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Abstract. Turing machines and register machines have been used for decades in theoretical
computer science as abstract models of computation. Also the λ-calculus has played a central
role in this domain as it allows to focus on the notion of functional computation, based
on the substitution mechanism, while abstracting away from implementation details. The
present article starts from the observation that the equivalence between these formalisms is
based on the Church-Turing Thesis rather than an actual encoding of λ-terms into Turing
(or register) machines. The reason is that these machines are not well-suited for modelling
λ-calculus programs.

We study a class of abstract machines that we call addressing machine since they are only
able to manipulate memory addresses of other machines. The operations performed by these
machines are very elementary: load an address in a register, apply a machine to another one
via their addresses, and call the address of another machine. We endow addressing machines
with an operational semantics based on leftmost reduction and study their behaviour. The
set of addresses of these machines can be easily turned into a combinatory algebra. In
order to obtain a model of the full untyped λ-calculus, we need to introduce a rule that
bares similarities with the ω-rule and the rule ζβ from combinatory logic.

Introduction

In theoretical computer science several models of computation have been considered over
the years, since the pioneering work of Turing [22]. Turing Machines (TMs) certainly played
a crucial role in the understanding of the notion of computation, while Register Machines
(RMs) are more adapted to represent programs executed in a von Neumann architecture [18].
From a recursion-theoretic perspective, the class of partial recursive functions provides
a natural description of those numeric functions that can be calculated by a mechanical
device [12]. In mathematical logic, λ-calculus [2] (and the related formalism – combinatory
logic [3]) – proved to be an inexhaustible source of inspiration for the development of formal
systems, proof assistants and functional programming languages. As it is well-known, the
basic computational mechanism of λ-calculus is the symbolic substitution of an expression for
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a variable. All these formalisms – and many others that have been subsequently introduced –
are quite different, but they can be proved equivalent in the sense that they are capable of
representing the same class of partial numerical functions, i.e. the class of partially recursive
functions. Despite the enormous importance of this result – in particular as a strong evidence
for the so called Turing-Church Thesis – it is still of great interest to understand, at a deeper
level, the relationships between the different computational formalisms.

In particular, the relationship between λ-calculus and partial recursive functions was
investigated by Henk Barendregt, who tried to build during his PhD a model of untyped
λ-calculus (λ-model [13, 16]) out of Kleene’s partial combinatory algebra having the set
of “codes” N as underlying set and as application the partial operator {x}(y), that can be
interpreted as the possible result of applying the partial computable function with code
x to the input y. His intention was to use this binary operator {x}(y) to construct a
(total) combinatory algebra in such a way that Kleene’s translation of λ-calculus results
would become a simple model-theoretic interpretation. Unfortunately, every attempt in this
direction has been unsuccessful but the problem is nowadays receiving the attention of the
scientific community because of the recent republication of his PhD thesis [1], extended with
commentaries. On the bright side, as a byproduct of these investigation, Barendregt arrived
to the formulation of the ω-rule because, if such a λ-model exists, then it needs to satisfy
this strong extensionality axiom.

Following the same line of research, but attacking the problem from a different angle,
one might meaningfully wonder whether it is possible to construct a λ-model based on
appropriate abstract machines. The most obvious and canonical choice would be considering
Turing Machines, but such an attempt is probably bound to failure or, in the best-case
scenario, would give rise to a very convoluted construction. In fact, while one can easily
encode a TM within λ-calculus [4], for establishing the Turing-completeness of λ-calculus it is
preferable to show that all computable numeric functions are λ-definable, rather than looking
for faithful translation. The first problem that arises is how to handle non-terminating
computations since the application in a λ-model must be total. The second is how to
represent higher-order computations: in an imperative programming language a function
can take another function as argument by working with its address, but in a TM this would
require to encode processes as data and then manipulate and execute such codes indirectly.
This makes the simple, intuitive notion of communication through addresses extremely
difficult to realize. To this day, no λ-model of this kind has ever been constructed.

In this article we define a class of abstract machines, where the notions of address and
communication (through addresses) are not only crucial to model computation, but they
become the unique ingredients available. These machines are called addressing machines and
possess a finite tape from which they can read the input, some internal registers where they
can store values read from the tape, and an internal program which is composed by a list of
instructions that are executed sequentially. The input-tape and the internal registers are
reminiscent of those in TMs and RMs, respectively. Every machine is uniquely identified by
its address, which is a value taken from a fixed countable set A. In this formalism, addresses
are the only available data-type — this means that both the input-tape and the internal
registers of a machine (once initialized) contain addresses from A. Programs are written
in an assembly language possessing only three instructions1. Besides reading its inputs, an
addressing machine can apply two addresses a, b with each other and store the resulting

1This choice is made on purpose, in the attempt of determining the minimum amount of operations giving
rise to a Turing-complete formalism.
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address a · b in an internal register. Intuitively, a · b is obtained by first taking the machine
M having address a, then appending b to its input-tape, and finally calculating the address
of this new machine. This application operation being static and manipulating addresses
exclusively is total even when the referenced machines are non-terminating once executed.
As a last step of its execution, an addressing machine can transfer the computation to
another machine, possibly extending its input-tape, by retrieving its address from a register.
Although not crucial in the abstract definition of an addressing machine, it should be clear
at this point that any implementation of this formalism requires the association between the
machines and their addresses to be effective (see Section 6 for more details).

Addressing machines share with λ-calculus the fact that there is no fundamental
distinction between processes and data-types: in order to perform calculations on natural
numbers a machine needs to manipulate the addresses of the corresponding numerals. Another
similarity is the fact that in both settings communication is achieved by transferring the
computation from one entity to another one. In the case of addressing machines, the machine
currently “in execution” transfers the control by calling the address of another machine.
In λ-calculus, the subterm “in charge” is the one occupying the so-called “head position”
and the control of the computation is transferred when the head variable is substituted by
another term. It is worth noting that process calculi such as the π-calculus also address
communication using the concept of channel, where messages are exchanged [17, 19]. This is
not the kind of communication that we are going to model here: our form of communication
is encoded in the notion of address, so that a machine receiving a message results in a new
machine with a different address. In other words, we do not model the dynamics of the
communication, but the evolution of the machine addresses actually encodes the effects of
communication. Another difference is the fact that π-calculus naturally models parallel
computations as well as concurrency, while addressing machines are designed for representing
sequential computations (one machine at a time is executed).

Contents. The aim of the paper is twofold. On the one side we want to present the class
of addressing machines and analyze their fundamental properties. This is done in Section 2,
where we describe their operational semantics in two different styles: as a term rewriting
system (small-step semantics) and as a set of inference rules (big-step semantics). The two
approaches are shown to be equivalent in case of addressing machines executing a terminating
program (Proposition 2.15). On the other side, we wish to construct a model of the untyped
λ-calculus based on addressing machines, and study the interpretations of λ-terms. For this
reason, we recall in the preliminary Section 1 the main facts about λ-calculus, its equational
theories and denotational models. It turns out that the set A of addresses, together with the
operation of application previously described, is not a combinatory algebra (nor, a fortiori,
a λ-model). In Section 3 we show that it can be turned into a combinatory algebra by
quotienting under an equivalence relation arising naturally from our small-step operational
semantics. Two addresses are equivalent if the corresponding machines are interconvertible
using a more liberal rewriting relation. From the confluence property enjoyed by this relation,
we infer the consistency of the algebra (Proposition 3.11). Unfortunately, the combinatory
algebra so-obtained is not yet a model of λ-calculus – there are still β-convertible λ-terms
having different interpretations. Section 5 is devoted to showing that a λ-model actually
arises when adding to the system a mild form of extensionality sharing similarities both with
the ω-rule in λ-calculus [1] and with the rule ζβ from combinatory logic [8]. The consistency
of the model follows from an analysis of the underlying ordinal. Interestingly, the model
itself is not extensional (Theorem 4.10).
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Disclaimer. A preliminary version of addressing machines first appeared in Della
Penna’s MSc thesis [5]. Other abstract machines having similar primitive instructions
are present in the literature, see e.g. [6]. The originality of our work mainly relies in the
construction of the λ-model (Section 5), and the associated proof of consistency.

1. Preliminaries

We present some notions that will be useful in the rest of the article.

1.1. The Lambda Calculus — Its Syntax. For the λ-calculus we mainly follow Baren-
dregt’s first book [2]. We consider fixed a countable set Var of variables denoted by x, y, z, . . .

Definition 1.1. The set Λ of λ-terms over Var is generated by the following simplified2

grammar (for x ∈ Var):
M,N,P,Q ::= x | λx.M |MN (Λ)

We assume that application is left-associative and has a higher precedence than λ-
abstraction. Therefore λx.λy.λz.xyz stands for (λx.(λy.(λz.(xy)z))). Moreover, we often
write λx1 . . . xn.M for λx1 . . . λxn.M .

Definition 1.2. Let M ∈ Λ.

(i) The set FV(M) of free variables of M is defined by induction:

FV(x) = {x},
FV(λx.P ) = FV(P )− {x},
FV(PQ) = FV(P ) ∪ FV(Q).

(ii) We say that M is closed, or a combinator, whenever FV(M) = ∅.
(iii) We let Λo = {M ∈ Λ | FV(M) = ∅} be the set of all combinators.

The variables occurring in M that are not free are called “bound”. From now on,
λ-terms are considered modulo α-conversion, namely, up to the renaming of bound variables
(see [2, §2.1]).

Notation 1.3. Concerning specific combinators we let:

I = λx.x, identity,
1 = λxy.xy, an η-expansion of the identity,
K = λxy.x, first projection,
F = λxy.y, second projection,
S = λxyz.xz(yz), S-combinator from Combinatory Logic,
∆ = λx.xx, self-application,
Ω = ∆∆, paradigmatic looping combinator,
Y = λf.(λx.f(xx))(λx.f(xx)), Curry’s fixed point combinator.

