a contradiction
by applying Proposition 1.4.3.

(⇐) Suppose Th(D) = H+, then D |= I 6= JT for all infinite computable tree T . As a
consequence of Proposition 1.4.3, we get that WD(T ) 6= ∅ for all such trees T .

Problem 2. Is it possible to adapt the techniques developed by Breuvart in [Bre14] to characterize
all relational graph models that are fully abstract forH∗?
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1.5 THE ω-RULE

λ

λη H
Hη

Hω Bη
λω B

Bω

? • H+

H∗

During his PhD, Barendregt studied the problem whether the ω-
rule is valid in λ-calculus [Bar71]. The ω-rule is defined by:

(ω) ∀P ∈ Λo.MP = NP entails M = N.

In other words, the ω-rule states that two closed λ-terms are equal
exactly when they coincide on all closed arguments, it is therefore
clear that it concerns some kind of extensionality. It is easy to
check that if a λ-theory T satisfies the ω-rule, written T ` ω, then
T is extensional. On the other hand it is non trivial to verify that
the extensionality induced by the ω-rule is strictly stronger than
the one corresponding to η-conversion. Indeed, the proof needs
to consider Plotkin’s terms [Bar84, Def. 17.3.26], which are very
convoluted universal generators [Bar84, Def. 8.2.7(ii)].

Given a λ-theory T , we denote by T η the smallest extensional λ-theory including T ,
and by T ω its closure under the ω-rule. The picture on the side, where T is above T ′ if
T ( T ′, is taken from [Bar84, Thm. 17.4.16] and shows some known results about the
λ-theories introduced in Section 1.1. Most of the inclusions follow from the definition of
such λ-theories, and the fact that T ⊆ T ′ entails T η ⊆ T ′η and T ω ⊆ T ′ω. In general, the
difficult part is to show that, for T ∈ {λ,H,B}, the inclusion T η ⊆ T ω is actually strict. As
mentioned above, the counterexample showing that λη 6` ω is based on Plotkin’s terms.
We do not discuss the technique for proving H 6` ω, which is presented in [Bar84, §17.4].
Here we prefer to focus on those λ-theories including B and strictly contained inH∗, since
the fact thatH∗ ` ω clearly follows from the maximality ofH∗ among sensible theories.

We have seen that the λ-terms P,Q of Figure 1.1 are equated inH+, but different in Bη.
Perhaps surprisingly, they can also be used to prove that Bη ( Bω since P =Bω Q holds.
The proof uses the following interesting fact: for everyM ∈ Λo, there exists k ≥ 0 such that
MΩ · · ·Ω, k times, becomes unsolvable [Bar84, Lemma 17.4.4]. By inspecting Figure 1.1, we
notice that in BT(P ) the variable y is applied to an increasing number of Ω’s (represented
by ⊥). So, when substituting some M ∈ Λo for y in BT(Py), there is a level k of the tree
where MΩ · · ·Ω becomes ⊥, thus cutting BT(PM) at level k. The same reasoning can be
done for BT(QM). Therefore BT(PM) and BT(QM) only differ because of finitely many
η-expansions. Since Bω is extensional and M is arbitrary, we conclude that Bω ` P = Q.

The question whether H+ ` ω was a longstanding open problem, which we solved
positively in [M9]. The key point is to show that the property “M has a β-normal form,
while N does not” can be preserved using a non-empty applicative context L−MP1 ~P . This
is trivial when M,N are semi-separable, since M can be sent to the identity and N to an
unsolvable term. Otherwise, it is possible to apply our Theorem 1.4.1, and send M to
I and N to JT . It is easy to check that the property under consideration is stable under
applications of suitable finite η-expansions of the identity.

Theorem 1.5.1 (Breuvart et Al. [M9]). H+ satisfies the ω-rule.

Problem 3. As reported in [Bar84, Proof of Thm. 17.4.16], Sallé conjectured that the inclusion
Bω ⊆ H+ is actually strict. Prove Sallé’s conjecture, or show Bω = H+.
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The Simply Typed λ-Calculus

∆, x : A ` x : A (var) ∆, x : A `M : B
∆ ` λx.M : A→ B

(lam) ∆ `M : A→ B ∆ ` N : A
∆ `MN : B (app)

Figure 1.3: The inference rules of simply typed λ-calculus. In (lam) we assume x /∈ dom(∆)

1.6 SIMPLE TYPES AND INTERSECTION TYPES

The λ-calculus can be endowed with several kinds of type systems, that allow to assign
elements of a given set T of types to untyped λ-terms. A particular type system depends
on two parameters: the set T of types and the inference rules of type assignment.

The simply typed λ-calculus was introduced by Church in [Chu40]. Under the Curry-
Howard isomorphism, it correspond to intuitionistic logic [SU06]. The interest on this
system among researchers has been revitalized by the recent publication of Barendregt’s
book on typed λ-calculi [BDS13].

We consider the set T0 of simple types that are built from a single atomic type 0 using
the arrow constructor.

T0 : A,B,C ::= 0 | A→ B

The main idea is that a λ-term M gets the type A→ B when it is considered as a function
from terms of type A to those of type B. In this case, if N has type A, then the application
MN is “legal” and gets type B. To assign types to open λ-terms we use type environments
that are partial functions from Var to T0. We denote by ∆ = x1 : A1, . . . , xn : An the type
environment satisfying dom(∆) = {x1, . . . , xn} and ∆(xi) = Ai for all xi ∈ dom(∆).

The inference rules of the simply typed λ-calculus are presented in Figure 1.3. When
∆ `M : A can be derived using these rules, we say that M has type A in the environment ∆.

One of the most important features of the simply typed λ-calculus is that it enjoys
normalization. As discussed in [Gan80a], Turing first noticed that by reducing in a simply
typable λ-term M the innermost redex having highest type A, one obtains a λ-term M ′

having fewer redexes of type A. This reasoning led to a proof of weak normalization by
transfinite induction up to ω2. Subsequently, Gandy obtained a semantic proof of strong
normalization by exploiting denotational models based on strictly monotone functions.

Theorem 1.6.1 (Gandy [Gan80b]). The simply typed λ-calculus is strongly normalizable.

In [dV87], de Vrier refined Gandy’s proof by showing that it is possible to associate
with every simply typable λ-termM the exact bound of the lengths of its reductions. Other
proofs of strong normalization based on Tait’s reducibility technique appeared in the lit-
erature [GLT89, Sch91]. However, none of these proofs explains what quantity actually
decreases during the reduction. Indeed, as we think that “the maximum number of steps
towards its normal form” is not a satisfying answer, we consider the problem open.

Problem 4. Construct an “easy” assignment #(−) of (possibly transfinite) ordinals to simply
typed λ-terms in such a way that M →β N entails that #M > #N . By the fact that the ordinals
are well-ordered, this immediately shows that the system is strongly normalizing.
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Denotational models of simply typed λ-calculus. We recall here the set-theoretical
definition of a model of simply typed λ-calculus.

A typed applicative structureM is given by a pair ((MA)A∈T0 , · ) where eachMA is a
structure whose carrier is non-empty, and · is a function that associates to every d ∈MA→B
and every e ∈ MA an element d · e inMB . We say that typed applicative structureM is
extensional whenever for every d, d′ ∈ MA→B , d · e = d′ · e for all e ∈ MA entails d = d′.
This is always the case whenMA→B is a set of functions and · is functional application.
A typed applicative structureM is called hereditarily finite if everyMA is finite.

To interpret the free variables of M in the structureM we need a valuation ν, that is a
map from Var to elements of M. A valuation ν agrees with a type environment ∆ when
∆(x) = A implies ν(x) ∈ MA. Given a valuation ν and an element d ∈ M, we write
ν{d/x} for the valuation ν′ that coincides with ν, except for x, where ν′ takes the value d.

A model M of simply typed λ-calculus is an extensional typed applicative structure
such that the clauses below define a total interpretation function J·KM(·) which maps deriva-
tions ∆ `M : A and valuations ν agreeing with ∆ to elements ofMA:

• J∆ ` x : AKMν = ν(x),

• J∆ ` NP : AKMν = J∆ ` N : B → AKMν · J∆ ` P : BKMν ,

• J∆ ` λx.N : A→ BKMν · d = J∆, x : A ` N : BKMν{d/x} for every d ∈MA.

When the derivation ∆ ` M : A is clear we simply write JMKMν for its interpretation.
Moreover, whenever M is a closed λ-term, we simplify the notation further and write
JMKM since its interpretation is independent from the valuation.

Logical relations have been extensively used in the study of typed λ-calculi. They
constitute a powerful tool for establishing links between syntax and semantics, or for
relating different models. For instance, they can be used for proving Friedman’s com-
pleteness theorem [Fri73], which characterizes βη-equality, and Jung-Tiuryn’s [JT93] and
Sieber’s [Sie92] theorems on the characterization of λ-definability. We refer the reader to
[AC98, §4.5] and [BDS13, §3C] for a more detailed presentation.

For our purposes, we only need the following semantic notion of a logical relation.

Definition 1.6.2. Given two valuation modelsM,N , a logical relationR betweenM andN is
a family {RA}A∈T0 of binary relationsRA ⊆MA×NA such that for all A,B ∈ T0, f ∈MA→B
and g ∈ NA→B we have:

f RA→B g if and only if ∀h ∈MA, h
′ ∈ NA [ hRA h′ ⇒ f(h)RB g(h′) ].

Given a logical relationR and f ∈MA we defineRA(f) = {g ∈ NA | f RA g} and, for
Y ⊆MA,RA(Y ) =

⋃
f∈Y RA(f). Moreover, we writeR− for the inverse ofR.

It is well known that a logical relation R is univocally determined by the value of R0,
and that the following fundamental lemma of logical relations holds [AC98, §4.5].

Lemma 1.6.3 (Fundamental Lemma). Let R be a logical relation betweenM and N then, for
all closed λ-terms M having simple type A, we have JMKM RA JMKN .

Intersection types were introduced in the late ’70s by Coppo and Dezani [CD80]. Sub-
sequently, researchers developed several type systems based on intersection types [BCD83,
CDV80, RV84, CDZ87]. We refer to [BDS13, Part 3] for a survey.

We present here the system CDV defined by Coppo, Dezani and Venneri in [CDV80].
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(a) The System CDV

x1 : σ1, . . . , xn : σn `∧ xi : σi
(ax)

Γ `∧ M : τ → σ Γ `∧ N : τ
Γ `∧ MN : σ (→E)

Γ, x : σ `∧ M : τ
Γ `∧ λx.M : σ → τ

(→I)
Γ `∧ M : σ Γ `∧ M : τ

Γ `∧ M : σ ∧ τ (∧I)
Γ `∧ M : σ σ ≤ τ

Γ `∧ M : τ (≤)

(b) The Subtyping Rules

σ ≤ σ (refl) σ ∧ τ ≤ σ (inclL) σ ∧ τ ≤ τ (inclR)

(σ → τ) ∧ (σ → τ ′) ≤ σ → (τ ∧ τ ′) (→∧)

σ ≤ γ γ ≤ τ
σ ≤ τ (trans)

σ ≤ τ σ ≤ τ ′
σ ≤ τ ∧ τ ′

(glb) σ′ ≤ σ τ ≤ τ ′
σ → τ ≤ σ′ → τ ′

(→)

Figure 1.4: The intersection type system CDV and its subtyping rules.

Given a set A of atomic types, the set TA
∧ of intersection types over A is generated by:

TA
∧ : σ, τ ::= α | σ → τ | σ ∧ τ (for α ∈ A)

The set TA
∧ is partially ordered by the subtyping relation ≤ defined in Figure 1.4(b). We

write ' for the equivalence generated by setting σ ' τ if and only if both σ ≤ τ and τ ≤ σ
hold. Environments Γ = x1 : τ1, . . . , xn : τn are handled as in the simply typed case. The
inference rules for deriving Γ `∧ M : σ in the system CDV are given in Figure 1.4(a). The
idea is that whenever a λ-term M has both type σ and type τ , it also gets the type σ ∧ τ .

Also this system CDV, like the simply typed λ-calculus, enjoys strong normalization. It
is however well known that there are strongly normalizable terms, like λx.xx, that are not
simply typable. On the contrary, CDV provides a characterization of normalizable λ-terms.

Theorem 1.6.4 (Coppo et Al. [CDV80]).
A λ-term M is typable in CDV if and only if M is strongly normalizable.

In collaboration with Barendregt, Coppo and Dezani [BCD83] introduced a special
atomic type ω, and a subtyping rule specifying that σ ≤ ω for all types σ. As a conse-
quence, all λ-terms become typable in the new system, since they can have ω as a type.

Another way to understand the language of intersection types is as a formal language
for representing the compact elements of the domain (D,v) which they serve to define.
Intuitively, the intersection types σ, τ represent compact elements d, e of D, the association
being bijective but order-reversing (i.e., σ ≤ τ entails e v d). The type σ → τ represents
a step function, which is a compact element of D, σ ∧ τ represents the join d t e and ω
represents ⊥. This correspondence is at the basis of the presentation of intersection type
systems as filter models. In these models the interpretation of M corresponds to the set of
types σ such that `∧ M : σ, which is an ideal w.r.t. ≤, therefore JMK is a filter w.r.t. v.
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1.7 LAMBDA DEFINABILITY AND TYPE INHABITATION ARE UNDECIDABLE

We discuss here two apparently unrelated problems concerning the typed λ-calculi pre-
sented in Section 1.6. The first one is the problem of λ-definability for the simply typed
λ-calculus, while the second one is the problem of type inhabitation for the system CDV.

Definability for simply typed λ-calculus. Consider the simply typed λ-calculus on
simple types T0 with one ground type 0. A (hereditarily finite) full model of this calculus is
given by: a collection of sets F = (FA)A∈T0 such that F0 6= ∅ is finite and FA→B = FFA

B

(that is, the set of functions from FA to FB); the map · is simply functional application.
We say that an element f ∈ FA is λ-definable whenever there exists a closed λ-term M

having type A whose interpretation is f , i.e. such that JMKF = f . The following question,
raised by Plotkin in [Plo73], is known as the Definability Problem:

DP: “Given an element f of any hereditarily finite full model, is f λ-definable?”

A natural restriction considered in the literature [Jol03, Loa01] is the following:

DPn: “Given an element f of Fn, is f λ-definable?”

whereFn (for n ≥ 1) denotes the unique (up to isomorphism) full model whose ground set
F0 has n elements. Statman’s conjecture stating that DP is decidable [Sta82] was refuted by
Loader [Loa01], who proved in 1993 (but published in 2001) that DPn is undecidable for
every n > 6. Such a result was subsequently strengthened by Joly, who showed in [Jol03]
that DPn is undecidable for all n > 1.

Theorem 1.7.1 (Loader [Loa01], plus Joly [Jol03]).
1. (Loader) The Definability Problem is undecidable.

2. (Loader/Joly) DPn is undecidable for every n > 6 (resp. n > 1).

Inhabitation for intersection types. Consider now the λ-calculus endowed with the
intersection type system CDV based on a countable set A of atomic types. We say that a
type σ ∈ T∧ is inhabited if the judgement `∧ M : σ is derivable for some closed λ-term M .

The Inhabitation Problem for this system is formulated as follows:

IHP: “Given an intersection type σ, is σ inhabited?”

We will also be interested in the following restriction of IHP:

IHPn: “Given an intersection type σ with at most n atoms, is σ inhabited?”

In 1999, Urzyczyn [Urz99] proved that IHP is undecidable for suitable intersection types,
called “game types” in [BDS13, §17E], and therefore for the whole CDV. His idea was to
prove that solving the inhabitation problem for a game type σ is equivalent to winning a
suitable “tree game” G. An arbitrary number of atoms may be needed since, in the Turing-
reduction, the actual amount of atoms in σ is determined by the tree game G.

Theorem 1.7.2 (Urzyczyn [Urz99]).
1. The Inhabitation Problem for game types is undecidable.

2. The Inhabitation Problem is undecidable.
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An unexpected connection. The undecidability of DP and that of IHP are major re-
sults in theoretical computer science. For a thorough presentation, we refer the reader to
Section 4A and Section 17E of [BDS13], respectively. Both proofs of undecidability are ob-
tained by reducing these problems to well-known undecidable problems (and eventually
to the Halting problem). However, the instruments that are used to achieve these results
are very different — the proof by Loader proceeds by reducing DP to the two-letter word
rewriting problem, while the proof by Urzyczyn reduces (through a series of reductions)
IHP to the emptiness problem for queue automata. The fact that these proofs are different
is not surprising since the two problems, at first sight, really seem unrelated.

Starting from an original idea by Salvati, and in collaboration with Barendregt and
Gehrke, we proved in [M30] that DP and IHP are actually Turing-equivalent, by providing
a perhaps unexpected link between the two problems. More precisely, in that work we
describe a construction that allows to obtain the following Turing-reductions3:

(i) Inhabitation Problem for game types ≤T Definability Problem,

(ii) Definability Problem ≤T Inhabitation Problem (cf. [Sal09]),

(iii) DPn ≤T IHPn (cf. [Sal09]).
Therefore, by (i) and (ii) we get that the undecidability of DP and IHP follows from each
other. Moreover, by (iii) and Theorem 1.7.1(2) we conclude that IHPn is undecidable
whenever n > 1, which is a new result refining Urzyczyn’s one.

In the next sections we present the main ingredients of our constructions, while the
actual undecidability results will be presented in Section 1.10.

1.8 UNIFORM INTERSECTION TYPES.

In general, a useful approach to prove that a decision problem is undecidable, is to identify
a “sufficiently difficult” fragment of the problem. As mentioned earlier, Urzyczyn has
shown the undecidability of inhabitation for game types that constitute a proper subset G
of intersection types. Formally, the set of game types is given by G := A ∪ B ∪ C:

A := A∧, B := (A → A)∧, C := (D → A)∧ for D := {σ ∧ τ | σ, τ ∈ (B → A)}

where Y ∧ := {σ1∧· · ·∧σn | σi ∈ Y for all 1 ≤ i ≤ n} and Y → Z := {τ → σ | τ ∈ Y, σ ∈ Z}.
In our case we focus on intersection types that are uniform with simple types. The idea

behind this notion, is that we want to compare the set of intersection types with a full
model of simply typed λ-calculus F over a set X . Therefore we need to consider the set
TX∧ of intersection types having the elements of X as atomic types, and we need to stratify
such a set following the arrow structure of the simple types.

Definition 1.8.1. The set UX(A) of intersection types uniform with A ∈ T0 is given by:

UX(0) := X∧, UX(B → C) := (UX(B)→ UX(C))∧.

It turns out that Urzyczyn’s game types are all uniform: A ⊆ UA(0), B ⊆ UA(0 → 0)
and D ⊆ UA((0 → 0) → 0) thus C ⊆ UA(((0 → 0) → 0) → 0). As a consequence, the
inhabitation problem for uniform intersection types over A is undecidable as well.

3Recall that if the problem P1 is undecidable and P1 ≤T P2, then also P2 is undecidable
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CDVω . To relate the uniform intersection types in CDV with the full model F , we
need an intermediate type system CDVω . The system CDVω is a variation of CDV where
intersection types are extended by adding a distinguished element ω at ground level.

The set UX∪{ω}(A) of intersection types with ω uniform with A will be denoted by UωX(A)
and we write ωA for the type in UωX(A) defined by setting ω0 := ω and ωB→C := ωB → ωC .

The system CDVω over TA∪{ω}
∧ , whose judgments are denoted by Γ `ω∧ M : σ, is gene-

rated by adding the following rule to the definition of ≤ in Figure 1.4:

σ ∈ UωA (A)
σ ≤ ωA

(≤A)

By construction, for every A ∈ T0, the type ωA is a maximal element of UωA (A). Therefore,
the system CDVω should not be confused with the usual intersection type systems with ω,
where ω is a maximal element for all intersection types and can be assigned to any λ-term.

The new subtyping relation respects the stratification of uniform types, in the sense that
only intersection types that are uniform with the same simple type A can be comparable.

Lemma 1.8.2. Let σ ∈ UωA (A) and τ ∈ UωA (A′). Then we have that σ ≤ τ entails A = A′.

Despite the fact CDVω is an intersection type system, the β-normal forms that can be
typed using uniform intersection types coincide with those that are typable in the simply
typed λ-calculus. Notice that we can focus on normal forms without loss of generality
because both systems are strongly normalizable.

Lemma 1.8.3. For every β-normal closed λ-term M and for every σ ∈ UωA (A) we have:

`ω∧ M : σ entails `M : A.

The property above does not generalize to arbitrary closed λ-terms because, while we
consider only uniform intersection types, we do not restrict the intersection type system.
In other words, non-uniform intersection types may still be used in a deduction, as shown
in the following example.

Example 1.8.4. Let us consider two λ-terms M = λzy.y and N = λx.xx. It is easy to check that

`ω∧ M : ((β ∧ (β → β))→ β)→ α→ α and `ω∧ N : (β ∧ (β → β))→ β.

Therefore, in CDVω it is possible to assign MN the uniform type α ∈ UωA (0→ 0) as follows:

`ω∧ λzy.y : ((β ∧ (β → β))→ β)→ α→ α `ω∧ λx.xx : (β ∧ (β → β))→ β

`ω∧ (λzy.y)(λx.xx) : α→ α

However N is not simply typable, hence neither is MN .

Clearly every normal form M which is typable with a simple type A can be also typed
with an intersection type σ which is uniform with A. We can conclude that the type sys-
tems CDV and CDVωare equivalent on normal forms in the following (strong) sense.

Lemma 1.8.5. For every β-normal closed λ-term M , and for every σ ∈ UA(A) we have:

Γ `∧ M : σ ⇐⇒ Γ `ω∧ M : σ.
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1.9 THE MONOTONE MODEL OVER P(X)

It is well known that the hereditarily finite full model F contains a lot of undefinable
elements (junk). For this reason it is useful to define another model S, based on monotone
functions, which can be seen as a refinement of F . The interpretations of a λ-term in the
two models will be subsequently related using the fundamental lemma of logical relations
(Lemma 1.6.3).

Definition 1.9.1. Given a finite set X ⊆ A of atoms, the monotone model S over P(X) corre-
sponds to the typed applicative structure ((SA,vA)A∈T0 , ·), were · is functional application and:

• S0 = P(X) and f v0 g if and only if f ⊆ g,
• SA→B is the set of the monotone functions from SA to SB endowed with the following partial

order: f vA→B g holds if and only if for all h ∈ SA we have f(h) vB g(h).

Each SA is a finite join-semilattice, and thus a complete lattice, whose join is denoted
by t and whose bottom is denoted by ⊥A.

Given f ∈ SA we write f ↑ for its upward closure in SA, that is f ↑= {f ′ ∈ SA | f v f ′}.
As mentioned in Section 1.6, intersection types can be used to represent elements of a

filter model. Similarly, uniform intersection types over X ∪ {ω} correspond to elements of
the monotone model S . The intuition is the following: at ground type, every intersection
α1 ∧ · · · ∧αk of atoms can be viewed as a set {α1, . . . , αk}, the type ω being represented by
the empty set; at higher levels, every arrow type σ → τ can be seen as a “step function”.

Step functions constitute the “building blocks” of monotone functions, and are defined
as follows. Given f ∈ SA and g ∈ SB we write f 7→ g for the corresponding step function:

(f 7→ g)(h) =
{
g if f vA h,
⊥B otherwise.

We are now going to formalize the correspondence between uniform intersection types
and elements of the model S.

For all A ∈ T0 we define a function ιA : UωX(A) → SA by induction on A as follows.
Given α ∈ X and σ, τ ∈ UωX(0) we let

ι0(α) = {α}, ι0(ω) = ⊥0 = ∅, ι0(σ ∧ τ) = ι0(σ) t ι0(τ)

For σ, τ ∈ UωX(A→ B) we define:

ιA→B(σ → τ) = ιA(σ) 7→ ιB(τ), ιA→B(σ ∧ τ) = ιA→B(σ) t ιA→B(τ).

Thanks to the presence of the maximal element ωA, the correspondence between Uω(A)
and SA is actually very faithful. First, one can verify that for every σ ∈ Uω(A), we have
that σ ' ωA entails ιA(σ) = ⊥A. Second, one can check that for allA ∈ T0 and σ, τ ∈ Uω(A)
we have that σ ≤ τ holds if and only if ιA(τ) v ιA(σ). In other words, the order between
the elements is reversed under the action of ι.

Theorem 1.9.2. The map ιA is an order-reversing bijection on UωX(A)/'.

The above results are related to the Stone duality for intersection types, first noticed by
Coppo and Dezani in [CD80] and by Abramsky in [Abr87].

Proposition 1.9.3. LetM be a β-normal closed λ-term such that `M : A, then for all σ ∈ UωX(A)
we have:

`ω∧ M : σ ⇐⇒ ιA(σ) v JMKSν
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Figure 1.5: Inhabitation in CDV over X reduces to definability in F over P(X).

1.10 DP AND IHP ARE EQUIDECIDABLE

IHP ≤T DP. We show that the undecidability of the Definability Problem follows from
the undecidability of the inhabitation problem (for game types) in CDV. The reduction is
obtained by linking through a suitable logical relation I the continuous model S built in
the previous section and the full model F over P(X), where X ( A is a finite set of atoms.

We consider the logical relation I generated by taking the identity at ground level. This
actually constitutes a logical retract, in the sense that at every level A ∈ T0 we have:

(i) for all f ∈ SA there is g ∈ FA such that f IA g,

(ii) for all f, f ′ ∈ SA, g ∈ FA if f IA g and f ′ IA g then f = f ′.
As a consequence we get, for every subset S ⊆ SA, that I−A (IA(S)) = S.

For every β-normal closed λ-term M having type A and every σ ∈ UX(A) we have the
following computable chain of equivalences:

`∧ M : σ ⇐⇒ `ω∧ M : σ, by Lemma 1.8.5,
⇐⇒ JMKS ∈ ιA(σ)↑, by Proposition 1.9.3,
⇐⇒ JMKF ∈ IA(ιA(σ)↑), by Lemma 1.6.3 plus condition (ii).

Suppose, by the way of contradiction, that DP is decidable. We want to decide whether
σ ∈

⋃
A∈T0,X⊆fA UX(A) ⊆ G is inhabited in CDV. As CDV is strongly normalizable, we

can focus on β-normal forms. Since for a β-normal form M being typable with σ ∈ UX(A)
implies being typable with A (by Lemma 1.8.3) we can focus on simply typed λ-terms.
Now we can take the set X of all atoms in σ, compute the simple type A such that σ ∈
UX(A), and effectively construct the finite set IA(ιA(σ)↑) ⊆ F (the full model over P(X)).
If DP is decidable, then we can also decide with finitely many tests whether there is a λ-
definable f ∈ IA(ιA(σ)↑). By the above equivalences, such an f exists if and only if σ is
inhabited. This yields a reduction of IHP for game types (hence for uniform types) to DP.

Theorem 1.10.1 (Salvati et Al. [M30]). The undecidability of the Definability Problem follows by
a reduction from the one of the Inhabitation Problem for game types, Theorem 1.7.2(1).
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Figure 1.6: Definability in F over X reduces to inhabitation in CDV over X .

DP ≤T IHP. We now show that the undecidability of inhabitation in CDV follows di-
rectly from the undecidability of λ-definability in the full model F over a finite set X ⊆ A.
The main idea is a simple embedding of the elements of F into the uniform intersection
types: given f in FA we can define an intersection type ξf in UX(A) as follows:

• if A = 0, then ξf = f ,
• if A = B → C, then ξf =

∧
g∈FB

ξg → ξf(g).
Also in this case the continuous model S over P(X) will play a key role. This time, we
consider two logical relations between the full model F and the continuous model S:

• the relation J generated by J0 = {(f, F ) | f ∈ F ⊆ F0} and
• the relation K generated by K0 = {(f, {f}) | f ∈ X}.

Together, they allow to capture the following property.

Lemma 1.10.2. For every f ∈ FA and g ∈ SA we have f JA g and f KA g iff ιA(ξf ) v g.

For a β-normal closed λ-termM , we have the following computable chain of equivalences:

JMKF = f ⇐⇒ f JA JMKS and f KA JMKS , by Lemma 1.6.3 (twice),
⇐⇒ ιA(ξf ) v JMKS , by Lemma 1.10.2,
⇐⇒ `∧ M : ξf , by Proposition 1.9.3.

Therefore f ∈ F is definable if and only if the intersection type ξf is inhabited. This yields a
reduction of the Definability Problem (resp. DPn) to the Inhabitation Problem (resp. IHPn).

Theorem 1.10.3 (Salvati et Al. [M30]).
1. The undecidability of the Inhabitation Problem follows by a reduction from the undecidability

of the Definability Problem, Theorem 1.7.1(1).
2. The undecidability of IHPn for all n > 1 follows by a reduction from the undecidability of

DPn for all n > 1, Theorem 1.7.1(2).

Problem 5. While the reduction IHP≤T DP presented in [M30] is a proper Turing reduction, DP
≤T IHP is an “ordinary” (many-one, actually one-to-one) reduction, which is logically simpler.
Are IHP and DP equivalent with respect to the finer structure of many-one degrees?
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1.11 RAISING ML TO THE POWER OF SYSTEM F, WHILE KEEPING NORMALIZATION

One of the most efficient techniques for assuring the “good behaviour” of a program is
static type-checking: types are assigned to every subexpression of a program, so that consis-
tency of such an assignment (which is checked at compile time) implies well-behavedness.
Such an assignment may be explicit, as in C or Java, or implicit as in ML where types are in-
ferred by the compiler. In this context type polymorphism allows greater flexibility, making
it possible to reuse code that works with elements of different types.

Polymorphism vs decidability. The problem of full polymorphism is that it leads to
undecidable type systems: this is the case of Girard’s system F [Gir72] whose type checking
has been proved to be undecidable by Wells [Wel94]. For this reason ML is endowed with
the so called second-class polymorphism, more restricted but allowing a type inference
procedure [Mil78, Mil84]. Unfortunately, the programmer is also forced to use second-class
polymorphism only. To solve this problem Le Botelan and Rémy designed MLF [LBR03]
an extension of ML providing a partial type annotation mechanism with an automatic type
reconstructor. This extension allows to write system F programs, which is not always pos-
sible in ML, while remaining conservative: ML programs still type-check without need-
ing any annotation. An important feature of MLF are principal type schemas which are
obtained by employing a downward bounded quantification ∀(α ≥ σ)τ , called a flexible
quantifier. Such a type intuitively denotes that τ may be instantiated to any type τ{σ′/α},
provided that σ′ is an instantiation of σ.

