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Abstract. The λ-calculus enjoys the property that each λ-term has at least

one fixed point, which is due to the existence of a fixed point combinator. It is

unknown whether it enjoys the “fixed point property” stating that each λ-term
has either one or infinitely many pairwise distinct fixed points. We show that

the fixed point property holds when considering possibly open fixed points.

The problem of counting fixed points in the closed setting remains open, but
we provide sufficient conditions for a λ-term to have either one or infinitely

many fixed points. In the main result of this paper we prove that in every

sensible λ-theory there exists a λ-term that violates the fixed point property.
We then study the open problem concerning the existence of a double fixed

point combinator and propose a proof technique that could lead towards a
negative solution. We consider interpretations of the λY-calculus into the λ-

calculus together with two Reduction Extension Properties, whose validity

would entail the non-existence of any double fixed point combinators. We
conjecture that both properties hold when typed λY-terms are interpreted by

arbitrary fixed point combinators. We prove Reduction Extension Property I

for a large class of fixed point combinators.
Finally, we prove that the λY-theory generated by the equation characteriz-

ing double fixed point combinators is a conservative extension of the λ-calculus.

Introduction

A fundamental result in the λ-calculus is the Fixed Point Theorem [2, Thm. 2.1.5]
stating that every λ-term M has at least one fixed point, that is, a λ-term X
satisfyingMX “β X. The λ-calculus also enjoys the range property [2, Thm. 20.2.5]
stating that the range of every combinator (closed λ-term) M is either a singleton,
when M represents a constant function, or infinite, in the sense that it contains
denumerably many pairwise β-distinct λ-terms. It is therefore natural to wonder
whether a similar property, that we call here “the fixed point property”, is enjoyed
by the set of fixed points of an arbitrary closed λ-term:

Does every combinator have either one or infinitely many (closed) fixed points?

The above question appears as Problem 25 in the TLCA list of open problems [16]
and was first raised by Intrigila and Biasone in [17]; the first part of the present
paper reports progress on this question. We first prove that if one considers open
λ-terms, then the question has a positive answer (Theorem 3.6). This result is not
particularly difficult to achieve, but we believe it is interesting since it motivates the
restriction to combinators and closed fixed points. For the more difficult question of
closed fixed points, in [17] the authors prove that the fixed point property is satisfied
by all combinators having a fixed point which is β-normalizable. We present several
results in the same spirit. For example, we prove that the set of fixed points of a
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closed zero1 λ-term is always infinite (Proposition 4.4) and that if a combinator has
a fixed point which is a recurrent2 zero λ-term then it has either one or infinitely
many fixed points (Theorem 4.7).

The problem of determining whether the fixed point property or the range pro-
perty holds radically changes when considering as equality between λ-terms an arbi-
trary λ-theory T , that is, an arbitrary context-closed extension of β-convertibility.
Indeed, a set containing infinitely many β-distinct λ-terms might become finite
modulo T . For instance, it is well known that the range property is valid in every
recursively enumerable λ-theory [2, Thm. 20.2.5] and in every λ-theory equating
all λ-terms having the same Böhm tree [2, Thm. 20.2.6], while Polonsky recently
proved that it fails in the λ-theory H generated by equating all unsolvables [26].
This last result led Intrigila and Statman to conjecture in [18] that in the λ-theory
H “a very complicated example could exist with, say, exactly two fixed points”. In
Corollary 5.3 we show that a λ-term satisfying such a property exists in every sen-
sible λ-theory T (in particular, in H) thus proving their conjecture. Starting from
this example, we are able to construct for every natural number k ą 0 a λ-term
having exactly k pairwise T -distinct fixed points (Proposition 5.6). In [18], the
authors also managed to construct in an ingenious, but complex way, a λ-theory
satisfying the range property but not satisfying the fixed point property. An easy
consequence of our result (Corollary 5.5) is that the same holds for the much more
natural λ-theory B generated by equating all λ-terms having the same Böhm tree,
as it is obviously sensible and satisfies the range property by [2, Thm. 20.2.6].

The Fixed Point Theorem of λ-calculus is a consequence of the existence of fixed
point combinators that are λ-terms Y satisfying Y X “β XpY Xq for all λ-terms X.
Clearly, every fixed point combinator Y satisfies the equation δY “β Y where δ is
the λ-term SI “β λyx.xpyxq. Moreover, Böhm noticed that if Y is a fixed point
combinator then also Y δ is. This consideration led Statman to raise in [29] the
question of whether there exists a double fixed point combinator, namely a fixed
point combinator Y satisfying Y δ “β Y . Intuitively, the application of δ has the
effect of “slowing down” the head reduction of Y and this should entail that Y δ
and Y cannot have a common reduct. For this reason Statman conjectured that
double fixed point combinators do not exist. A proof of Statman’s conjecture has
been suggested by Intrigila in [15]. However, in 2011, Endrullis [8] has discovered
a gap in a crucial case of the argument. The problem is therefore considered open.