The λ-calculus is given by the set Λ endowed with reduction relations that turn it into
a higher-order term rewriting system.

We say that a relation R ⊆ Λ2 is compatible if it is compatible w.r.t. application and
λ-abstraction. This means that, for M,N,P ∈ Λ, if M RN holds then also MP RNP ,
PM RPN and λx.M R λx.N hold.

2This basically means that parentheses are left implicit.
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Definition 1.4. Define the following reduction relations.

(i) The β-reduction →β is the least compatible relation closed under the rule

(λx.M)N →M [N/x] (β)

where M [N/x] denotes the λ-term obtained by substituting N for all free occurrences
of x in M , subject to the usual proviso about renaming bound variables in M to avoid
capture of free variables in N .

(ii) Similarly, the η-reduction →η is the least compatible relation closed under the rule

λx.Mx→M, if x /∈ FV(M). (η)

(iii) Moreover, we define →βη = →β ∪ →η.
(iv) The relations→β,→η and→βη respectively generate the notions of multi-step reduction

�β,�η,�βη (resp. conversion =β,=η,=βη) by taking the reflexive and transitive
(and symmetric) closure.

Theorem 1.5 (Church-Rosser). The reduction relation �β(η) is confluent:

M �β(η) M1 ∧ M �β(η) M2 ⇒ ∃N ∈ Λ .M1 �β(η) N β(η)�M2

The λ-terms are classified into solvable and unsolvable, depending on their capability of
interaction with the environment.

Definition 1.6. A λ-term M is called solvable if (λ~x.M)~P =β I for some ~x and ~P ∈ Λ.
Otherwise M is called unsolvable.

We say that a λ-term M has a head normal form (hnf ) if it reduces to a λ-term of
shape λx1 . . . xn.yM1 · · ·Mk for some n, k ≥ 0. As shown by Wadsworth in [23], a λ-term
M is solvable if and only if M has a head normal form. The typical examples of unsolvable
λ-terms are Ω, λx.Ω and YI.

1.2. Lambda theories and lambda models. Conservative extensions of β-conversion
are known as “λ-theories” and have been extensively studied in the literature, see e.g. [2, 14,
9, 11, 15].

Definition 1.7.

(i) A λ-theory T is any congruence on Λ2 including β-conversion =β.
(ii) A λ-theory T is called :
• consistent, if T does not equate all λ-terms;
• inconsistent, if T is not consistent;
• extensional, if T contains the η-conversion =η as well;
• sensible, if T is consistent and equates all unsolvable λ-terms;
• semi-sensible, if T does not equate a solvable and an unsolvable.

We write T `M = N , or simply M =T N , whenever (M,N) ∈ T .

The set of all λ-theories, ordered by inclusion, forms a quite rich complete lattice.
We denote by λ (resp. λη) the smallest (resp. extensional) λ-theory. Both λ and λη are
consistent, semi-sensible but not sensible. A λ-theory can be introduced syntactically, or
semantically as the theory of a model. The model theory of λ-calculus is largely based on the
notion of combinatory algebras, and its variations (see, e.g., [13, 20, 16, 7] and [2, Ch. 5]).
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Definition 1.8.

(i) An applicative structure is given by A = (A, · ) where A is a set and (·) is a binary
operation on A called application. We represent application as juxtaposition and
we assume it is left-associative, e.g., abc = (a · b) · c. An equivalence ' on A is a
congruence if it is compatible w.r.t. application:

a ' a′ ∧ b ' b′ ⇒ ab ' a′b′

(ii) A combinatory algebra C = (C, ·,k, s) is an applicative structure for a signature with
two constants k, s, such that k 6= s and (∀x, y, z ∈ Var):

kxy = x, and sxyz = xz(yz).

We say that C is extensional if the following holds:

∀x.∀y.(∀z.(xz = yz)⇒ x = y)

(iii) Given a combinatory algebra C and a congruence ' on (C, · ), define:

C' = (C/', •',k', s')

where [a]' •' [b]' = [a · b]', k' = [k]' and s' = [s]'. It is easy to check that if k 6' s
then C' is a combinatory algebra.

We call k and s the basic combinators; the derived combinators i and ε are defined by
i = skk and ε = s(ki). It is not difficult to verify that every combinatory algebra satisfies
the identities ix = x and εxy = xy.

It is well-known that combinatory algebras are models of combinatory logic. A λ-term
M can be interpreted in any combinatory algebra C by first translating M into a term X
of combinatory logic, written (M)CL = X, and then interpreting the latter in C. However,
there might be β-convertible λ-terms M,N that are interpreted as distinguished elements
of C. For this reason, not all combinatory algebras are actually models of λ-calculus.

The axioms of an elementary subclass of combinatory algebras, called λ-models, were ex-
pressly chosen to make coherent the definition of interpretation of λ-terms (see [2, Def. 5.2.1]).
The Meyer-Scott axiom is the most important axiom in the definition of a λ-model. In the
first-order language of combinatory algebras it becomes:

∀x.∀y . (∀z . (xz = yz)⇒ εx = εy).

The combinator ε becomes an inner choice operator, that makes coherent the interpretation
of an abstraction λ-term.

1.3. Syntactic λ-models. The definition of a λ-model is difficult to handle in practice
because the five Curry’s axioms [2, Thm. 5.2.5] are complicated to verify by hand. To prove
that a certain combinatory algebra is actually a λ-model, it is preferable to exploit Hindley’s
(equivalent) notion of a syntactic λ-model. See, e.g., [13].

The definition of syntactic λ-model in [13] is general enough to interpret λ-terms possibly
containing constants â representing elements a of a set A. We follow that tradition and
denote by Λ(A) the set of all λ-terms possibly containing constants from A, and we call them

λA-terms. For instance, given a ∈ A, we have M = I(λx.xâ)b̂ ∈ Λ(A). All notions, notations
and results from Subsection 1.1 extend to λA-terms without any problem. In particular,
substitution is extended by setting â[N/x] = â, for all a ∈ A and N ∈ Λ(A). As an example,

the λA-term M above reduces as follows: M →β (λx.xâ)b̂ →β b̂â ∈ Λ(A). Notice that
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substitutions of variables by constants always permute, namely M [â/x][b̂/y] = M [b̂/y][â/x],
for all a, b ∈ A.

Given a set A, a valuation in A is any map ρ : Var→ A. We write ValA for the set of
all valuations in A. Given ρ ∈ ValA and a ∈ A, define:

(ρ[x := a])(y) =

{
a, if x = y,

ρ(y), otherwise.

Definition 1.9. A syntactic λ-model is a tuple S = (A, ·, [[−]]−) such that (A, ·) is an
applicative structure and the interpretation function

[[−]]− : Λ(A)×ValA → A

satisfies

(i) [[x]]ρ = ρ(x), for all x ∈ Var;
(ii) [[â]]ρ = a, for all a ∈ A;
(iii) [[PQ]]ρ = [[P ]]ρ · [[Q]]ρ;
(iv) [[λx.P ]]ρ · a = [[P ]]ρ[x:=a], for all a ∈ A;
(v) ∀x ∈ FV(M) . ρ(x) = ρ′(x) ⇒ [[M ]]ρ = [[M ]]ρ′ ;

(vi) ∀a ∈ A . [[M ]]ρ[x:=a] = [[N ]]ρ[x:=a] ⇒ [[λx.M ]]ρ = [[λx.N ]]ρ.

If M ∈ Λo, then [[M ]]ρ is independent from the valuation ρ and we simply write [[M ]].
We write S |= M = N if and only if ∀ρ ∈ ValA . [[M ]]ρ = [[N ]]ρ holds. It is easy to check

that λ `M = N entails S |= M = N .

The λ-theory induced by S is defined as follows:

Th(S) = {M = N | S |= M = N}.
The precise correspondence between λ-models and syntactic λ-models is described in [2],
Theorem 5.3.6. For our purposes, it is enough to know that if S is a syntactic λ-model then
CS = (A, ·, [[K]], [[S]]) is a λ-model. We say that S is extensional whenever CS is extensional
as a combinatory algebra. This holds iff Th(S) is extensional iff S |= I = 1.

2. Addressing Machines

In this section we introduce the notion of an Addressing Machine. We first provide some
intuitions, then we proceed with the formal description of such machines. The general
structure of an addressing machine is composed by two substructures:

• the internal components, organized as follows:
– a finite number of internal registers;
– an internal program.
• the input-tape.

As the name suggest, the addressing mechanism is central in this formalism. Each addressing
machine is associated with an address, receives a list of addresses in its input-tape and is able
to transfer the computation to another machine by calling its address, possibly extending
its input-tape.
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2.1. Tapes, Registers and Programs. We consider fixed a countable set A of addresses,
together with a constant ∅ /∈ A that we call “null” and that corresponds to an uninitialized
register.

Definition 2.1. We let A∅ = A ∪ {∅}.
(i) An A-valued tape T is a finite ordered list of addresses T = [a1, . . . , an] with ai ∈ A

for all i ≤ n. We write TA for the set of all A-valued tapes.
(ii) Let a ∈ A and T, T ′ ∈ TA. We denote by a :: T the tape having a as first element and

T as tail. We write T @T ′ for the concatenation of T and T ′, which is an A-valued
tape itself.

(iii) Given an index i ∈ N, an A∅-valued register Ri is a memory-cell capable of storing
either ∅ or an address a ∈ A.

(iv) Given A∅-valued registers R0, . . . , Rn for n ≥ 0, an address a ∈ A and an index i ∈ N,

we write ~R[Ri := a] for the registers ~R where the value of Ri has been updated:

R0, . . . , Ri−1, a, Ri+1, . . . , Rn

Notice that, whenever i > n, we assume that ~R[Ri := a] = ~R.