Strong normalization. As discussed in Section 1.6, one of the properties of well-
behavedness that a type system can assure is strong normalization, that is the termination of
all typable programs whatever execution strategy is used. An important result is the fact
that system F is strongly normalizing, which was proved by Girard in [Gir72] using his
famous reducibility candidates. In collaboration with Tranquilli, we proved that also MLF

enjoys the strong normalization property, a problem raised in [RY10].
Our proof is achieved in several steps. The starting point is xMLF [RY12], the Church-

style version of MLF: here type inference is omitted, with the aim of providing an internal
language to which a compiler might map the surface language briefly presented above.
Compared to Church-style system F, the type reduction→ι of xMLF is more complicated,
and may a priori cause unexpected glitches: namely, it could cause non-termination, or
block the reduction of a β-redex. To prove that none of this happens, we define a transla-
tion from xMLF into a coercion calculus Fc. Indeed, xMLF has syntactic entities (the instan-
tiations) which testify an instance relation between types, and it is quite natural to regard
them as coercions. Hence our translation sends xMLF terms to Fc terms and xMLF instan-
tiations to Fc coercions. The strong normalization of xMLF follows from the same property
of Fc, which is easy to show since Fc can be seen as a decorated version of system F.

We then transfer the result from xMLF to all other versions of MLFthrough suitable
bisimulation theorems.

Theorem 1.11.1 (Manzonetto, Tranquilli [M28]).
The system MLF is strongly normalizable.

Note that, while the strong normalization property for β-reduction is a rather theo-
retical problem, that of ι-reductions is needed to safely implement xMLF interpreters and
compilers. Moreover, we think that the coercion calculus Fc has its own interest as it might
be used to provide an abstract characterization of coercions.





2The Resource Calculus and its Denotational Semantics
In which we show that the theory of analytical differentiation can be fruitfully applied to
the study of λ-calculus, and opens the way to capture intensional properties of programs.

• Categorical Models for Simply Typed Resource Calculi.
A. Bucciarelli, T. Ehrhard and G. Manzonetto.
26th Conference on Mathematical Foundations of Programming Semantics, MFPS’10,
Electronic Notes in Theoretical Computer Science, Volume 265, pages 213-230, 2010.

• Böhm’s Theorem for Resource Lambda Calculus through Taylor Expansion.
G. Manzonetto and M. Pagani.
Typed Lambda Calculi and Applications (TLCA’11), Lecture Notes in Computer Sci-
ence, Volume 6690, pages 153-168, 2011.

• Full Abstraction for Resource Calculus with Tests.
A. Bucciarelli, A. Carraro, T. Ehrhard and G. Manzonetto.
In M. Bezem, editor, Computer Science Logic (CSL’11), volume 12 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 97-111, Dagstuhl, Germany, 2011.

• What is a Categorical Model of the Differential and the Resource Lambda Calculi?
G. Manzonetto.
Mathematical Structures in Computer Science, Volume 22(3), pages 451-520, 2012.

• Full Abstraction for the Resource Lambda Calculus with Tests, through Taylor Ex-
pansion. A. Bucciarelli, A. Carraro, T. Ehrhard and G. Manzonetto.
Logical Methods in Computer Science, Volume 8, Issue 4, Paper 3, pp. 1-44, 2012.

In 2009, I have studied the resource calculus introduced in Tranquilli’s PhD thesis. The
strong intuitions I acquired analyzing that calculus allowed me to better understand
also Ehrhard’s differential λ-calculus which is tightly connected.
During my postdoc at the University Paris-Nord, I launched a research programme in

collaboration with Bucciarelli and Ehrhard to investigate the denotational models of re-
source calculus, whose theory was still at the beginning. On the one side, starting from the
notion of a differential category, we were able to provide an abstract categorical definition
of models of the resource calculus. On the other sider we have built concrete examples of
models in the relational semantics of differential linear logic. Unfortunately, none of the
models introduced in this semantics turned out to be fully abstract for this calculus.

During my postdoc at the Radboud University (2010), in a larger collaboration includ-
ing Carraro, we decided to extend the resource calculus with convergency tests to give the
contexts additional discriminating power. We then proved that the relational graph model
Dω constitutes a fully abstract model of this extended calculus. In that period Pagani and
Ronchi della Rocca undertook a quest for characterizing the solvability in the resource cal-
culus both in terms of a terminating reduction strategy and in terms of typability with
non-idempotent intersection types. Building on our complementary competencies, Pagani
and I have formulated the analogue of the Böhm Theorem in the context of resource calcu-
lus. In a joint collaboration, we proved that all extensionally distinct normal resource terms
having different Taylor expansion can be separated by a suitable applicative context.

29
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2.1 INTRODUCTION

The λ-calculus is a very simple and powerful paradigmatic programming language but it
is not resource sensitive in the sense that a program is allowed to erase its argument or du-
plicate it an arbitrary number of times. This becomes a problem when the program runs
in environments with bounded resources (like integrated systems) or in presence of de-
pletable arguments (like quantum data that cannot be duplicated for physical reasons). In
these contexts one would like to be able to verify at compile time the amount of resources
needed by a program during its execution, and to express the fact that it actually consumes
its arguments. This idea of ‘resource consumption’ is central in Girard’s quantitative se-
mantics of linear logic [Gir88] which establishes an analogy between linearity in the sense
of computer science (programs using arguments exactly once) and algebraic linearity.

This connection found by Girard is interesting because the mainstream denotational se-
mantics tends to interpret programs as partial continuous functions defined on domains.
The partiality is necessary to model divergent computations, like the unsolvable terms,
while the continuity takes into account the finite nature of computation — a program only
needs a finite piece of the input in order to produce a finite piece of the output. In the
model, this is expressed by the fact that a continuous function can be seen as the limit of a
sequence of compact functions, therefore the notion of approximation arising in this con-
text is given by finite functions. This point of view is reflected in the syntax of λ-calculus
by the theory of Böhm trees and of their finite approximants. Such an approach is however
orthogonal to the one followed in analysis where the functions are total, defined on vector
spaces and approximated by (multi)linear maps through (iterated) differentiation.

Drawing on these insights, Ehrhard was able to conciliate these points of view by in-
troducing a syntactic notion of derivative of a program in the programming languages
discipline. This opens the way for the application of powerful results developed in the
study of analytical differentiation to this field of computer science. Indeed, as in analy-
sis the derivative D(f) gives information on the function f (since it is a measure of how
f changes as its input changes) in the theory of programming languages it is possible to
infer quantitative properties of a program P by studying its derivative.

The differential λ-calculus. In 2003, Ehrhard, in collaboration with Regnier, de-
signed a resource sensitive paradigmatic programming language called the differential λ-
calculus [ER03], extending the regular λ-calculus with differential and linear constructions.
In this language, there are two different operators that can be used to apply a program to
its argument: the usual application and a linear application. This last one defines a syntac-
tic derivative operator which is an excellent candidate to increase control over programs
executed in environments with bounded resources. Indeed, the evaluation of D(λx.M) ·N
(the derivative of a program λx.M on the input N ) has a precise operational meaning: it
captures the fact that the argument N is available for λx.M “exactly once”. Therefore, the
differential substitution ∂M

∂x ·N forces the presence of non-determinism in the system: ifM
contains several subroutines asking for the argument N the system needs to choose non-
deterministically which subroutine is actually fed with the only available copy of N . As
a consequence, the differential λ-calculus constitutes a useful framework for studying the
notions of linearity and non-determinism, and the relation between them.
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Approximation by Taylor expansion. As expected, iterated differentiation yields a na-
tural notion of linear approximation of the ordinary application of an input to a program.
This notion relates to ordinary application through the Taylor formula [ER08]:

MN =
∞∑
n=0

1
n! (Dn(M) · (N, . . . , N︸ ︷︷ ︸

n times

))0

where 1/n! is a numerical coefficient and Dn(M) · (N, . . . , N) represent the n-th derivative
of M , which is an n-linear symmetric function, applied to n copies of N . More generally, if
one fully develops each application occurring in a program into its corresponding Taylor
expansion, one expresses the program as an infinite sum of purely “differential programs”
all of which contain only linear applications and regular applications to 0. The study of the
relationship between a program and its full Taylor expansion opens the way to the renewal
of the theory of approximations usually based on domains and Böhm trees.

The resource calculus. In the nineties Boudol introduced the λ-calculus with multi-
plicities [Bou93], an extension of call-by-value λ-calculus where arguments may come in
limited availability and are mixed together. His aim was to analyze finer notions of obser-
vational equivalences, like the one given by the π-calculus via Milner’s translation [BL00].
Inspired by the work of Boudol, Ehrhard and Regnier, Tranquilli introduced in his Phd the-
sis the resource calculus [Tra09] and proved in [Tra11] that it corresponds to the intuitionistic
minimal fragment of differential nets with promotion [ER05], exactly as λ-calculus corre-
sponds to the intuitionistic minimal fragment of linear logic proof-nets [Gir87].

The resource calculus has depletable and reusable arguments that come in multisets,
like in the λ-calculus with multiplicities. However, it is a call-by-name language that han-
dles non-determinism via formal sums and its depletable resources are linear rather than
affine1, like in the differential λ-calculus. In other words a termM is not applied to another
term N , like in the usual λ-calculus, but rather to a bag of resources:

M [L1, . . . , Lk, (M1 + · · ·+Mn)!]

where the resources Li are linear, while the promoted resources Mi are reusable. The
resource calculus is intimately related with the differential λ-calculus in the sense that
the resource term M [L1, . . . , Lk, (M1 + · · · + Mn)!] corresponds to the differential λ-term
(Dk(M) · (L1, . . . , Lk))(M1 + · · · + Mn). Under this correspondence all the summands in
the Taylor expansion of MN can be written as M [N, . . . , N ], therefore the promotion-free
resource calculus can be also seen as the target language of the Taylor expansion. For this
reason, in this chapter we will focus on Tranquilli’s resource calculus even if most of the
results could be formulated for the differential λ-calculus as well.

Outline. We start by recalling the syntax and operational semantics of resource calcu-
lus and surveying the most important results. Subsequently we present an investigation
on the denotational semantics of this calculus: on the one side we present Cartesian closed
differential categories that constitute the categorical notion of model of the resource calcu-
lus, on the other side we study the concrete model Dω living in the relational semantics.
We conclude the chapter by showing that, even if Dω is not fully abstract for the resource
calculus, it possible to extend the syntax of the calculus with an exception mechanism in
order to match the equality induced by this model.

1Linear resources must be used exactly once, while affine resources either zero or one times.
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2.2 THE RESOURCE CALCULUS

The resource calculus was introduced in 2009 by Tranquilli [Tra09] as an alternative syntax
for the differential λ-calculus. The calculus has three syntactic categories: resource terms
that are in functional position, bags that are in argument position and represent multisets
of resources, and finite formal sums that represent the possible results of a computation.
The grammar for generating the set Λr of resource terms and the set Λb of bags is given by:

Λr: M,N,L ::= x | λx.M |MP resource terms
Λb: P ::= [L1, . . . , Ln,M!] bags
N〈Λr〉: M,N ::= 0 |M |M + M sums of terms

A bag [~L,M!] is a compound object, consisting of a multiset [L1, . . . , Lk] of linear re-
sources and a multiset M = M1 + · · ·+Mn, presented in additive notation, representing the
reusable resources. Roughly speaking, the linear resources L1, . . . , Lk must be used exactly
once during a reduction, while the reusable ones in M can be used ad libitum (hence, fol-
lowing the linear logic notation, M is decorated with a ! superscript). We shall deal with
bags as if they were multisets presented in multiplicative notation, defining union by

[ ~M,M!] · [ ~N,N!] := [ ~M, ~N, (M + N)!].

This operation is commutative, associative and has the empty bag 1 := [0!] as neutral
element. To lighten the notations we write [L1, . . . , Lk] for the bag [L1, . . . , Lk, 0!].

The α-equivalence and the set FV(M) of free variables of M are defined as in the ordi-
nary λ-calculus. From now on resource terms are considered up to α-equivalence.

Adding terms and bags. Let (N,+, ·, 0, 1) be the semiring of natural numbers. We
denote by N〈Λr〉 the free N-module generated by Λr. This amounts to say that N〈Λr〉 is the
set of finite formal sums of resource terms, with 0 referring to the neutral element. Though
in practice only sums of terms are considered, in some definitions we exploit the fact that
sums can be defined on bags as well, and we denote by N〈Λb〉 the corresponding module.

The grammar for resource terms and bags does not include any sums, but under the
scope of a (·)!. As a syntactic sugar, we extend all the constructors to sums as follows:

λx.(
∑
iMi) :=

∑
i λx.Mi,

(
∑
iMi)P :=

∑
iMiP,

M(
∑
i Pi) :=

∑
i MPi,

[(
∑
iMi)] ·P :=

∑
i[Mi] ·P.

This captures the fact that all constructors except for the (·)! are (multi)linear, as expected.
The intuition is that a reusable sum (M+N)! represents a resource that can be used several
times and each time the system can choose non-deterministically either M or N .

Observe that, in the particular case of the empty sum, we obtain

λx.0 := 0, M0 := 0, 0P := 0, [0] := 0, 0 · P := 0, [0!] = 1.

Thus 0 annihilates any resource term or bag, except when it lies under a (·)!. As an example
of this extended (meta-)syntax, we may simply write (x1 + x2)[y1 + y2, (z1 + z2)!] instead of

x1[y1, (z1 + z2)!] + x1[y2, (z1 + z2)!] + x2[y1, (z1 + z2)!] + x2[y2, (z1 + z2)!].

This kind of meta-syntactic notation is discussed thoroughly in [ER08].
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y〈N/x〉 :=
{
N if y = x,

0 otherwise,

[M!]〈N/x〉 := [M〈N/x〉,M!],

(λy.M)〈N/x〉 := λy.(M〈N/x〉),

(MP )〈N/x〉 := M〈N/x〉P +M(P 〈N/x〉),

([M ] · P )〈N/x〉 := [M〈N/x〉] · P + [M ] · P 〈N/x〉.

Figure 2.1: Linear substitution, in the abstraction case we suppose y /∈ FV(N) ∪ {x}.

Substitutions. Due to the presence of two kinds of resources, we need two different
notions of substitutions: the usual λ-calculus substitution and a linear one, which is parti-
cular to differential and resource calculi (see [ER08, PT09]).

Definition 2.2.1 (Substitutions). We define the following substitution operations.
1. M{N/x} denotes the usual capture-free substitution of N for x in M . It is extended to sums

as in M {N/x} by linearity in M.
2. M〈N/x〉 denotes the capture free linear substitution defined inductively in Figure 2.1. It is

extended to sums as in M〈N/x〉 by bilinearity in both M and N.

Intuitively, linear substitution replaces the given resource for exactly one linear free
occurrence of the variable. In presence of multiple occurrences, all possible choices are
taken into account and the result is the sum of them. For example, we have (x[x])〈I/x〉 =
I[x] + x[I]. Note the peculiar behaviour appearing when N is linearly substituted for x in
[x!]. The idea is that, since x! represents ω-copies of x, one copy is substituted for N while
the other ones remain unchanged. In other words, we have [x!]〈x/N〉 = [N, x!].

Linear substitution M〈N/x〉 bears resemblance to differentiation ∂M
∂x · N , as shown

clearly in Ehrhard and Regnier’s differential λ-calculus [ER03]. For instance, the following
commutation lemma corresponds to Schwarz Theorem.

Lemma 2.2.2 (Schwarz Theorem [ER03, ER08]).
Given L,M,N ∈ Λr and y /∈ FV(M [N ]) we have

L〈M/y〉〈N/x〉 = L〈N/x〉〈M/y〉+ L〈M〈N/x〉/y〉.

In particular, whenever x /∈ FV(M) the two substitutions commute.

Operational semantics. The βr-reduction in the framework of resource calculus is defined
as the contextual closure of the following rule:

(λx.M)[L1, . . . , Lk,N!]→βr M〈L1/x〉 · · · 〈Lk/x〉{N/x}. (βr)

Notice that the βr-rule is independent from the order of the linear substitutions, as shown
by the Schwarz Theorem above. As usual, we say that M ∈ Λr is in βr-normal form if there
is no M such that M →βr M. We say that sum of resource terms M is in βr-normal form
whenever all its summands are, in particular the empty sum 0 is a βr-normal form.

The regular λ-calculus can be embedded into the resource calculus by translating ev-
ery application MN into M [N !]. In this fragment the βr-reduction defined above coin-
cides with the usual β-reduction. Hence the resource calculus has usual looping terms like
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Ω := (λx.x[x!])[(λx.x[x!])!], but also terms like I1 or I[y, y] reducing to 0 because there is
a mismatch between the number of linear resources needed by the functional part of the
application and the number of resources it actually receives.

Pagani and Tranquilli proved the confluence of the resource calculus through an ap-
propriate Standardization Theorem [PT09].

Theorem 2.2.3 (Confluence, Pagani and Tranquilli [PT09]).
The βr-reduction is confluent on Λr.

The resource calculus is intensional. Indeed, just like in the regular λ-calculus, there are
different programs having the same extensional behaviour. The analogue of η-reduction
for the resource calculus is defined as the contextual closure of the following rule:

λx.M [x!]→ηr M, if x /∈ FV(M). (ηr)

Solvability has been studied by Pagani and Ronchi della Rocca in [PR10a, PR10b]. As in
the resource calculus terms appear in formal sums, various notions of solvability can arise,
depending on the meaning associated with the sum. The interpretation of the + as an inner
choice operator corresponding to an angelic non-determinism arises naturally, because of
the definition of 0 as the neutral element of the sum. However, the sum can be also seen as
a parallel composition corresponding to a demonic non-determinism.

Definition 2.2.4. A closed resource term M is:
• may-solvable whenever there are closed bags P1, . . . , Pn ∈ Λb such that M ~P =βr I + N,

for some N ∈ N〈Λr〉 (possibly N := 0).
• must-solvable if there are closed bags P1, . . . , Pn ∈ Λb such that M ~P =βr I + · · ·+ I.

As in the formal sum of resource terms repetitions do matter, other notions of solvabil-
ity may arise depending on the number of times one gets the identity I.

As in λ-calculus the solvability can be characterized in terms of head-normalization,
the may-solvability of the resource calculus can be captured by “outer-normalization”.
The outer-reduction →o, first defined in [PT09], corresponds to an evaluation where no
reduction is made inside reusable resources. We say that a sum M of resource terms is
in may-outer normal form whenever it is of the form M + N with M 6→o M′. Pagani and
Ronchi della Rocca proved that the may-outer normal form of M, if it exists, can be reached
by outer-reduction and that this is equivalent to ask that M is may-solvable. Inspired by
the relational semantics of λ-calculus, they also introduced a type system `m based on
non-idempotent intersection types in which a resource term M is typable if and only if it
possesses a may-outer normal form. Summing up, the following theorem holds.

Theorem 2.2.5 (Pagani, Ronchi della Rocca [PR10a, PR10b]).
Given a closed resource term M , the following are equivalent:

1. M is may-solvable,
2. M is reducible to a may-outer-normal form (by outer reduction),
3. `m M : σ for some non-idempotent intersection type σ.

Problem 6. Is it possible to characterize the must-solvability of the resource calculus in terms of
outer-reduction and in terms of typability in a suitable type system?

A partial answer is given in [PR10a] for the fragment of Λr corresponding to the de-
monic non-deterministic λ-calculus (therefore without linear resources).
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2.3 THE TAYLOR EXPANSION

The finite resource calculus is the fragment of resource calculus restricted to linear resources.
In other words, every bag has the multiset of reusable resources which is empty. The
terms (resp. bags) of this fragment are called finite and their set is denoted by Λrf (resp. Λbf ).
This sub-calculus is closed under βr-reduction, while ηr-reduction does not play any role.
As linear resources cannot be duplicated, every reduction strictly decreases the size of a
term and the system is strongly normalizable [ER08] even if no typing is involved.

Taylor expansion of ordinary λ-terms. The Taylor expansion was originally introduced
in [ER03] in the context of λ-calculus as a translation developing every application as an
infinite series of finite applications with rational coefficients. For our purposes, it is enough
to present the Taylor expansion as a map T (·) from Λ to possibly infinite sets of finite
resource terms. This simplified version corresponds to the support2 of the original Taylor
expansion. Given M ∈ Λ, the Taylor expansion T (M) of M is defined by induction as:

T (x) = {x},
T (λx.M) = {λx.t | t ∈ T (M)},
T (MN) = {tb | t ∈ T (M), b ∈Mf(T (N))}.

The intuition is that in the λ-term MN the function M can either erase its argument N
or use it a certain amount of times during its execution. As we cannot determine this
number statically, we consider all possibilities henceforth the infinite set. Intuitively, the
Taylor expansion T (M) can be seen as a resource sensitive version of App(M), where the
approximants keep track of the resources. Note that the resource approximants may not
be βr-normal, but are strongly normalizable, hence NFβr (T (M)) = {NFβr (t) | t ∈ T (M)}.

The following result formalizes the intuition above.

Theorem 2.3.1 (Ehrhard and Regnier [ER08]).
Given M,N ∈ Λ, we have BT(M) = BT(N) if and only if NFβr (T (M)) = NFβr (T (N)).

Taylor expansion of resource λ-terms. If in the study of usual λ-calculus we can choose
to use the Böhm trees or the Taylor expansion, depending on whether we need a grasp on
resource usage, the situation is more constrained when studying the resource calculus.
Indeed, at the moment, no convincing notion of Böhm tree has been developed for this cal-
culus: first because one should consider forests of trees (to treat the non-determinism),
second because one would have an alternation of commutative and non-commutative
branches (to treat the multisets). The resulting structure would not be easy to handle.

For this reason, in collaboration with Pagani, in [M19] we generalized the notion of
Taylor expansion to terms and bags of the resource calculus. We adopt for sets X ⊆ Λr
(resp. Y,Z ⊆ Λbf ) the same abbreviations as introduced for finite sums, that is λx.X :=
{λx.M |M ∈ X}, XZ := {MP |M ∈ X,P ∈ Z} and Y · Z := {P1 · P2 | P1 ∈ Y, P2 ∈ Z}.

Definition 2.3.2. The Taylor expansion of a resource term M ∈ Λr is the set T (M) ⊆ Λrf
defined in Figure 2.2. It is extended to sums as follows T (

∑
iMi) =

⋃
i T (Mi).

Problem 7. Is it possible to define a convincing notion of Böhm tree for the full resource calculus?

2I.e., the set of those finite terms appearing in the series with a non-zero coefficient.
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T (x) = {x}, T (λx.M) = λx.T (M), T (MP ) = T (M)T (P ),

T ([M!]) =Mf(T (M)), T ([M ] · P ) = [T (M)] ·T (P ).

Figure 2.2: The Taylor expansion T (M) of a resource term M .

2.4 BÖHM THEOREM FOR RESOURCE CALCULUS

In collaboration with Pagani, we studied the separability of resource terms in [M19]. Our
notion of separability is inspired by the relational semantics of resource calculus (see §2.7).
Semantically M +M is indistinguishable from M , so we assume that the + is idempotent.

The ordinary notion of separability is too strong for this calculus, as there are resource
terms like λxy.x[y!] and λxy.x[y] that cannot be separated by sending them to different
projections, but they can be separated by sending the former to I and the latter to 0.

Definition 2.4.1 (Separability). Two closed resource termsM,N are separable if there are closed
bags P1, . . . , Pk ∈ Λb such that MP1 · · ·Pk =βr I while NP1 · · ·Pk =βr 0.

Following the steps of Böhm in his pioneering work [Böh68], we focus our attention on
normal forms, which are easier to separate. However, in contrast with what happens in
the λ-calculus, there are βr-normal resource terms that cannot be separated even if they are
ηr-different. The typical example is given by λxyz.x[(z[y!])!] and λxyz.x[(z1+z[y, y!])!], the
idea being that the ω-copies of y in the former are simulated in the latter as a erratic choice
between zero and at least one copies. The attentive reader will notice that these terms have
the same Taylor expansion, and actually that is the reason why they cannot be separated.

Because of its infinitary nature, the property of having the same Taylor expansion looks
rather semantical than syntactical. This property can be however characterized syntacti-
cally by proving that T (M) = T (N) if and only if M ≡T N where ≡T is the congruence
generated by setting [x!] = 1+[x, x!]. We let≡T

ηr
be the congruence generated by≡T ∪ =ηr .

Theorem 2.4.2 (Resource Böhm Theorem, Manzonetto and Pagani [M19]).
Let M,N ∈ Λr be two closed resource terms in βr-normal form. If M 6≡T

ηr
N then there are closed

bags P1, . . . , Pk ∈ Λb such that

M ~P =βr I, N ~P =βr 0. (or vice versa)

To obtain such a result we developed in [M19] a refined version of the Böhm-out tech-
nique. Note that a crucial ingredient in the classic proof of the Böhm Theorem is the fact
that it is possible to erase subterms in order extract from the λ-terms their structural dif-
ference. This is not an easy task in Λr, because the linear resources must be consumed
and cannot be erased. In this respect, our technique has some similarities with the one
developed to achieve the separation in the λI-calculus [Bar84, §10.5]. Moreover, since the
argument of an application is a bag of resources, comparing a difference between two re-
source terms may turn into comparing the differences between two multisets of terms, and
this problem presents analogies with that of separating a finite set of λ-terms [BDPR79].
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2.5 DIFFERENTIAL CATEGORIES AND CARTESIAN CLOSEDNESS

Despite the fact that the differential λ-calculus is born from semantical considerations,
namely Ehrhard’s deep analysis of coherent spaces, it took some years to provide a general
categorical definition of its models. Inspired by Ehrhard’s work on differential λ-calculus,
Blute, Cockett and Seely investigated the problem of axiomatizing a derivative operator
D(−) in the context of category theory. The authors started working in the monoidal setting
and proposed a notion of monoidal differential category [BCS06]. By applying the co-Keisli
construction, one obtains a Cartesian category having a differential operator.

Cartesian differential categories were introduced in [BCS09] to provide a direct axio-
matization of the derivative operator in the Cartesian setting. The derivative of a mor-
phism f : A→ B will be a morphism D(f) : A×A→ B linear in its first component.

f : A→ B

D(f) : A×A→ B
(D)

In order to model differentiation in a category, we need to be able to sum its morphisms.
Therefore, we consider left-additive categories, where each homset Hom(A,B) has a struc-
ture of a commutative monoid and precomposition by any map preserves such a structure:

f ; (g + h) = (f ; g) + (f ;h) f ; 0 = 0.

A morphism f of a left-additive category is called additive if postcomposition by f also
preserves the commutative monoid structure.

A left-additive category is Cartesian if it has finite products, the projections are additive,
and the pairing 〈−,−〉 of additive morphisms is itself additive.

As expected, a morphism f is called linear whenever its derivative is constant, and all
linear morphisms are additive (while the converse does not hold in general).

Definition 2.5.1. A Cartesian differential category is a Cartesian left-additive category having
an operator D(−) that sends every f : A→ B into a morphism D(f) : A×A→ B and satisfying:
(D1) D(f + g) = D(f) + D(g) and D(0) = 0,
(D2) 〈h+ k, v〉; D(f) = 〈h, v〉; D(f) + 〈k, v〉; D(f) and 〈0, v〉; D(f) = 0,
(D3) D(Id) = π1, D(π1) = π1;π1 and D(π2) = π2;π1,
(D4) D(〈f, g〉) = 〈D(f),D(g)〉,
(D5) D(g; f) = 〈D(g), π2; g〉; D(f),
(D6) 〈〈g, 0〉, 〈h, k〉〉; D(D(f)) = 〈g, k〉; D(f),
(D7) 〈〈0, h〉, 〈g, k〉〉; D(D(f)) = 〈〈0, g〉, 〈h, k〉〉; D(D(f)).

Therefore, intuitively the axiom (D1) states that the operator D(−) is linear; (D2) says
that D(−) is additive in its first coordinate; (D3) and (D4) ask that D(−) behaves coherently
with the product structure; (D5) is the usual chain rule; (D6) requires that D(f) is linear in
its first component. (D7) states the independence of the order of “partial differentiation”.
Indeed, in these categories partial derivatives are obtained from the full ones by “zeroing
out” the components on which the differentiation is not required. For example, the partial
derivative of a morphism f : C×A→ B on its first component C can be defined by setting

D1(f) = C × (C ×A) 〈Id,0〉×Id−−−−−−→ (C ×A)× (C ×A) D(f)−−−→ C × (C ×A)→ B.
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Cartesian closed structure. In [BCS09], Blute, Cockett and Seely show that Cartesian
differential categories are sound and complete models of a suitable term calculus. This
calculus has a derivative operator in the spirit of Ehrhard’s differential λ-calculus, but
possesses no λ-abstraction operator. It is therefore unlikely that these categories are well
suited for modeling the resource calculus, that contains the whole λ-calculus as a sub-
system. Indeed, in order to provide a categorical interpretation of λ-abstraction we need
to have an isomorphism Hom(C × A,B) ∼= Hom(C, [A → B]) natural in both C and B,
that is to say a Cartesian closed structure. However, it is not enough to have a Cartesian
differential category which is moreover Cartesian closed to interpret the resource calculus.
For this reason, in collaboration with Bucciarelli and Ehrhard, we introduced the notion of
“Cartesian closed differential category” (called differential λ-category in [M5]).

The starting point is a Cartesian left-additive category C which is in addition Cartesian
closed and such that the currying Λ(−) satisfies the following axioms:

(Curry+) Λ(f+g) = Λ(f)+Λ(g) Λ(0) = 0 (Curry0)

In this case, we say that C is Cartesian closed left-additive. The axioms (Curry+) and (Curry0)
are needed to ensure that currying Λ(−) is linear. From these properties, it follows that the
evaluation map Eval : [A→ B]×A→ B is additive in its left component, as expected.

We ensure that the differential operator behaves correctly with respect to the Cartesian
closed structure by requiring the additional axiom (CurryD) below.

Definition 2.5.2. A Cartesian closed differential category is a Cartesian differential category
which is Cartesian closed left-additive and such that, for all f : C ×A→ B:

(CurryD) D(Λ(f)) = 〈π1 × 0A, π2 × IdA〉;Λ(D(f)).

In a Cartesian closed differential category it is possible to define an operator ? that can
be seen as the categorical counterpart of the linear substitution (Definition 2.2.1(2)):

f : C ×A→ B g : C → A

f ? g : C ×A→ B
(?)

where f ? g = 〈〈0C×AC , π1〉; g, IdC×A〉; D(f). Intuitively, the morphism f ? g is obtained by
force-feeding the second argument A of f with one copy of the result of g. Notice that the
type is not modified because the morphism f ? g may still depend on its argument A.