The second part of the paper is devoted to presenting a proof technique that
we believe will be useful in settling Statman’s conjecture. The main technical tool
that we use is the λY-calculus [1, §6.1], a classic extension of the λ-calculus with
a unary constant Y behaving as a fixed point combinator. We first show that the
λY-calculus can be soundly interpreted in the λ-calculus, by replacing a fixed point
operator for each occurrence of Y in a λY-term M . We then define two properties of
such an interpretation map, that we call “Reduction Extension Properties”, and we
analyze under what circumstances they actually hold. On the one hand, we are able
to prove that Property I holds for a large class of reducing fixed point combinators
(Corollary 6.31), including all putative double fixed point combinators. On the

1Intuitively, zero λ-terms are λ-terms that cannot be converted to an abstraction. We refer to
Section 4.2 for a more thorough discussion about this terminology.

2 A λ-term M is recurrent if, for all λ-terms N , M �β N entails N �β M (this notion is due

to M. Venturini-Zilli).
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other hand, it is not difficult to check that Property II fails in the untyped setting
because the interpretation map is not injective. We conjecture however that a
generalized version of both properties (Definition 6.27) holds for all fixed point
combinators in the simply typed setting, and we show that this would entail the
non-existence of double fixed point combinators (as discussed at the end of §6).

Finally, we analyze the question of whether the λY-theory δ˚ generated by the
equation Yx “ Yδx (the equation characterizing double fixed point combinators)
is a conservative extension of the λ-calculus. Indeed, as discussed in Section 7, a
negative answer would entail the non-existence of double fixed point combinators.
Unfortunately, it turns out that the answer is positive, as shown in Theorem 7.9.

1. Preliminaries

In this preliminary section we introduce some notions and notations that are
used in the rest of the article.

1.1. Lambda Calculus. For the λ-calculus we mainly use the notations of Baren-
dregt’s first book [2].

Let us fix an infinite set Var of variables. The set Λ of λ-terms is generated by:

Λ : M,N ::“ x | λx.M |MN pfor x P Varq

As usual we assume that application associates to the left and has a higher prece-
dence than λ-abstraction. For instance, we write λxyz.xyz for λx.pλy.pλz.ppxyqzqqq.

Notation 1.1. We writeMnN forMp¨ ¨ ¨ pMNq ¨ ¨ ¨ q andNM„n for p¨ ¨ ¨ pNMq ¨ ¨ ¨ qM
(n times). In particular, for n “ 0, we have M0N “ N “ NM„0.

The set FVpMq of free variables of M and α-conversion are defined as in [2, §2.1].
We say that a λ-term M is closed whenever FVpMq “ H and we denote by Λo the
set of all closed λ-terms. The set of positions, denoted pospMq, in a λ-term M is the
subset of t0, 1u˚ defined inductively by: pospxq “ tεu, pospλx.Mq “ tεuY0¨pospMq,
and pospMNq “ tεuY 0 ¨ pospMq Y 1 ¨ pospNq. If M is a λ-term and p is a position
in M , the subterm of M at p is defined in the obvious way.

Convention. Hereafter, we consider λ-terms up to α-conversion and we adopt
Barendregt’s variable convention [2, Conv. 2.1.13].

By historical tradition, any binary relation on Λ is called a notion of reduction
on Λ. We say that a notion of reduction r Ď Λ ˆ Λ is compatible (or contextual)
whenever it is compatible with respect to the operations of application and lambda
abstraction. A reduction relation on Λ is any compatible notion of reduction.

The main compatible relation of the λ-calculus is the β-relation Ñβ , which is
the compatible closure of the following notion of reduction:

(β) pλx.MqN ÑM rN{xs

where M rN{xs denotes the λ-term obtained by simultaneously substituting all free
occurrences of x in M for N , subject to the usual proviso of avoiding capture of
free variables in N . The η-relation Ñη is the compatible closure of:

(η) λx.MxÑM (for x R FVpMq)

Concerning specific combinators we fix the following notations:

I “ λx.x, K “ λxy.x, F “ λxy.y, B “ λfgx.fpgpxqq, S “ λxyz.xzpyzq,
∆ “ λx.xx, Ω “ ∆∆, ∆3 “ λx.xxx, Ω3 “ ∆3∆3, δ “ λyx.xpyxq.
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where I is the identity, K and S are the combinators of combinatory logic, F is
the second projection, B the functional composition, Ω the paradigmatic looping
λ-term and Ω3 the “garbage” producing looping λ-term. It is easy to check that δ is
the β-normal form of SI. We denote the n-th Church numeral by cn [2, Def. 6.4.4].
The symbol “ denotes definitional equality (possibly modulo α-conversion).