Addressing machines can be seen as having a RISC architecture, since their internal
program is composed by only three instructions. We describe the effects of these basic
operations on a machine having r internal registers R0, . . . , Rr−1. Therefore, when we say
“if an internal register Ri exists” we mean that the condition 0 ≤ i < r is satisfied. In the
following, i, j, k ∈ N correspond to indices of internal registers:

• Load i: corresponds to the action of reading the first element a from the input-tape T ,
and writing a on the internal register Ri.

The precondition to execute the operation is that the input-tape is non-empty, namely
T = a :: T ′; the postconditions are that Ri, if it exists, contains the address a and the
input-tape of the machine becomes T ′. If Ri does not exist, i.e. when i ≥ r, the content

of ~R is unchanged.
• k � App(i, j) : corresponds to the action of reading the contents of Ri and Rj , calling an

external application map on the corresponding addresses a1, a2, and writing the result in
the internal register Rk, if it exists.

The precondition is that Ri, Rj exist and are initialized, i.e. Ri, Rj 6= ∅. The postcondition
is that Rk, if it exists, contains the address of the machine of address a1 whose input-tape

has been extended with a2. Otherwise the content of ~R remains unchanged.
• Call i : transfers the computation to the machine whose address is stored in Ri.

The precondition is that Ri exists and is initialized. The postcondition is that the machine
having the address stored in Ri is executed.

In the following we define what is a syntactically valid program of this language, and
introduce a decision procedure for verifying that the preconditions of each instruction are
satisfied when it is executed. As we will see in Lemma 2.5, these properties are decidable
and statically verifiable. As a consequence, addressing machines will never give rise to an
error at run-time.



INSTRUCTIONS 9

Definition 2.2.

(i) A program P is a finite list of instructions generated by the following grammar (ε
represents the empty string, i, j, k ∈ N):

P ::= Load i; P | A
A ::= k � App(i, j); A | C
C ::= Call i | ε

In other words a program starts with a list of Load’s, continues with a list of App’s
and possibly ends with a Call. Each of these lists may be empty, in particular the
empty-program ε can be generated.

(ii) Given a program P , an r ∈ N, and a set I ⊆ {0, . . . , r − 1} of indices, define the
relation I |=r P as the least relation closed under the rules:

I |=r ε

I ∪ {i} |=r P i < r

I |=r Load i; P

I |=r P i ≥ r
I |=r Load i; P

I ∪ {k} |=r A i, j ∈ I
I |=r k � App(i, j); A

i ∈ I
I |=r Call i

(iii) Let r ∈ N and ~R = R0, . . . , Rr−1 be A∅-valued registers. We say that a program P is

valid with respect to ~R whenever R |=r P holds for

R = {i | Ri 6= ∅ ∧ 0 ≤ i < r} (2.1)

Examples 2.3. Consider addresses a1 = 0x00A375, a2 = 0x010FC2 ∈ A, as well as A∅-
valued registers R0 = ∅, R1 = a1, R2 = a2, R3 = ∅ (so r = 4). In this example, the set R of
initialized registers as defined in 2.1 is R = {1, 2}.

Pn Program R |=4 Pn
P0 = Load 0; 2 � App(0, 1); Call 2 X
P1 = 0 � App(1, 2); 3 � App(0, 2); Call 3 X
P2 = Load 5; Load 0; Call 0 X
P3 = Load 5; 5 � App(1, 2); Call 2 X
P4 = 2 � App(0, 1); Call 2 7

P5 = Load 0; Call 3 7

P6 = 3 � App(1, 2); Call 5 7

Above we use “5” as an index of an unexisting register. Notice that a program trying to
update an unexisting register remains valid (see P2, P3). On the contrary, an attempt at
reading the content of an uninitialized (P4, P5) or unexisting (P6) register invalidates the
whole program.

Notation 2.4. We use “−” to indicate an arbitrary index of an unexisting register. E.g.,
the program P6 will be written 3 � App(1, 2); Call −. We also write Load (i1, . . . , ik) as
an abbreviation for Load i1; · · · ; Load ik; . By employing all these notations, P2 can be
written as P2 = Load (−, 0); Call 0.

Lemma 2.5. For all A∅-valued registers ~R and program P it is decidable whether P is valid

with respect to ~R.

Proof. First, notice that the grammar in Definition 2.2(i) is right-linear, therefore it is
decidable whether P is a production. Also, r ∈ N therefore R is finite and, since P is also
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finite, the set R remains finite during the execution of R |=r P . Decidability follows from
these properties, together with the fact that the first instruction of P uniquely determines
which rule from Definition 2.2(ii) should be applied (and these rules are exhaustive).

2.2. Addressing machines and their operational semantics. Everything is in place
to introduce the definition of an addressing machine. Thanks to Lemma 2.5 it is reasonable
to require that an addressing machine has a valid internal program.

Definition 2.6.

(i) An addressing machine M (with r registers) over A is given by a tuple:

M = 〈~R, P, T 〉
where:
• ~R = R0, . . . , Rr−1 are A∅-valued registers;

• P is a program valid w.r.t. ~R;
• T is an A-valued (input) tape.

(ii) We write M.r for the number of registers of M, M.Ri for its i-th register, M.P for the
associated program and finally M.T for its input tape.

(iii) We say that an addressing machine M as above is stuck, in symbols stuck(M), whenever
its program has shape M.P = Load i; P but its input-tape is empty M.T = []. Otherwise,
M is not stuck: ¬stuck(M).

(iv) The set of all addressing machines over A will be denoted by MA.

The machines below will be used as running examples in the next sections. Intuitively,
the addressing machines K,S, I,D,O mimic the behavior of the λ-terms K,S, I,∆ and Ω,
respectively. For writing their programs, we adopt the conventions introduced in Notation 2.4.

Examples 2.7. The following are addressing machines.

(i) For every n ∈ N, define an addressing machine with n+ 1 registers as:

xn = 〈R0 . . . , Rn, ε, []〉 where ~R := ~∅
We call x0, x1, x2, . . . indeterminate machines because they share some analogies with
variables (they can be used as place holders).

(ii) The addressing machine K with 1 register R0 is defined by:

K = 〈∅, Load (0,−); Call 0, []〉
(iii) The addressing machine S with 3 registers is defined by:

S = 〈∅,∅,∅, P, []〉, where:
S.P = Load (0, 1, 2); 0 � App(0, 2);

1 � App(1, 2); 2 � App(0, 1); Call 2

(iv) Assume that k ∈ A represents the address associated with the addressing machine K.
Define the addressing machine I as I = 〈∅3,S.P, [k, k]〉.

(v) The addressing machine D with 1 register is given by:

D = 〈∅, Load 0; 0 � App(0, 0); Call 0, []〉
(vi) Assume that d ∈ A represents the address of the addressing machine D. Define the

addressing machine O by setting O = 〈D. ~R,D.P, [d]〉.
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We now enter into the details of the addressing mechanism which constitutes the core
of this formalism.

Definition 2.8. Fix a bijective map # :MA → A from the set of all addressing machines
over A to the set A of addresses. We call the map #(·) an Address Table Function (ATF).

(i) Given M ∈MA, we say that #M is the address of M.
(ii) Given an address a ∈ A, we write #−1(a) for the unique machine having address a.

In other words, we have #−1(a) = M ⇐⇒ #M = a.
(iii) Given M ∈MA and T ′ ∈ TA, we write M@T ′ for the machine

〈M. ~R,M.P,M.T @T ′ 〉
(iv) Define the application map (·) : A× A→ A as follows

a · b = #(#−1(a) @ [b] )

That is, the application of a to b is the unique address c of the addressing machine
obtained by adding b at the end of the input tape of the addressing machine #−1(a).

Observe that, in a certain sense, an ATF share analogies with the Domain Name Service
(DNS) protocol implemented in the TCP/IP stack. Indeed:

(1) The DNS takes as input a logical description (a string) of, say, a server and returns, via
a suitable table, the associated IP address;

(2) an ATF takes as input a structure (a tuple) representing an addressing machine and
returns its (unique) address.

Definition 2.9 (Small step operational semantics). Define a reduction strategy on addressing
machines representing one head-step of computation

→h ⊆MA →MA

as the least relation closed under the following rules:

〈~R, Load i;P, a :: T 〉 →h 〈~R[Ri := a], P, T 〉,
〈~R, k � App(i, j);P, T 〉 →h 〈~R[Rk := Ri ·Rj ], P, T 〉,
〈~R, Call i, T 〉 →h #−1(Ri) @T .

As usual, we write �h for the transitive-reflexive closure of →h. We say that an addressing
machine M is in a final state if there is no N such that M→h N. We write M�h stuck(N)
whenever M �h N and stuck(N) hold. When N is not important, we simply write M �h

stuck(). Similarly, M 6�h stuck() means that M never reduces to a stuck addressing machine.

Remark 2.10.

(i) It is easy to check that the operational semantics defined above is independent from
the choice of the ATF #(−) under consideration.

(ii) Addressing machines in a final state are either of the form 〈~R, ε, T 〉 or 〈~R, Load i;P, []〉,
and in the latter case they are stuck.

Lemma 2.11. The reduction strategy →h enjoys the following properties:

(i) Determinism: M→h N1 ∧ M→h N2 ⇒ N1 = N2.
(ii) Closure under application: ∀a ∈ A .M→h N ⇒ M@ [a] →h N@ [a] .
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Proof. (i) Since the applicable rule from Definition 2.9, if any, is uniquely determined by
the first instruction on M.P and its input-tape M.T .

(ii) Easy. By cases on the rule applied for deriving M→h N.

Examples 2.12. For brevity, we sometimes display only the first instruction of the internal
program. Take a, b, c ∈ A.