Cartesian closed differential categories provide a sound model of the simply typed
resource calculus, in which the sums and the elements of the bags are uniformly typed:

∆ ` 0 : A
∆ `M : A ∆ `M : A

∆ `M + M : A
∆ `M : A→ B ∆ ` P : A

∆ `MP : B

∆ ` 1 : A
∆ ` L : A ∆ ` P : A

∆ ` [L] · P : A
∆ `M : A ∆ ` P : A

∆ ` [M!] · P : A

Exploting the left-additive structure of a Cartesian closed differential category and the
operator ? above, it is not difficult to define the categorical interpretation of a judgement
x1 : A1, . . . , xn : An `M : B as a morphism JMK∆ : A1 × · · · ×An → B.

Theorem 2.5.3 (Bucciarelli et Al. [M5]). Cartesian closed differential categories constitute sound
models of the simply typed resource calculus.
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2.6 CATEGORICAL MODELS OF RESOURCE CALCULUS

The notion of Cartesian closed differential category is general enough to encompass many
examples given in the literature, like Ehrhard’s finiteness spaces [Ehr05], Blute, Ehrhard
and Tasson’s convenient categories [BET12], Kerjean and Tasson’s Mackey-complete
spaces [KT17], Harmer and McCusker’s category of non-deterministic games [HM99] and
the relational semantics. However, to interpret the untyped resource calculus we need re-
flexive objects, while the categories presented in [Ehr05, BET12, KT17] do not possess any.

Linear reflexive objects. The resource calculus can be interpreted in a reflexive object
U of a Cartesian closed differential category provided that U satisfies some linearity con-
ditions. Indeed, as the λ-abstraction of resource calculus is a linear operator, we need that
such a property is preserved by the morphisms performing the retraction.

Definition 2.6.1. A reflexive object U = (U, app, abs) of a Cartesian closed differential category
is linear whenever the morphisms abs : [U → U ]→ U and app : [U → U ]→ U are linear.

The interpretation of a resource term M in a linear reflexive object U with respect to a sequence
~x ⊇ FV(M) of length n is a morphism JMKU~x : Un → U defined by extending the usual
categorical interpretation of λ-terms as follows:

JM [L1, . . . , Ln,N!]KU~x = 〈Λ((· · · (Λ−(JMKU~x ; app) ? JL1KU~x ) · · · ) ? JLnKU~x ), JNKU~x 〉; Eval.

The interpretation is extended to sums by linearity: JM1+· · ·+MkKU~x = JM1KU~x+· · ·+JMkKU~x .

Theorem 2.6.2 (Manzonetto [M18]).
Linear reflexive objects in differential Cartesian closed categories constitute sound models of the
resource calculus.

Modeling the Taylor Expansion. Given a linear reflexive object U living in a Cartesian
closed differential category C it is interesting to check whether all resource terms having
the same Taylor expansion get the same interpretation. As an interesting fact, this happens
to be a property of the category rather than of the reflexive object under consideration.
Since the definition of the Taylor expansion asks for infinite power series, we consider
Cartesian closed differential categories C where it is possible to add infinitely many mor-
phisms. Formally, we require that for every countable set I and every family {fi}i∈I of
morphisms fi : A→ B there exists a morphism

∑
i∈I fi ∈ Hom(A,B) and, in this case, we

say that C has countable sums.
Remember that Definition 2.3.2 works under the assumption of an idempotent sum,

therefore we suppose that also our sums on the morphisms of the category is idempotent.

Definition 2.6.3. A Cartesian closed differential category models the Taylor Expansion if it has
countable sums and the following axiom holds (for every f : C ×A→ B and g : C → A):

Eval; 〈f, g〉 =
∑
k∈N

((· · · (Λ−(f) ? g) · · · ) ? g︸ ︷︷ ︸
k times

); 〈Id, 0〉. (Taylor)

As a consequence, all models living in a category modeling the Taylor expansion equate
all resource terms having the same Taylor expansion. From Theorem 2.3.1 it follows that
all λ-terms having the same Böhm trees get the same interpretation in such models.
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Equational Completeness. An important result concerning λ-calculus is the equational
completeness theorem proved by Scott in [Sco80] and subsequently refined by Koymans
in [Koy82]. The theorem states that every λ-theory T is the theory of a reflexive object
U in a Cartesian closed category C. In other words the completeness theorem guaran-
tees that the definition of model of λ-calculus under consideration is general enough to
represent all λ-theories. This classical result is achieved in two steps:

(i) given a λ-theory T one proves that the set ΛT of λ-terms modulo T together with the
application operator defined between equivalence classes constitutes a λ-modelMT
(called the term model of T ) having as theory exactly T ;

(ii) by applying toMT a construction called Karoubi envelope [Kar78], which consists in
splitting the idempotents, one builds a (very syntactic) Cartesian closed category CT
in which the identity I is a reflexive object such that Th(I) = T .

Summing up, the idea of the proof is to find suitable λ-terms to encode the structure of the
category (pairing, currying, evaluation, and the like) and prove that they actually define a
category with a Cartesian closed structure.

In [M18], we investigated the question whether the categorical notion of model pre-
sented above is complete. Using the resource calculus, it is possible to define a syntactic
Cartesian closed differential category. On the one hand, the categorical operator D(−) is
unproblematic since it can be easily defined in terms of linear application. On the other
hand, the encoding of categorical pairing 〈f, g〉 used by Scott is not additive. Indeed,
such pairing is defined starting from Church’s encoding of the pair in λ-calculus given
by 〈f, g〉 := λx.xfg with projections π1 := K, π2 := K′. Obviously with this definition we
have 〈f1 + f2, g1 + g2〉 6= 〈f1, g1〉+ 〈f2, g2〉 since the sums do not occur in linear position3.

This problem can be circumvented by providing a different encoding of the pairing in
the resource calculus:

〈〈M,N〉〉 := λx.x[λy.M ] + λx.x[λy.y[N ]], for some y /∈ FV(M,N),

with projections π1 := λx.x1 and π2 := λx.x[I]. This encoding is inspired by the set-
theoretical definition of ordered pair: intuitively the pair of M,N is the set containing
M,N (the sum is representing the union) where the elements have been slightly modified
in order to distinguish them. In our case, such a distinction consists in the number of linear
resources they can receive (zero for the first component and one for the second).

With this encoding we are able to show that every equational theory T of the resource
calculus gives rise to a category CT with a structure of differential Cartesian closed cate-
gory, under the assumption that the sum is idempotent (like set-theoretical union) and that
the Karoubi envelope splits idempotents which are linear.

Theorem 2.6.4 (Manzonetto [M18]).
For all equational theories T of the resource calculus satisfying sum idempotency we have:

(i) CT is a differential Cartesian closed category,
(ii) the identity I is a linear reflexive object.

Problem 8. Is it possible to prove an equational completeness theorem for categorical models of re-
source calculus without assuming an idempotent sum? (See [CG16] for preliminary investigations,
notice however that the authors prove completeness for another ad hoc differential calculus.)

3Recall that in λ-calculus the λ-abstraction is linear but the application is only linear in its left-component.
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We mentioned in Section 1.3 that MRel is a Cartesian closed category. Notice that since the
Cartesian structure is given by the disjoint union, which will be denoted by &, there exists
a Seely isomorphism betweenMf(A&B) andMf(A)×Mf(B). In particular, a morphism
f : A&B → C will be systematically presented as a relation f ⊆Mf(A)×Mf(B)× C.

Cartesian differential structure. We are now going to expose the differential structure
of MRel. As relations are closed under arbitrary union, every homset can be endowed with
a structure (MRel(A,B),∪, ∅) of commutative monoid in such a way that precomposition
by any map preserves this structure. It is easy to check that pairing preserves additivity
and that currying is linear, therefore the category is Cartesian closed left-additive and has
countable sums. Moreover, given a morphism f : A→ B its derivative is given by:

D(f) = {(([α], a), β) | ([α] ] a, β) ∈ f} : A&A→ B.

Again, it is not difficult to check that the operator D(−) satisfies all the axioms of a Carte-
sian closed differential category. Summing up, the following theorem holds.

Theorem 2.7.1 (Manzonetto [M18]).
The category MRel is a Cartesian closed differential category.

Relational models of resource calculus. In the category MRel, a morphism f : A→ B
is linear when its behaviour is specified on the singleton multisets of A, that is (a, α) ∈ f
entails that the multiset a is a singleton. Thus, every reflexive object U having abs and app
satisfying this property is linear. As a consequence we get that every rgm D = (D, i) is
linear, since the induced retraction pair is of the following form:

• abs = {([(a, α)], a→ α) | a ∈Mf(D), α ∈ D} : [D → D]→ D,

• app = {([a→ α], (a, α)) | a ∈Mf(D), α ∈ D} : D → [D → D],
where a → α is a notation for i(a, α) following the intuition given in Section 1.3. By
Theorem 2.6.2 rgms constitute sound models of the untyped resource calculus.

Definition 2.7.2. The interpretation of resource terms M ∈ Λr, sums of terms M ∈ N〈Λr〉 and
bagsP ∈ Λb in an rgmD (with respect to a sequence ~x including their free variables) are morphisms
JMKD~x , JMKD~x : D~x → D, JP KD~x : D~x →Mf(D) defined by mutual induction as follows:

• JM1 + · · ·+MkKD~x = JM1KD~x ∪ · · · ∪ JMkKD~x ,
• JxiKD~x = {(([], . . . , [], [α], [], . . . , []), α) | α ∈ D}, where [α] stands in i-th position,
• Jλy.MKD~x = {(~a, b→ α) | ((~a, b), α) ∈ JMKD~x,y}, where we suppose that y /∈ ~x,

• JMP KD~x = {(~a1 ] ~a2, α) | ∃b ∈Mf(D) (~a1, b→ α) ∈ JMKD~x , (~a2, b) ∈ JP KD~x },
• J[L1, . . . , Lk,N!]KD~x = {(]k+m

r=1 ~ar, [β1, . . . , βk+m]) | (~aj , βj) ∈ JLjKD~x , 1 ≤ j ≤ k and
(~ai, βi) ∈ JNKD~x , k < i ≤ k +m},

where ~a denotes a sequence of multisets (a1, . . . , an) and, given a sequence~b = (b1, . . . , bn) having
the same length, ~a ]~b denotes the pointwise multiset union (a1 ] b1, . . . , an ] bn).

By structural induction on M , one can verify that the analogue of Theorem 1.3.2 holds.

Theorem 2.7.3 (The Approximation Theorem for Taylor Expansion [M18]).
Given a relational graph model D and a closed resource term M , we have that:

σ ∈ JMKD ⇐⇒ ∃t ∈ T (M) such that σ ∈ JtKD.
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2.8 Dω IS NOT FULLY ABSTRACT FOR THE RESOURCE CALCULUS

The original relational analogue of Scott’s D∞ was defined in [M3] as part of an investiga-
tion on non-well-pointed semantics of λ-calculus. The idea is to start building a family of
sets (Dn)n∈N by induction on n:

• D0 = ∅,
• Dn+1 =Mf(Dn)(ω),

whereMf(A)(ω) denotes the set of infinite sequences (a0, a1, . . . , ai, . . . ) of finite multisets
ofA satisfying the property ai 6= [] only for a finite number of indices i. Since the operation
A 7→ Mf(A)(ω) is monotonic on sets, and sinceD0 ⊆ D1, we haveDn ⊆ Dn+1 for all n ∈ N.

The reflexive object is given by the union D =
⋃
n∈NDn. Indeed, to define an isomor-

phism in MRel between D and [D → D] it is enough to remark that every element α =
(a0, a1, a2, . . . ) ∈ D is canonically associated with the pair (a0, (a1, a2, . . . )) ∈ Mf(D) ×D
and vice versa. It is easy to check that the reflexive object obtained by this construction is
isomorphic to the rgmDω having a single atom ε and generated by the equation []→ ε = ε.
Under this isomorphism the element ε corresponds to the infinite sequence ([], [], [], . . . ).

Observational equivalence. By collecting the results in the previous sections we know
that the model Dω is extensional and equates all resource terms having the same (normal
form of the) Taylor expansion. In particular, JMKDω 6= ∅ exactly when M is may-solvable.
Moreover, when considered as a model of λ-calculus, Dω is fully abstract forH∗ [M17].

These considerations led us to conjecture in [M18] that the equality induced by Dω on
resource terms coincides with the following observational equivalence, where we take as
observables the may-outer normal forms of [PR10b].

Definition 2.8.1 (Observational Equivalence and Preorder).
Given two closed M,N ∈ Λr, we set M ≡monf N , whenever for all closed bags P1, . . . , Pn ∈ Λb:

MP1 · · ·Pn is may-solvable ⇐⇒ NP1 · · ·Pn is may-solvable

The observational preorder vmonf is defined by orienting the equivalence from left to right.

The failure of full abstraction. Breuvart, during his PhD studies, found a counterex-
ample to the full abstraction of Dω for ≡monf , a result subsequently published in [Bre13].

The key idea is to exhibit a resource term A that is observationally above the identity I,
but whose interpretation inDω does not contain [ε]→ ε (while, obviously, [ε]→ ε ∈ JIKDω ).
Using a fixed point combinator, it is possible to define a term A such that, for all k:

A =βr Σkn=1An + A′ where An = λy1 . . . ynx.x[I[y!
1] · · · [y!

n]].

Clearly, if IP1 · · ·Pn is solvable then also AP1 · · ·Pn =βr AnP1 · · ·Pn + A′P1 · · ·Pn is solv-
able. On the other side, the interpretation JAKDω =

⋃
n∈NJAnKDω is incomparable with the

interpretation of the identity since none of the An’s contains [ε] → ε in its semantics. A
similar reasoning shows that A ≡monf I[I!,A!] while JAK 6= JI[I!,A!]K.

Theorem 2.8.2 (Breuvart [Bre13]).
The relational model Dω of resource calculus is not fully abstract for ≡monf (nor for vmonf ).

Problem 9. Show that the relational semantics does not contain any model fully abstract for the
resource calculus.
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2.9 ADDING CONVERGENCY TESTS TO ACHIEVE FULL ABSTRACTION

As shown by Breuvart, the applicative contexts of resource calculus are not powerful
enough to discriminate all the terms which are different in Dω . To achieve full abstrac-
tion we decided, together with Bucciarelli, Carraro and Ehrhard, to endow the resource
calculus with new constructions, to be understood as implementing a very simple excep-
tion mechanism, and with a “must” parallel composition [M1]. This is part of a tradition
that consists in varying the language to fit an intended model: for instance, Plotkin needed
to extend PCF with a parallel or in order to find a fully abstract continuous model [Plo77].

Convergency tests. The resource calculus with tests [M1, M2] is obtained by extending
the syntax of resource calculus as follows:

(Λτ̄ ) M,N,L ::= · · · | τ̄(Q) (Λτ ) Q,R ::= τ [L1, . . . , Lk]

where Λτ̄ is the set of terms (which includes Λr) and Λτ is the set of (convergency) tests.
Tests are “corked” multisets of terms having only two possible outcomes: either success,

which is given by the empty test τ1, or failure, given by the empty sum 0. Intuitively,
the test τ [L1, . . . , Lk] represents the must-parallel composition of τ [L1] ‖ · · · ‖ τ [Lk] and
therefore it succeeds when all of its components succeed. Consequently, we will sometimes
use the notation τ [L1, . . . , Lk] ‖ τ [Lk+1, . . . , Ln] for the test τ [L1, . . . , Ln].

The operator τ̄(·) allows to build a term out of a test: intuitively, the term τ̄(Q) may
be thought of as Q preceded by an infinite sequence of dummy λ-abstractions (like a µ-
abstraction of Parigot’s λµ-calculus [Par92] over un unnamed variable). Dually, the “cork
construction” τ [L1, . . . , Lk] may be thought of as an operator applying to all its arguments
an infinite sequence of empty bags. This suggests that it is sound to reduce τ [τ̄(Q)] to Q.

Hence the term τ̄(Q) raises an exception encapsulating Q and the test τ [L1, . . . , Lk]
catches the exception possibly raised by any of the Li’s and replaces Li by the multiset
of terms encapsulated in that exception. The context of the exception is thrown away by
the dummy abstractions of τ̄ and the dummy applications of τ . A test needs to catch an
exception in order to succeed; for instance, τ [M ] fails as soon as M is a τ̄ -free, closed term.

All the notions and notations of resource calculus are extended as follows.
• the meta-syntax concerning sums of terms M and sums of tests Q:

τ [ΣiMi] := Σiτ [Mi], (ΣiRi) ‖ Q := ΣiRi ‖ Q, τ̄ [ΣiRi] := Σiτ̄ [Ri],

• the substitution M{N/x} (defined as expected) and the linear substitution M〈N/x〉:

τ̄(Q)〈N/x〉 = τ̄(Q〈N/x〉), τ [L1, . . . , Lk]〈N/x〉 = Σki=1τ [L1, . . . , Li〈N/x〉, . . . , Lk],

• the reduction semantics extends (βr) with the following rules:

τ [λx.M ]→τ τ [M{0/x}], τ [τ̄(Q)]→γ Q, τ̄(Q)[M!]→τ̄ τ̄(Q), τ̄(Q)([L]·P )→τ̄ 0.

In this framework the convergence of a term can be verified through suitable test-contexts.
A test-context CL−M is a test having a single occurrence of its hole L−M, appearing in term-
position. We write CLMM for the result of substituting M for the hole L−M in C, possibly
with capture of free variables. According with the intuition of such a test mechanism, we
say that a test Q converges, notation Q↓, if there exists a sum Q such that Q�βrττ̄γ τ [] + Q.

Definition 2.9.1. Two resource terms M,N with tests are observationally equivalent, written
M ≡τ N , whenever ∀CL−M . CLMM↓ ⇐⇒ CLNM↓.
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Interpreting the tests. At first sight, these convergency tests may seem an ad hoc syntac-
tic tool with no logical content. In reality, this extension already appeared in a differential
linear logic setting [EL10]: τ corresponds to the 0-ary tensor and τ̄ to the 0-ary par cells.
The parallel composition of tests can be obtained by combining the mix rule of linear logic,
if available, with the contraction rule.

The resource calculus with tests has a natural denotational interpretation in Dω . In-
deed, an element of Dω can be described as a finite tree alternating two kinds of layers:

• multiplicative layers where subtrees are indexed by natural numbers,
• exponential layers where subtrees are organized as non-empty multisets.

To be more precise, `−? (negative) pairs of layers alternate with ⊗−! (positive) pairs, re-
specting a strict polarity discipline very much in the spirit of Ludics [Gir03]. The empty
positive multiplicative tree corresponds to the empty tensor cell and the negative one to the
empty par cell. The corresponding constructions τ , τ̄ are therefore quite easy to interpret.

Definition 2.9.2. We extend Definition 2.7.2 by setting Jτ̄(Q)K~x = {(~a, ε) | ~a ∈ JQK~x}, where
JQK~x ⊆ D~xω represents the interpretation of a test Q with respect to a sequence ~x in Dω satisfying:

Jτ [M1, . . . ,Mk]K~x = {~a1 ] · · · ] ~ak | (~ai, ε) ∈ JMiK~x}.
Keeping in mind the logical interpretation of the elements ofD, we are able to associate

with each α ∈ Dω , a test-context α+L·M with a hole L·M for a term.

Definition 2.9.3. For α ∈ Dω of the form [α1
1, . . . , α

1
k1

] → · · · → [αr1, . . . , αrkr
] → ε, we define

by mutual induction a term α– and a test-context α+L·M by:
• α– = λx1 . . . xr.τ̄(‖ri=1 ((αi1)+LxiM ‖ · · · ‖ (αiki

)+LxiM)),
• α+L·M = τ [L·M[(α1

1)–, . . . , (α1
k1

)–] · · · [(αr1)–, . . . , (αrkr
)–]].

The test-context α+L−M and the term α– are built in such a way that Jα+LxMKx = {[α]}
and Jα–K = {α}, from which it follows that Dω has the finite definability property. More-
over, for all α ∈ Dω we have that α+Lα–M �βrττ̄γ ε, while α+Lβ–M �βrττ̄γ 0 for all β 6= α.
From these properties and the fact that !-free terms are strongly normalizable we get:

Lemma 2.9.4. Given a closed !-free term M of resource calculus with tests, we have:

α ∈ JMK ⇐⇒ α+LMM↓
As a consequence, we derive easily a full abstraction result for the promotion free frag-

ment of the resource calculus with tests. To infer the analogous result for the full calculus,
we need to extend the Taylor expansion of Section 2.3 to resource terms with tests:

T (τ̄(Q)) = {τ̄(Q′) | Q′ ∈ T (Q)},
T (τ [M1, . . . ,Mk]) = {τ [M ′1, . . . ,M ′k] |M ′i ∈ T (Mi), for 1 ≤ i ≤ k}.

We then exploit the fact that Dω models this kind of Taylor expansion as well as a simu-
lation lemma which relates the outer-reduction of a term with the outer-reduction of its
Taylor expansion to prove that JMK = JNK if and only if M ≡τ N .

Theorem 2.9.5 (Bucciarelli et Al. [M1, M2]).
The model Dω is fully abstract for the resource calculus with tests.

Problem 10. Is it possible to find a fully abstract model of the untyped resource calculus in cate-
gories of games?
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When I introduced, together with Bucciarelli and Ehrhard, the relational model
Dω , we quickly realized that the semantic counterparts of may and must non-
determinism were at hand. During my ATER at the University Paris-Diderot

(2008) we investigated the situation in detail and proved that Dω constitutes an adequate
model for a λ-calculus endowed with parallel composition and nondeterministic choice.
Subsequently, together with Pagani and Díaz-Caro, I showed that an analogous construc-
tion can be done in the call-by-name setting, and that an element in the interpretation of a
term carries enough information to compute a bound for the number of reduction steps.

During my postdoc in Nijmegen (2011), I visited McCusker and Laird in Bath and
we started a collaboration for defining and investigating differential categories based on
games. Starting from a work of Melliès, Tabareau and Tasson we were able to provide an
abstract canonical categorical construction for building differential categories, and recon-
struct the relational semantics and categories of games as instances.

Subsequently (2013), in a larger collaboration including Pagani, we generalized the re-
lational semantics by replacing relations from A and B with matrices indexed by A and
B and populated by scalars from a continuous semiring R. This gives a weighted re-
lational semantics which is an adequate model of a nondeterministic extension of PCF ,
parametrized by R. Specific instances of R allow us to compare programs not only with
respect to “what they can do”, but also “in how many steps” or “in how many different
ways” (for nondeterministic PCF) or even “with what probability” (for probabilistic PCF).
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3.1 NONDETERMINISM IN A FUNCTIONAL SETTING

It is well known that the λ-calculus is a deterministic functional programming language.
At each reduction step, one could choose nondeterministically which β-redex to contract,
but the confluence of the system assures that the outcome of a program, if any, is unique.
Thus, λ-terms can be thought of as specifications of sequential, deterministic processes.

Several extensions of λ-calculus with parallel and nondeterministic constructs have
been proposed in the literature. The purpose was either to increase the expressive power
of the language, in the typed [Plo77, Pao06, Lai06] and untyped [Bou94, BL96] settings, or
to study the interplay between higher-order and parallel or nondeterministic features of
the language [Ong93, DdP96, DdP98]. When introducing nondeterminism in a functional
setting, the same program can produce different results depending on its evaluation.

As briefly discussed in Section 2.2 (pag. 34), it becomes crucial to specify what notion
of convergence is considered. Two widely used notions are:

• the may convergency: a nondeterministic choice converges if at least one of its com-
ponents does. This characterizes the angelic nondeterminism;

• the must convergency: a nondeterministic choice converges whenever all its compo-
nents converge. This characterizes the demonic nondeterminism.

Capturing nondeterministic behaviour in higher order languages presents a challenge for
the usual denotational models based on domains. Consider two programs P1 and P2 con-
verging respectively to values v1 and v2 having incompatible denotations. What semantic
value should take the nondeterministic program P1 +P2 that may converges either to v1 or
to v2? The resulting value should be some sort of “aggregation” of v1 and v2 that could be
unavailable in the domain.

The typical techniques for interpreting “multi-valued” programs, like the ones de-
scribed above, consist in using models based on Plotkin’s powerdomains [Plo76]. Roughly
speaking, a powerdomain P(D) is a domain whose elements are subsets of a domain D.
The denotation of a nondeterministic program P is a set-valued function inD, that is a func-
tion mapping an input d ∈ D into a set {d1, . . . , dk} ∈ P(D) containing all the possible
values produced by P starting from the input d. Similar techniques are also used for inter-
preting the must nondeterminism. In this framework, both kinds of nondeterminism are
modelled by some idempotent, commutative and associative operations.

In [FM09], Faure and Miquel defined the aggregation monad as a categorical counterpart
of parallel execution. Powerdomains, sets with union and multisets with multiset union
are all instances of aggregation monads (in categories of domains and of sets, respectively).
In general, the notion of parallel composition is modelled by an aggregation monad that is
neither idempotent, nor commutative, nor associative. There are however models of mul-
tiplicative exponential linear logic, where aggregation can be interpreted by the mix rule,
if available. This rule allows to “put together” any two proofs whatsoever [DK00]. More
precisely, parallel composition is obtained by combining the mix rule with the contraction
rule. Indeed, mix can be seen as a linear morphism X ⊗ Y ( X ` Y , so that there is a
morphism ?A⊗ ?A( ?A, obtained by composing the mix morphism ?A⊗ ?A( ?A` ?A
with the contraction morphism ?A ` ?A( ?A. This composite morphism defines a com-
mutative algebra structure on ?A, which is used to model the “parallel composition” of
MELL proofs. Therefore, in order to obtain a categorical model of parallel λ-calculus, it is
sufficient to solve the equation D ∼= D → D, with an object D of shape ?A.
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3.2 MRel AS QUANTITATIVE SEMANTICS OF NONDETERMINISM

In the relational semantics of λ-calculus, presented in Section 1.3, a program of typeA→ B
is interpreted as a relation from Mf(A) to B. The fact that the programs are interpreted
as relations rather than functions is related with the intrinsic nondeterminism of the se-
mantics while the multiplicities in the multiset keep track of how many times a resource
is needed during the computation. For instance, the program P := λn.n ∗ n : N → N
implementing the square product is interpreted in the relational semantics as follows:

JP K = {([n1, n2], k) | n1 · n2 = k}.

Indeed, P uses its input n twice and each call can give as answer a different number ni
because of the nondeterminism of the system. Since relations are closed under arbitrary
unions, the may nondeterminism can be interpreted directly as set-theoretical union, with-
out introducing any additional powerdomain construction or aggregation monad. In the
particular case of our relational model Dω , whose construction is recalled in Section 2.8,
we are considering an object satisfying the recursive equation Dω = ?A where A = (DN

ω)⊥.
Hence, Dω has the commutative algebra structure discussed in Section 3.1. It is precisely
this structure that we use for interpreting parallel composition, just like Danos and Krivine
did in [DK00] for an extension of λµ-calculus with a parallel composition operation.

More concretely, given two elements σ, τ ∈ Dω we can always represent them as:

σ = a1 → · · · → an → ε τ = b1 → · · · → bn → ε

where ε is the special element of Dω satifying ε = []→ ε. Therefore, it is possible to define
a merging operator σ � τ = (a1 ] b1)→ · · · → (an ] bn)→ ε using mix and contraction.

As a consequence, in the model Dω , the semantic counterparts of may and must nonde-
terminism are at hand: they are the set-theoretic union and the mix-based operation �. In
this framework, parallel composition is no longer idempotent: this is quite natural if we
consider each component of a parallel composition as the specification of a process whose
execution requires the consumption of some resources.

Non-determinism in call-by-name. In [M6], together with Bucciarelli and Ehrhard,
we introduced the λ+‖-calculus, an untyped λ-calculus whose terms are extended with
may nondeterministic choice and must parallel composition:

Λ+‖ : M,N,P,Q ::= x | λx.M | MN | M +N | M ‖ N

The elements of Λ+‖ are called λ+‖-terms. This calculus is endowed with a pretty standard
call-by-name operational semantics, defined in terms of head reduction→h in Figure 3.1.

The intuitive idea behind this notion of head-reduction is the following:
• when a λ+‖-term of the formM1 +M2 gets in head position, either of the alternatives

may be chosen to pursue the head reduction. If either M1 or M2 converges, then also
the global program converges.

• when a λ+‖-term of the form M1 ‖ M2 gets in head position, the head reduction
continues the computations in parallel. In particular, if either M1 or M2 does not
terminate, then also the global program diverges.

The operational value of a λ+‖-term M is therefore the set of all head-normal forms that
can possibly be reached starting from M . Accordingly, we say that a closed λ+‖-term M
converges whenever there is a reductionM �h N1 ‖ · · · ‖ Nk where eachNi is head normal.
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βh-reduction +-reductions ‖-reductions
(λx.M)N →h M{N/x} M +N →h M

M +N →h N
(M ‖ N)P →h MP ‖ NP

Contextual rules

M →h M
′

λx.M →h λx.M
′

N →h N
′

N ‖ M →h N
′ ‖ M

M →h M
′

N ‖ M →h N ‖ M ′
M →h M

′ M 6= λx.Q, Q1 ‖ Q2

MN →h M
′N

Figure 3.1: Operational semantics of the call-by-name λ+‖-calculus (head-reduction).

The λ+‖-calculus can be interpreted in the model Dω as expected.

Definition 3.2.1. The interpretation JMKDω

~x ⊆ Mf(Dω)~x × Dω of a λ+‖-term M in Dω with
respect to a sequence of variables ~x ⊇ FV(M) extends the usual definition as follows:

• JM1 +M2KDω

~x = JM1KDω

~x ∪ JM2KDω

~x ,

• JM1 ‖M2KDω

~x = {(~a ] ~b, σ � τ) | (~a, σ) ∈ JM1KDω

~x , (~b, τ) ∈ JM2KDω

~x },
where ~a ] ~b is the componentwise union and� denotes the mix-based operation defined previously.

By generalising Girard’s reducibility candidates to the framework of λ+‖-calculus, we
were able to prove that the model Dω is adequate. This means that the λ+‖-term M con-
verges exactly when its interpretation in Dω is non-empty.

Theorem 3.2.2 (Bucciarelli et Al. [M6]).
For all M ∈ Λ+‖, JMKDω 6= ∅ if and only if M �h N1 ‖ · · · ‖ Nk and each Ni is head-normal.

This model is not fully abstract for the observational equivalence which is associated
with our notion of convergency. The counterexample is very simple, just consider the iden-
tity I and I ‖ I, that are observationally indistinguishable, and verify that their interpreta-
tions JIKDω = {[σ]→ σ | σ ∈ Dω} and JI‖ IKDω = {[σ, σ]→ (σ � σ) | σ ∈ Dω} are different.
The lack of full abstraction is related with the fact that parallel composition is idempotent
from the operational point of view, whilst it is not idempotent from the denotational one.