The pairing is encoded in the λ-calculus as follows (for x R FVpMNq):

rM,N s “ λx.xMN, with projections π1 “ λx.xK and π2 “ λx.xF.

For instance, π1rM1,M2s Ñβ rM1,M2sK Ñβ KM1M2 Ñβ pλy.M1qM2 Ñβ M1.

1.2. Rewriting. Given a reduction relation Ñr, we denote its transitive and re-
flexive closure by �r and its transitive, symmetric and reflexive closure by “r. The
relation �r is called multi-step r-reduction, while “r is called r-conversion. We
write rÐ (resp. r�) for the relational inverse of Ñr (resp. �r) and Ør for the
symmetric closure of Ñr, i.e. Ñr Y rÐ. Given two reduction relations Ñr and
Ñr1 , we write Ñrr1 for the relation Ñr Y Ñr1 . Similarly, we denote by “rr1 the
least contextual relation including “r Y “r1 .

Definition 1.2. We recall the following standard auxiliary definitions.

‚ Given a notion of reduction Ñ, a redex is any term R such that R Ñ P
for some term P . For any term M , a redex in M is a pair pCrs, Rq where
Crs is a one-hole context such that M “ CrRs and R is a redex.

‚ Given a reduction relation Ñr and two terms M and N such that M �r N ,
we call any witness M “ M0 Ñr M1 Ñr ¨ ¨ ¨ Ñr Mn “ N of M �r

N a reduction sequence from M to N . Par abus de langage, we shall
occasionally refer to M �r N as a reduction sequence without specifying
the witness.

‚ Given a term M and a reduction relation Ñr, the reduction graph of M ,
denoted GrpMq is the directed graph whose nodes are all terms N such that
M �r N and there is an edge from node P to node Q if P Ñr Q.

‚ A finite or infinite sequence

M “M0 Ñr M1 Ñr M2 Ñr ¨ ¨ ¨

is called cofinal in GrpMq if, for every node P of GrpMq, there is a directed
path in GrpMq from P to some Mi.

‚ As usual, for a step M Ñβ N , the residual relation maps every set F of
β-redexes in M to a set of β-redexes in N , the set of residuals of F across
the step3; the relation extends transitively to reduction sequences M �β N
in the obvious way.

‚ A development of a set of redexes F in M is a reduction sequence M Ñβ

M1 Ñβ M2 Ñβ ¨ ¨ ¨ such that every step in the sequence is the contraction
of a residual of a redex in F .

‚ A development of a set of redexes F in a term M is complete if it is finite
and its final term has an empty set of residuals of F across the sequence. By
standard results, all maximal developments of F are complete, hence finite,
and all complete developments of F end in the same term. Furthermore, if
F and G are sets of redexes in a term M , the set of residuals of G is the
same across any complete development of F , and is denoted G{F .

3We omit the details, see [2, Ch. 11.2].
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‚ A reduction sequence M “ M0 Ñβ M1 Ñβ M2 Ñβ ¨ ¨ ¨ is standard if, for
all i, j with j ă i, the redex contracted in the step Mi Ñβ Mi`1 is not a
residual across Mj Ñβ ¨ ¨ ¨ Ñβ Mi of any redex to the left (in Mj) of the
redex contracted in Mj Ñβ Mj`1 (i.e., intuitively in a standard reduction,
leftmost-outermost redexes are contracted first).

‚ Permutation equivalence is the smallest equivalence relation ” on reduction
sequences such that
(i) ρ;σ; τ ” ρ;σ1; τ whenever σ ” σ1 and

(ii) if F and G are sets of redexes of the same term, then σ ” τ whenever σ
is obtained by first performing a complete development of F followed by
a complete development of G{F , and τ is obtained by first performing a
complete development of G followed by a complete development of F{G.

‚ A redex with history is a pair pM �β N,Rq consisting of a reduction
sequence M �β N and a redex R in N . A redex with history pM �β P, Sq
is a copy of a redex with history pM �β N,Rq if there is a reduction
sequence N �β P such that (i) M �β N �β P is permutation equivalent
to M �β P , and (ii) S is a residual of R across N �β P . The symmetric
and transitive closure of the copy relation is called the family relation on
redexes with history and is obviously an equivalence relation. If two redexes
with history are elements of the same equivalence class in the family relation
they are said, par abus de langage, to belong to the same family relation.

Remark 1.3. It is easy to check that M “r N if and only if there exists a sequence
M “M0 Ør M1 Ør ¨ ¨ ¨ Ør Mk “ N of length k ě 0.

1.3. Solvability. Lambda terms are classified as solvable or unsolvable, depending
on their capability of interaction with the environment.