(i) We show that K behaves as the first projection:

K@ [a, b] = 〈∅, Load (0,−); Call 0, [a, b]〉
→h 〈a, Load −; Call 0, [b]〉 →h 〈a, Call 0, []〉 →h #−1(a).

(ii) We verify that S behaves as the combinator S from combinatory logic:

S@ [a, b, c] = 〈∅3, Load (0, 1, 2); · · · , [a, b, c]〉
�h 〈a, b, c, 0 � App(0, 2); · · · , []〉
→h 〈a · c, b, c, 1 � App(1, 2); · · · , []〉
→h 〈a · c, b · c, c, 2 � App(0, 1); · · · , []〉
→h 〈a · c, b · c, (a · c) · (b · c), Call 2; · · · , []〉
→h #−1((a · c) · (b · c))

(iii) As expected, I = S@ [#K,#K] behaves as the identity:

I@ [a] = 〈∅3, Load (0, 1, 2); · · · , [#K,#K, a]〉
�h 〈#K,#K, a, 0 � App(0, 2); · · · , []〉
→h 〈#K · a,#K, a, 1 � App(1, 2); · · · , []〉
→h 〈#K · a,#K · a, a, 2 � App(0, 1); · · · , []〉
→h 〈#K · a,#K · a,#K · a · (#K · a), Call 2; []〉
→h K@ [a,#K · a]
= 〈∅, Load (0,−); · · · , [a,#K · a]〉
�h 〈a,#K · a, Call 0, []〉 →h #−1(a)

(iv) Finally, we check that O gives rise to an infinite reduction sequence:

O = 〈∅, Load 0; 0 � App(0, 0); Call 0, [#D]〉
→h 〈#D, 0 � App(0, 0); Call 0, []〉
→h 〈#(D@ [#D] ), Call 0, []〉 →h D@ [#D] = O�h · · ·

Similarly, we can define a big-step operational semantics relating an addressing machine
M with its final result (if any).

Definition 2.13 (Big-step semantics). Define M ⇓ V, where M,V ∈MA and V is in a final
state, as the least relation closed under the following rules:

M.P = Load i;P ′ M.T = []

M ⇓ M
(Stuck) M.P = ε

M ⇓ M
(End)

M.P = Load i;P ′ M.T = a :: T ′ 〈M. ~R[Ri := a], P ′, T ′〉 ⇓ V

M ⇓ V
(Load)

M.P = k � App(i, j);P ′ a = M.Ri ·M.Rj 〈M. ~R[Rk := a],M.P ′,M.T 〉 ⇓ V

M ⇓ V
(App)

M.P = Call i M′ = #−1(M.Ri) M′@ [M.T ] ⇓ V

M ⇓ V
(Call)
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Example 2.14. Recall that K.P = Load (0,−); Call 0. Notice that we cannot prove
K@ [a, b] ⇓ #−1(a) for an arbitrary a ∈ A, as we need to ensure that the resulting machine is
in a final state. For this reason, we will use indeterminate machines x1, x2 from Example 2.7(i).

K.P = Load 0; P ′;

P ′ = Load −;P ′′
P ′′ = Call 0 R0 = #x1

(End)

x1 ⇓ x1

〈#x1, P
′′, []〉 ⇓ x1

〈#x1, P
′, [#x2]〉 ⇓ x1

K@ [#x1,#x2] ⇓ x1

We now show that the two operational semantics are equivalent on terminating compu-
tations.

Proposition 2.15. For M,N ∈MA, the following are equivalent:

(1) M�h N 6→h;
(2) M ⇓ N.

Proof. (1 ⇒ 2) By induction on the length n of the reduction M = M1 →h M2 →h · · · →h

Mn = N 6→h.
Case n = 0. By assumption N is in a final state. By Remark 2.10(ii), it is either of the

form N = 〈~R, ε, T 〉 or it is stuck N = 〈~R, Load i;P, []〉. In the former case we apply (End),
in the latter (Stuck).

Case n > 1. Since M1 →h M2, we have M1.P 6= ε. As the length of M2 �h N is n− 1,
by induction hypothesis we have a derivation of M2 ⇓ N. Depending on the first instruction
in M1.P , we use this derivation to apply the homonymous rule (Load), (App) or (Call) and
derive M ⇓ N.

(2 ⇒ 1) By induction on a derivation of M ⇓ N.
Cases (Stuck) or (End). Then, M�h M = N by reflexivity of �h.

Case (Load), i.e. M.P = Load i;P ′. In this case, we have that M →h 〈M. ~R[Ri :=
a], P ′,M.T 〉�h N, by induction hypothesis.

Case (App), i.e. M.P = k � App(i, j);P ′. Let us call a = M.Rj ·M.Rk. Then we have

M→h 〈M. ~R[Rk := a], P ′,M.T 〉�h N, by induction hypothesis.
Case (Call), i.e. M.P = Call i. In this case M→h M′@ [M.T ] for M′ = #−1(M.Ri). By

induction hypothesis M′@ [M.T ] �h N, whence M�h N.

3. Combinatory Algebras via Evaluation Equivalence

In this section we show how to construct a combinatory algebra based on the addressing
machines formalism. Recall that the addressing machines K and S have been defined in
Example 2.7. Consider the algebraic structure

A = (A,#K,#S, · )
Since the application (·) is total, A is an applicative structure. However, it is not a

combinatory algebra. For instance, the λA-term Kâb̂ is interpreted as the address of the
machine K@ [a, b] , which is a priori different from the address “a” because no computation
is involved. Therefore, we need to quotient the algebra A by an equivalence relation equating
at least all addresses corresponding to the same machine at different stages of the execution.



14 G. DELLA PENNA, B. INTRIGILA, AND G. MANZONETTO

Definition 3.1. Every binary relation ≡R⊆M2
A on addressing machines induces a relation

'R⊆ A2 defined by
a 'R b ⇐⇒ #−1(a) ≡R #−1(b)

which is then extended to:

(i) A∅-valued registers:

R 'R R′ ⇐⇒ (R = ∅ = R′) ∨ (R = a 'R b = R′);

(ii) Tuples:

a1, . . . , an 'R b1, . . . , bm ⇐⇒ (n = m) ∧ (∀i ∈ {1, . . . , n} . ai 'R bi);

(This also applies to tuples of A∅-valued registers ~R 'R
~R′.)

(iii) A-valued tapes:

[a1, . . . , an] 'R [b1, . . . , bm] ⇐⇒ ~a 'R
~b (seen as tuples).

Moreover, given two machines M,N ∈MA, we define =R ⊆M2
A by

M =R N ⇐⇒ (M. ~R 'R N. ~R) ∧ (M.P = N.P ) ∧ (M.T 'R N.T )

In particular, M =R N entails that M and N share the same internal program, the
number of internal registers, and the length of their input tape.

Lemma 3.2. If the relation ≡R is an equivalence then so are 'R and =R.

Proof. Easy.

Definition 3.3. Define ≡A ⊆M2
A as the least equivalence closed under:

M�h Z =A N
M ≡A N

(�A)

We say that M,N are evaluation equivalent whenever M ≡A N. Reflexivity can be
treated as a special case of the rule (�A) since M�h M =A M. Moreover, it follows from
the definition that =A⊆ ≡A and that M�h N entails M ≡A N.

Examples 3.4. From the calculations in Examples 2.12, it follows that

K@ [#x1,#x2] ≡A x1,
S@ [#x1,#x2,#x3] ≡A (x1 @ [#x3] ) @ [#(x2 @ [#x3] )] .

Lemma 3.5. The relation 'A is a congruence on A = (A,#K,#S, · ).

Proof. By definition ≡A is an equivalence, whence so is 'A by Lemma 3.2. Let us check that
'A is compatible w.r.t. (·). Consider a 'A a

′ and b 'A b
′. Call M = #−1(a) and N = #−1(b)

and proceed by induction on a derivation of M ≡A N, splitting into cases depending on the
last applied rule.

(�A) By definition, there exists Z ∈MA such that M�h Z =A N. By Lemma 2.11(ii),
M@ [b] �h Z@ [b] =A N@ [b′] whence a · b 'A a

′ · b′.
(Transitivity) and (Symmetry) follow from the induction hypothesis.

In order to prove that the congruence 'A is non-trivial, we are going to characterize the
equivalence M ≡A N it in terms of confluent reductions. For this purpose, we extend →h in
such a way that reductions are also possible within registers and elements of the input-tape
of an addressing machine.
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Definition 3.6. Define the reduction relation →c⊆ M2
A as the least relation containing

→h and closed under the following rules:

Ri = a ∈ A 0 ≤ i < r #−1(a)→c M

〈R0, . . . , Rr−1, P, T 〉 →c 〈~R[Ri := #M], P, T 〉
(→R

i )

0 ≤ i ≤ n #−1(ai)→c M

〈~R, P, [a0, . . . , an]〉 →c 〈~R, P, [a0, . . . , ai−1,#M, ai+1, . . . , an]〉
(→T

i )

We write M→i N if N is obtained from M by directly applying one of the above rules — this
is called an inner step of computation. The transitive and reflexive closure of →c and →i

are denoted by �c and �i, respectively.

Lemma 3.7 (Postponement of inner steps).
For M,N,N′ ∈MA, if M→i N→h N′ then there exists M′ ∈MA such that M→h M′ �i N

′.
In diagrammatic form:

M
i //

h
��

N

h
��

M′
i // // N′

Proof. By cases analysis over M →i N. The only interesting case is when the contracted
redex is duplicated in N→h N′, namely:

Case M = 〈~R[Ri := a], P, T 〉, N = 〈~R[Ri := b], P, T 〉 with M.P = N.P = k � App(i, j);P ′

and #−1(a) →c #−1(b). Assume i 6= k < M.r and i = j, the other cases being easier. In

this case M′ = 〈~R[Ri := a][Rk := a · a], P, T 〉, therefore we need 3 inner steps to close the
diagram:

M′ →i 〈~R[Ri := b][Rk := a · a], P, T 〉
→i 〈~R[Ri := b][Rk := b · a], P, T 〉
→i 〈~R[Ri := b][Rk := b · b], P, T 〉 = N′.