Notice that, until now, we have used the logical structure of the model Dω but we
did not really exploit its quantitative properties. In [dC09] de Carvalho has shown that
Engeler’s rgm E can be presented as an intersection type system, called system R, where
the intersection is not idempotent. The lack of idempotency is the key ingredient to model
the resource sensitiveness: while in the usual intersection type systems `M : σ ∧ τ stands
for “M can be used either as data of type σ or as data of type τ”, when the intersection is
not idempotent the meaning becomes “M will be called once as data of type σ and once as
data of type τ”. Hence, types should no longer be understood as sets of terms, but rather as
sets of calls to terms. Moreover, de Carvalho proved that system R, beyond characterising
converging terms, carries information on the evaluation sequence as well — the size of a
derivation tree typing a term gives a bound on the number of steps needed to reach a head
normal form. Similar results are obtained in [BL11] for a variant of system R characterising
strong normalisation and giving a bound to the longest β-reduction sequence.
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βv-reduction +-reductions ‖-reductions
(λx.M)V →h M{V/x} M +N →h M

M +N →h N
(M ‖ N)P →h MP ‖ NP
V (M ‖ N)→h VM ‖ V N

Contextual rules

M →h M
′

M ‖ N →h M
′ ‖ N

N →h N
′

M ‖ N →h M ‖ N ′
M →h M

′ M 6= P ‖ Q
MN →h M

′N

M →h M
′ M 6= P ‖ Q

VM →h VM
′

Figure 3.2: Operational semantics for the call-by-value λ+‖-calculus (weak reduction).

Non-determinism in call-by-value. Together with Díaz-Caro and Pagani, we have
shown in [M12] that the approach followed in call-by-name, also works in the call-by-value
setting [RP04]. The terms of the call-by-value λ+‖-calculus are the same as in call-by-name,
but we also consider a subset V+‖ ⊆ Λ+‖ of values generated by:

V+‖ : V ::= x | λx.M

This calculus is endowed with a call-by-value operational semantics, defined in terms of
weak head reduction in Figure 3.2. The terminology “call-by-value” refers to the fact that
a head-redex (λx.M)N can only be contracted when N is a value, while “weak” mans that
we do not reduce under a λ-abstraction. In this context we say that a closed λ+‖-term M
converges whenever there is a reduction M �h V1 ‖ · · · ‖ Vn for some Vi ∈ V+‖.

In [Ehr12], Ehrhard introduced a non-idempotent intersection type system charac-
terising the convergence of the deterministic call-by-value λ-calculus. This system is
based on the so-called second Girard’s translation of intuitionistic logic into linear logic
A → B = !(A ( B) [Gir87, MOTW99]. In order to deal with the must nondetermi-
nism, namely the parallel composition, we modify the translation by mapping the call-
by-value λ-calculus into the polarised fragment of linear logic, as described by Laurent
in [Lau02]. Then, our typing system is describing an object V in Rel satisfying the equa-
tion V ' !V ( ?!V , where the connectives ? and ! are interpreted by the finite multiset
comonad. Following the approach used in call-by-name, the composition of the mix rule
and the contraction rule yields an operation ?!V ⊗ ?!V ( ?!V which is used to interpret the
parallel composition.

To avoid a clumsy notation with multisets of multisets, we prefer to denote a !-multiset
[ρ1, . . . , ρm] (the type of a computation) with the linear logic multiplicative conjunction
ρ1⊗· · ·⊗ρm and a ?-multiset [σ1, . . . , σn] (the type of a parallel composition) with the multi-
plicative disjunction σ1` · · ·`σn. Such a notation stresses the fact that the non-idempotent
intersection type systems issued from Rel are essentially contained in the multiplicative
fragment of linear logic.

The set T‖ of (parallel) types and the set C of computational types are generated by the
following grammar:

parallel-types T‖: σ, τ ::= σ ` τ | ρ
computational-types C: ρ, ν ::= 1 | ρ⊗ ν | ρ( σ
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x : ρ `V x : ρ (ax)
Γi, x : ρi `V M : σi 1 ≤ i ≤ n ≥ 0
⊗ni=1Γi `V λx.M : ⊗ni=1(ρi( σi)

(I

Γ `V M : `ki=1(⊗ni
j=1(ρij ( σij)) Γi `V N : `ni

j=1ρij 1 ≤ i ≤ k k ≥ 1 ni ≥ 1
Γ⊗ (⊗ki=1Γi) `V MN : `ki=1(`ni

j=1σij)
((E)

Γ `V M : σ
Γ `V M +N : σ (+`)

Γ `V N : σ
Γ `V M +N : σ (+r)

Γ1 `V M : σ1 Γ2 `V N : σ2
Γ1 ⊗ Γ2 `V M ‖ N : σ1 ` σ2

(‖I)

Figure 3.3: Type system for the call-by-value λ+‖-calculus.

For the sake of simplicity, types are considered up to associativity and commutativity of
the tensor⊗ and the par `. The type 1, which is the only atomic type, represents the empty
tensor and is therefore its neutral element (i.e. ρ⊗ 1 = ρ). Accordingly, we write⊗ni=1ρi for
ρ1 ⊗ · · · ⊗ ρn when n ≥ 1, and for 1 when n = 0. Similarly, when n ≥ 1, `ni=1αi stands for
σ1 ` · · · ` σn. We do not allow the empty par as it would correspond to an empty sum of
terms, that would be delicate to treat operationally [AD08]. An environement Γ is handled
as a total map from Var to C such that Γ(x) 6= 1 for finitely many variables x. Given two
environments Γ1,Γ2 their tensor product is defined by setting (Γ1⊗Γ2)(x) = Γ1(x)⊗Γ2(x).

The type system `V for the call-by-value λ+‖-calculus is presented in Figure 3.3.
As mentioned above, we exploit the resource consciousness of our system for extracting

from the typing tree of a term enough information to give a bound on the length of its
reduction. In other words, we define the measure |π| of a derivation tree π as follows:

π =
S

(ax) |π| = 0,

π = π1 · · · πn
S

((I) |π| =
∑n
i=1 |πi|,

π = π0 π1 · · ·πk k ≥ 1 ni ≥ 1
S

((E) |π| =
∑k
i=0 |πi|+ (

∑k
i=1 2ni)− 1,

π = π′

S
(+`) or π = π′

S
(+r) |π| = |π′|+ 1,

π = π1 π2
S

(‖I) |π| = |π1|+ |π2|.

When checking that the subject reduction holds we verify not only that the type of a
term is preserved along the head reduction, with the notable exception of the rules (+) that
need to be treated more carefully, but also that the measure associated with the typing trees
strictly decreases.

Theorem 3.2.3 (Subject reduction). Let π be the derivation tree of Γ `V M : σ.
• If M →h N without using +-reductions, then there is a derivation π′ of Γ `V N : σ.
• If M →h N1 and M →h N2 using +-reductions, then there is a derivation π′ of either

Γ `V N1 : σ or Γ `V N2 : σ.
In both cases the measure has decreased: |π′| = |π| − 1.
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This gives a combinatorial proof of weak normalization for the call-by-value λ+‖-
calculus. Moreover, when the type derivation is of the form `V M : 1` · · ·`1, it is possible
to prove that the associated measure provides the exact length of the reduction of M .

Theorem 3.2.4 (Díaz-Caro et Al. [M12]).
Given a closed λ+‖-term M and a number k > 0, there is a typing tree π for `V M : `k1 if and
only if there are values V1, . . . , Vk and a head reduction sequenceM �h V1 ‖ · · · ‖ Vk of length |π|.

As mentioned earlier and discussed thoughtfully in [PPR15], the choice of presen-
ting a model through a type discipline or a categorical object satisfying the equation
V ' !V ( ?!V is more a matter of taste rather than a technical decision. For instance, the
interpretation of a λ+‖-term M which is induced by our type system `V can be defined as:

JMKV = {(Γ, σ) | Γ `V M : σ}.

Accordingly, the interpretation of a closed term is identified with the set of its types. The
adequacy of the model V follows easily from the subject reduction (Theorem 3.2.4) and the
monotonicity of the interpretation.

Corollary 3.2.5 (Adequacy).
For all closed M,N ∈ Λ+‖, if JMKV ⊆ JNKV then for all closed ~P ∈ Λ+‖, we have that M ~P

converges implies that N ~P converges.

Also in this case the identity I and its parallel composition I ‖ I are operationally in-
distinguishable but have different interpretations in V . However, the model V is not fully
abstract even in the deterministic case. Indeed, the call-by-value λ-calculus admits the
creation of an ogre that is capable of ‘eating’ any finite sequence of values and still con-
verge, constituting therefore a top of the call-by-value observational preorder, denoted
here by vcbv. Following Boudol [Bou94], we define the ogre as follows:

O := (λxy.xx)(λxy.xx).

On the one hand we have that the ogre O converges since O → λy.O and remains
convergent when applied to every sequence of values, by discarding them one at a time.

Lemma 3.2.6. For all closed λ+‖-terms M we have M vcbv O.

On the other hand, we have that σ ∈ JOKV if and only if σ =
⊗n

i=0(1( σi) with n ≥ 0
and σi ∈ JOKV for all i ≤ n. In particular, it follows that (1( 1)( (1( 1) ∈ JIKV−JOKV ,
hence JIKV 6⊆ JOKV . Summing up, we have I vcbv O, but JIKV 6⊆ JOKV , therefore the model
V is not inequationally full abstraction for the call-by-value λ-calculus. To conclude that
also the equational fully abstraction fails, one needs to find a more subtle counterexample.

Problem 11. Show that the model V introduced in [M12] (equivalently, Ehrhard’s models of
[Ehr12]) is not equationally fully abstract for the call-by-value λ-calculus.

Hint: Following [EHR92], define the λ-terms:

M1 := λx.(λxyz.Ω)(x(λx.Ω)(λxy.Ω))(x(λxy.Ω)(λx.Ω))
M2 := λx.(λxy.Ω)(x(λx.Ω)(λx.Ω))

Show that M1 ≡cbv M2, but JM1KV 6= JM2KV . The intuition is that the observational equi-
valence satisfies a property of stability which is not satisfied by the interpretation in V .
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3.3 CONSTRUCTING DIFFERENTIAL CATEGORIES

Differential categories are particularly interesting models of nondeterministic languages,
as they keep track of the resource usage. However, it can be difficult to define such cat-
egories by hand, because they possess a quite rich logical structure. Together with Laird
and McCusker [M13, M14], we found a general construction of models of intuitionistic li-
near logic that are also differential categories. The main ingredient is the construction of a
category which possesses a comonad delivering cofree cocommutative comonoids.

The construction. Let C be a symmetric monoidal category enriched over sup-lattices,
that is, over idempotent commutative monoids with all sums. Any productA×B in C is nec-
essarily a biproduct, that is, it is also a coproduct and the canonical map [〈IdA, 0〉, 〈0, IdB〉] :
A ⊕ B → A × B is an isomorphism. Similarly, every coproduct is a biproduct. Suppose
that C has all countable biproducts, and that the monoidal structure distributes over them.
We construct a differential structure on the Karoubi envelope K(C) of C, which has:

• as objects the pairs (A, f) where A is an object of C and f : A→ A is an idempotent,

• as maps (A, f)→ (B, g), those maps h : A→ B from C such that h = f ;h; g.
K(C) inherits the monoidal structure, sup-lattice enrichment and biproducts from C.

First, for any object A of C, write A⊗n to denote the n-fold tensor power of A. The
symmetric tensor power An, if it exists, is the equaliser of the diagram

(A⊗n, f⊗n) (A⊗n, f⊗n)
... n! permutations

consisting of all n! permutations from A⊗n to itself.
InK(C) we can readily construct symmetric tensor powers, as follows. Given an object

A of C, define ΘA,n : A⊗n → A⊗n to be the sum of the n! permutation maps. Straightfor-
ward calculation establishes the following.

Lemma 3.3.1. For any object (A, f) of K(C), the following diagram is an equalizer.

(A⊗n, f⊗n) (A⊗n, f⊗n)
... n! permutations(A⊗n, f⊗n; ΘA,n)

f⊗n; ΘA,n

Moreover, these equalizer diagrams are preserved by tensor products.

One consequence of this is that there are maps (A, f)m+n → (A, f)m ⊗ (A, f)n whose
underlying maps are given by f⊗m+n; ΘA,m+n, as one might expect.

These symmetric tensor powers allow to construct a coalgebra modality onK(C) as the
free commutative comonoid. Recall that a commutative comonoid in a symmetric monoidal
category is an object A together with maps c : A→ A⊗A and w : A→ 1 satisfying the ob-
vious commutativity, associativity and unit diagrams; morphisms of comonoids are mor-
phisms between the underlying objects that preserve the comonoid structure. Let K⊗(C)
be the category of commutative comonoids and comonoid morphisms in K(C).

Lemma 3.3.2. The forgetful functor U : K⊗(C) → K(C) has a right adjoint, whose action on
objects takes (A, f) to the biproduct

⊕
n∈N(A, f)n, which we call !(A, f).

Composing these two adjoint functors yields a comonad (!,der,dig) on K(C).

Lemma 3.3.3. The comonad (!,der,dig) is a coalgebra modality. In fact, it is a linear exponential
comonad (also known as a storage modality).
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The fact that the cofree commutative comonoid provides a linear exponential comonad
is attributed to Lafont. The construction of this comonad along the lines given above fol-
lows the recipe in [MTT09], though the use of Karoubi envelope to generate a category
possessing the required equalizers is our original contribution.

We are now in a position to construct a differential operator on K(C), making it into a
differential category. The differential operator is given by precomposition with the deriving
transformation d : (A, f)⊗ !(A, f)→ !(A, f) defined as follows.

For each n, the map f⊗n+1; ΘA,n+1 in C gives us a morphism

f⊗n+1; ΘA,n+1 : (A, f)⊗ (A, f)n → (A, f)n+1

and hence we obtain maps ∼=;πn; f⊗n+1; ΘA,n+1 : (A, f) ⊗ !(A, f) → (A, f)n+1 where
∼= is the distributivity map. Tupling all these gives us a morphism (A, f) ⊗ !(A, f) →⊕

n(A, f)n+1, and finally pairing this with 0 : (A, f)⊗ !(A, f)→ I gives the required map.

Theorem 3.3.4 (Laird et Al. [M13]).
Let C be a sup-lattice-enriched symmetric monoidal category with countable distributive products.
Then K(C) is a sup-lattice-enriched differential category, and the Kleisli category K!(C) a cpo-
enriched Cartesian differential category. If C is monoidal closed (in the sup-lattice-enriched sense)
then K!(C) is a cpo-enriched Cartesian-closed differential category.

In the presentation given in [M14], we asked for n-ary sum operators Σn[f1, . . . , fn]
needed to produce the symmetric tensors and a priori separated from the sums provided
by commutative monoid enrichment. This is because there are models, considered in Sec-
tion 3.7, in which these sums are indeed different (but related); in particular, the commu-
tative monoid structure does not need to be idempotent while the n-ary sums must be.

Preliminary steps. To apply the construction above, we need a sup-lattice enriched
symmetric monoidal category with countable distributive biproducts. Such categories can
readily be manufactured via a series of free constructions.

1) Sup-lattice enrichment. Beginning with a symmetric monoidal category C, one can
construct its sup-lattice-completion C+ as the category with the same objects, but whose
maps A → B are sets of maps in the original category. This is a sup-lattice enriched
category, with joins of maps given by unions, and monoidal structure inherited from the
original category. The monoidal closed structure is also inherited, if it exists.

2) Biproduct completion. Given a sup-lattice-enriched symmetric monoidal category C,
its biproduct completion C⊕ has as objects indexed sets {Ai | i ∈ I} of objects in the original
category, and as morphisms {Ai | i ∈ I} → {Bj | j ∈ J} matrices of morphisms, i.e., for all
indices i and j, a morphismAi → Bj . Composition is (potentially infinite) matrix multipli-
cation — the infinite sums required for composition are the reason we require sup-lattice
enrichment. The biproduct of a set of objects is given by the disjoint union of families.

We will be interested in some categories which arise by performing these two construc-
tions in sequence. Given a category C, we denote by FamRel(C) the category whose
objects are families {Ai | i ∈ I} of objects of C, and whose morphisms {Ai | i ∈ I} → {Bj |
j ∈ J} are given by sets of triples (i, j, f) where i ∈ I , j ∈ J and f : Ai → Bj in C. Note
that for a given i and j there might be no such triples in a morphism, or one, or many. It is
easy to check that FamRel(C) is isomorphic to the category (C+)⊕.

A simple but central example begins with the terminal category 1. FamRel(1) is the
category Rel of sets and relations. On the image of Rel in K(Rel), ! is the finite-multiset
comonad, so we find MRel embedded in K!(Rel) as a sub-Cartesian-differential-category.
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3.4 A DIFFERENTIAL CATEGORY OF GAMES

We present a category of games G⊗ introduced by Harmer and McCusker at the end of the
’90s as a fully abstract model of Erratic Idealized Algol (EIA) [Har99, HM99]. EIA is a typed
λ-calculus with constants, including an erratic choice operator, making it a higher-order
imperative programming language with variables in which natural numbers can be stored.
We show that G⊗ is a actually a Cartesian closed differential category, which demonstrates
that this kind of categories arise naturally when modelling the nondeterminism.

Arenas, moves and sequences. An arena A is a finite bipartite forest over two sets of
moves, MP

A and MO
A with edge relation `. We say that a move is enabled by its parent in

the forest, and that root moves are initial. A QA-arena is an arena equipped with a function
labelling each move as a question (Q) or answer (A), such that every answer is the child of
a question. We assume the standard notions of justified sequence, views, P- and O-visibility
from the game semantics literature (see, e.g., [McC98]). Given a justified sequence s, we
say that an answer-move occurrence a answers the question occurrence q that justifies it.
A justified sequence s satisfies P-well-bracketing if, for every prefix s′a with a an answer
move by P , the question that a answers is the rightmost O-question in the player view ps′q;
we call this the pending question at s′. A justified sequence is complete if every question is
answered exactly once; we write comp(A) for the set of complete justified sequences of A.

Lemma 3.4.1. If s is a complete justified sequence that satisfies P-visibility (resp. O-visibility),
then s satisfies P-well-bracketing (resp. O-well-bracketing).

The monoidal structure. A sequence is called well-opened if it contains exactly one ini-
tial O-move. A strategy for an arena A is a set of complete sequences in which O plays first,
satisfying P-visibility (and, by Lemma 3.4.1, P-well-bracketing). Given a strategy σ, wv(σ)
is the set of sequences in σ that are well-opened and satisfy O-visibility. Given arenas A
andB, we writeA]B for the arena arising as the disjoint union ofA andB, andA⊥ for the
arena A with O and P-moves interchanged. We can define a category G in which objects
are arenas whose roots are all O-moves, and morphisms σ : A → B are strategies on the
arena A⊥ ] B. Composition of strategies is the usual “parallel composition plus hiding”
construction, and identities are copycat strategies. As proved in [Har99, HM99], this cate-
gory is monoidal closed: disjoint union of arenas gives a tensor product, and exponentials
are given by the arenaA( B, which consists of the arenaB with a copy ofA⊥ attached be-
low each initial move; duplication ofA⊥ is required to maintain the forest structure. Every
object of G possesses a canonical comonoid structure, and the subcategory of comonoid
homomorphisms is a Cartesian closed category G⊗. These maps are those whose choice of
move at any stage depends only on the current thread, that is, the subsequence of moves
hereditarily justified by the initial O-move currently in view. It follows that such strategies
are completely determined by the well-opened plays they contain.

The differential structure of G⊗. Let s be a complete, well-opened play in A⊥ ] B
which contains at least one initial A-move. We say that a complete play s′ in A⊥ ]A⊥ ]B
is a derivative of s if contr; {s′} = {s} and s′ contains one initial move in the left occurrence
of A⊥. We then define D(σ) as the strategy whose well-opened plays are

{s′ ∈ comp(A⊥ ]A⊥ ]B) | s′ is a derivative of some well-opened s ∈ σ}.

It is possible to verify directly that this makes G⊗ a Cartesian closed differential category,
but we now show that this follows from the general constructions of Section 3.3.
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3.5 RECONSTRUCTING CATEGORIES OF GAMES

We apply some of the constructions developed above to reconstruct the category G⊗ of
Section 3.4 and discover its differential structure as an instance.

Exhausting games. Given a finite arena A, a path is a non-repeating enumeration of all
its moves, respecting the order given by the edge relation in the arena — that is, a traversal
of the forest — such that the first move is by O and moves alternate polarity thereafter.
Note that every move in a path has a unique justifier earlier in the path. An exhausting
strategy on the arena A is a set of even-length paths that satisfy P-visibility. In particular, if
A has an odd number of moves, the only exhausting strategy is the empty set.

Definition 3.5.1. The category EG of exhausting games has:
• finite O-rooted arenas as objects,

• exhausting strategies on A⊥ ]B as maps from A to B, with the usual composition.

The monoidal structure is given by the disjoint union of arenas. It is clear that EG is
sup-lattice enriched: unions of strategies are strategies, and composition preserves unions.
We may therefore form its biproduct completion, to obtain the structure we require to
construct a differential category as in Section 3.3. We write K(EG⊕) for the differential
category so constructed, and K!(EG⊕) for its Kleisli category, which is a Cartesian dif-
ferential category. Thought EG is not monoidal closed, it has all R-exponentials, that is
exponentials of the form A( R where R is the arena with a single move belonging to O.

The full subcategory of R-exponentials of K!(EG⊕) is therefore a Cartesian closed dif-
ferential category that contains the original category G⊗, as we have shown in [M13].

Proposition 3.5.2. There is a full and faithful product-preserving functor from G⊗ to K!(EG⊕).

Some refined categories of games. We refine the category G⊗ by considering strategies
satisfying a notion of causal independence similar to that of Melliès [Mel06]. Let us define
a relation ∼ on the paths of an arena A as the smallest equivalence such that:

s · o · p · o′ · p′ · t ∼ s · o′ · p′ · o · p · t

where o, o′ are O-moves and p, p′ are P-moves. We say that a path is safe if, whenever
s = s′ · o · p · o′ · p′ · t and o justifies p′, p′ justifies o′.

A ∼-strategy σ on an arena A is a set of safe paths that is ∼-closed, that is, if s ∈ σ and
s ∼ t then t ∈ σ. A ∼-strategy σ is deterministic if it is non-empty, and the longest common
prefix of any s, t ∈ σ has even length.

We define the category G∼ as the subcategory of G consisting of ∼-closed strategies.
Again taking the subcategory of comonoid homomorphisms, we arrive at a Cartesian
closed differential category G⊗∼. Also in this case the category G⊗∼ can be reconstructed
starting from the category EG∼ having O-rooted arenas as objects and deterministic
∼-strategies on A⊥ ]B as maps A→ B. Indeed, our construction gives us a comonad ! on
K(FamRel(EG∼)) such that the Kleisli category K!(FamRel(EG∼)) is a Cartesian diffe-
rential category. Also in this case EG∼ is not monoidal closed, but it has allR-exponentials,
so the full subcategory of K!(FamRel(EG∼)) comprising the arenas with a single root is a
Cartesian closed differential category and there is a full and faithful functor from G⊗∼ into
K!(FamRel(EG∼)) which preserves the Cartesian closed differential structure.
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3.6 A FULLY ABSTRACT MODEL OF RESOURCE PCF

The categories G⊗, G⊗∼ and MRel constitute sound models of Resource PCF [M13], a sim-
ply typed resource calculus which incorporates the constants of PCF [Plo77], making it a
prototypical resource-sensitive programming language. Its operational semantics is given
in [M13] in terms of a nondeterministic linear-head reduction. Our constructions show that
each of K!(FamRel(EG∼)), K!(BP(EG)) and K!(FamRel(1)) is a cpo-enriched differen-
tial Cartesian category with enough exponentials to interpret Resource PCF; and indeed
we have identified full subcategories which are cpo-enriched Cartesian closed differential
categories containing all the objects needed to interpret Resource PCF.

For G⊗∼ and MRel, there is more to be said. Consider those arenas for which there exists
a Q/A-labelling such that every question enables a unique answer — this is a constraint on
the shapes of the trees, rather than additional structure. Write EGQA

∼ for the full subcate-
gory of EG∼ consisting of such arenas, and note that G⊗∼ embeds in K!(FamRel(EGQA

∼ ))
by construction: indeed, for every such arena, the set of safe paths is non-empty.

The unique functor > : EGQA
∼ → 1 is full and extends through our constructions to

a full functor from K!(FamRel(EGQA
∼ )) to K!(FamRel(1)). Moreover, the only idempo-

tents we make use of in the Karoubi envelope have the form
∑
f∈G f where G is some

group of automorphisms. In the case of Rel, these idempotents are equivalence relations,
and an object (A,') inK(Rel) is isomorphic to (A/',=). The part of the Karoubi envelope
that is used in our constructions is therefore equivalent to Rel itself, with the comonad be-
ing the usual finite-multiset comonad, and the Kleisli category being MRel. We obtain a
full functor from G⊗∼ to MRel which preserves all the relevant structure. This is essentially
the “time-forgetting” map of [BDER98], which is functorial because of the ∼-closure.

Theorem 3.6.1. The models of Resource PCF in G⊗∼ and MRel have the finite definability prop-
erty: every finite element of the model is the denotation of some term of Resource PCF.

From this result it follows that MRel is fully abstract for Resource PCF. Note however
that the notion of full abstraction changes substantially for PCF-like languages because it
is customary to observe the behaviour of programs at ground type. Indeed, we say that a
closed term M of type int converges, written M ⇓, if M reduces to some numeral k.

Theorem 3.6.2 (Laid et Al. [M13, M14]).
The model of Resource PCF in MRel is fully abstract, that is, for any termsM andN , JMK ⊆ JNK
if and only if whenever CLMM ⇓ for some context C, we also have CLNM ⇓.

Proof sketch. (⇒) By monotonicity of interpretation JMK ⊆ JNK andCLMM ⇓ entailCLNM ⇓.
(⇐) Let M,N be closed terms of type A such that JMK 6⊆ JNK. There must be some a ∈
JMK − JNK. By finite definability, the relation {(a, 0)} : A → int is the denotation of some
term x : A ` CLxM : int. Thus JCLMMK = J0K while JCLNMK = ∅, so CLMM ⇓ but CLNM 6⇓.

The above argument does not transfer to G⊗∼ because the game-semantic equivalent
of {(a, 0)} would not in general be ∼-closed. Indeed G⊗∼ is not fully abstract, for similar
reasons to the failure of full abstraction of the innocent strategy model of PCF [HO00]. For
instance, the model contains strategies for both left-to-right and right-to-left evaluation of
the addition function, but no σ-closed strategy (and no context) can distinguish them.

Problem 12. Provide a direct proof of the fact that every finite element of the relational semantics
is the denotation of some term of Resource PCF, and conclude that it is fully abstract.
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3.7 THE WEIGHTED RELATIONAL SEMANTICS

We have shown that the relational semantics is quantitative in the sense that the elements
living in the interpretation of a term M carry as information the amount of resources used
byM during its execution. However, we have also seen that having an idempotent sum en-
tails an unrecoverable loss of information, namely the number of different ways a nonde-
terministic program can reduce to a certain result. In collaboration with Laird, McCusker
and Pagani, we were able to provide in [M15] a uniform denotational account of a range
of quantitative notions, using a simple refinement of the relational model.

The underlying idea is that a relation between two sets A and B can be seen as ma-
trix indexed by A and B, and populated by Boolean values. Replacing the Booleans by
elements of an arbitrary continuous semiring R, we arrive at a new weighted relational se-
mantics embodying some quantitative information. The weighted relational interpretation
of a program M of type A→ B is an infinite matrix

JMK ∈ RMf(A)×B

whose lines are indexed by finite multisets of inputs, whose columns are indexed by the
corresponding outputs and whose entries are the coefficients from R. For instance, a pro-
gram M of type bool→ bool is interpreted by a matrix of the form:


p1 q1
p2 q2
p3 q3
p4 q4
...

...



t f7→ 7→

[] 7→
[t] 7→
[f] 7→

[t, f] 7→
...

JMK =

Like in the relational semantics the finite multisets represent the different calls needed to
produce the corresponding output, but what is the meaning of the associated scalars?

We consider PCFor, the extension of Plotkin’s PCF with a nondeterministic choice op-
erator which can naturally be interpreted in our models by addition of matrices. The inter-
pretation of a closed term of ground type is then a vector of scalars fromR. To understand
their meaning, we consider a further extended language PCFR, in which terms can be
instrumented with elements of R. We demonstrate that our weighted relations correctly
model execution in this language, and go on to use PCFR as a metalanguage for quanti-
tative modelling of the execution of programs in PCFor. By varying our choice of R, and
of how terms are instrumented, we show in Section 3.11 that our models can capture, for
instance, may- and must- convergence for nondeterministic programs, the probability of
convergence; and the minimum and maximum number of reduction steps to convergence.

The models we describe in this section are in some sense the simple cousins of a range
of models studied by Ehrhard and co-authors: finiteness spaces, Köthe spaces, as well as
probabilistic coherence spaces [Ehr05, Ehr02, DE11]. In all cases, the coherence structure
serves to constrain morphisms so that the quantities in the model can remain finite. Our
models sacrifice this property in return for simplicity and generality.
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3.8 THE CATEGORY R⊕ AND ITS KLEISLI R⊕!
We show that constructions similar to the ones in Section 3.3 can be applied to build a
cartesian closed differential category starting from any commutative continuous semiring.

Continuous semirings have been introduced in [DK09] and are instances of continu-
ous algebras (see e.g. [Gue81]). Intuitively, continuous semirings are semirings having a
structure of complete partial order (cpo). Recall that a cpo is a partially ordered set (X,�)
having a bottom element and such that any directed subset D ⊆ X has a supremum

∨
D.

Definition 3.8.1 (Continuous semiring). A continuous semiringR is a semiring

(|R|,+, · ,0,1)

equipped with a partial order � such that:
• (|R|,�) is a cpo having 0 as bottom element,
• the operators + and · are continuous.

We will often confuse R with its underlying set |R|. Since the addition is continuous,
in any continuous semiringRwe can define infinite sums by directed suprema:∑

p∈I
p :=

∨
F⊆fI

(∑
p∈F

p

)
.

In particular, every continuous semiring R has a top element ∞ :=
∑
p∈R p satisfying

p + ∞ = ∞ for every p ∈ R. Before exhibiting the most famous examples of continuous
semiring, we fix some notations. Given a set X , we write X for X ∪ {∞} and X⊥ for
X ∪ {−∞}, where∞, −∞ are fresh elements.