Morally, the term rewriting system (MA,→c) is orthogonal because (i) the reduction
rules defining →c are non-overlapping as →h is deterministic, (→R

i ) reduces a register and

(→T
i ) reduces one element of the tape; (ii) the terms on the left-hand side of the arrow are

linear, as no equality among subterms is required. Now, it is well-known that orthogonal
TRS are confluent, but one cannot apply [21, Thm.4.3.4] directly since we are not exactly
dealing with first-order terms (because of the presence of the encoding).

Proposition 3.8. The reduction →c is confluent.

Proof sketch. The Parallel Moves Lemma, which is the key property for proving [21,
Thm. 4.3.4] generalizes easily. The rest of the proof follows.

Lemma 3.9. Let M,N ∈MA. Then M�c N entails M ≡A N.

Proof. By induction on the length n of the reduction M�c N, the case n = 0 being trivial
(by reflexivity). Assume n > 0 and split into cases depending on the rule applied in the first
step M→c M

′. If it is a head-step, then we have M→h M′ =A M′ by reflexivity of =A. If it
is an inner-step, it follows by induction hypothesis that M =A M′, so we conclude because
=A⊆ ≡A.
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Theorem 3.10. For M,N ∈MA, we have:

M ≡A N ⇐⇒ ∃Z ∈MA .M�c Z c� N

Proof. (⇒) By induction on a derivation of M ≡A N.

(�A) Assume that M�h Z =A N. From Z =A N we get that Z.r = N.r, Z. ~R 'A N. ~R,
Z.P = N.P and Z.T 'A N.T . Note that Z.Ri = ∅ iff N.Ri = ∅. Let us call R the
set of indices i of, say, Z such that Z.Ri 6= ∅. By assumption, for every i ∈ R, we
have Z.Ri = ai,N.Ri = a′i for ai 'A a′i. Equivalently, #−1(ai) ≡A #−1(a′i) holds and its
derivation is smaller than M ≡A N. By induction hypothesis, they have a common reduct
#−1(ai)�c Xi c� #−1(a′i). Similarly, calling Z.T = [b1, . . . , bn] and N.T = [b′1, . . . , b

′
m] we

must have m = n and bj 'A b′j whence the induction hypothesis gives a common reduct

#−1(bj)�c Yj c� #−1(b′j). Putting all reductions together, we conclude:

M�h Z�c 〈Z. ~R[Ri := #Xi]i∈R,Z.P, [#Y1, . . . ,#Yn]〉 c� N

(Transitivity) By induction hypothesis and confluence (Proposition 3.8).
(Symmetry) Straightforward from the induction hypothesis.
(⇐) By Lemma 3.9 we get M ≡A Z and N ≡A Z, so we conclude by symmetry and

transitivity.

Proposition 3.11. A'A is a non-extensional combinatory algebra.

Proof. From the calculations in Example 3.4, it follows that #K ·a ·b 'A a and #S ·a ·b ·c 'A
(a · c) · (b · c) hold, for all a, b, c ∈ A. Notice that both addressing machines K and S are
stuck, and K 6=A S since, e.g., K.r 6= S.r. By Theorem 3.10, we get #K 6≡A #S, whence A'A
is a combinatory algebra.

To check that it is not extensional, consider a different implementation of the combinator
K, namely K′ = 〈∅,∅, Load (0, 1); Call 0, []〉. For all a, b ∈ A, easy calculations give
#K′ ·a ·b 'A a. Thus, for all b ∈ A, we have #K ·a ·b 'A a 'A #K′ ·a ·b, but #K ·a 6≡A #K′ ·a.
Also in this case, the two addressing machines are both stuck and #K · a 6=A #K′ · a, because
1 = (K@ [a] ).r 6= (K′@ [a] ).r = 2. We conclude by Theorem 3.10.

Lemma 3.12. The combinatory algebra A'A is not a λ-model.

Proof. We need to find M,N ∈ Λ satisfying M =β N , while A'A 6|= M = N . Take
M = λz.(λx.x)z =CL S(KI)I and λx.x =CL I where I = SKK.

Recall that I = S@ [#K,#K] . Easy calculations give:

S@ [#K ·#I,#I] = 〈∅,∅,∅, Load 0; · · · , [#K ·#I,#I]〉
→h 〈#K ·#I,∅,∅, Load 1; · · · , [#I]〉
→h stuck(〈#K ·#I,#I,∅, Load 2; · · · , []〉)

Similarly, I = S@ [#K,#K] �h stuck(〈#K,#K,∅, Load 2; · · · , []〉). These two machines are
both stuck and different modulo =A since, e.g., the contents of their register R1 are #I and
#K respectively, and it is easy to check that #I 6'A #K. By Theorem 3.10, we conclude
that #I 6'A #S ·#K ·#K.
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4. Lambda Models via Applicative Equivalences

In the previous section we have seen that the equivalence 'A, thus ≡A, is too weak to give
rise to a model of λ-calculus (Lemma 3.12). The main problem is that a λ-term λx.M is
represented as an addressing machine performing a “Load” (to read x from the tape) before
evaluating the addressing machine corresponding to M . Since nothing is applied, the tape
is empty and the machine gets stuck thus preventing the evaluation of the subterm M . In
order to construct a λ-model we introduce the equivalence 'æ

A below.

Definition 4.1. Define the relation ≡æ
A as the least equivalence satisfying:

M�h Z =æ
A N

M ≡æ
A N

(�æ
A)

M�h stuck(M′) N�h stuck(N′) ∀a ∈ A .M@ [a] ≡æ
A N@ [a]

M ≡æ
A N

(æ)

We say that M and N are applicatively equivalent whenever M ≡æ
A N. Recall that 'æ

A and
=æ

A are defined in terms of ≡æ
A as described in Definition 3.1. Also in this case, it is easy to

check that =æ
A ⊆ ≡æ

A holds.

Remark 4.2. The rule (æ) shares similarities with the (ω)-rule in λ-calculus [2, Def. 4.1.10],
although being more restricted as only applicable to addressing machine that eventually
become stuck. In particular, both rules have countably many premises, therefore a derivation
of M ≡æ

A N is a well-founded ω-branching tree (in particular, the tree is countable and there
are no infinite paths). Techniques for performing induction “on the length of a derivation” in
this kind of systems are well-established, see e.g. [1, 10]. More details about the underlying
ordinals will be given in Section 5.

Examples 4.3. Convince yourself of the following facts.

(i) As seen in the proof of Lemma 3.12, I and S@ [#K ·#I,#K] both reduce to stuck
machines. For all a ∈ A, we have that I@ [a] �h #−1(a) h� S@ [#K ·#I,#K, a] . By
(æ), they are applicatively equivalent.

(ii) Since indeterminate machines xk are not stuck, xm ≡æ
A xn entails m = n.

(iii) Let 1 = 〈∅2, Load (0, 1); 0 � App(0, 1); Call 0, []〉. It is easy to check that, for all a, b ∈
A, we have 1@ [a, b] �h #−1(a) @ [b] h� I@ [a, b] . However, since I@ [#xn] �h xn
and ¬stuck(xn), one cannot apply (æ), whence (intuitively) they are not applicatively
equivalent: I 6≡æ

A 1.

Actually the inequalities claimed in examples (ii)-(iii) above, i.e. xm 6≡æ
A xn for m 6= n

and I 6≡æ
A 1, are difficult to prove formally (see Lemma 4.5(ii)).

Lemma 4.4. Let M,N ∈MA and a, b ∈ A.

(i) If M ≡æ
A N then M@ [a] ≡æ

A N@ [a] .
(ii) The following rule is derivable:

M ≡æ
A N a 'æ

A b

M@ [a] ≡æ
A N@ [b]

(cong)

(iii) Therefore, 'æ
A is a congruence on A = (A, ·,#K,#S).

Proof. (i) By induction on a proof of M ≡æ
A N. Possible cases are:
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Case (�æ
A). If M�h Z =æ

A N then M@ [a] �h Z@ [a] =æ
A N@ [a] , by Lemma 2.11(ii)

and the definition of =æ
A.

Case (æ). Trivial, as the thesis is a premise of this rule.
(Symmetry) and (Transitivity) follow from the induction hypothesis.
(ii) Assume that M ≡æ

A N and a 'æ
A b. Then, we have:

M@ [a] =æ
A M@ [b] , by reflexivity and a 'æ

A b,
≡æ

A N@ [b] , by (i).

So we conclude by transitivity.
(iii) By Lemma 3.2 'A is an equivalence, by (ii) a congruence.

We need to show that the congruence 'æ
A is non-trivial, and that the addresses of

#K,#S remain distinguished modulo 'æ
A.

Lemma 4.5. Let M,N ∈MA.

(i) If M ≡A N then M ≡æ
A N.

(ii) If M ≡æ
A N and M�h xn then N�h xn.

(iii) Hence, the equivalence relation 'æ
A is non-trivial.

(iv) In particular, #K 6'æ
A #S.

Proof. (i) Easy.
(ii) This proof is the topic of Section 5.
(iii) By (i), the relation is non-empty. By (ii), xi ≡æ

A xj if and only if i = j, whence there
are infinitely many distinguished equivalence classes.

(iv) From Example 2.12, we get:

K@ [#K,#K,#x1] �h 〈#x1, Load −; Call 0, []〉;
S@ [#K,#K,#x1] �h x1.

For these machines to be ≡æ
A-equivalent, the former machine should reduce to x1, by (ii),

which is impossible since 〈#x1, Load −; Call 0, []〉 is stuck.

4.1. Constructing a λ-model. We define an interpretation transforming a λ-term with
free variables x1, . . . , xn into an addressing machine reading the values of ~x from its tape.
The definition is inspired from the well-known categorical interpretation of λ-calculus into
a reflexive object of a cartesian closed category. In particular, variables are interpreted as
projections. See, e.g., [13] or [20] for more details.

Definition 4.6 (Auxiliary interpretation). Let M ∈ Λ(A) and x1, . . . , xn be such that
FV(M) ⊆ ~x. Define | − |~x : Λ(A)→MA by induction as follows:

• |xi|~x = Prni ;
• |â|~x = Consna , for a ∈ A;
• |MN |~x = 〈∅n,#|M |~x,#|N |~x,∅, Applyn, []〉;
• |λy.M |~x = |M |~x,y, assuming wlog that y /∈ ~x;

where

Prni = 〈∅, (Load −)i−1; Load 0; (Load −)n−i−1; Call 0, []〉,
Consna = 〈a, (Load −)n; Call 0, []〉,
Applyn = Load (0, . . . , n− 1);n � App(n, 0); · · · ;n � App(n, n− 1);

n+ 1 � App(n+ 1, 0); · · · ;n+ 1 � App(n+ 1, n− 1);
n+ 2 � App(n, n+ 1); Call n+ 2.
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Remark 4.7. Let n ∈ N, and T = [a1, . . . , an] ∈ TA. We have:

(i) Prni @T �h #−1(ai), for all i (1 ≤ i ≤ n);
(ii) Consnb @T �h #−1(b), for all b ∈ A;
(iii) 〈∅n,#M,#N,∅, Applyn, T 〉�h (M@T ) @ [#(N@T )] .

From now on, whenever writing |M |~x, we assume that FV(M) ⊆ ~x. The following are
basic properties of the interpretation map defined above.

Lemma 4.8. Let M ∈ Λ(A), n ∈ N, ~x = x1, . . . , xn and ~a = a1, . . . , an ∈ A.

(i) |M |~x = 〈~R, Load (i1, . . . , in);P, []〉 for some A∅-valued registers ~R, program P and
indices ij ∈ N.

(ii) If m < n then |M |~x @ [a1, . . . , am] �h stuck(N) for some N ∈MA.

(iii) For all b ∈ A, we have |M |y,~x @ [b] ≡æ
A |M [b̂/y]|~x.

(iv) In particular, if y /∈ FV(M) then |M |y,~x @ [b] ≡æ
A |M |~x.

(v) |M |~x @ [~a ] ≡æ
A |M |xσ(1),...,xσ(n)

@ [aσ(1), . . . , aσ(n)] for all permutations σ.

Proof of Lemma 4.8. (i) By a straightforward induction on M .
(ii) It follows from (i).
(iii) We proceed by structural induction on M . By (ii), if ~x 6= ∅ then both addressing

machines reduce to stuck ones, so we can test the applicative equivalence by applying an
arbitrary ~a and conclude using (æ) n-times.

Case M = ĉ. Then c[b̂/y] = c, and we have:

|ĉ|y,~x @ [b,~a] = Consn+1
c @ [b,~a] �h #−1(c) h� Consnc @ [~a] .

Case M = xi for some i (1 ≤ i ≤ n). Then xi[b̂/y] = xi and

|xi|y,~x @ [b,~a] = Prn+1
i+1 @ [b,~a] �h #−1(ai) h� Prni @ [~a] = |xi|~x @ [~a] .

Case M = y. Then y[b̂/y] = b̂ and we have:

|y|y,~x @ [b,~a ] = Prn+1
1 @ [b,~a ] �h #−1(b) h� Consnb @ [~a ] = |b̂|~x @ [~a ] .

Case M = PQ. Then (PQ)[b̂/y] = (P [b̂/y])(Q[b̂/y]) and we have:

|PQ|y,~x @ [b,~a ] = 〈∅n+1,#|P |y,~x,#|Q|y,~x,∅, Applyn+1, [b,~a ]〉
�h |P |y,~x @ [b,~a,#(|Q|y,~x @ [b,~a ] )]

≡æ
A |P [b̂/y]|~x @ [~a,#(|Q[b̂/y]|~x @ [~a ] )] , by IH,

c� 〈∅n,#|P [b̂/y]|~x,#|Q[b̂/y]|~x,∅, Applyn, [~a]〉
= |(P [b̂/y])(Q[b̂/y])|~x
= |(PQ)[b̂/y]|~x

Case M = λz.P , wlog z /∈ y, ~x, so (λz.P )[b̂/y] = λz.P [b̂/y]. By (ii) both machines
reduce to stuck ones. So we have to apply an extra an+1 ∈ A.

|λz.P |y,~x @ [b,~a, an+1] = |P |y,~x,z @ [b,~a, an+1]

≡æ
A |P [b̂/x]|~x,z @ [~a, an+1] , by IH,

= |λz.P [b̂/y]|~x @ [~a, an+1]

(iv) By (iii).
(v) By (iv), permuting the substitutions.
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Definition 4.9. Let S = (A/'æ
A
, •, [[−]]−), where

[a]'æ
A
• [b]'æ

A
= [a · b]'æ

A
,

[[M ]]ρ 'æ
A #(|M |~x @ [ρ(x1), . . . , ρ(xn)] ).

By Lemma 4.8, the definition of [[M ]]ρ is independent from the choice of ~x, as long as
FV(M) ⊆ ~x. This is reminiscent of the standard way for defining a syntactic interpretation
from a categorical one. (Again, see Koymans’s [13].)

Theorem 4.10. S is a syntactic λ-model.

Proof. We need to check that the conditions (i)–(vi) from Definition 1.9 are satisfied by the
interpretation function given in Definition 4.9.

Take ~x = x1, . . . , xn, and write ρ(~x) for ρ(x1), . . . , ρ(xn).
(i) [[xi]]ρ 'æ

A #(Prni @ [ρ(~x)] ) 'æ
A ρ(xi), by Remark 4.7(i).

(ii) [[â]]ρ 'æ
A #(Consna @ [ρ(~x)] ) 'æ

A a, by Remark 4.7(ii).
(iii) In the application case, we have:

[[PQ]]ρ 'æ
A #(|PQ|~x @ [ρ(~x)] )

= 〈∅n,#|P |~x,#|Q|~x,∅, Applyn, [ρ(~x)]〉, by Def. 4.6,
'æ

A #(M@ [ρ(~x)] ) ·#(N@ [ρ(~x)] ), by Rem. 4.7(iii),
= [[P ]]ρ • [[Q]]ρ

(iv) In the λ-abstraction case we have, for all a ∈ A:

[[λy.P ]]ρ · a 'æ
A |λy.P |~x @ [ρ(~x), a] 'æ

A |P |~x,y @ [ρ(~x), a] 'æ
A [[P ]]ρ[y:=a].

(v) This follows from Lemma 4.8(iv).
(vi) By definition [[λy.M ]]ρ 'æ

A #(|M |~x,y @ [ρ(~x)] ) and by Lemma 4.8(ii) |M |~x,y @ [ρ(~x)]
reduces to a stuck addressing machine. Similarly, for [[λx.N ]]ρ. We conclude by applying the
rule (æ).

Remark 4.11. (i) For closed λ-terms M ∈ Λo, we have [[M ]] = |M |.
(ii) It is easy to check that [[K]] 'æ

A #K and [[S]] 'æ
A #S.

(iii) More generally, all addressing machines behaving as the combinator K (resp. S) are
equated in the model.

Lemma 4.12. The syntactic λ-model S is not extensional.

Proof. It is enough to check that S 6|= 1 = I. Now, we have:

[[ 1 ]] = 〈∅2,#Pr21,#Pr22,∅, Apply2, []〉;
[[ I ]] = 〈∅, Load 0; Call 0, []〉.

By applying an indeterminate machine xn, the former reduces to a stuck machine, while the
latter reduces to xn. By Lemma 4.5(ii), they must be different modulo ≡æ

A.

A difficult problem that arises naturally is the characterization of the λ-theory induced
by the λ-model S defined above.

Proposition 4.13. The λ-theory Th(S) is neither extensional nor sensible.

Proof. Th(S) is not extensional by Lemma 4.12. To show that it is not sensible, it is enough
to check that S 6|= λx.Ω = Ω. Notice that

|Ω| = 〈#|∆|,#|∆|,∅, 2 � App(0, 1); Call 2, []〉,
→h |∆|@ [#|∆|] , where:

|∆| = 〈∅,#Pr11,#Pr11,∅, Apply1, []〉.
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By induction on a derivation of M ≡æ
A N, one checks that M ≡æ

A N and M �h D1 @ [D2]
with D1 'æ

A D2 'æ
A |∆|entails N�h D

′
1 @ [#D′2] for some D′1 'æ

A D′2 'æ
A |∆|. We conclude

because the machine |λx.Ω| is stuck.

5. Consistency Proof via Ordinal Analysis

In this section we adapt Barendregt’s proof of consistency of λω (the least λ-theory closed
under the (ω)-rule) to prove Lemma 4.5(ii), which entails the consistency of our system.
First, we need to introduce in our setting the notion of context and underlined reduction,
that are omnipresent techniques in the area of term rewriting systems.

5.1. Contexts and Underlined Head Reductions. In λ-calculus a context is a λ-term
possibly containing occurrences of an algebraic variable, called hole, that can be substituted
by any λ-term possibly with capture of free variables. We will define a context-machine
similarly, namely as an addressing machine possibly having a “hole” denoted by ξ. Formally,
we introduce a new machine having no registers or program, only an empty tape (therefore
distinguished from all machines populating MA):

ξ = 〈[]〉
We then extend our formalism to include machines working either directly or indirectly with
one, or more, occurrences of ξ. We wish to ensure the invariant that a machine M with no
occurrences of ξ maintain as address #M — for this reason we need to extend the range of
addresses in a conservative way.