Example 3.8.2. The following semirings, endowed with the natural ordering, are continuous.
1. Boolean semiring: B := ({t, f},∨,∧, f, t) where f < t.
2. N completed: N := (N,+, · , 0, 1,≤) where +, · are defined in the obvious way (in parti-

cular 0 · ∞ = 0 =∞ · 0). Note that for every infinite S ⊆ N we have
∨
S =∞.

3. Tropical semiring: T := (N,min,+,∞, 0,≥). Note that the order is reversed so that 0 is
the top element.

4. Arctic semiring: A := (N⊥,max,+,−∞, 0,≤) where max,+ are extended as usual (e.g.
(−∞) +∞ = −∞).

5. R+ completed: P := (R+,+, · , 0, 1,≤).

A continuous module (M,+, 0) over a continuous semiring R is a module over R having
a structure of complete partial order such that 0 is the bottom and addition and scalar
multiplication are continuous.

The category R⊕. From now on, and until the end of the section, we consider fixed
an arbitrary continuous semiringR = (|R|,0,1,+, · ,�), whose product · is commutative.
Notice that R can be seen as a one-object category whose morphisms are the elements of
R, whose composition is the product · , and whose identity is given by 1. Therefore, it
makes sense to consider the biproduct completionR⊕ ofR that we defined in Section 3.3.

Given a set A and α, α′ ∈ A, define the Kronecker symbol δα,α′ ∈ R which takes value 1
if α = α′ and 0 if α 6= α′.
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Definition 3.8.3 (The categoryR⊕).

• The objects ofR⊕ are sets and the morphisms from A to B are the matrices inRA×B .

• Identity over A is the diagonal matrix defined as IdAα,α′ := δα,α′ for all a, a′ ∈ A.

• The composition of f ∈ R⊕(A,B) and g ∈ R⊕(B,C) is the morphism f ; g given by the
usual matrix composition (f ; g)α,γ :=

∑
β∈B fα,β · gβ,γ for all α ∈ A, γ ∈ C.

By construction, the category R⊕ has (countable) biproducts, represented by disjoint
union and indicated as ⊕. Indeed, given a (possibly infinite) set I of indices we have:⊕

i∈I Ai :=
⋃
i∈I{i} ×Ai, πj(i,α),α′ := ιjα,(i,α′) := δ(i,α),(j,α′)

where πj (resp. ιj) stands for the canonical projection onAj (resp. injection fromAj). More-
over, given fj ∈ R⊕(B,Aj) and gj ∈ R⊕(Aj , B) we have that

(〈fi〉i∈I)β,(j,α) := (fj)β,α, ([gi]i∈I)(j,α),β := (gj)α,β ,

are the unique morphisms satisfying 〈fi〉i∈I ;πj = gj and ιj ; [gi]i∈I = fj . The terminal (ac-
tually null) object T is ∅. The hom-sets of R⊕ inherit from R the structure of a continuous
module: given two sets A,B, we define for all matrices f, g ∈ RA×B and scalars p ∈ R:

0α,β := 0, (f + g)α,β := fα,β + gα,β , (pf)α,β := p · fα,β .

Moreover, we set f � g if and only if fα,β � gα,β for all α ∈ A, β ∈ B.
The monoidal structure. We briefly present the monoidal structure of R⊕, showing

that it is a ?-autonomous category (actually, compact closed).
The bifunctor ⊗ : R⊕ × R⊕ → R⊕ acts on objects like the cartesian product and on

morphisms like the Kronecker product, that is (for every f ∈ R⊕(A,B), g ∈ R⊕(C,D)):

A⊗B := A×B, (f ⊗ g)(α,γ),(β,δ) := fα,β · gγ,δ

Bifunctoriality of this operation follows from commutativity of the R-product · . The unit
of the tensor is the singleton set 1 := {∗}. The category R⊕ is monoidal closed: the
monoidal exponential object and the monoidal evaluation are defined as:

A( B := A×B, evA,B((α,β),α′),β′ := δ(α,β),(α′,β′), λ(f)γ,(α,β) := f(γ,α),β .

The object ⊥:= {∗} is dualizing, thereforeR⊕ is ?-autonomous.
Lafont exponentials. It turns out that R⊕ has all symmetric tensor powers An, so we

do not need to apply the Karoubi envelope. Indeed, for every n ∈ N and object A, the
equalizer (An, eqA

n) of the symmetries of A⊗n exists and is defined by:

An :=Mn(A), eqA
n

a,(α1,...,αn) := δa,[α1,...,αn],

whereMn(A) is the set of all multisets over A of cardinality n. These equalizers are pre-
served by the tensor products. Hence, we can build the exponential as in as in Section 3.3:

!A :=
⊕
n∈N

An ∼=Mf(A), derAa,α := δa,[α],
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contrAa,(a1,a2) := δa,a1]a2 , weakAa,∗ := δa,[].

Given f ∈ R⊕(A,B), its promotion is the matrix !f (∀a ∈ !A, ∀[β1, . . . , βn] ∈ !B):

!fa,[β1,...,βn] =
∑

(α1,...,αn) s.t.
a=[α1,...,αn]

n∏
i=1

fαi,βi
.

The concrete presentation of the digging is given by (∀a ∈ !A, ∀[a1, . . . , an] ∈ !!A):

digAa,[a1,...,an] = δa,a1]···]an
.

This matrix is actually the digging, since it is the unique comonoid morphism satisfying
digA; der!A = Id!A. The Seely isomorphism mA,B between !A ⊗ !B and !(A & B) maps the
pair ([α1, . . . , αn], [β1, . . . , βk]) to the multiset [(1, α1), . . . , (1, αn), (2, β1), . . . , (2, βk)]. Ana-
logously, the isomorphism mT between 1 and !T sends ∗ to the multiset []. We treat these bi-
jections as equalities, so we still denote by (m1,m2) the corresponding element of !(A&B).

The Kleisli Category. We denote byR⊕! the Kleisli category ofR⊕ over the comonad !.
The objects of R⊕! are all the sets, a morphism from A to B is a matrix in RMf(A)×B ,
that is R⊕! (A,B) := R⊕(Mf(A), B). The composition of morphisms f ∈ R⊕! (A,B) and
g ∈ R⊕! (B,C) is given by:

(f ;! g)a,γ :=
∑

[β1,...,βn]∈!B

∑
(a1,...,an) s.t.
a=a1]···]an

g[β1,...,βn],γ ·
n∏
i=1

fai,βi .

The identity on A is given by IdAa,α := δa,[α]. For the sake of simplicity the points of A,
which are the morphisms inR⊕! (T, A), will be represented as vectors inRA.

Each homsetR⊕! (A,B) inherits the structure of a continuous module overR, moreover
the composition is continuous and post-linear, that is:

f ;! 0 = 0, f ;! (g + h) = f ;! g + f ;! h f ;! pg = p(f ;! g)

In particular, every f ∈ R⊕! (A,B) can be seen as a continuous map from RA to RB by
setting f(v) := v ;! f for all vectors v ∈ RA. This will be useful for interpreting fixed points.

The cartesian structure of R⊕ is preserved in R⊕! , therefore the product
˘
i∈I Ai of an

indexed family (Ai)i∈I is still the disjoint union, while the j-th projection is πja,α = δa,[(j,α)].
The exponential object A→ B is given by Mf(A) × B, the evaluation morphism Eval ∈
R⊕! ((A → B) & A,B) is defined as Eval(a,a′),β = δa,[(a′,β)] and the currying Λ(f) ∈
R⊕! (C,A→ B) of a morphism f ∈ R⊕! (C&A,B) is given by Λ(f)a,(a′,β) = f(a,a′),β . Notice
that R⊕! is a Cartesian closed differential category, where the derivative of a morphism
f : A→ B is defined as follows (for all a, a′ ∈Mf(A) and β ∈ B):

D(f)a,a′,β = δ[α],a · fa′][α],β .

Problem 13. In [Lai16], Laird has shown that it is enough to start with a complete commutative
semiring R, and still obtain fixed points in R⊕! without requiring any order-theoretic structure.
These fixed points corresponding to infinite sums of finitary approximants indexed over the nested
finite multisets, each representing a unique call-pattern for computation of the fixed point. It would
be interesting to see whether the commutativity can be also released, working on the premonoidal
setting, and what kind of languages it is possible to model in the coKleisli.
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Typing Rules of PCFR

∆, x : A ` x : A
∆, x : A `M : B

∆ ` λxA.M : A→ B
∆ `M : A→ B ∆ ` P : A

∆ `MP : B
∆ `M : A
∆ ` pM : A

∆ `M : A ∆ ` P : A
∆ `M or P : A ∆ ` 0 : int

∆ `M : int
∆ ` pred M : int

∆ `M : int
∆ ` succ M : int

∆ `M : int ∆ ` P : int ∆ ` L : int
∆ ` ifz(M,P,L) : int

∆ `M : A→ A
∆ ` fix(M) : A

Figure 3.4: Simple type system for PCFR.

3.9 PCFR: NONDETERMINISTIC PCF WITH SCALARS

Let PCFor be the extension of PCF [Plo77] with a nondeterministic choice operator “or”.
We now present PCFR, a prototypical programming language introduced in [M15], which
extends PCFor with scalars from a continuous semiring R. In Section 3.11 we will see
that PCFR is particularly useful as a target language in which PCFor can be interpreted.
Moreover, by varying such an interpretation and the semiringRwe are able to characterize
semantically several quantitative features of the nondeterministic executions in PCFor.

The language PCFR is simply typed and has constants for representing the natural
numbers, so the set of its types contains all arrow types that are built from the ground
type int. The terms of PCFR are generated by the following grammar (where p ∈ R):

L,M,P ::= x | λxA.M |MP | fix(M) | 0 | pred M | succ M | ifz(M,P,L)
|M or P | pM

Like in the language PCFor we have the simply typed λ-calculus, a fixed point operator
fix for expressing recursion, an if-then-else operator ifz(M,P,L) which tests whether the
first argument M reduces to zero and chooses accordingly wither P or L, a Peano-style
representation of natural numbers and an erratic choice operator or. Concerning natural
numbers, for every n ∈ N, we denote by n the corresponding numeral succn(0).

Moreover, terms of PCFR can be instrumented with elements of R. Depending on the
continuous semiring under consideration, the scalar p in pM can represent some sort of
cost, or weight or probability associated with M .

Since the language is simply typed, the type environments ∆ are handled like in the
simply typed λ-calculus (see Section 1.6). As usual, type judgements are denoted by ∆ `
M : A and can be inferred using the typing rules of Figure 3.4.

The type annotation on the λ-abstraction is not strictly necessary, but it ensures the
unicity of the derivation of a valid judgement.

Lemma 3.9.1. Given an environment ∆ and a term M , there exists at most one type A such that
∆ `M : A, and the corresponding derivation is unique.
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Reduction Rules Contextual Rules

β : (λx.M)P 1−→M [P/x]
fix : fix(M) 1−→M(fix(M))

scal : pM
p−→M

orl : M or P 1−→M

orr : M or P 1−→ P

pred : pred n 1−→ n− 1
if0 : ifz(0, P, L) 1−→ P

ifs : ifz(n+ 1, P, L) 1−→L

M
p−→` M

′

MP
p−→` M

′P

M
p−→` M

′

pred M
p−→` pred M ′

M
p−→` M

′

ifz(M,P,L) p−→` ifz(M ′, P, L)
M

p−→` M
′

succ M
p−→` succ M ′

Figure 3.5: The operational semantics of PCFR. In the rule pred we suppose that 0− 1 = 0.
We write M

p−→` P to mean that M reduces to P using the rule (`).

The operational semantics of PCFRis defined in Figures 3.5.
• The reduction rules on the left are treated as relations between terms, decorated with

a weight p ∈ R and a label ` ∈ {β, fix, scal, orl, orr, pred, if0, ifs}.

• The elementary reduction step (ers) M
p−→` P is the smallest relation closed under the

above reduction rules and the contextual rules.
The operational semantics implements the leftmost-outermost reduction strategy. The la-
bel ` is needed in the elementary reduction steps to ensure that there are two distinct re-
ductions from M or M to M . When writing M

p−→ P we mean M
p−→` P for some label `.

Remark that every term has at most one redex that reduces, moreover the reduction is de-
terministic except for the or-constructor. The system clearly enjoys the subject reduction.

A reduction sequence π from M to P is a finite sequence (Mi
pi→ Mi+1)i<k of elementary

reduction steps such that M0 = M and Mk = P . In particular, for all M , there is an empty
reduction sequence from M to itself. The set of all reduction sequences from M to P of length
at most k is denoted by M ⇒≤k P . The set M⇒P of all reduction sequences from M to P is
defined as

⋃
k∈N(M ⇒≤k P ).

We have seen that elementary reduction steps are weighted, therefore it makes sense to
define the weight of a (set of) reduction sequence(s).

Definition 3.9.2. Let M,P be two terms.
• The weight of a reduction sequence π ∈ M⇒P of the form (Mi

pi→ Mi+1)i<k is defined
as weight(π) :=

∏
i<k pi ∈ R. In particular, the weight of the empty sequence is 1.

• The above operation is extended to a subset X ⊆M⇒P by setting

weight(X) :=
∑
π∈X

weight(π)
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JxiK∆
~a,β = δai,[β] ·

∏
j 6=i δaj ,[], JλxC .MK∆

~a,(c,β) = JMK∆,x:C
(~a,c),β ,

JMP K∆
~a,β =

∑
a′=[α1,...,αk]

∑
(~a0,...,~ak)
a0]···]ak=~a

JMK∆
~a0,(a′,β) ·

k∏
i=1

JP K∆
~ai,αi

,

J0K∆
~a,n = δ0,n ·

∏
i

δ[],ai
, Jpred MK∆

~a,n = δn,0 · JMK∆
~a,0 ] JMK∆

~a,n+1,

Jsucc MK∆
~a,0 = 0, Jsucc MK∆

~a,n+1 = JMK∆
~a,n,

Jifz(M,P,L)K∆
~a,n =

∑
(~a0,~a1) s.t. ~a0+~a1=~a

(
JMK∆

~a0,0 · JP K∆
~a1,n

+
( ∞∑
k=1

JMK∆
~a0,k

)
· JLK∆

~a1,n

)
,

JpMK∆ = pJMK∆, JM or P K∆ = JMK∆ +JP K∆, Jfix(M)K∆ =
∨
n∈N

fixn(JMK∆),

where fixn(ϕ) is defined by setting fix0(ϕ) := 0 and fixn+1(ϕ) := 〈ϕ,fixn(ϕ)〉 ;! Eval.

Figure 3.6: The interpretation of PCFR programs inR⊕! .

3.10 DENOTATIONAL SEMANTICS IN R⊕!
Given an environment ∆ = x1 : A1, . . . , xn : An, the interpretation of ∆ ` M : B in R⊕! is a
morphism JMK∆ ∈ R⊕! (A1 & · · ·&An, B) that is, up to isomorphism, a matrix

JMK∆ ∈ RMf(A1)×···×Mf(An)×B .

which is defined in Figure 3.6. When the underlying continuous semiring is not clear from
the context we write JMKR,∆ to emphasize that JMK∆ lives in R⊕! . The continuity of R
is exploited for interpreting the fixed point operator: indeed, for every closed term M of
typeA, Jfix(M)K is the least fixed point of JMK seen as a continuous map fromRA to itself.

Proposition 3.10.1 (Soundness). For every term M which is not a normal form, we have:

JMK∆ =
∑
M→`

pL
pJLK∆.

As a consequence, we get weight(M⇒n) � JMKn for every closed termM of type int, a
result relating the denotational and operational semantics of M . The adequacy forR⊕! is a
strengthening of such a result, saying that JMKn and weight(M⇒n) are actually equal. The
adequacy can be achieved following the lines of [DE11], by using suitable logical relations.
More precisely, we define a relation �A between vectors inRA and closed terms of type A:

f �int M ⇐⇒ ∀n ∈ N, fn � weight(M⇒n),
f �B→C M ⇐⇒ ∀g, P, g �B P entails 〈f, g〉 ;! Eval �C MP.

By applying the fundamental lemma of logical relations (adapted to this context) we con-
clude JMK �int M for all closed term M of type int.
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ΦP ifz(P, succP, 0) ifz(p0, succP, 0) ifz(0, succP, 0) succP succ (p0) succ 0 := 1

succ (q1) succ 1 := 2ifz(q1, succP, 0) ifz(1, succP, 0) 0

1
β

1
orl

p

scal
1
if0

1
orl

p

scal
q

scal
1
orr

1
orr

q

scal
1
ifs

Figure 3.7: Reduction sequences starting from ΦP , where P is the weighted nondetermin-
istic numeral p0 or q1.

Theorem 3.10.2 (Adequacy, Laird et Al [M15]).
For every closed term M of type int and n ∈ N we have JMKn = weight(M⇒n)

Example 3.10.3. Let us analyze the operational behaviour and denotational semantics of some
specific PCFR terms.

1. The first example we consider is the fixed point of the identity Ωint := fix(λxint.x) which
is the paradigmatic looping term of type int, indeed Ωint 1→fix (λxint.x)Ωint 1→β Ωint 1→ · · ·.
Since the least fixed point of the identity is 0 we obtain JΩintK = 0, thus JM or ΩintK = JMK.
It follows that, for all n ∈ N, we have Ω⇒n = ∅ and therefore weight(Ω⇒n) = 0.

2. Let us consider now the term Φ := λxint.ifz(x, succx, 0), which is of type int → int. The
operational behaviour of Φ on numerals is easy to determine

Φ0 1→β ifz(0, 1, 0) 1→if0 1 and, for all n > 0, Φn 1→β ifz(n, n+ 1, 0) 1→ifs 0

Therefore we have that weight(Φn ⇒ k) is equal to 1 if either n = 0 and k = 1, or n > 0
and k = 0. Otherwise weight(Φn ⇒ k) it is equal to 0.
The reduction of Φ is more interesting when it is applied to weighted nondeterministic nu-
merals, like P := p0 or q1. As shown in Figure 3.7 weights can be used to carry information
on resource consumption: for instance weight(ΦP ⇒ 1) = p2, weight(ΦP ⇒ 0) = q and
weight(ΦP ⇒ 2) = p · q. The degree of the parameter p (resp. q) corresponds to the number
of times the term ΦP uses the resource p0 (resp. q1) during the reduction to a numeral.
Easy calculations show that the interpretation of Φ inR⊕! is given by the following matrix

JΦKm,n =

 1 if either m = [0, k] and n = k + 1
or m = [k + 1] and n = 0,

0 otherwise.

3. Let Ψ := fix(λxint.(x or 0)), which is a term of type int. The reduction of Φ is

Ψ 1→fix (λxint.(x or 0))Ψ 1→β Ψ or 0

which in its turn reduces with weight 1 using the or-rules either to Ψ itself or to 0.
The interpretation JΨK can be computed starting from Jλxint.(x or 0)Km,n = δm,[n] +
δ(m,n),([],0) by taking the supremum for all n ∈ N of fixn(Jλxint.(x or 0)K) = J0K+ · · ·+ J0K
(n times).
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Failure of Full Abstraction We now show that, for every choice of R, the model R⊕! is
not fully abstract for PCFR — it does not capture exactly the observational pre-order on
terms induced byR. Let us denote by C ∆,A

B the set of PCFR contexts QL−M mapping terms
M of type A in ∆, into terms QLMM of type B in the empty environment.

Definition 3.10.4 (Observational pre-order). Given ∆ `M : A and ∆ ` P : A, define

M v∆ P ⇐⇒ ∀Q ∈ C ∆,A
int ,weight(QLMM⇒0) � weight(QLP M⇒0).

Let ≡∆ be the equivalence induced by v∆.

Remark that the numeral 0 chosen for testing the equality is not really significant. In-
deed, from a contextQL−M such that weight(QLMM⇒0) 6�weight(QLP M⇒0), one can define
the context Q′L−M := succn(QL−M) satisfying weight(Q′LMM⇒n) 6� weight(Q′LP M⇒n).

The modelR⊕! would be (inequationally) fully abstract if, for all terms M and P , we have
JMK∆ � JP K∆ if and only if M v∆ P . As a corollary of the adequacy, we get the ‘only if’
direction, that is the fact that JMK∆ � JP K∆ entails M v∆ P . We now show that the other
implication does not hold. Let us consider the following PCFR programs:

Ξ := λyint.∞0, Υ := λyint.(∞0 or ifz(y, 0,Ωint)). (3.1)

where Ωint is defined in Example 3.10.3 and ∞ =
∑
p∈R p as in Section 3.8. It is easy to

check that both terms have type int → int. By using the rules of Figure 3.6 one can easily
compute their interpretations:

• JΞK[],0 = ∞ and JΞKm,n = 0 otherwise,

• JΥK[],0 = ∞, JΥK[0],0 = 1 and JΥKm,n = 0 otherwise.
Note that JΞK ≺ JΥK, indeed JΞK[0],0 = 0 ≺ 1 = JΥK[0],0. However, the two terms are
observationally equivalent — this can be proved by a standard reasoning using the logi-
cal relation �A to shrink the set of the contexts observing the operational behaviour of Ξ
and Υ. Indeed, it is possible to show that JΥK �int→int Ξ holds.

Proposition 3.10.5. Υ and Ξ are observationally equivalent.

Proof. For any context QL−M ∈ C int→int
int and closed term M of type int → int, we have

(λxint→int.QLxM)M 1→ QLMM. Therefore we have M v M ′ if and only if weight(LM⇒0) �
weight(LM ′⇒0), for every closed term L : (int→ int)→ int. From the fundamental lemma
of logical relations we get JLK�(int→int)→intL, hence from JΥK�int→int Ξ and Theorem 3.10.2,
we obtain weight(LΥ⇒ 0) = JLΥK0 = (〈JLK, JΥK〉 ;! Eval)0 � weight(LΞ⇒ 0). This gives
Υ v Ξ, the converse follows from JΞK � JΥK and the adequacy.

This is even a counterexample to equational full abstraction as we found two terms
Ξ,Υ such that JΞK 6= JΥK but Ξ ≡ Υ. Notice that Counterexample (3.1) can be rephrased
without using scalar multiplication as soon asR is such that ∞ =

∑
n∈N 1 + · · ·+ 1. (This

is the case for all semirings in Example 3.8.2.) Indeed, under this hypothesis, the term Ψ of
Example 3.10.3(3) has the same observational and denotational semantics of ∞0.

Problem 14. Show that R⊕! is a fully abstract model for resource PCF extended with scalars
fromR. Is the model fully abstract for an Erratic Idealized Algol with scalars?
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3.11 CHARACTERIZING QUANTITATIVE PROPERTIES

In this section we show how, choosing appropriate continuous semirings R, it is possible
to capture semantically several quantitative operational properties of programs.

We analyse PCFor, the restriction of PCFR obtained by forbidding the rule pM in the
grammar of PCFR given in Section 3.9, so that the weight of any reduction sequence is 1.
This has a natural translation into PCFR, of course, since it is merely a restriction of that
language. Here we shall see that other translations, obtained by instrumenting PCFor terms
with elements of R using the pM rule, allow us to refine the semantics to various quanti-
tative purposes. Thus PCFR is used as a semantic metalanguage, capable of describing a
range of different quantitative models of PCFor.

May/Must Nondeterministic Convergence

The most basic behaviour to observe is whether a PCFor program (closed term of type int)
M may-converges to a numeral n, that is whether there exists a reduction sequence from
M to n. For instance the term Ψ may-converges to 0, while the term Ωint does not. To
observe such a behaviour it is enough to consider the simplest (non-trivial) continuous
semiring, that is the Boolean semiring B of Example 3.8.2(1). Theorem 3.10.2 specializes to
the following characterization of may-convergence.

Corollary 3.11.1. For every programM of PCFor, JMKBn = t if and only ifM may-converges to n.

Note that B⊕! is isomorphic to the category MRel, known as the relational semantics.
Therefore, this first result is not very surprising as MRel has been proved to characterize
may-convergence for a resource sensitive extension of PCFor [M14].

Starting from the standard semiringN of Example 3.8.2(2) we already get a much finer
observation on programs. Indeed weight(M ⇒ n) becomes equal to the number of paths
in M ⇒ n. This means that N⊕! is able to compare programs depending on how many
reduction sequences lead to a certain numeral.

Corollary 3.11.2. For every program M of PCFor, JMKNn is the number of reduction sequences
from M to n.

For instance, we have JΨKN0 =∞ and JΦ(1 or 1)KN0 = 2, soN⊕! separates the two terms,
while B⊕! gives the same interpretation to both.

The characterization of must-convergence (i.e. the convergence to a numeral n regardless
of the erratic choices taken during the evaluation) requires a more complex translation of
PCFor into PCFN , allowing detection of potentially infinite reductions. For instance, as
shown in Example 3.10.3, the programs Φ1 or Ωint and Φ1 have the same interpretation for
any choice ofR, but the first term is not must-convergent while the second is.

Let us consider the translation (−)◦Γ mapping judgments Γ `PCFor − : A into judgments
Γ `PCFN − : A which is generated by (assuming M of type B → B and L of type B, with
B = B1 → · · · → Bk → int):

(fix(M))◦Γ := fix(λxB .((M)◦Γx or λyB1
1 . . . λyBk

k .0)),
(λxC .L)◦Γ := λxC .((L)◦Γ;x:C or λyB1

1 . . . λyBk

k .0),

where generated by means that (−)◦Γ commutes with all other constructors of PCFor. From
now on we will consider PCFor programs, so the environment will be omitted.
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For all programs M,P of PCFor, we have M →` P if and only if one of the following
conditions holds:

• ` = fix and M◦ 1→fix
1→β

1→orl P
◦,

• ` = β and M◦ 1→β
1→orl P

◦,

• ` /∈ {fix, β} and M◦ 1→` P
◦.

Lemma 3.11.3. For every PCFor program M , there exists a reduction sequence from M◦ to n, for
some n ∈ N.

As a first corollary we obtain a characterization of strong convergence — a PCFor program
M is strongly converging if there is no infinite reduction sequence starting from M .

Corollary 3.11.4. A PCFor program M is strongly converging if and only if
∑
n∈NJM◦KNn <∞.

For instance, (Ωint)◦ = fix(λxint.((λxint.(x or 0))x or 0)), and
∑
n∈NJ(Ωint)◦KNn = ∞

as J(Ωint)◦KN0 = ∞. Finally, from Corollaries 3.11.1 and 3.11.4, we obtain the following
characterization of must-convergence.

Corollary 3.11.5. A PCFor program M must-converges to a numeral n if and only if∑
k∈NJM◦KNk <∞, JMKNn > 0 and JMKNk = 0 for all k 6= n.

Probabilistic Convergence

Let us now determine the probability that a PCFor program reduces to a numeral n, sup-
posing that the probability of applying orl or orr when firing an or-redex is uniformly dis-
tributed. In the spirit of [DE11], this amounts to define its operational semantics through
a Markov system having the terms as states, and the normal forms as absorbing states.

The Markov matrix describing such a process is given by:

RedM,P :=



1 if P = M is a normal form,
1 if M →` P with ` /∈ {orl, orr},
1 if M →orl P and M →orr P ,
0.5 if M →orl P but M 6→orr P or viceversa,
0 otherwise.

Note that Red is a stochastic matrix (i.e.
∑
P RedM,P = 1), and that RedM,P describes

the probability of evolving from M to P in one ers. Similarly, the k-th fold matrix product
Redk, which is still a stochastic matrix, gives the evolution of the system after k steps. Since
n is absorbing, RedkM,n is monotone in k and bounded by 1, so Red∞M,n := supk∈N RedkM,n

is well-defined and gives the probability that M reduces to n in finitely many elementary
reduction steps.

To capture this probabilistic feature in our semantic framework, consider the semiring
P of Example 3.8.2(5) and the translation (−)◦ : PCFor → PCFP generated by:

(M or P )◦ := (0.5 M◦) or (0.5 P ◦).

Note that a reduction step M →` P can be simulated by M◦
1→` P

◦ when ` is not an
or-rule, otherwise we need two steps M◦ 1→`

0.5−→scal P
◦.
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Lemma 3.11.6. For every programM of PCFor and n ∈ N, we have weight(M◦⇒n) = Red∞M,n.

As a consequence we get the following result, restating for P⊕! the adequacy theorem
proved in [DE11] for the category PCoh! of probabilistic coherence spaces and entire func-
tions.

Corollary 3.11.7. For every program M of PCFor, JM◦KPn = Red∞M,n which is the probability
that M reduces to n.

For example, J(Φ1)◦KP = JΨ◦KP , both giving 1 on the web element 0. Notice also that,
omitting the translation, JΦ1KP0 = 1 while JΨKP0 =∞.

The two models P⊕! and PCoh! share the same interpretations on probabilistic pro-
grams (i.e. on the image of the translation), since there is a faithful forgetful functor from
PCoh! to P⊕! which acts like the identity on morphisms. These categories however dif-
fer in a crucial property, namely the fact that PCoh! is well-pointed, while P⊕! is not (the
counterexample being given by the maps JΞK and JΥK).

Resource Analysis.

We wish now to determine the minimum number of times that a β- or a fix-redex is con-
tracted during an evaluation of a PCFor program M (best case analysis), or the maximum
number (worst case analysis). These are indeed the two most critical redexes from the point
of view of resource consumption, as their contraction may increase the size of M .

The model built from the tropical semiring T of Example 3.8.2(3) computes the best
case analysis, through the translation (−)◦ : PCFor → PCFT generated by:

(λxA.M)◦ := λxA.1M◦, (fix(M))◦ := fix(1M◦).

Recall that in T the product is + and 1 := 0, so 1 6= 1.

Lemma 3.11.8. For all PCFor terms M,P we have M →` P if and only if either ` ∈ {β, fix}
and M◦ 0−→`

1→scal P
◦ or ` /∈ {β, fix} and in that case M◦ 0→` P

◦.

Therefore, given a reduction sequence π ∈ M◦ ⇒ n, its weight weight(π) gives the
number of β- and fix-redexes contracted in π. Since the addition of T is min (with respect
to the standard order on N), we have the following result.

Corollary 3.11.9. For every programM of PCFor, JM◦KTn is the minimum number of β- and fix-
redexes reduced in a reduction sequence from M to n.

For the worst case analysis, consider the model built from the arctic semiringA (Exam-
ple 3.8.2.4), where the addition is max, and the translation (−)◦ : PCFor → PCFA is defined
as before. An analogous reasoning gives the next corollary.

Corollary 3.11.10. For every program M of PCFor, JM◦KAn is the maximum number of β- and
fix- redexes reduced in a reduction sequence from M to n.

For instance, we have J(Φ((λxint.x)0))◦KT > J(succ Ψ)◦KT , namely J(Φ((λxint.x)0))◦KT1 = 3
and J(succ Ψ)◦KT1 = 2. On the other hand, we have J(Φ((λxint.x)0))◦KA < J(succ Ψ)◦KA, in
fact J(Φ((λxint.x)0))◦KA1 = 3 and J(succ Ψ)◦KA1 =∞.