Consider a countable set B of addresses such that A ∩ B = ∅, and write X = A ∪ B for
the set of extended addresses. As usual, we set X∅ = X ∪ {∅}.

Definition 5.1. (i) An extended machine X is either of the form
• ξ@T or

• 〈~R, P, T 〉
where ~R are X∅-valued registers, P is a valid program, T ∈ TX is an X-valued tape.

We write Mξ
X for the set of all extended machines.

(ii) Fix a bijective map # :Mξ
X → X satisfying #(M) = #M for all addressing machine

M ∈MA. Write #−1(·) : X→Mξ
X for its inverse.

(iii) The number of occurrences of ξ in X ∈ Mξ
X (resp. Ri, resp. T ), written occξ(X) ∈

N ∪ {∞} (occξ(Ri), occξ(T ) ∈ N ∪ {∞}), is defined as follows:

occξ(ξ@T ) = 1 + occξ(T );

occξ(〈~R, P, T 〉) = occξ(T ) +
∑r−1

i=0 occξ(Ri);

occξ([a1, . . . , an]) = occξ(#
−1(a1)) + · · ·+ occξ(#

−1(an));

occξ(Ri) =

{
0, if Ri = ∅,
occξ(#

−1(a)), if Ri = a ∈ X.

Notice that occξ(M) ∈ N entails that occξ(M.Ri), occξ(M.T ) ∈ N.
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Examples 5.2. The following are examples of extended machines:

(i) ξ, with occξ(ξ) = 1;
(ii) K@ [#ξ,#(ξ@ [#ξ] )] , with occξ(K@ [#ξ,#(ξ@ [#ξ] )] ) = 3;
(iii) for all n ∈ N, Xn = 〈#ξ, ε, [#Xn+1]〉. In this case, occξ(X0) =∞.

As previously mentioned, a key property of contexts in λ-calculus is that one can plug a

λ-term into the hole and obtain a regular λ-term. Similarly, given M ∈Mξ
X and X ∈Mξ

X, we
can define the addressing machine XLMM obtained from X by recursively substituting (even
in the registers/tapes) each occurrence of ξ by M. However, this operation is well-defined
only when occξ(X) is finite, so we focus on extended machines enjoying this property.

Definition 5.3.

(i) A context-machine is any C ∈Mξ
X satisfying occξ(C) ∈ N.

(ii) Given a context-machine C and M ∈ MA, define the addressing machine CLMM as
follows:

CLMM =

{
M@T LMM , if C = ξ@T ,

〈~RLMM, P, T LMM〉, if C = 〈~R, P, T 〉;
where (assuming a ∈ X, T = [a1, . . . , an] ∈ TX with occξ(a :: T ) ∈ N):

aLMM = #(#−1(a)LMM);

RiLMM =

{
∅ if Ri = ∅,
aLMM if Ri = a;

T LMM = [a1LMM, . . . , anLMM].

In the following, when writing CLMM (resp. aLMM, RiLMM, T LMM) we silently assume that
the number of occurrences of ξ in C (resp. a,Ri, T ) is finite. Let us introduce a notion
of reduction for context-machines that allows to mimic the underlined reduction from [1].
The idea is to decompose a machine N as N = CLMM where C is a context-machine and M
the underlined sub-machine. It is now possible to reduce C independently from M until
either the machine reaches a final-state or ξ reaches the head-position. In the latter case, we
substitute the head occurrence of ξ by M, and continue the computation.

Definition 5.4.

(i) The head reduction →h is generalized to extended machines in the obvious way, using
#(·) rather than #(·) to compute the addresses. In particular, the machine ξ@T 6→h

is in final state, but it is not stuck.

(ii) Given M ∈ MA and C ∈ Mξ
A, the M-underlined (head-)reduction →M

h is defined by
adding to (i) the rule

ξ@T →M
h M@T .

Examples 5.5. Let C = S@ [#ξ,#ξ,#xn] . Then CLKM = S@ [#K,#K,#xn] .

(i) C�h ξ@ [#xn,#(ξ@ [#xn] )] .

(ii) C�K
h ξ@ [#xn,#(ξ@ [#xn] )] →K

h K@ [#xn,#(ξ@ [#xn] )] �K
h xn.

Lemma 5.6. For C,C′ ∈Mξ
X and M,N ∈MA, the following are equivalent:

(1) CLMM�h N;
(2) C�M

h C′ and C′LMM = N.
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Proof. (1 ⇒ 2) By induction on the length n of the reduction CLMM�h N.
Case n = 0. Trivial, take C′ = C.
Case n > 0. Let CLMM→h N′ �h N. Split into cases depending on C.
Subcase C = ξ@T , therefore CLMM = M@T LMM →h N′. There are two possibilities:

• M is stuck and T 6= [], say, T = [a0, . . . , an]. In this case CLMM = 〈~R, Load i;P, []〉 and N′ =

〈~R[Ri := a0LMM], Load i;P, [a1LMM, . . . , anLMM]〉. On the other side, C→M
h M@T →M

h C′′

for
C′′ = 〈~R[Ri := a0], Load i;P, [a1, . . . , an]〉

satisfying C′′LMM = N′ �h N. We conclude by induction hypothesis.
• M →h M′. In this case N′ = M′@T LMM and C →M

h M@T →M
h C′′ for C′′ = M′@T

satisfying C′′LMM = N′ �h N. We conclude by IH.

Subcase C = 〈~R, P, T 〉. By case analysis on P . All cases follow easily from the induction
hypothesis.

(2 ⇒ 1) By induction on the length n of the reduction C�M
h C′.

Case n = 0. Trivial, take N = CLMM.
Case n > 0, i.e. C→M

h C′′ �M
h C′, where the latter reduction is shorter.

Proceed by case analysis on the shape of C.
Subcase C = ξ@T and C′′ = M@T . Then N = C′′LMM = M@T LMM = CLMM. Conclude

by induction hypothesis.

Subcase C = 〈~R, P, T 〉. By case analysis on P . All cases follow easily from the induction
hypothesis.

5.2. Ordinal analysis. As mentioned in Remark 4.2, a derivation of M ≡æ
A N has the

structure of a well-founded ω-branching tree. Unfortunately, this makes it difficult to prove
even simple properties like Lemma 4.5(ii). We need a more refined system exposing the
underlying ordinal and handling the applications of the (Transitivity) rule separately.

Definition 5.7. (i) Let ω1 be the set of all countable ordinals.
(ii) If π is a derivation of M ≡æ

A N, we define its length `(π) ∈ ω1 in the usual inductive
way for the rules (�æ

A), (Refl.), (Symm.), (Trans.). Concerning the rule (æ) having
countably many premises, we set:

`

 M,N�h stuck() ∀a ∈ A .
πa

M@ [a] ≡æ
A N@ [a]

M ≡æ
A N

 = sup
a∈A

(`(πa) + 1)

It is easy to check that, if a derivation π has premises (πi)i∈I for some countable set
I then `(π) > `(πi) for every i ∈ I.

(iii) For all α ∈ ω1, define ≡α,∼α,≈α⊆M2
A as the least reflexive and symmetric relations

closed under the rules of Figure 1.

The intuitive meanings of the relations ≡α,∼α,≈α are the following:

• M ≡α N ⇐⇒ M ≡æ
A N is derivable using the rule (æ) at most α times;

• M ∼α N ⇐⇒ M ≡α N is derivable without using transitivity;
• M ≈α N ⇐⇒ M ≡æ

A N in case α = 0. Otherwise, if α > 0 then
• M ≈α N ⇐⇒ M ∼α N follows directly from the rule (æ).



24 G. DELLA PENNA, B. INTRIGILA, AND G. MANZONETTO

M ≡A N
M ≈0 N

(≈0)
M ≈α N
M ∼α N

(⊆≈α )
M ∼α N
M ≡α N

(⊆∼α )

M,N�h stuck() ∀a ∈ A, ∃γ < α .M@ [a] ≡γ N@ [a]

M ≈α N
(≈α)

#−1(a) ∼α #−1(b)

M[Ri := a] ∼α M[Ri := b]
(R∼α )

#−1(a) ∼α #−1(b)

M@ [a] ∼α M@ [b]
(@∼α )

M ∼α N T ∈ TA
M@T ∼α N@T

(T∼α )
M ≡α N T ∈ TA
M@T ≡α N@T

(Tα)

#−1(a) ≡α #−1(b)

M[Ri := a] ≡α M[Ri := b]
(Rα)

#−1(a) ≡α #−1(b)

M@ [a] ≡α M@ [b]
(@α)

M ≈γ N γ ≤ α
M ≈α N

(≤≈α )
M ∼γ N γ ≤ α

M ∼α N
(≤∼α )

M ≡γ N γ ≤ α
M ≡α N

(≤α)

M ≡α Z Z ≡α N
M ≡α N

(Trα)

Figure 1: Rules satisfied by ≈α, ∼α and ≡α, beyond reflexivity and symmetry.

Lemma 5.8. Let M,N ∈MA

(i) M ≡æ
A N ⇐⇒ ∃α ∈ ω1 .M ≡α N.

(ii) M ≡0 N ⇐⇒ M ≡A N.
(iii) M ≡α N ⇐⇒ ∃n ≥ 0,Z1, . . . ,Zn ∈MA .M ∼α Z1 ∼α · · · ∼α Zn = N.
(iv) M ∼α N ⇐⇒ ∃C ∈Mξ

X,M
′,N′ ∈MA .

M = CLM′M ∧ N = CLN′M ∧M′ ≈α N′.
(v) M ≈α N ∧ α 6= 0 ⇐⇒ M,N�h stuck() ∧

∀a ∈ A, ∃γ < α .M@ [a] ≡γ N@ [a] .

Proof. (i) (⇐) Easy.
(⇒) By induction on the length of a derivation of M ≡æ

A N.
Case (�æ

A). I.e., there exists Z ∈MA such that M�h Z =æ
A N. By Theorem 3.10, we

have M ≡A Z whence M ≡0 Z by (≈0), which implies M ≡α Z for all α ∈ ω1 using the rule
(≤α). Now, consider the set

R = {i | Z.Ri 6= ∅} = {i | N.Ri 6= ∅}
Note that R = {i1, . . . , ik} for some k < Z.r0(= N.r0). For every i ∈ R, let Z.Ri = ai
and N.Ri = a′i. Also, let Z.T = [b1, . . . , bm] and N.T = [b′1, . . . , b

′
m]. By assumption,

ai 'æ
A a′i and bj 'æ

A b′j for every i ∈ R, and j (1 ≤ j ≤ m). By induction hypothesis,

#−1(ai) ≡γi #−1(a′i) and #−1(bj) ≡δj #−1(b′j). Using the rule (<α), the same holds for ≡α
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setting α = supi∈R,1≤j≤m{γi, δj}. Putting everything together, we obtain:

M ≡α Z = 〈Z. ~R, P, [b1, . . . , bm]〉
≡α 〈Z. ~R[Ri1 := a′i1 ], P, [b1, . . . , bm]〉, by (Rα),

≡α · · ·
...

≡α 〈Z. ~R[Ri := a′i]i∈R, P, [b1, . . . , bm]〉, by (Rα),

= 〈N. ~R, P, [b1, . . . , bm]〉, by definition,

≡α 〈N. ~R, P, [b′1, b2, . . . , bm]〉, by (Tα),

≡α · · ·
...

≡α 〈N. ~R, P, [b′1, . . . , b′m]〉, by (Tα),
= N, by definition.

We conclude by applying the transitivity rule (Trα) that M ≡α N.
Case (æ). By induction hypothesis, for every a ∈ A, there exists γa ∈ ω1 such that

M@ [a] ≡γa N@ [a] . For γ = supa∈A γa, we get M@ [a] ≡γ N@ [a] by (≤α). By (≈α) we
get M ≈α N for α = γ + 1 ∈ ω1, conclude by (⊆≈α ),(⊆∼α ).

(Reflexivity), (Symmetry) and (Transitivity) follow from the respective property of ≡α.
Concerning items (ii)–(v) the implication (⇐) is trivial. We analyze (⇒).
(ii) By induction on a derivation of M ≡0 N, using Theorem 3.10.
(iii) By induction on a derivation of M ≡α N.
Case (⊆∼α ). Trivial.
Case (Rα). I.e., M = Z[Ri := a], N = Z[Ri := b] and #−1(a) ≡α #−1(b). By induction

hypothesis, there exist c1, . . . , ck ∈ A such that

#−1(a) ∼α #−1(c1) ∼α · · · ∼α #−1(ck) = #−1(b).

The case follows by applying the rule (R∼α ).
Case (@α). Analogous, by applying (@∼α ).
Case (Tα). Analogous, by applying (T∼α ).
Case (Trα). Straightforward from the IH.
Case (≤α). By IH and (≤∼α ).
Cases (Reflexivity), (Symmetry). Straightforward from the IH.
(iv) By induction on a derivation of M ∼α N.
Case (⊆≈α ). Take C = ξ.
Case (R∼α ). I.e., M = Z[Ri := a], N = Z[Ri := b] and #−1(a) ∼α #−1(b). By induction

hypothesis, there exist C′ ∈ Mξ
X having address c = #C′ ∈ X, M′,N′ ∈ MA such that

C′LM′M = #−1(a), C′LN′M = #−1(b) and M′ ≈α N′. We conclude by taking C = Z[Ri := c].
Case (@∼α ). Analogous.
Case (T∼α ). Take C = C′@T , where C′ is obtained from the IH.
Case (≤∼α ). It follows from the IH, by applying (≤∼α ) and (≤≈α ).
Cases (Reflexivity), (Symmetry). Straightforward from the IH.
(v) Immediate.

Lemma 5.9. Let α > 0, C ∈ Mξ
X, M,N ∈ MA such that M ≈α N. If C →M

h C′ and
C′LMM 6�h stuck(), then there exists γ < α such that CLNM ≡γ C′LNM.

Proof. By cases on the shape of C.
Case C = ξ@T for some T ∈ TX and C′ = M@T . From M ≈α N and Lemma 5.8(v),

we get that M�h stuck(M′) for some M′ ∈MA. Since C′LMM = M@ (T LMM) cannot reduce
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to a stuck addressing machine, we must have T LMM 6= []. In other words, T = [a0, . . . , an]
for some n ≥ 0. Notice that, for all ai ∈ TX, we have aiLNM ∈ A (by construction). By
Lemma 5.8(v), there exists γ < α such that N@ [a0LNM] ≡γ M@ [a0LNM] . By definition:

CLNM = N@T LNM , and C′LNM = M@T LNM .

So we construct the proof:

N@ [a0LNM] ≡γ M@ [a0LNM]
N@ [a0LNM, . . . , anLNM] ≡γ M@ [a0LNM, . . . , anLNM]

(Tγ)

In all the other cases, CLNM→h C′LNM, therefore CLNM =0 CLNM.

Corollary 5.10. Let n ∈ N, α > 0, C ∈ Mξ
X, M,N ∈ MA. If CLMM �h xn and M ≈α N

then there exists γ < α such that CLNM ≡γ xn.

Proof. Assume CLMM�h xn. Equivalently, by Lemma 5.6, we have C�M
h xn. By definition,

there exists C1, . . . ,Ck ∈Mξ
X such that

C = C1 →M
h · · · →M

h Ck = xn

Notice that CiLMM�h xn and, since ¬stuck(xn), we have CiLNM 6�h stuck(). By Lemma 5.9,
there exists γ1, . . . , γk < α such that CiLNM ≡γi Ci+1LNM. By transitivity (Trα) and (≤α) we
obtain M ≡α xn for α = supi γi.

Proposition 5.11. Let M,N ∈ MA, α ∈ ω1 and n ∈ N. If M ≡α N and N �h xn then
M�h xn.

Proof. We proceed by induction on α. Since we perform a double induction, the induction
hypothesis w.r.t. this induction is called the α-IH (α-ind. hyp.).

Case α = 0. By Lemma 5.8(ii), we get M ≡æ
A N �h xn, so we conclude M �h xn by

confluence (Theorem 3.10) and →i-postponement (Lemma 3.7).
Case α > 0. By Lemma 5.8(iii), there exist Z1, . . . ,Zk such that

M ∼α Z1 ∼α · · · ∼α Zk = N�h xn (5.1)

By induction on k, we prove that 5.1 implies M�h xn. We call this k-IH.
Subcase k = 0. Then M = N�h xn and we are done.
Subcase k > 0. From the k-IH we derive Z1 �h xn. From M ∼α Z1 and Lemma 5.8(iv),

there is a context-machine C such that M = C[M′] and Z1 = C[N′] with M′ ≈α N′ and
C[N′]�h xn. By applying Lemma 5.9 we obtain C[M′] ≡γ xn for some γ < α. We conclude
by applying the α-IH.

From this proposition, Lemma 4.5(ii) follows by applying Lemma 5.8(i).

6. Conclusions and Further Works

In this paper, we have shown that it is possible to obtain a model of the untyped λ-calculus
based on a kind of computational machines that operate exclusively on “addresses”, without
any reference to some basic data type. The result only depends on the assumption that
every machine has a unique address (and vice versa every address identifies a machine)
and is completely independent from the specific nature of the addresses themselves. The
following appear to be natural natural developments for further works:
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(1) explore whether the theory of the λ-model S defined in Section 5 depends on the specific
nature of the bijection #(·) : A→MA. Indeed, given an injection f : N→ A, we might

have machines Mf
n satisfying Mf

n = 〈f(n), ε,#Mf
n+1〉 for all n ∈ N (cf. Example 5.2(iii)).

The existence of these machines strictly depends on the chosen bijection #(·) and,
for cardinality reasons, not all machines of this kind exist (one would need a set of
addresses having the size of the continuum). We conjecture that Th(S) is actually
independent from the choice of the lookup function #(·), because none of these machines
are λ-definable.

(2) expand the computational capabilities of addressing machines by adding simple data-
types and the associated basic operations. In fact, although data-types are unnecessary
to achieve Turing-completeness, they are desirable to perform arithmetical operations
and conditionals. E.g., one could add booleans (with logical connectives and conditional
branching) and natural numbers (with successor, predecessor, and the like). A step in
a different direction would be to extend addressing machine with an “internal state”,
taking only a finite number of values and depending on the states of the machines in its
“neighborhood”. The idea is to develop a kind of “cellular automata” model and study
the interaction between the machines and their asymptotic behavior.

To perform some tests on addressing machines, we have implemented the formalism both
in functional and imperative style. Even if the sources remain for internal use only, some
technical choices deserve a discussion. Although not explicitly required by the definition, any
implementation must rely on a computable association between addressing machines and
the corresponding addresses. The problem is how to define a bijection between the set of all
possible machines and the corresponding addresses. One could try to use as addresses the
actual references pointing to the structures representing the machines, but the referenced
data might change without affecting the address. We decided to use an association list ` of
type A×MA and an incremental approach. The list ` is initialized as the empty-list. When
a new machine M is created, one checks whether M belongs to π2(`): in the affirmative
case there is nothing to do as the machine is already known; otherwise, a new address a
is generated and the pair (a,M) is added to the list `. This allows to guarantee that an
address uniquely identifies a machine and that, when an address is used, the corresponding
machine has already been introduced.
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