4Factor Algebras and Symbolic Computation
In which we show that the theory of decomposition operator can be fruitfully applied to
the study of λ-calculus, multi-valued matrix logics, and first-order classical logic.

• From Lambda Calculus to Universal Algebra and Back.
G. Manzonetto and A. Salibra.
33rd International Symposium on Mathematical Foundations of Computer Science
(MFCS’08), volume 5162 of LNCS, pages 479-490, 2008.

• Lattices of Equational Theories as Church Algebras.
G. Manzonetto and A. Salibra.
In C. Drossos, P. Peppas, and C. Tsinakis, eds, 7th Panhellenic Logic Symposium,
pages 117-121. Patras University Press, 2009.

• Applying Universal Algebra to Lambda Calculus.
G. Manzonetto and A. Salibra.
Special issue of Journal of Logic and Computation on Logic and Algebra, Volume 20,
Number 4, pages 877-915, 2010.

• Factor Varieties and Symbolic Computation.
A. Salibra, G. Manzonetto and G. Favro.
ACM/IEEE Symposium on Logic in Computer Science (LICS’16), pages 738-747,
New York, USA, 2016.

Universal algebra has many applications in computer science: indeed, whenever a
specification can be modelled by sets and functions, there is an algebra. However,
combinatory algebras, that constitute the models of λ-calculus, were considered

algebraically pathological as they are never commutative, associative, finite or recursive.
In my PhD thesis (2005-2008) and subsequently during my ATER (2008) I fruitfully

applied, in collaboration with Salibra, techniques of universal algebra based on decompo-
sition operators to study models and theories of λ-calculus, thus showing that this belief
was not well-founded. The insights gained from the analysis of combinatory algebras led
us to define the more general class of Church algebras that also encompass important al-
gebraic structures like Boolean algebras, Heyting algebras and rings with unit. Church
algebras enjoy many properties, including a Stone representation theorem having interest-
ing consequences in the study of λ-calculus and of lattices of equational theories.

In 2015, Salibra has spent one month at the laboratory LIPN as an invited professor,
together with his PhD student Favro. In this occasion we discovered that the theory of
decomposition operators can also be applied to study classical logic and, mode generally,
to any finite multi-valued matrix logic. We developed a uniform method for extracting
the logical content of a formula and determining whether the formula is a tautology. We
have shown that this method can be automatized using a confluent and terminating term
rewriting system, thus creating a bridge towards proof assistants and SAT-solvers. Our
approach also suggests a new notion of logical circuit and a procedure to reduce the sat-
isfiability problem of first-order logic to an equational problem in a suitable variety of
algebras that deserve to be investigated further.

69
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4.1 ALGEBRAS AND FACTORIZATIONS

In this technical section, we recall some concepts of universal algebra that will be useful in
the sequel. We mainly use the terminology and notations from [MMT87] and [BS81].

Algebras and varieties. An algebraic type τ is constituted by a non-empty set of function
symbols together with their arity. We write f ∈ τn if the function symbol f ∈ τ has arity n.
An algebra A of type τ , or a τ -algebra, is determined by a set A 6= ∅ together with a function
fA : An → A for every f ∈ τn. An algebra A is trivial if |A| = 1, otherwise A is proper.

A compatible equivalence relation ϕ on a τ -algebra A is called a congruence. As a matter
of notation, we write aϕ b for (a, b) ∈ ϕ and [a]ϕ for the equivalence class {a′ ∈ A | aϕa′}.
We denote by Con(A) the algebraic complete lattice of all congruences on A, ordered by
inclusion. The congruences ∆ = {(a, a) | a ∈ A} and∇ = A×A constitute the bottom and
the top elements of Con(A), respectively. A congruence ϕ is called: trivial if it is equal to
∆ or∇; consistent if it is different from∇; compact if it is finitely generated.

Given a, b ∈ A, we write ϑ(a, b) for the principal congruence generated by equating a and b,
that is for the smallest congruence relating them. Given two congruences ϕ and ϑ on A,
we can form their relative product by setting ϕ ◦ ϑ = {(a, c) | ∃b ∈ A, aϑ bϕ c}.

A class V of τ -algebras is a variety if it is closed under subalgebras, direct product and
homomorphic images. By Birkhoff theorem [Bir35] a class of algebras is variety if and only
if it is an equational class, which means that it is axiomatizable by a set of equations.

Factorization of algebras. An algebra A is directly decomposable if there exist two non-
trivial algebras B,C such that A ∼= B×C, otherwise it is called directly indecomposable.

An algebra A is a subdirect product of the algebras (Bi)i∈I , written A ≤ Πi∈IBi, if
there exists an embedding f of A into the direct product Πi∈IBi such that the projection
πi ◦ f : A→ Bi is surjective for every i ∈ I .

Definition 4.1.1. A family (ϕi)i∈I of congruences on A is a family of complementary factor
congruences if the function

f : A→
∏
i∈I(A/ϕi)

defined by f(a) = (a/ϕi)i∈I is an isomorphism. When |I| = 2, we say that (ϕ1, ϕ2) is a pair of
complementary factor congruences.

A factor congruence is any congruence which belongs to a family of complementary
factor congruences.

Proposition 4.1.2. A family (ϕi)i∈I of congruences on A is a family of complementary factor
congruences exactly when:

1.
⋂
i∈I ϕi = ∆;

2. ∀a ∈ AI , there is u ∈ A such that ai ϕi u, for all i ∈ I .

Therefore (ϕ1, ϕ2) is a pair of complementary factor congruences if and only if ϕ1∩ϕ2 =
∆ and ϕ1 ◦ ϕ2 = ∇. The pair (∆,∇) corresponds to the product A ∼= A× 1, where 1 is the
trivial algebra having a singleton as carrier set; obviously 1 ∼= A/∇ and A ∼= A/∆. The
set of factor congruences of A is not, in general, a sublattice of Con(A).

We say that an algebra A is subdirectly irreducible if the lattice Con(A) has a unique
atom; simple if Con(A) = {∆,∇}. The algebra A is directly indecomposable if and only
if it admits only the two trivial factor congruences. Any simple algebra is subdirectly
irreducible and any subdirectly irreducible algebra is directly indecomposable.
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4.2 DECOMPOSITION OPERATORS

Factor congruences can be characterized in terms of certain algebra homomorphisms
called decomposition operators and acting on sequences. We refer the reader to [MMT87,
Def. 4.32] for a thoughtful presentation.

Given a set A and a set of indices I we define an I-sequence ~x on A as a map ~x : I → A.
For every index i ∈ I and element a ∈ A we denote by ~x{a/i} the I-sequence which
coincides with ~x, except on i, where it takes the value a. Given a ∈ A we let aI denote the
constant sequence taking value a for all indices i ∈ I .

Definition 4.2.1.
A decomposition operator on an algebra A is a function f : AI → A satisfying the following
conditions:
D1 f(aI) = a, for all a ∈ A;

D2 f(f(aij)j∈I)i∈I = f(aii)i∈I ;

D3 f is an algebra homomorphism from AI to A.

Remark 4.2.2. If I is finite, then the axioms (D1)-(D3) can be expressed equationally. This will
always be the case for the decomposition operators that we consider in the following sections.

There is a bijective correspondence between families of complementary factor congru-
ences and decomposition operators, and thus, between decomposition operators and fac-
torizations.

Proposition 4.2.3.
Any decomposition operator f : AI → A on an algebra A induces a family of complementary
factor congruences (ϕi)i∈I where each ϕi ⊆ A×A is defined by:

a ϕi b if and only if f(aI{b/i}) = a.

Conversely, any family (ϕi)i∈I of complementary factor congruences induces a decomposition op-
erator f on A:

f(~x) = u if and only if xi ϕi u, for all i ∈ I.

Indeed, it is possible to prove that such an element u is unique.

The Boolean product construction allows to transfer numerous fascinating properties
of Boolean algebras into other varieties of algebras (see [BS81, Ch. IV]).

We recall that a Boolean space is a compact, Hausdorff and totally disconnected topolog-
ical space, and that clopen means “open and closed”.

Definition 4.2.4.
A weak Boolean product of a family (Ai)i∈I of algebras is a subdirect product A ≤ Πi∈IAi,
where I can be endowed with a Boolean space topology such that:

(i) the set {i ∈ I | ai = bi} is open for all a, b ∈ A, and

(ii) if a, b ∈ A and N is a clopen subset of I , then the element c, defined by ci = ai for every
i ∈ N and ci = bi for every i ∈ I −N , belongs to A.

It is called a Boolean product whenever the set {i ∈ I | ai = bi} is clopen for all a, b ∈ A.



72 CHAPTER 4. FACTOR ALGEBRAS AND SYMBOLIC COMPUTATION

4.3 CHURCH ALGEBRAS AND VARIETIES

In [M23] we introduced, together with Salibra, the Church algebras, that are algebras mod-
elling the “if-then-else” operator of programming languages. Perhaps surprisingly, the
variety generated by the following two identities have never been studied before.

Definition 4.3.1. A τ -algebra A is called a Church algebra if there are two constants 0, 1 ∈ A
and a ternary term ite(e, x, y) such that

ite(1, x, y) = x, ite(0, x, y) = y.

A variety V is called a Church variety if every algebra in V is a Church algebra with respect to the
same term ite(e, x, y) and constants 0, 1.

The class of Church algebra is general enough to encompass combinatory algebras,
Boolean algebras, Heyting algebras, and rings with unit. For instance, in a combinatory
algebra, the constants 1 and 0 correspond to the first and second projection respectively,
so the if-then-else operator is simply defined by setting ite(e, x, y) := exy. In a Boolean
algebra we can define ite(e, x, y) := (e ∨ y) ∧ (e− ∨ x), in a Heyting algebra ite(e, x, y) :=
(e ∨ y) ∧ ((e→ 0) ∨ x) and in a ring with unit ite(e, x, y) := (y + e− ey)(1− e+ ex).

Decomposition by central elements. Pierce showed that every idempotent element a
of a commutative ring A induces a pair (ϑ(1, a), ϑ(a, 0)) of complementary factor congru-
ences [Pie67]. In other words, the ring A can be decomposed as A ∼= A/ϑ(1, a)×A/ϑ(a, 0).
Moreover, A is directly indecomposable if 0 and 1 are its unique idempotent elements.
In [Vag96], Vaggione generalized idempotent elements to any algebra whose top congru-
ence ∇ is compact, and called them central elements. Central elements were used, among
other things, to investigate the closure of varieties of algebras under Boolean products.
In the case of Church algebras central elements admit a new equational characterization.

Definition 4.3.2. An element e of a Church algebra A is central if it satisfies:
1. ite(e, x, x) = x.
2. ite(e, ite(e, x, y), z) = ite(e, x, z) = ite(e, x, ite(e, y, z)).
3. ite(e, f(x1, . . . , xn), f(y1, . . . , yn)) = f(ite(e, x1, y1), . . . , ite(e, xn, yn)), for every f ∈ τn.
4. e = ite(e, 1, 0).

We denote by Ce(A) the set of central elements of A.

It is easy to check that all elements of a Boolean algebra are central, while an element
of a commutative ring with unit is central if and only if it is idempotent.

Every central element e induces a pair of complementary factor congruences given by
ϑe := ϑ(1, e) and ϑe := ϑ(e, 0). The central elements 0 and 1 are called trivial since they
induce the trivial decomposition A ∼= A × 1. In other words, in a Church algebra, factor
congruences are internally represented as central elements. Moreover, given e ∈ Ce(A),
the function fe defined by fe(x, y) = ite(e, x, y) is a decomposition operator such that
fe(1, 0) = e. Conversely, given a decomposition operator f , the element f(1, 0) is central.

Proposition 4.3.3. There is a natural bijective correspondence between central elements and de-
composition operators (resp. pairs of complementary factor congruences).

Therefore a Church algebra A is directly indecomposable whenever Ce(A) = {0, 1}.
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Stone representation theorem for Church algebras. The central elements of a Church
algebra constitute a Boolean algebra. Indeed, the partial ordering on the central elements
given by:

e ≤ d if and only if ϑe ⊆ ϑd
is a Boolean ordering and the meet, join and complementation operations are internally
representable. The elements 0 and 1 are respectively the bottom and top of this ordering.

Theorem 4.3.4 (Manzonetto and Salibra [M23]).
Let A be a Church algebra. The algebra (Ce(A),∧,∨,− , 0, 1) of central elements of A defined by:

e ∧ d = ite(e, d, 0), e ∨ d = ite(e, 1, d), e− = ite(e, 0, 1),

is a Boolean algebra isomorphic to the Boolean algebra of factor congruences of A.

The Stone representation theorem for Church algebras follows from Theorem 4.3.4 and
from theorems by Comer [Com71] and by Vaggione [Vag96].

In the statement of the next theorem we use the following notations. If I is a maximal
ideal of the Boolean algebra Ce(A), then ϕI denotes the congruence on A defined by:
ϕI = ∪e∈Iϑe. Moreover, we denote by X the Boolean space of maximal ideals of Ce(A).

Theorem 4.3.5 (Stone Representation Theorem, Manzonetto and Salibra [M23]).
Let A be a Church algebra. Then, for all I ∈ X the quotient algebra A/ϕI is directly indecompos-
able and the function f : A→ ΠI∈X(A/ϕI), defined by

f(x) = ([x]ϕI
: I ∈ X ),

gives a weak Boolean product representation of A.

When A is a Boolean algebra, we retrieve the classic Stone representation theorem for
Boolean algebras. However, in general, Theorem 4.3.5 does not give a Boolean product
representation. This was shown in [M22] in the context of combinatory algebras.

Some Church algebras A contain a set X such that whenever we consider two disjoint
subsets X1, X2 ⊆ X the elements of X1, X2 can be respectively equated with 0 and 1 with-
out creating any inconsistency. As a matter of notation, given an element a ∈ A and a set
Y ⊆ A, we write ϑ(a, Y ) for the least congruence equating a with all the elements in Y .

Definition 4.3.6. We say that a subset X of A is an easy set1 if, for every Y ⊆ X , ϑ(1, Y ) ∨
ϑ(0, X − Y ) 6= ∇ (by definition ϑ(1, ∅) = ϑ(0, ∅) = ∆).

We say that an element a is easy if {a} is an easy set. Thus, a is easy if the congruences
ϑa and ϑa are both different from ∇. In [M23], we proved that in presence of an easy set,
the congruence lattice of a Church algebras contains finite Boolean lattices as subintervals.

Theorem 4.3.7 (Manzonetto and Salibra [M23]).
Let A be a Church algebra and X be an easy subset of A. Then there exists a congruence ϕ′X
satisfying the following conditions:

1. The lattice reduct of the free Boolean algebra with a set X of generators can be embedded into
the lattice interval [ϕ′X) := {ϕ ∈ Con(A) | ϕ′X ⊆ ϕ};

2. If X has finite cardinality n, then the above embedding is an isomorphism and [ϕ′X) has 22n

elements.
1The terminology “easy” is borrowed from λ-calculus easy terms [Bar84, Def. 15.3.8].
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4.4 CHURCH ALGEBRAS AT WORK

In this section we present some applications of the notion of Church algebra in the context
of λ-calculus to infer properties of its models and theories, and in the context of universal
algebra to characterise lattices of equational theories.

Applications to λ-calculus. Church algebras constitute a unifying framework that al-
lows to study both the denotational models of λ-calculus [M22, M25] and the lattice of
λ-theories [M23]. As mentioned above, every combinatory algebra C = (C, ·,k, s) is a
Church algebra whose trivial central elements k and k′, where k′ is the combinator inter-
preting the λ-term K′ in C. The representation theorem for Church algebras, instantiated to
combinatory algebras, states that the directly indecomposable combinatory algebras con-
stitute the “building blocks” in the variety of combinatory algebras. It is therefore natural
to investigate the indecomposable semantics of λ-calculus, that is the class of λ-models that
are indecomposable as combinatory algebras. Together with Salibra we have shown that
the indecomposable semantics is general enough to encompass all the main semantics.

Theorem 4.4.1 (Manzonetto and Salibra [M22]).
The models living in the Scott-continuous, stable and strongly stable semantics are simple combi-
natory algebras, therefore they all belong to the indecomposable semantics.

A natural problem that arises when studying a class C of models of λ-calculus is the
question whether it is complete which means that for every λ-theory T there exists a λ-
model M ∈ C such that Th(M) = T . In other words, a class C is complete whenever
all λ-theories arise as theories of some models in the class; otherwise C it is called in-
complete. The completeness problem was negatively solved by Honsell and Ronchi Della
Rocca for the Scott-continuous semantics [HR92], by Bastonero and Gouy for the stable se-
mantics [BG99] and by Bastonero for the strongly stable semantics [Bas96]. By exploiting
the existence of easy λ-terms (like Ω), that is λ-terms that can be consistently equated with
anyM ∈ Λo, we are able to provide a uniform incompleteness proof for all these semantics.
The idea is to consider the λ-theories T1, T2 generated by equating Ω with K and K′ (respec-
tively) and prove that Ω is a non-trivial central element in the term model of T := T1 ∩ T2.
Since directly indecomposable combinatory algebras are closed under subalgebras, all
models of T must be decomposable, and thus omitted by the indecomposable semantics.

Theorem 4.4.2 (Manzonetto and Salibra [M22]).
The Scott-continuous, the stable and the strongly stable semantics are all incomplete.

We recall from Section 1.1 that the set of all λ-theories, ordered by inclusion, forms a
complete lattice λT of cardinality 2ℵ0 whose least element of is denoted by λ. The term
algebra of a λ-theory T , hereafter denoted by ΛT , has the equivalence classes of λ-terms
modulo T as elements, and the operations of application and of λ-abstractions as oper-
ations on these classes. It turns out that the lattice λT of λ-theories is isomorphic to the
congruence lattice of the term algebra Λλ, which is a Church algebra. Moreover, every
lattice interval [T ) = {T ′ ∈ λT | T ⊆ T ′} is isomorphic to the congruence lattice of ΛT .

From the easiness of Ω and a compactness argument, it follows that the set consisting
of all λ-terms Ωcn, where cn is the n-th Church numeral, is an easy set in the term algebra
of λ (cf. [Bar84, Ex. 15.4.3]). More generally, if a λ-theory T is r.e., which means that its
equivalence classes [M ]T are recursively enumerable, ΛT admits an infinite easy set X .
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By Theorem 4.3.7 for every finite subset of X of cardinality k, there is a λ-theory T ′k con-
taining T and such that the lattice interval [T ′k) is isomorphic to the finite Boolean lattice
with 22k

elements. The λ-theory Tn in the next theorem can be defined from T ′k using the
fact that every filter of a finite Boolean algebra is a Boolean lattice and the fact that the free
Boolean algebra with 22k

elements has filters of arbitrary cardinality 2n for n ≤ 2k.

Theorem 4.4.3 (Manzonetto and Salibra [M23]).
For every r.e. λ-theory T and each natural number n, there exists a λ-theory Tn ⊇ T such that the
lattice interval [Tn) is isomorphic to the finite Boolean lattice with 2n elements.

This is the first time that finite subintervals of λT of cardinality different from 1 are
constructed. In particular, notice that the λ-theory Tn above cannot be r.e., otherwise the
lattice interval [T ) would have a continuum of elements by [Bar84, Cor. 17.1.11].

Applications to equational theories. We say that Σ is an equational theory if and only if
Σ is a set of identities closed under the rules of the equational calculus. It is well known
that the set L(Σ) = {T | Σ ⊆ T, T is an equational theory} forms a lattice under inclusion.
We say that a lattice L is a lattice of equational theories if and only if L is isomorphic to the
lattice L(Σ) for some equational theory Σ. In 1966 A.I. Malcev [Mal68] posed the question:

which lattices can be represented as lattices of equational theories?

L(Σ) is an algebraic and coatomic lattice, possessing a compact top element; but no
stronger property was known before Lampe’s discovery [Lam86] that any lattice of equa-
tional theories satisfies the Zipper condition: if ∨{ai : i ∈ I} = 1 and a ∧ c = z then c = z.
The proof uses the following representation of the lattices of equational theories, which
is due to McKenzie [McK83]: if L is a lattice of equational theories, then L is isomorphic
to some congruence lattice of groupoids with right unit and right zero. The problem of
whether any congruence lattice of groupoids with right unit and right zero is isomorphic
to a lattice of equational theories, is still open (see [Lam86]). The representation of the lat-
tices of equational theories by congruence lattices of monoids with one additional unary
operation was found by Newrly [New93]. We briefly describe Newrly’s construction.

Given a countable set X = {xi : i ∈ N} of variables and an algebraic type τ , we
denote by TX the set of all terms over X with operation symbols from τ and by (TX , τ)
the corresponding term algebra. We write End for its set of endomorphisms.

The lattice L(τ) of all equational theories of the given type τ can be described as
Con(TX , τ ∪End). Newrly [New93] has shown that Con(TX , τ ∪End) = Con(TX ,+, 0, φ),
where (TX ,+, 0) is a monoid and φ is unary. The operations are defined by setting 0 := x0,
s + t := t{s/x0}, φ(xi) := xi−1 and φ(x0) := x0. In [M24] we modified Newrly’s algebra
(TX ,+, 0, φ), without changing its congruence lattice, to turn it into a Church algebras.
The idea is to consider the algebra C(τ) = (TX , ite, φ, 0, 1), where 0 := x0, 1 := x1, φ
is defined as in Newrly’s algebra and the ternary operation “ite” is defined as follows:
ite(t, s, u) := t{u/x0, s/x1}. Newrly’s algebra is a reduct of C(τ) because s+ t = ite(t, 1, s).

In conclusion, we have for the lattice L(τ) of all equational theories of type τ :

L(τ) = Con(C(τ)).

Therefore every lattice of equational theories is isomorphic to the congruence lattice of a
Church algebra. These investigations opened the way to develop an approach to algebraic
logic based on decomposition operators, that we describe in the rest of the chapter.
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4.5 ALGEBRAIZING LOGIC THROUGH FACTOR VARIETIES

Algebraic logic investigates the connections between a logic and algebraic properties of
its corresponding class of algebras. The origin of modern algebraic logic goes back to
Tarski’s 1935 paper [Tar35], where he introduced the Tarski-Lindenbaum algebra as a tool
for establishing the correspondence between classical propositional logic and Boolean al-
gebras. In this context the tautologies coincide with those formulas equivalent to the truth
value “true”. Subsequently, a number of different propositional logics were algebraized in
this way, the most important being the intuitionistic logic and the multi-valued logics of
Gödel [Göd32], of Post [Pos21] and of Łukasiewicz [Lu20].

The problem of algebraizing predicate logics is much more complicated because of the
variable binding properties of the quantifiers. On the one hand, the algebraization of clas-
sical predicate logic led Tarski to the definition of cylindric algebras [HMT85] and Halmos
to the notion of polyadic Boolean algebras [Hal54]. In practice these algebras are difficult
to manipulate because they are endowed with operators representing the quantifiers in
the algebraic structure and this complicates their theory. On the other hand, much work
in computer science has been focused on reducing first-order logic to equational logic and,
more recently, to term rewriting systems. In [McK75] McKenzie proved that for every sen-
tence Φ in first-order classical logic there is an equation Φ′ in a suitable algebraic language
such that Φ has non-trivial models of a given cardinality κ exactly when Φ′ does. In his 1992
paper [Bur92], Burris made a substantial advance by using discriminator varieties [Wer78].

A discriminator variety V is characterized by a quaternary term s that realizes the
switching function on any subdirectly irreducible member of V [BS81, Def. 7.3]:

s(a, b, c, d) =
{
c if a = b,
d otherwise.

Thanks to this switching function, Burris has shown that discriminator varieties have uni-
tary unification, which is at the basis of resolution theorem provers and of the Knuth-
Bendix method for finding rewriting systems. He was also able to combine McKenzie’s
analysis of satisfiability with a standard reduction of Ψ1, . . . ,Ψn |= Φ to a set of unsatis-
fiable sentences in prenex normal form. Indeed, given a formula Φ and a finite set T of
formulas, one can prove that T ` Φ holds by showing T |= Φ which is, in turn, equivalent
to showing that Σ := T ∪ {¬Φ} has no models. In [Bur92], Burris shows how to define
a set E of equations in the equational logic of a given discriminator variety such that Σ
has no models of cardinality greater than 1 exactly when E has no non-trivial models. To
show that E has no non-trivial models it is enough to derive the identity x = y from E.
This approach is however not applicable to propositional logic and the process of deriving
x = y is not easily automatable because of the complexity of the axioms in the system.

A different approach. In [M29], together with Salibra and Favro, we developed a uni-
form method for extracting the logical content of a formula: in particular, it allows to deter-
mine whether a propositional formula is a tautology or a contradiction. In our approach,
rather than using the switching function of discriminator varieties, we use the decomposi-
tion operators characterizing the factor varieties. The definition we provide of factor variety
generalizes not only the notion of discriminator variety, but also the one of factor variety
as it was introduced in [SLP15]. Our method is general enough to be applied to any finite
multi-valued matrix logic. The question whether it can be extended to infinite logics, like
fuzzy logic [Hàj98] and probabilistic logic [Nil86], is currently under investigation.
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As a motivating example, we consider the case of the classical propositional logic C.
Our approach consists of two steps.
Step 1. The first step consists in defining a translation (·)∗ sending propositional formu-

las into algebraic terms. Under this translation, the truth values f, t become fresh algebraic
variables ξf , ξt. A propositional variable P becomes a binary operator P (−,−). A proposi-
tional formulas φ is translated inductively into an algebraic term φ∗ on the variables ξf , ξt.
To simplify the notations we write φ∗(t0, t1) for the substitution φ∗{t0/ξf , t1/ξt}.

P ∗ = P (ξf , ξt);
(¬φ)∗ = φ∗(ξ¬f , ξ¬t) = φ∗(ξt, ξf);

(φ ∧ ψ)∗ = ψ∗(φ∗(ξf∧f , ξf∧t), φ∗(ξt∧f , ξt∧t)) = ψ∗(φ∗(ξf , ξf), φ∗(ξf , ξt));
(φ ∨ ψ)∗ = ψ∗(φ∗(ξf∨f , ξf∨t), φ∗(ξt∨f , ξt∨t)) = ψ∗(φ∗(ξf , ξt), φ∗(ξt, ξt));

(φ→ ψ)∗ = (¬φ ∨ ψ)∗ = ψ∗(φ∗(ξt, ξf), φ∗(ξt, ξt)).

Connectives are therefore implemented through substitutions and Boolean operations on
the indices of ξf , ξt. The above translation determines a congruence∼∗ on the set of propo-
sitional formulas by setting φ ∼∗ ψ if and only if φ∗ = ψ∗. This defines a non-commutative
intermediate logic Cint strictly weaker than classical logic.

Step 2. To retrieve classical logic, we need to endow each P with the operational be-
havior of a binary decomposition operator:

D1 P (x, x) = x;
D2 P (P (x, y), P (w, z)) = P (x, z);
D3 P (Q(x, y), Q(w, z)) = Q(P (x,w), P (y, z)), for every propositional variable Q.

Both truth values and propositional variables, that are static objects in the logic C, become
dynamic entities after the translation: indeed the variables ξf , ξt can receive substitutions
and the operators P (−,−) induce decompositions. We show that the propositional for-
mula φ is a tautology if and only if φ∗ = ξt is provable using the axioms (D1)-(D3) above
(Corollary 4.9.2). In Section 4.10, we give this process a computational flavor by showing
that, by orienting the equations from left to right and splitting (D2)-(D3) appropriately,
we obtain a confluent term rewriting system. Moreover, by well-ordering the proposi-
tional variables we can prevent (D3) from looping and ensure strong normalization.

This approach also suggests a new notion of circuit, described in Section 4.11, which is
based on components that we call “decomposition gates” and behave like the decomposi-
tion operators of an algebra belonging to a factor variety.

Algebraization of first-order classical logic. The translation above can be also gener-
alized to first-order formulas by transforming an n-ary relation symbol R into an operator
R(−1, . . . ,−n+2) of arity n + 2 (since there are two truth values), which is a decompo-
sition operator in the last two coordinates. Open formulas can be therefore inductively
translated, as in Step 1, into algebraic terms by setting:

R(t1, . . . , tn)∗ = R(t1, . . . , tn, ξf , ξt).

Such a translation provides a bijective correspondence between first-order theories axiom-
atized by universal sentences without equality and varieties of factor algebras axiomatized
by identities such as Φ∗ = ξt. In presence of equality, the situation becomes more subtle.
Intuitively, the problem is that factor algebras can only capture correctly proper structures,
therefore to check whether the formula Φ is actually a logical truth, one also need to verify
that its propositional translation is a tautology (see Lemma 4.7.5 below).
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Figure 4.1: The binary decision tree representing (P1 ∧ P2) ∨ P3.

4.6 A COMPARISON WITH DECISION DIAGRAMS

While reviewing an earlier version of this manuscript, Goubault-Larrecq pointed out a
strong connection between our approach and the theory of binary decision diagrams, in-
troduced by Lee [Lee59] and Akers [Ake78], and refined subsequently by Bryant [Bry86].
We briefly describe these data structures and compare the two methods without the pre-
tence of being exhaustive — as the literature on the subject is very rich, there is certainly
more to be said (see, e.g., [Bry92, Weg94]).

Binary Decision Diagrams. Every Boolean function f can be symbolically represented
as a binary decision tree by performing its iterated Shannon expansion f(P1, . . . , Pn) = P1 ∧
f(t, P2, . . . , Pn)∨¬P1∧f(f, P2, . . . , Pn), like in Figure 4.1. Each nonterminal node is labelled
by a propositional variable P and has a left child (corresponding to the assignment P = 0)
and a right one (corresponding to P = 1). The value of f is determined by following a
path from the root to a terminal node, which is labelled by a Boolean value. Except for the
fact that we label nonterminal vertices by decomposition operators and terminal ones by
ξf , ξt, our translation of Step 1 actually computes the binary decision tree of a formula.

A binary decision diagram (BDD) is a compact representation of such a tree as a directed
acyclic graph, obtained by performing transformation rules to reduce its size: 1) eliminate
duplicate terminals; 2) eliminate duplicate non-terminals; 3) eliminate redundant nodes.
By imposing an ordering on the propositional variables occurring in the DAG, one en-
sures its canonicity of the representation. A maximally reduced BDD is called a Reduced
Ordered BDD (ROBDD). All these ingredients are present in our approach as well, in con-
nection with the term rewriting system of Section 4.10. Indeed, the ordering on the nodes
is necessary to ensure strong normalization, and the reduction rules capture the trans-
formation rules of BDD’s. From this perspective, Theorem 4.10.5 gives a simple proof
of the uniqueness of ROBDD representation. Generalizations of BDD’s to multi-valued
logics, called multi-valued decisions graphs, have also been introduced [SKMB90] and stud-
ied [SB96, Sas97, MD02, NS03, KZSS15] and the comparison with our method stands.

Concerning first-order classical logic, the situation is more subtle. On the one side,
several techniques to simplify and Skolemize first-order sentences based on BDDs have
been proposed [Pos92, PL92, Gou94, GP94, Gou95a]. On the other side, these works do
not consider the equality relation and do not try to reduce satisfiability of a sentence to
an equational problem. We leave for the future a more precise comparison of the two
approaches in this setting.
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Łukasiewicz Logic L–n Gödel Logic Gn Post Logic Pn

¬a = 1− a ¬a =
{

1 if a = 0
0 if a 6= 0

¬a =
{
a− 1

n−1 if a 6= 0
1 if a = 0

a→ b = min(1, 1− a+ b) a→ b =
{

1 if a ≤ b
b if a > b

Figure 4.2: Implication and negation in Łukasiewicz, Gödel and Post Logics.

4.7 MULTI-VALUED MATRIX LOGICS

A matrix logic L [Got01] is defined by specifying the logical connectives, the set of truth
values, among which there is a “designated value” representing the traditional truth value
“verum”, and the truth functions that interpret the logical connectives.

Propositional Matrix Logics. Let us consider an algebraic type τ that represents the set
of logical connectives together with their arity.

Definition 4.7.1. A logical τ -matrix is a pair (V, t) where V is a finite τ -algebra and t ∈ V .

The elements of the universe V are called truth values and are denoted by v1, . . . , vp,
while t is called the designated element. Given a set Pvar of propositional variables, the
propositional formulas φ of type τ are defined by induction as follows (for P ∈ Pvar, o ∈ τn):

φ, ψ ::= P | o(φ1, . . . , φn)

A truth assignment is any function I : Pvar → V . Given a propositional formula φ, its
interpretation in V w.r.t. I is the element JφKI inductively defined by (for P ∈ Pvar, o ∈ τn):

JP KI = I(P ), Jo(φ1, . . . , φn)KI = oV(Jφ1KI , . . . , JφnKI).

A propositional formula φ is a tautology whenever JφKI = t for all truth assignments I.

Definition 4.7.2. The propositional matrix logic L induced by a logical τ -matrix (V, t) is the
logic whose semantics is defined as follows: ψ1, . . . , ψn |=L φ if and only if, for every truth assign-
ment I, JφKI = t whenever JψiKI = t for all i.

There are many examples of matrix logics. The most famous is Classical Logic C, cor-
responding to the algebraic type τ = {∧,∨,¬, f, t} and logical matrix (2, t), where 2 is the
two elements Boolean algebra of truth values with f < t and t is the designated element.

Łukasiewicz Logics L–n, Gödel Logics Gn and Post Logics Pn are n-valued matrix logics
having a totally ordered set 0 < 1

n−1 < 2
n−1 < · · · < n−2

n−1 < 1 of truth values, 1 as
designated element, and join and meet defined by a∨ b = max{a, b} and a∧ b = min{a, b}.
These logics only differ for the definition of negation and implication (which is not present
in Post Logic) that is recalled in Figure 4.2.

The n-valued Gödel logics are superintuitionistic logics, which means they are logics
between intuitionistic and classical logics. Superintuitionistic logics form a complete lattice
whose unique coatom is the 3-valued Gödel Logic G3. As shown by Gödel in [Göd32], the
intuitionistic logic is not definable by a finite logical matrix.
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Quantified Matrix Logics. Let us consider fixed a countably infinite set Var of indi-
vidual variables, an algebraic type τ of logical connectives, a logical τ -matrix (V, t) and a
relational type ν containing both function and relation symbols with arity. We write f ∈ ν
(resp. R ∈ ν) to indicate that f is a function symbol (resp. R is a relation symbol) of type ν.
Similarly, f ∈ νn (resp. R ∈ νn) indicates that the symbol f (resp. R) has arity n.

Terms of type ν, or ν-terms, are defined as usual from individual variables in Var and
function symbols in ν. The set of all ν-terms will be denoted by Tν and its elements by
t, t1, t2, etc. Well formed formulas are defined by the following grammar, where R ∈ νm is a
relation symbol, o ∈ τn is a logical connective and t1, . . . , tm are ν-terms:

Φ,Ψ ::= R(t1, . . . , tm) | o(Φ1, . . . ,Φn) | ∀x.Φ | ∃x.Φ

A formula Φ is called: (i) a sentence if it has no free variables; (ii) open if it is quantifier-free;
(iii) in prenex form if it has the shape Q1P1 . . . QnPn.Ψ where Qi ∈ {∀,∃} and Ψ is an open
formula (called the matrix of Φ); (iv) universal if it is in prenex form Q1P1 . . . QnPn.Ψ and
all its quantifiers Qi are universal.

Definition 4.7.3. A ν-structure S on V is given by a collection (S, gS , RS)g,R∈ν where S is a
set, gS : Sk → S is a k-ary operation for any function symbol g ∈ νk and RS : Sn → V is a
function for any relation symbol R ∈ νn. We say that the structure S is proper whenever |S| > 1.

The ν-structures having as carrier set a singleton are in some sense degenerate models
and are handled separately. We denote by Str∗ν,V the class of all proper ν-structures on V .

Given a ν-structure S on V as above, a valuation is any function ρ : Var → S. The
interpretation JtKSρ of a term t is defined as usual. To interpret the quantifiers we assume
the set V of truth values to be a finite lattice, whose top element is the designated element t.

The interpretation of a formula Φ in S with respect to a valuation ρ is then defined induc-
tively as follows (for R ∈ νm, t1 . . . , tm ∈ Tν and o ∈ τn):

JR(t1, . . . , tm)KSρ = RS(Jt1KSρ , . . . , JtmKSρ ); J∀x.ΦKSρ =
∧
a∈SJΦKSρ{a/x};

Jo(Φ1, . . . ,Φn)KSρ = oV(JΦ1KSρ , . . . , JΦnKSρ ); J∃x.ΦKSρ =
∨
a∈SJΦKSρ{a/x}.

We write S |=ρ Φ whenever JΦKSρ = t. We say that a formula Φ is a logical truth if S |=ρ Φ
for every structure S and valuation ρ. A class S of ν-structures is called universal if it can
be axiomatized by universal formulas.

Definition 4.7.4. The quantified matrix logic QL, induced by a logical τ -matrix (V, t) and a
relational type ν, is the logic whose semantics is defined as: Ψ1, . . . ,Ψn |=QL Φ if and only if, for
every structure S and valuation ρ, JΦKSρ = t whenever JΨkKSρ = t for all k.

In order to check whether a formula Φ is true in all singleton structures it is enough to
consider its propositional translation Φp which is the propositional formula defined by:

• R(t1, . . . , tm)p = PR, where PR ∈ Pvar;
• o(Φ1, . . . ,Φn)p = o(Φp

1 , . . . ,Φp
n);

• (∀x.Φ)p = (∃x.Φ)p = Φp.
In classical logic with equality, there exists an equality symbol which is propositionally
translated by setting (t1 = t2)p = t.

Lemma 4.7.5. A formula Φ is true in all singleton structures if and only if its propositional trans-
lation Φp is a tautology.
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4.8 FACTOR ALGEBRAS AND FACTOR VARIETIES

We present the notions of factor algebras and factor varieties as introduced in [M29].
Factor algebras. We consider fixed a relational type ν and a logical τ -matrix (V, t)

where V = {v1, . . . , vp}. We denote by ν̂ the smallest algebraic type containing:
• a function symbol g ∈ ν̂k for each function symbol g ∈ νk,
• a function symbol fR ∈ ν̂n+p for each relation symbol R ∈ νn,

i.e. a relation R of arity n is transformed into a function fR having p additional arguments.

Definition 4.8.1. A ν̂-factor algebra A = (A, gA, fA
R )g,R∈ν is a ν̂-algebra such that, for all

fR ∈ ν̂n+p and ~a ∈ An there exists an index i ∈ [1..p] such that:

∀ξ1 . . . ξp.fR(~a, ξ1, . . . , ξp) = ξi. (4.1)

The class FAν̂ of all ν̂-factor algebras is a universal class, which means that it is closed
under subalgebras and ultraproducts. We write FA∗ν̂ for the class of proper factor algebras.

Given a ν̂-factor algebra A, the algebraic reduct of A is the algebra Alg(A) = (A, gA)g∈ν .

Definition 4.8.2. We associate with every proper factor algebra A a proper structure Str(A)
having the same algebraic reduct, and relations defined by (for all fR ∈ ν̂n+p and ~a ∈ An):

RStr(A)(~a) = vk if and only if ∀ξ1, . . . , ξp.fA
R (~a, ξ1, . . . , ξp) = ξk.

Conversely, we associate with every proper structure S a proper factor algebra Fa(S) having the
same algebraic reduct as S and whose functions fR (R ∈ νn) are defined as follows:

f
Fa(S)
R (~a, ξ1, . . . , ξp) = ξk if and only if RS(~a) = vk.

In particular, we have Str(Fa(S)) = S and Fa(Str(A)) = A.

Note that the above correspondence fails on singleton structures. Let S1,S2 be two
structures over {∗} with a relation symbol R such that RS1(∗) = t but RS2(∗) 6= t. The
structures S1 and S2 are not isomorphic, but correspond to the same trivial factor algebra.

Factor Varieties are a generalization of a discriminator variety where the set {t, f} of
classical truth values is substituted by the set V and the role of the equality in the definition
of the switching term s (page 76) is played by a generic (multi-valued) relationR : An → V .

By definition, a factor variety is a variety V generated by a class of ν̂-factor algebras.

Proposition 4.8.3. The variety Vν̂ generated by the class of all ν̂-factor algebras is axiomatized by
(for fR ∈ ν̂n+p):
F1 fR(~x, ξ, . . . , ξ) = ξ;
F2 fR(~x, fR(~x, ξ11, . . . , ξ1p), . . . , fR(~x, ξp1, . . . , ξpp)) = fR(~x, ξ11, . . . , ξpp);
F3 fR(~x, h(ξ11, . . . , ξ1k), . . . , h(ξp1, . . . , ξpk)) = h(fR(~x, ξ11, . . . , ξp1), . . . , fR(~x, ξ1k, . . . , ξpk)),

where h ∈ ν̂k is an arbitrary element of ν̂.

Let us consider an arbitrary algebra A belonging to Vν̂ (not necessarily a factor algebra).
For every fR ∈ ν̂n+p and~a ∈ An, the p-ary map fR(~a,−, . . . ,−) is a decomposition operator
on A. By (F3), the decomposition operators fR (R ∈ ν) are closed under composition.

Given a factor variety V, we denote by Vfa the class of ν̂-factor algebras belonging
to V. From Definition 4.8.1 and by [BS81, Ch. 5, Thm. 2.20] it follows that the class Vfa is a
universal class and every directly indecomposable algebra A ∈ V is a factor algebra.
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4.9 ALGEBRAIZATION OF MULTI-VALUED LOGICS

In this section we present the approach introduced in collaboration with Salibra and Favro
in the pioneering paper [M29] for the algebraization of quantified matrix logics. We will
recover the case of propositional multi-valued matrix logics as a simple instance.

Let us consider fixed a relational type ν and a logical τ -matrix (V, t), where V =
{v1, . . . , vp}. As announced in Section 4.5, we need to define a translation (·)∗ from open
ν-formulas into suitable terms of type ν̂, that we call logical terms.

Logical terms. First, let us fix a set Ξ = {ξ1, . . . , ξp} of fresh algebraic variables (one
for each truth value), called logical variables. Recall that Tν stands for the set of all ν-terms
(denoted by t, ti) over the set Var. The set LTν̂ of logical terms of type ν̂ (denoted by s, u) is
generated by the following grammar (for ξi ∈ Ξ, fR ∈ ν̂ and t1, . . . , tn ∈ Tν):

s, u ::= ξi | fR(t1, . . . , tn, u1, . . . , up)

Note that LTν̂ 6⊆ Tν since ν 6= ν̂ and neither the logical variables ξi nor the function symbols
fR can occur in t. Let s, u1, ..., up ∈ LTν̂ , we write s{u1/ξ1, . . . , up/ξp} for the logical term
obtained by substituting simultaneously ui for each occurrence of ξi in s.

From open formulas to logical terms through substitutions. The translation (·)∗ we
have presented in Section 4.5 for classical logic, can be easily generalized to an arbitrary
p-valued matrix logic L. Since the result of the translation can be very verbose, we first
introduce some clever notation based on (hyper)matrices.

The intuitive idea is that the truth table of an n-ary logical connective o ∈ τn will be
represented as a hypermatrix M of dimension p× · · · × p (n times).

We recall that hypermatrices are k-dimensional generalizations of the usual bidimen-
sional matrices. Here, we consider hypermatrices of dimension n1 × · · ·× nk over the set
LTν̂ of logical terms, that is to say functions

M : n1 × · · · × nk → LTν̂ .

Given a hypermatrixM as above, we writeMi1...ik for the logical termM(i1, . . . , ik). A hy-
permatrix M of dimension pk is called cubical. A vector v is any hypermatrix of dimension
p×1 (resp. 1×p) and its transpose is a vector of dimension 1×p (resp. p×1) denoted by vT .
Given a logical term s, we write v(s) for the constant vector [s, . . . , s]T of dimension p× 1.

Let M be a cubical hypermatrix of dimension pk such that Mi1...ik ∈ LTν̂ and let s be a
logical term possibly containing ξ1, . . . , ξp as variables. The matrix multiplication Mv(s) is
a hypermatrix of dimension pk−1 defined as follows:

(Mv(s))i1...ik−1 = s{Mi1...ik−1,1/ξ1, . . . ,Mi1...ik−1,p/ξp}.

As an example, the product between a p×p-matrix and v(s) is: u11 · · · u1p
...

. . .
...

up1 · · · upp


 s...
s

 =

 s{u11/ξ1, . . . , u1p/ξp}
...

s{up1/ξ1, . . . , upp/ξp}


Hereafter, we assume that matrix multiplication associates to the left. Therefore, we simply
write Mv1 · · · vk for ((· · · (Mv1) · · · )vk).
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The translation. We translate inductively an open formula Φ of a quantified matrix
logic L into a logical term Φ∗ as follows:

• v∗i = ξi;

• R(~t )∗ = fR(~t, ξ1, . . . , ξp);

• o(Ψ1, . . . ,Ψn)∗ =
(
Mov(Ψ∗1) · · · v(Ψ∗n−1)

)T v(Ψ∗n),
where Mo is the cubical hypermatrix of dimension pn defined by:

Mo
i1i2...in = ξk ⇐⇒ oV(vin , . . . , vi2 , vi1) = vk.

In particular, the translation of P ∈ Pvar is simply P ∗ = fP (ξ1, . . . , ξp).
Note that, in the definition above, Mo has dimension pn and each v(ψ∗i ) has dimension

p×1. So Mov(Ψ∗1) · · · v(Ψ∗n−1) is a p×1-matrix and its transposed a 1×p-matrix [u1, . . . , up].
By multiplying it by v(Ψ∗n) we get a 1×1-matrix, that is a term.

Moreover, we have the following substitution property:

o(Ψ1, . . . ,Ψn)∗ = Ψ∗n{u1/ξ1, . . . , up/ξp}. (4.2)

It is easy to check by a straightforward induction on the open formula Φ that its trans-
lation Φ∗ is actually a logical term.

Note that, in the propositional case, such a translation induces a congruence ∼∗ on the
set of formulas: two formulas φ and ψ are ∼∗-equivalent whenever they have the same
translation φ∗ = ψ∗. Interestingly enough, this defines a non-commutative intermediate
logic L′ which is strictly weaker than the logic L we started from. For instance, in the case
of classical logic C, we have ¬¬φ ∼∗ φ and (φ1 ∨ φ2)∨ φ3 ∼∗ φ1 ∨ (φ2 ∨ φ3), but φ1 ∨ φ2 6∼∗
φ2 ∨ φ1. This intermediate logic Cint is strictly weaker than classical logic because, for
example, we have (¬P∨P )∗ = P (P (ξt, ξf), P (ξt, ξt)) and (P∨¬P )∗ = P (P (ξt, ξt), P (ξf , ξt)),
hence ¬P ∨ P 6∼∗ P ∨ ¬P .

Problem 15. What is the precise relationship between a logic L and the non-commutative inter-
mediate logic L′ induced by the translation in [M29]?

Theorem 4.9.1. Let S be a proper structure and ρ : Var → S be a valuation. Then JΦKSρ = vk if
and only if Fa(S) |=ρ ∀ξ1 . . . ξp.Φ∗ = ξk.

Recall that Φp denotes the propositional translation of Φ defined at the end of Sec-
tion 4.7. From Theorem 4.9.1 and Lemma 4.7.5, we obtain this corollary.

Corollary 4.9.2. A universal ν-sentence Φ is a logical truth if and only if Vν̂ |= ∀ξ1 . . . ξp.Φ∗ = ξt
and Φp is a tautology.

When the logic under consideration is without equality, a sentence Φ fails in a singleton
structure if and only if it fails in some proper structure. Therefore, in this case it is possible
to omit “and Φp is a tautology” in the statement of Corollary 4.9.2.

The algebraization of propositional logics. Propositional logic is a particular instance
of quantified logic. Indeed, the set Pvar of propositional variables can be considered as a
relational type, where every P ∈ Pvar is a relation symbol of arity 0.

According to Definition 4.7.3, a structure S of type Pvar, hereafter called a propositional
structure, is a pair (S, PS)P∈Pvar such that PS ∈ V for every P ∈ Pvar. The propositional
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structure S determines the truth assignment IS : Pvar→ V defined by IS(P ) = PS . Con-
versely, every truth assignment I : Pvar → V determines, for each set S, a propositional
structure SI = (S, PSI )P∈Pvar where PSI = I(P ).

The interpretation of a propositional formula φ in a propositional structure S coin-
cides with its propositional interpretation with respect to the truth assignment IS : in other
words, JφKSρ = JφKIS for every valuation ρ : Var→ S.

We call p-factor algebra every factor algebra associated with a propositional structure
according to Definition 4.8.2. The congruence lattice Con(A) of a p-factor algebra A coin-
cides with the lattice of equivalence relations on A. As a consequence, a p-factor algebra
A is directly indecomposable exactly when A is finite of prime cardinality.

We denote by Vprop the factor variety generated by all p-factor algebras.

Corollary 4.9.3 (Salibra et Al. [M29]).
Let Pvar be the type of propositional variables. A propositional formula φ is a tautology if and only
if Vprop |= ∀ξ1 . . . ξp.φ∗ = ξt.

We now apply our translation to propositional formulas of the logics presented in Sec-
tion 4.7. To simplify the notations we confuse P with fP , and i with ξi. We also perform
some on-the-flight application of (F1) and directly write u rather than s{u/ξ1, . . . , u/ξp}.

Example 4.9.4. (3-valued Logics with 0 < 1
2 < 1) The translation of some basic formulas:

• L– 3G3P3: (P ∧Q)∗ = Q(0, P (0, 1
2 ,

1
2 ), P (0, 1

2 , 1))
• L– 3G3P3: (P ∨Q)∗ = Q(P (0, 1

2 , 1), P ( 1
2 ,

1
2 , 1), 1)

• L– 3: (¬P )∗ = P (1, 1
2 , 0)

• G3: (¬P )∗ = P (1, 0, 0)
• P3: (¬P )∗ = P (1, 0, 1

2 )
• L– 3: (P → Q)∗ = Q(P (1, 1

2 , 0), P (1, 1, 1
2 ), 1)

• G3: (P → Q)∗ = Q(P (1, 0, 0), P (1, 1, 1
2 ), 1).

Example 4.9.5. The translation of P ∨ ¬P in three-valued logics:
• L– 3: P (1, P ( 1

2 ,
1
2 , 1), P (0, 1

2 , 1))
• G3: P (1, P (0, 1

2 , 1), P (0, 1
2 , 1))

• P3: P (1, P (0, 1
2 , 1), P ( 1

2 ,
1
2 , 1)).

Example 4.9.6. The Peirce law ((P → Q) → P ) → P translated in classical logic and in some
three-valued logics:

• C: P (P (Q(P (t, f), t), f), t)
• L– 3: P (P (α1, α2, 0), P (β1, β2,

1
2 ), 1) where

– α1 = Q(P (1, 1
2 , 0), P (1, 1, 1

2 ), 1)
– α2 = Q(P ( 1

2 , 0, 0), P ( 1
2 ,

1
2 , 0), 1

2 )
– β1 = Q(P (1, 1, 1

2 ), 1, 1)
– β2 = Q(P (1, 1

2 ,
1
2 ), P (1, 1, 1

2 ), 1)
• G3: P (P (γ1, 0, 0), P (δ1, δ2, 1

2 ), 1) where
– γ1 = Q(P (1, 0, 0), 1, 1)
– δ1 = Q(P (1, 1

2 ,
1
2 ), 1, 1)

– δ2 = Q(P (1, 1
2 ,

1
2 ), P (1, 1, 1

2 ), 1).
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4.10 TERM REWRITING SYSTEM FOR FACTOR AXIOMS

We now show how to turn the equations (F1)-(F3) axiomatizing the factor variety Vν̂ into
rewriting rules. The term rewriting system that we obtain enjoys confluence and strong
normalization. Therefore, in order to check whether Vν̂ |= Φ∗ = ξk holds it is enough to
see whether the normal form of Φ∗ is ξk.

For the sake of simplicity, we consider a propositional matrix logic L with two truth
values t, f (therefore Ξ = {ξt, ξf}). All definitions and results extend easily to all p-valued
propositional matrix logics. This method is generalizable to arbitrary quantified matrix
logics, but the actual generalization is left for future works.

We then consider a relational type ν only containing (countably many) propositional
variables. Let us fix an enumeration (Pi)i∈N of all the propositional variables in ν. Intu-
itively, this associates a priority i ∈ N with each propositional variable.

To simplify the notation, we will still denote by Pi the binary operator fPi ∈ ν̂.

Definition 4.10.1. The rewriting rulesR on LTν̂ are (for i ∈ N):
(F1) Pi(x, x)� x;

(F `2 ) Pi(Pi(x, y), z)� Pi(x, z);

(F r2 ) Pi(x, Pi(y, z))� Pi(x, z);

(F3) Pi(Pj(x, y), Pj(w, z))� Pj(Pi(x,w), Pi(y, z));

(F `3 ) Pi(Pj(x, y), z)� Pj(Pi(x, z), Pi(y, z));

(F r3 ) Pi(x, Pj(y, z))� Pj(Pi(x, y), Pi(x, z));
where the rules (F3), (F `3 ) and (F r3 ) only apply when i > j.

The term rewriting systemR is rather standard, except for the fact that it has infinitely
many function symbols, a property that we need to handle carefully when proving termi-
nation. Note that equation (F2) of Proposition 4.8.3 is recovered in two steps:

Pi(Pi(x, y), Pi(w, z))�F `
2
Pi(x, Pi(w, z))�F r

2
Pi(x, z).

Analogously, (F3) corresponds to (F `3 ) and (F r3 ), but we keep the redundant rule (F3) to
avoid an unnecessary growth of the size of the terms during the reduction.

We show thatR is locally confluent and terminating , so we conclude that it is confluent
by Newman’s lemma [New42]. To prove the local confluence it is enough to check that all
critical pairs are convergent.

Proposition 4.10.2. The term rewriting systemR is locally confluent.

The fact that R is terminating is non-trivial because the duplication in the rules (F ∗3 )
may increase substantially the size of the term. Thanks to the condition “i > j” these rules
push the symbols with small indices towards the root and those with big indices toward
the leaves. Thus, two terms should be compared by first comparing their root symbols,
and then recursively comparing their immediate subterms.

In other words, we need a lexicographic path order (lpo). We recall that lexicographic
path orders were first described by Kamin and Lévy in [KL80] (see also [BKdV03, §6.4]).
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Definition 4.10.3. The lexicographic path order >lpo on terms is defined by: s >lpo u if
(LPO1) u ∈ Var ∪ Ξ , u occurs in s and s 6= u, or
(LPO2) s = Pi(s1, s2), u = Pj(u1, u2) and one of the following conditions holds:

(a) ∃k ∈ [1, 2], sk ≥lpo u,
(b) i > j, and ∀k ∈ [1, 2], s >lpo uk,
(c) i = j, (s1, s2)>lex

lpo (u1, u2) and ∀k ∈ [1, 2], s>lpouk, where >lex
lpo stands for the lexico-

graphic lpo-order on pairs.

By [BKdV03, Prop. 6.4.25], the relation >lpo is a simplification order, which means that it
is an order closed under contexts, under substitutions, and possesses the subterm property.

The term rewriting systemR satisfies the following property:

Lemma 4.10.4. For all rewriting rules s� u ofR we have s >lpo u.

This property amounts to saying that the term rewriting system is simplifying, that is
compatible with a simplification order. In the case of finite term rewriting system, this is
enough to conclude termination. As shown in [Ohl92], for infinite term rewriting system
one also need to check that the rules only introduce finitely many function symbols.

Theorem 4.10.5. The term rewriting systemR is confluent and terminating.

We denote by nf(u) the (unique) normal form of u with respect toR.

Corollary 4.10.6. A propositional formula ϕ is a tautology if and only if nf(ϕ∗) = ξt.

As an example, we apply the term rewriting system to show that the law of Peirce
((P → Q) → P ) → P holds in classical logic C, but not in Gödel’s logic G3. We recall that
both translations are given in Example 4.9.6. Without loss of generality, we assume that
the priority of P is smaller than the priority of Q. As in Example 4.9.6, we will just write i
for ξi. In Classical Logic C we have the following reduction:

P (P (Q(P (t, f), t), f), t)�F `
2
P (Q(P (t, f), t), t)�F `

3
P (P (Q(t, t), Q(f, t)), t)�F `

2
P (Q(t, t), t)�F1 P (t, t)�F1 t.

Since t is designated, the formula is a classical tautology. To compute the reduction in G3,
we will use the notations γ1, δ1, δ2 introduced in Example 4.9.6, and the following facts:

1. γ1
F3→ γ′1, for γ′1 = P (Q(1, 1, 1), Q(0, 1, 1), Q(0, 1, 1));

2. δ2
F3→ δ′2, for δ′2 = P (Q(1, 1, 1), Q( 1

2 , 1, 1), Q( 1
2 ,

1
2 , 1)).

Therefore, in G3 we have the following reduction:

P (P (γ1, 0, 0), P (δ1, δ2, 1
2 ), 1)�F2 P (γ1, δ2, 1)�F3 P (γ′1, δ2, 1)�F3 P (γ′1, δ′2, 1)�F2

P (Q(1, 1, 1), δ′2, 1)�F2 P (Q(1, 1, 1), Q( 1
2 , 1, 1), 1)�F1 P (1, Q( 1

2 , 1, 1), 1)

Since P (1, Q( 1
2 , 1, 1), 1) is in normal form, we conclude that Peirce law is neither a tautol-

ogy nor a contradiction in G3.
We end this section by remarking that the logical terms that appear during the reduc-

tion are not necessarily the translation of a logical formula. Henceforth, this process of
calculus cannot be simulated within the logic under consideration.

Problem 16. Consider the term rewriting system R defined in [M29]. What is the complexity of
the system? Is the optimal reduction strategy effective? What is its complexity?
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4.11 FACTOR CIRCUITS AND APPLICATIONS TO HARDWARE DESIGN

Classical propositional logic is used as a technical tool for the analysis and the synthesis
of electrical circuits built up from switches with two stable states: the voltage levels. Ana-
logously, p-valued logics correspond to circuits built from similar switches with p stable
states, each representing a different truth value. This whole field of application of logic is
called many-valued (or fuzzy) switching. We refer the reader to [Eps93] for a good intro-
duction on this subject.

Our algebraic approach to multi-valued logics suggests a new notion of circuit, based
on components that we call “decomposition gates” and behave as decomposition opera-
tors of an algebra A belonging to a factor variety Vν̂ . In this section we consider A fixed.

We start by presenting the p-valued propositional case, then we instantiate it to propo-
sitional classical logic and compare it with the usual Boolean circuits, finally we discuss
the most general case.

A propositional decomposition gate (D-gate, for short) has:
- p input ports i1, . . . , ip (one for each truth value);

- a switch s, called the selector switch;

- an output port o.
The graphical representation of a D-gate is the following:

P si1
ip

o

The selector switch has a particular status since it specifies which decomposition operator
fP is implemented by the gate. For instance, when A is a factor algebra then fP is a
projection πpk (that is a trivial decomposition operator) and the selector switch transforms
the D-gate into a multiplexer selecting its k-th input (thus o := ik).

D-gates can be composed using wires by connecting the output port o of a D-gate with
one (or more) input port(s) ik of other D-gates. Therefore the wires transport the values of
the algebraic variables ξ1, . . . , ξp, in other words elements of A.

The circuit obtained by composing several D-gates is called factor circuit. Since each
D-gate implements a decomposition operator of the algebra A and by (F3) decomposition
operators of A commute, by [MMT87, Ex. 4.38.15, p. 167] a factor circuit represents itself a
decomposition operator on A.

Every logical term u can be easily represented as a factor circuit by following its syn-
tactic tree and drawing a D-gate with selector switch Pi for each function symbol fPi

. A
formula φ is then transformed into the factor circuit corresponding to the term φ∗.

D-gates for propositional classical logic C are shown in Figure 4.4(a): to simplify the
picture, we omit the selector switch and directly label the gate with the propositional vari-
able Pi, where i represents the priority of P (as in Section 4.10). A quick comparison
between the usual Boolean circuits and factor circuits shows the novelty of this approach
(cf. Figure 4.3). In the Boolean circuits, each logical gate implements a logical connective
o ∈ τ of arity n, so it has n input ports i1, . . . , in, and its output is obtained by applying
such a connective to the inputs: o(i1, . . . , in). The logical gates are connected with each
others through wires that transport truth values. The remaining input wires are connected
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logic gate AND D-gate
operation connective ∧ decomposition operator fP
meaning static (AND) dynamic (depends on P )

no. inputs arity of ∧ |V |
input values propositional variables P,Q algebraic variables ξf , ξt

signals carried truth values elements of A
by the wires

output P ∧Q fP (ξf , ξt)

Figure 4.3: Comparison between a logic gate AND and a D-gate.

with propositional variables that can be seen as switches allowing to choose their truth
values. The circuit as a whole corresponds to a Boolean expression and can be simplified
accordingly. Popular techniques are based, for instance, on Karnaugh maps and the result
is a circuit in sum-of-products form.

On the contrary, in factor circuits there is a unique kind of gate, the D-gate, whose
behavior depends on its selector switch. Every D-gate implements a decomposition op-
erator fPi , possesses two input ports because there are two truth values, and its output is
fPi(i1, i2). D-gates are connected through wires transporting elements of the ν̂-algebra A.
The remaining input wires are connected with switches representing algebraic variables ξi.
Globally, a factor circuit represents a decomposition operator built up from basic decompo-
sition operators (namely, those in ν̂). Factor circuits can be simplified by calculating their
normal form using the term rewriting system defined in Section 4.10 (see Figure 4.4(b)).
Note that a factor circuit in normal form has a particular shape (see Figure 4.4(c)): it is a
binary tree such that all the D-gates Pi1 , . . . , Pik encountered in a root-to-leaf path have
strictly increasing priority.

An interesting feature of factor circuits is that it is possible to exclude a sub-circuit by
exploiting the algebraic properties of its components. Consider, for instance, the circuit in
Figure 4.4(c) and suppose that we want to give ξf as first input of P2 (rather than the result
of P3(P4(x, y), P4(w, z))). Then it is enough to connect the variable ξf to all input ports of
the gates labelled with P4 and the dashed subgraph trivializes thanks to axiom (D1).

Problem 17. What is the algebraic meaning of the “cycles” one could obtain by connecting in a
factor circuit the output of a D-gate with one of its inputs?

The D-gates for quantified matrix logics are a straightforward generalization of the
propositional ones. Since an arbitrary D-gate represents a decomposition operator of
shape fR ∈ ν̂n+p, it has n additional input parameters corresponding to the arguments of
the relation R(P1, . . . , Pn), that is it can be drawn as follows:

R
s

P1, . . . , Pn

i1, . . . , ip{
o

When composing arbitrary D-gates with each other, the new arguments do not play any
role. In other words, it is forbidden to connect the output o with an input Pk. In a factor
circuit the wires corresponding to P1, . . . , Pn will remain as pending input lines.
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gate AND

P
Q

P ∧Q P

D-gate

ξf
ξt P

Q

factor circuit
ξf

ξt
a) A logic gate AND, a decomposition gate P , a factor circuit implementing the classical logic formula P ∧Q.

b) Rewriting System for Factor Circuits.

AB ciao

Rewriting Rules
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c) Example of a factor circuit in normal form. The dashed subtree trivializes because all input ports
receive the same value ξf .

A Factor Circuit in Normal Form

P1

P2

P3

P3

P5

P5

P4

P4

P8

P7

P6

ξf

ξt

P1P1

ξt

ξf

F r
2
� P1

P1

P1

ξt

ξf

F1
� P1ξf ξf

F1
�

Example of Reduction

d) A reduction showing that P1 ∧ ¬P1 is a contradiction in classical logic.

Figure 4.4: Factor circuits and decomposition gates.
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4.12 SYMBOLIC COMPUTATION

Much work in computer science has been focused on reducing first-order logic to equa-
tional logic and term rewriting systems. In Tarski-Givant [TG87] one has a reduction
of first-order Zermelo-Fraenkel set theory to traditional equational logic by using a so-
phisticated encoding into the equational logic of relation algebras. Burris and McKenzie’s
reduction of first-order logic with equality to equational logic through discriminator va-
rieties uses a technique which is described in [Bur92]. The new technique of reduction
introduced in [M29] and presented here is based on factor varieties and can be applied to
first-order logic with or without equality.

Let ν be a relational type and let T ∪{Φ} be a finite set of first-order ν-sentences. One of
the fundamental achievements of Gödel was to show that the semantic notion T |= Φ can
be captured by a syntactic notion T ` Φ. The usual procedure to avoid the manipulation of
quantifiers consists in observing that T |= Φ holds if and only if T ∪ {¬Φ} is not satisfiable
if and only if the set of sentences in T ∪{¬Φ} Skolemized is not satisfiable. This reduces the
syntactic level to universally quantified sentences. Such sentences are easily expressed as
conjunctions of clauses (i.e., universally quantified disjunctions of atomic and/or negated
atomic formulas), so we have T |= Φ if and only if a suitable set of clauses is not satisfiable.
Robinson’s resolution rule [Rob65] is complete for unsatisfiable sets of clauses, provided
that the equality is not present in the language. In presence of equality, other rules must
be introduced like paramodulation [NR99].

Burris and McKenzie replaces all atomic subformulas of the form R(t1, . . . , tn) in the
universally quantified sentences obtained after Skolemization, by fR(t1, . . . , tn) = t1,
where fR is a new function symbol corresponding to R (This approach to encoding re-
lations as functions can be found in [Ack54, p. 98]). The switching function of a suitable
discriminator variety is used to remove the logical connectives and to derive a set of equa-
tions axiomatizing a new discriminator variety, which can be used to analyze T |= Φ when
we are working with a first-order language with equality.

Reduction to equations through factor varieties.
Let T = {Ψ1, . . . ,Ψn} be a set of first-order sentences in classical logic and Φ be a sen-

tence. Our goal is to reduce the semantical problem of checking whether T |= Φ holds to
an equational problem in factor varieties. This will be achieved by executing the following
reduction procedure, and then applying Theorem 4.12.1 below.

Reduction procedure. Consider the set Σ = {Ψ1, . . . ,Ψn,¬Φ}.
1. Convert all sentences in Σ into prenex normal form.

2. Compute the set Σσ = {Ψσ
1 , . . . ,Ψσ

n, (¬Φ)σ} by Skolemizing the sentences obtained
in Step 1. As it is customary, we omit the universal quantifiers in the Skolemized
sentences.

3. Add to the relational type ν the new function symbols introduced by the Skolemiza-
tion to obtain the new relational type µ.

4. Consider the µ̂-factor variety VΣ axiomatized by:

(i) the axioms (F1)-(F3);
(ii) (Ψσ

1 )∗ = ξt, . . . , (Ψσ
n)∗ = ξt and ((¬Φ)σ)∗ = ξt;

(iii) fE(x, x, ξf , ξt) = ξt and fE(x, y, x, y) = x only if the equality symbol E is present
in the language.
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Let us denote by Ax(VΣ) the set of these axioms.
We denote by `eq the deducibility in the equational calculus. We have the following com-
pleteness theorem.

Theorem 4.12.1 (Completeness Theorem, Salibra et Al. [M29]).
Let Φ,Ψ1, . . . ,Ψn be first-order sentences in classical logic. Then we have Ψ1, . . . ,Ψn |= Φ if
and only if Ax(VΣ) `eq ∀xy(x = y) and the propositional formula (Ψ1 ∧ · · · ∧ Ψn → Φ)p is a
tautology.

The following examples are described in [Bur92, pp. 198-199]. The reader can compare
the simplicity of our method with respect to Burris’s and McKenzie’s reduction procedure.

Example 4.12.2. Let T be empty and Φ = ∀x(R(x) ∨ ¬R(x)).
• Then ¬Φ is logically equivalent to ∃x(¬R(x) ∧R(x)).
• After Skolemization we obtain the formula ¬R(c) ∧R(c).
• We consider the factor variety axiomatized by the identity

fR(c, ξf , fR(c, ξt, ξf)) = ξt,

that implies ξf = ξt.
• By Theorem 4.12.1 it follows that ∅ |= Φ.

Example 4.12.3. Let T be the theory axiomatized by:

a 6= b,
∀x(x = a ∨ x = b), ∀xyz(R(x, y) ∧R(x, z)→ y = z),
∀x∃yR(x, y), ∀xyz(R(x, z) ∧R(y, z)→ x = y).

Let Φ = ∀y∃xR(x, y) and Σ = T ∪ {¬Φ}.
After Skolemization of Σ we get the following Σσ :

a 6= b, x = a ∨ x = b, R(x, y) ∧R(x, z)→ y = z,
R(x, g(x)), ¬R(x, c), R(x, z) ∧R(y, z)→ x = y.

The factor variety VΣ is axiomatized by:

fE(x, x, ξf , ξt) = ξt,
fE(x, y, x, y) = x,
fE(a, b, ξt, ξf) = ξt,
fE(x, b, fE(x, a, ξf , ξt), ξt) = ξt,
fR(x, z, ξf , fR(x, y, ξf , y)) = fR(x, z, ξf , fR(x, y, ξf , z)),
fR(x, z, ξf , fR(y, z, ξf , x)) = fR(x, z, ξf , fR(y, z, ξf , y)),
fR(x, g(x), ξf , ξt) = ξt,
fR(x, c, ξt, ξf) = ξt.

Since T has no singleton models, by Theorem 4.12.1 we have that T |= Φ if and only if we can
equationally prove Ax(VΣ) `eq a = b.

Problem 18. Verify whether factor varieties have unitary unification, which is at the basis of
resolution theorem provers and of the Knuth-Bendix method for finding rewriting systems.





Conclusions
We reviewed the main results obtained, jointly with other colleagues, in the last eight years.
While describing these results, we individuated several interesting open problems that
are listed on Page 95 in order to provide a global view. In this section we discuss more
thoroughly the research lines that we think are the most promising and worth developing
in the near future.

Generalizing the weighted relational semantics further. As shown in [M13, M14,
M15], and discussed in Chapter 3, several categorical constructions are available for build-
ing quantitative models of the resource calculus. Some constructions give rise to categories
of games that reveal precise intensional information about programs by interpreting them
as sets of strategies, thus exposing their dynamic interaction with the environment (oppo-
nent). Other ones allow to add intensional information to the semantics of a program by
interpreting it as a matrix taking values in a (continuous) commutative semiring R and,
by varying the semiring, we can study different computational properties.

On the one hand, it would be interesting to combine these two approaches and define
categories of games where strategies are instrumented with scalars from semirings, and
check whether new quantitative properties of programs can be characterized. On the other
hand, Laird recently showed in [Lai16] that the continuity condition on semirings, which
is useful to define the fixed points in the resulting category, can be dropped by considering
a different (but still canonical) construction for the fixed points. It would be interesting
to verify whether the commutativity can be also dropped. In the non-commutative case,
our construction give rise to pre-monoidal categories that could still have a structure rich
enough to model PCF-like or imperative calculi. Interesting examples of non-commutative
semirings would include semirings of formal languages, since the juxtaposition of strings
is non-commutative. This would open the way for linking denotational semantics of pro-
gramming languages with the theory of formal languages and automata theory.

A different line of generalization comes from the recent work of Hyland [Hyl10, Hyl15].
In these papers the author focuses on profunctors as a categorical generalization of the
notion of relations. In the profunctorial semantics objects are categories and a map from a
category C to a category D is a profunctor, that is a functor

F : Dop ×C→ Set.

In [Win13], Winskel proposes the notion of profunctors as a generalization of strategies in
games semantics. We wish to investigate whether this framework would allow to recover
all the constructions described in Chapter 3 as instances.

Algebraic approach to Multi-Valued Logics. The preliminary investigations in [M29],
summarized in Chapter 4, show that our approach for algebraizing logics through factor
varieties is quite promising and deserves to be investigated further. To begin with, we
wish to develop a theoretical and practical complexity analysis of our method. We have
seen that the process of checking whether, for a propositional formula φ, φ∗ = t holds, can
be automatized by defining a suitable term rewriting system. We know that such a term
rewriting system is confluent and that, by labelling each operator fP with a priority level,
it is possible to ensure normalization. We plan to analyze the computational complexity
of such a term rewriting system. On the one side we wish to generalize some theoretical
results [BCMT01, Hof92] that cannot be directly applied since they rely on the presence
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of constructors in the system. On the other side we plan to define optimal reduction and
labelling strategies, to minimize the number of reduction steps. The hope is to prove that
the optimal reduction strategy, combined with the optimal labelling, normalizes a term in
polynomial time. Notice that this does not imply that we would be able to check whether
a formula is a tautology in polynomial time, which would in its turn imply P = NP. In-
deed, the size of a formula may increase exponentially in the translation, and the problem
of finding an optimal labelling is NP-complete [BW96] (but good heuristic algorithms are
known). We also plan to verify whether this approach extends to infinite propositional log-
ics, that are logics having a infinitely many truth values. This will require to develop new
techniques for handling term rewriting systems over infinitary terms. We expect that the
resulting theory will be general enough to encompass fuzzy logic [Hàj98] and probabilistic
logic [Nil86].

We have seen that our framework also suggests a new notion of logic circuits, that we
call factor circuits and are based on components called D-gates that represent decomposi-
tion operators. The theory of factor circuits is still at the beginning. We plan to compare
them with the usual multi-valued circuits [Eps93] and analyze advantages and disadvan-
tages of the two approaches. We will also try to answer some natural questions, like the
algebraic meaning (if any) of the “cycles” obtained by connecting the output of a gate with
one of its inputs and the relationship between the classical simplification method based on
Karnaugh map and the one based on our rewriting system.

We have also seen that the problem of algebraizing predicate logics is complicated be-
cause of the variable binding properties of the quantifiers. Much work in computer science
has been focused on reducing first-order logic to equational logic. Starting from McKen-
zie’s article [McK75], Burris made a substantial advance in [Bur92] by using discriminator
varieties [Wer78]. Their works appears to have been largely overlooked by the proof as-
sistants community, probably because it is not readily apparent how to manipulate the
axioms of a discriminator variety. Our approach suggests a new procedure for reducing
first-order classical logic to equational logic based on factor varieties and depending on
much simpler axioms that are easier to manipulate. We plan to investigate whether factor
varieties have unitary unification, which is at the basis of resolution theorem provers and
of the Knuth-Bendix method for finding rewriting systems.



List of Problems
Problem 1. The λ-theories representable by relational graph models belong to the interval [B,H∗].
How many distinct λ-theories can be represented by rgms? Is it possible to give a complete charac-
terization of all representable λ-theories?

Problem 2. Is it possible to adapt the techniques developed by Breuvart in [Bre14] to characterize
all relational graph models that are fully abstract forH∗?

Problem 3. As reported in [Bar84, Proof of Thm. 17.4.16], Sallé conjectured that the inclusion
Bω ⊆ H+ is actually strict. Prove Sallé’s conjecture, or show Bω = H+.

Problem 4. Construct an “easy” assignment #(−) of (possibly transfinite) ordinals to simply
typed λ-terms in such a way that M →β N entails that #M > #N . By the fact that the ordinals
are well-ordered, this immediately shows that the system is strongly normalizing.

Problem 5. While the reduction IHP≤T DP presented in [M30] is a proper Turing reduction, DP
≤T IHP is an “ordinary” (many-one, actually one-to-one) reduction, which is logically simpler.
Are IHP and DP equivalent with respect to the finer structure of many-one degrees?

Problem 6. Is it possible to characterize the must-solvability of the resource calculus in terms of
outer-reduction and in terms of typability in a suitable type system?

Problem 7. Is it possible to define a convincing notion of Böhm tree for the full resource calculus?

Problem 8. Is it possible to prove an equational completeness theorem for categorical models of
resource calculus without assuming an idempotent sum?

Problem 9. Show that the relational semantics does not contain any model fully abstract for the
resource calculus.

Problem 10. Is it possible to find a fully abstract model of the untyped resource calculus in cate-
gories of games?

Problem 11. Show that the model V introduced in [M12] (equivalently, Ehrhard’s models of
[Ehr12]) is not equationally fully abstract for the call-by-value λ-calculus.

Problem 12. Provide a direct proof of the fact that every finite element of the relational semantics
is the denotation of some term of Resource PCF, and conclude that it is fully abstract.

Problem 13. In [Lai16], Laird has shown that it is enough to start with a complete commutative
semiring R, and still obtain fixed points in R⊕! without requiring any order-theoretic structure.
These fixed points corresponding to infinite sums of finitary approximants indexed over the nested
finite multisets, each representing a unique call-pattern for computation of the fixed point. It would
be interesting to see whether the commutativity can be also released, working on the premonoidal
setting, and what kind of languages it is possible to model in the coKleisli.

Problem 14. Show that R⊕! is a fully abstract model for resource PCF extended with scalars
fromR. Is the model fully abstract for an Erratic Idealized Algol with scalars?

Problem 15. What is the precise relationship between a logic L and the non-commutative inter-
mediate logic L′ induced by the translation in [M29]?

95



96 CONCLUSIONS

Problem 16. Consider the term rewriting system R defined in [M29]. What is the complexity of
the system? Is the optimal reduction strategy effective? What is its complexity?

Problem 17. What is the algebraic meaning of the “cycles” one could obtain by connecting in a
factor circuit the output of a D-gate with one of its inputs?

Problem 18. Verify whether factor varieties have unitary unification, which is at the basis of
resolution theorem provers and of the Knuth-Bendix method for finding rewriting systems.

Addendum. This manuscript intends to photograph the state of the art of our research
in the day we started writing it (September 1, 2016). In the meanwhile, in collaboration
with Intrigila and Polonsky, we solved negatively Sallé’s conjecture appearing in the above
list as Problem 3. In other words, we proved that the λ-theories Bω andH+ coincide.



Notations
Set Theory

N set of natural numbers 5
R+ positive real numbers 5
|A| cardinality of A 5
P(A) powerset of A 5
A ⊆f B A is a finite subset of B 5
[] empty multiset 5
a = [α1, α2, . . .] multiset whose elements are α1, α2, . . . 5
a1 ] a2 multiset union of a1, a2 5
Mf(A) set of all finite multisets over A 5
Mf(A)(ω) set of quasi-finite N-indexed sequences ofMf(A) 5
R continuous semiring 58
|R| underlying set ofR 58
0 neutral element of the sum inR 58
1 neutral element of the product inR 58
(|R|,�) cpo associated withR 58
X := X ∪ {∞} 58
X⊥ := X ∪ {−∞} 58∑
p∈I p :=

∨
F⊆fI

(
∑
p∈F p) 58

∞ :=
∑
p∈R p 58

B Boolean semiring ({t, f},∨,∧, f, t) 58
N N completed (N,+, · , 0, 1,≤) 58
T Tropical semiring (N,min,+,∞, 0,≥) 58
A Arctic semiring (N⊥,max,+,−∞, 0,≤) 58
P R+ completed (R+,+, · , 0, 1,≤) 58
δα,α′ Kronecker symbol 58

Category Theory

C arbitrary category 5
1 category with one object and one morphism 53
Rel category of sets and relations 13
MRel co-Kleisli ofMf(−) on Rel 13
PCoh! probabilistic coherence spaces 68
G category of arenas whose roots are all O-moves 54
EG category of exhausting games 55
EG∼ subcategory of ∼-closed strategies of EG 55
G∼ subcategory of ∼-closed strategies of G 55
C! co-Kleisli category of ! on C 6
f ;! g diagrammatic composition in C! 6
K!(C) co-Kleisli category of K(C) 52
K(C) Karoubi envelope of C 52
C+ sup-lattice completion of C 53
C⊕ biproduct completion of C 53
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C⊗ subcategory of comonoid homomorphisms of C 6
FamRel(C) (C+)⊕ 53
A, IdA identity on A 5
A⊗B tensor product of A and B 5
A⊗n n-fold tensor power of A 52
An symmetric tensor power 52
ΘA,n : A⊗n → A⊗n the sum of the n! permutation maps 52
A( B monoidal exponential object 5
ev linear evaluation morphism 5
λ(f) linear Currying 5
A⊥ := A( ⊥ (the dual of A) 5
A×B categorical product of A and B 5
T terminal object 5
TA unique morphism in C(A,T) 5
A&B categorical product in MRel (disjoint union) 5
π1, π2 projections 5
〈f, g〉 pairing of f and g 5
A⊕B biproduct of A and B 5
ι1, ι2 injections 5
[f, g] copairing of f and g 5
A→ B exponential object 5
Eval evaluation morphism 5
Λ(f) Currying 5
contr contraction 6
weak weakening 6
der dereliction 6
dig digging 6
f† : B → !A unique comonoid morphism satisfying f†; derA = f 6
mT,mA,B Seely’s isomorphisms 6
D(f) derivative of f in a Cartesian category 37
f ? g linear application of of f to g 38
U = (U, app, abs) linear reflexive object U → U / U 39

Universal Algebra

A algebra 70
τ algebraic type 70
ν relational type 80
τn set of n-ary function symbols in τ 70
νn relational type containing n-ary relation symbols 80
Σ equational theory 75
L(Σ) lattice of equational theories 75
Ξ set of logical variables 82
ξi logical variable 82
ν̂ algebraic type associated with ν 81
fR function in ν̂n+p associated with R ∈ νn 81
∆ := {(a, a) | a ∈ A} 70
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∇ := A×A 70
Con(A) set of congruences of A 70
[a]ϕ := {a′ ∈ A | aϕa′} 70
ϑ(a, b) principal congruence generated by a and b 70
ϕ ◦ ϑ := {(a, c) | ∃b ∈ A, aϑ bϕ c} 70
A ∼= B A and B are isomorphic algebras 70
A ≤ Πi∈IBi A is a subdirect product of (Bi)i∈I 70
ite if-then-else term of a Church algebra 72
s switch term of a discriminator variety 76
ϑe := ϑ(1, e) 72
ϑe := ϑ(e, 0). 72
Ce(A) the set of central elements of A 72
fe(x, y) ite(e, x, y) 72
e ≤ d ⇐⇒ ϑe ⊆ ϑd 73
[ϕ) interval notation for {ϕ′ ∈ Con(A) | ϕ ⊆ ϕ′} 73
vT transpose of the vector v 82
v(s) constant vector [s, . . . , s]T 82
φ ∼∗ ψ equivalence induced by (·)∗ on propositional formulas φ, ψ 83
Str(A) structure associated with a factor algebra A 81
Fa(S) factor algebra associated with a structure S 81
Vfa class of ν̂-factor algebras belonging to a factor variety V 81
Vprop factor variety generated by all p-factor algebras 84
Ax(VΣ) set of these axioms associated with VΣ 91

Logic

L propositional logic L 79
QL quantified logic 80
C Classical logic 79
L–n Łukasiewicz’s n-ary logic 79
Gn Gödel’s n-ary logic 79
Pn Post’s n-ary logic 79
t, f classical Boolean values 79
∧ logical and 79
∨ logical or 79
¬ logical not 79
→ logical implication 79
τ algebraic type of logical connectives 79
P propositional variable 79
Pvar set of propositional variables 79
φ, ψ propositional formulas 79
o(−1, . . . ,−n) n-ary connective o ∈ τn 79
Φ,Ψ well formed formulas 80
R(−1, . . . ,−m) m-ary relation R ∈ νm 80
Tν set of ν-terms 80
Φp propositional translation of Φ 80
LTν̂ logical terms of type ν̂ 82
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Games Semantics

A ]B disjoint union of the arenas A and B 54
A⊥ the arena A with O and P-moves interchanged 54
A( B the arena B with A⊥ attached below each initial move 54
σ : A→ B strategy in A⊥ ]B 54
MP
A Player move in the arena A 54

MO
A Opponent move in the arena A 54
` edge relation 54
(Q) question 54
(A) answer 54
psq Player’s view of s 54
comp(A) set of complete justified sequences of A 54
contr : A→ A ]A copycat strategy which interleaves play in the two copies

of A on the right to produce the play on the left (contraction) 54
D(σ) derivative of a strategy 54
A( R R-exponentials 55
∼ ∼-equivalence on strategies 55

λ-calculus

Var set of variables of λ-calculus 8
Λ set of λ-terms 8
Λo set of closed λ-terms 8
M,N,P,Q λ-terms 8
M{N/x} capture-free substitution 8
CL−M λ-calculus context with a hole L−M 11
FV(M) set of free variables of M 8
I := λx.x 8
K := λxy.x 8
K′ := λxy.y 8
Ω := (λx.xx)(λx.xx) 8
Y := λf.(λx.f(xx))(λx.f(xx)) 8
J := Y(λjxy.x(jy)) 8
JT η-expansion of I following the infinite tree T 15
→β β-reduction 8
→η η-reduction 8
→βη :=→β ∪ →η 8
�R multistep R-reduction 8
=R R-conversion 8
BT(M) Böhm tree of M 10
⊥ empty Böhm tree 10
App(M) the set of all finite approximants of BT(M) 14
λT the lattice of λ-theories ordered by ⊆ 10
T `M = N the λ-theory T equates M and N 10
M =T N the λ-theory T equates M and N 10
λ smallest λ-theory 10
λη smallest extensional λ-theory 10
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H λ-theory equating all unsolvable λ-terms 10
B λ-theory equating all terms with the same Böhm tree 10
H+ Morris’s extensional observational λ-theory 12
H∗ maximal consistent λ-theory 11
T η smallest extensional λ-theory containing T 17
T ω closure of T under the (ω)-rule 17
T ` ω T satisfies the ω-rule 17
M λ-calculus model 10
JMKM interpretation of the λ-term M inM 10
M |= M = N M,N have the same interpretation inM 10
Th(M) := {M = N | M |= M = N} 10
ΛT term model of T 40
≡O observational equivalence where O is the set of observable 11
BT(M) =η∞ BT(N) BT(M) and BT(N) are equal up to infinite η-expansions 11
BT(M) =ηfin BT(N) BT(M) and BT(N) are equal up to finite η-expansions 12
E relational analogue of Engeler’s model 14
D∞ Scott’s original model 11
Dω relational analogue of Scott’s model 14
DCDZ Coppo, Dezani and Zacchi’s filter model 12
Dε relational analogue of Coppo, Dezani and Zacchi’s model 14
WD(T ) the set of all witnesses in D for T following some f 16

Simply typed λ-calculus

T0 set of simple types having a single ground type 0 18
∆ type environment over simple types 18
∆ `M : A judgement in simply typed λ-calculus 18
M = ((MA)A∈T0 , · ) typed applicative structure 19
J∆ `M : AKMν , JMKMν interpretation of ∆ `M : A inMwith respect to ν 19
ν{d/x} valuation such that ν{d/x}(x) = d and ν{d/x}(y) = ν(y) 19
F = (FA)A∈T0 full model of simply typed λ-calculus 21
Fn full model over a ground set of cardinality n 21
S = ((SA,vA)A∈T0 , ·) monotone model of simply typed λ-calculus 24
f ↑ upward closure {f ′ ∈ SA | f v f ′} of f ∈ SA 24
f 7→ g step function 24
ιA order reversing isomorphism from UωX(A) to SA. 24
R = {RA}A∈T0 logical relation between typed applicative structures 19
RA(Y ) := ∪f∈YRA(f) 19
R− inverse ofR 19
I0 := {(Y, Y ) | Y ∈ P(X)} 25
I logical retraction generated by the identity 25
J0 := {(f, F ) | f ∈ F ⊆ F0} 26
J logical relation generated by J0 26
K0 := {(f, {f}) | f ∈ X} 26
K logical relation generated by K0 26
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Intersection type systems

CDV Coppo, Dezani and Venneri’s intersection type system 20
CDVω uniform intersection type system with stratified top ω 23
A set of atomic types 20
TA
∧ set of intersection types over A 20

Y → Z := {τ → σ | τ ∈ Y, σ ∈ Z} 22
Y ∧ := {σ1 ∧ · · · ∧ σn | σi ∈ Y for all 1 ≤ i ≤ n} 22
UX(A) set of intersection types over X uniform with A ∈ T0 22
G Urzyczyn’s game types 22
TA∪{ω}
∧ intersection types over A and ω 23
UωX(A) set of intersection types UX∪{ω}(A) with a stratified top ωA 23
ωA stratified top element of uniform intersection types UωA (A) 23
≤ subtyping 20
Γ type environment over intersection types 20
Γ `∧ M : σ judgement in CDV 20
Γ `ω∧ M : σ judgement in CDVω 23

λ+‖-calculus

Λ+‖ set of nondeterminitic λ-calculus 47
V+‖ values of call-by-value λ+‖-calculus 49
M,N,P,Q set of λ-terms with parallel and nondeterministic choice 47
M +N nondeterministic choice between M and N 47
M ‖ N parallel composition of M and N 47
V value 49
O := (λxy.xx)(λxy.xx) 51
→h one step head reduction 47
�h multi-step head reduction 47
� mix-based merging operator on Dω 47
T‖ set of parallel-types 49
C set of computational-types 49
Γ environment of computational types 50
Γ1 ⊗ Γ2 tensor product of Γ1,Γ2 50
Γ `V M : σ judgement for λ+‖-calculus with intersection types 50
π derivation tree 50
|π| measure of a derivation tree π 50
≡cbv operational equivalence in call-by-value λ-calculus 51
vcbv operational preorder in call-by-value λ-calculus 51

Resource Calculus

Λr set of resource terms 32
M,N,L resource terms 32
Λb set of bags 32
P bag of resources 32
1 empty bag 32
P · P ′ union of bags 32
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N〈Λr〉 set of sums of resource terms 32
M,N sum of resource terms 32
0 empty sum of resource terms 32
P sum of bags 32
M{N/x} capture-free substitution of N for x in M 33
M〈N/x〉 capture-free linear substitution of N for x in M 33
→βr βr-reduction 33
→ηr ηr-reduction 34
→o outer-reduction 34
T (M) Taylor expansion of M 35
NFβr (T (M)) = {NFβr (t) | t ∈ T (M)} 35
Λbf set of !-free resource terms 35
t !-free resource term 35
b bag of !-free resource term 35
≡T congruence generated by setting [x!] = 1 + [x, x!] 36
≡T
ηr

congruence generated by ≡T ∪ ≡ηr 36
≡monf may-observational equivalence 42
vmonf may-observational preorder 42
Λτ̄ set of resource terms with tests 43
Q,R resource tests 43
Q sum of resource tests 43
Q↓ the test Q converges 43
CL−M test-contexts of the resource calculus with tests 43
α– resource term associated with α 43
α+L−M↓ test-context associated with α 43
≡τ observational equivalence of resource calculus with tests 43

PCF and its variations

PCFor PCF extended with nondeterministic choice 57
Resource PCF PCF extended with nondeterminism and bags of linear and

reusable resources 56
PCFR PCFor extended with scalars fromR 61
C ∆,A
B set of PCFR contexts mapping terms of type A in ∆, 65

into closed terms of type B 65
QL−M PCFR contexts 65
n numeral succn(0) 61
Ωint := fix(λxint.x) 64
Ψ := fix(λxint.(x or 0)) 64
Φ := λxint.ifz(x, succx, 0) 64
Ξ := λyint.∞0 65
Υ := λyint.(∞0 or ifz(y, 0,Ωint)) 65
M

p−→` P elementary reduction step 62
M

p−→ P M
p−→` P for some label ` 62

π reduction sequence 62
M ⇒≤k P set of reduction sequences from M to P of length ≤ k 62
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M⇒P set of reduction sequences from M to P 62
weight(π) the weight of a reduction sequence π 62
�A logical relation between vectors inRA and closed PCFRterms

of type A 63

v∆ observational preorder of PCFR 65
≡∆ observational equivalence of PCFR 65
RedM,P Markov matrix describing the reduction from M to P 67
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