Definition 1.4. A closed λ-term M is solvable if there are P1, . . . , Pk P Λ such
that MP1 ¨ ¨ ¨Pk “β I. An open λ-term M is solvable if its closure λx1 . . . xn.M is.

We say that a λ-term M is in head normal form (hnf ) if it has the shape
λx1 . . . xn.xiM1 ¨ ¨ ¨Mk where n, k ě 0 and either 1 ď i ď n or xi occurs freely. We
say that M has an hnf whenever M �β N for some N in head normal form. It
is well known that if a λ-term has an hnf, then such an hnf can be obtained by
repeatedly reducing its head redex λx1 . . . xn.pλx.MqNM1 ¨ ¨ ¨Mk. Solvability has
been characterized in terms of head normalization by Wadsworth.

Theorem 1.5 (Wadsworth [31]). A λ-term M is solvable if and only if it has a
head normal form.

Every closed λ-term M can be turned into an unsolvable one by applying enough
Ω’s. In other words, for k large enough, MΩ„k is unsolvable ([2, Lemma 17.4.4]).
The following lemma will be useful in Section 5 and is a revisitation of such a result.

Lemma 1.6. Let M P Λ and y P Var. If MyΩ„n is solvable for all n P N, then
M “β λx0 . . . xk.x

1M1 ¨ ¨ ¨Mm for some k,m ě 0 and x1 P FVpMq Y tx0u.

Proof. For n “ 0 we have that My is solvable, which entails that M has an hnf
λx0 . . . xk.x

1M1 ¨ ¨ ¨Mm. Toward contradiction, suppose x1 “ xj , with 0 ă j ď k.
Then for the appropriate M 1

1, . . . ,M
1
m P Λ we have MyΩ„k “β ΩM 1

1 ¨ ¨ ¨M
1
m, which

is unsolvable. This contradicts the hypothesis for n “ k. �
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1.4. Lambda Theories. The equational theories of the untyped λ-calculus are
called λ-theories and become the main object of study when considering the equiv-
alence between λ-terms more important than the process of computation.

More precisely, we will be considering congruences, which are compatible binary
equivalence relations on Λ.

Definition 1.7. A λ-theory T is any congruence on Λ containing the β-conversion.

As a matter of notation, we write T $M “ N or just M “T N for pM,Nq P T .
Let T be a λ-theory and M be a λ-term, we write ΛT for the set Λ modulo T and
rM sT for the T -equivalence class of M . Similarly, we set ΛoT “ trM sT | M P Λou.
Given a subset X Ď ΛT , we write M PT X whenever rM sT P X.

The set of all λ-theories, ordered by set-theoretical inclusion, constitutes a com-
plete lattice λT of cardinality 2ℵ0 . As shown by Salibra and his coauthors in their
works [27, 22, 23], λT has a very rich mathematical structure. The lattice λT has
a bottom element λβ which equates only β-convertible λ-terms, and a top element
∇ which equates all λ-terms.

Definition 1.8. A λ-theory T is:

‚ consistent if T ‰ ∇,
‚ inconsistent if it is not consistent,
‚ sensible if it equates all unsolvable terms,
‚ extensional whenever, for all λ-terms M , N and any variable x R FVpMNq,
Mx “T Nx implies M “T N .

Convention. We will only consider consistent λ-theories and omit the assumption.

By [2, Thm. 2.1.29], T is extensional exactly when it contains the η-conversion.
We denote by λβη the smallest extensional λ-theory and by H the smallest

sensible λ-theory. We denote by B the λ-theory equating two λ-terms if and only
if they have the same Böhm tree [2, Def. 10.1.4]. It is well-known that H also
admits a unique maximal extension which is denoted by H˚ [31]. As shown in [2,
Thm. 17.4.16], the strict inclusions H Ĺ B Ĺ H˚ hold.

The λ-theories H, B and H˚ have been extensively studied in the literature.
In particular, Hyland proved in [14] that two λ-terms M and N are equal in H˚
exactly when their Böhm trees are equal up to “possibly infinite” η-expansions (see
also [2, Thm. 16.2.7]). As an easy consequence, we get the following remark that
will be used in Section 5.

Remark 1.9. Let T be a sensible λ-theory. For all M,N P Λ, if T $ M “ N then
one of the following conditions holds:

(i) M “T N “T Ω,
(ii) there are k,m ě 0 such that

M “βη λx1 . . . xk.yM1 ¨ ¨ ¨Mm and N “βη λx1 . . . xk.yN1 ¨ ¨ ¨Nm

where T $Mi “ Ni for all 1 ď i ď m.

By condition (ii), ifM “T λx1 . . . xk1 .yM1 ¨ ¨ ¨Mm1
andN “T λx1 . . . xk2 .yN1 ¨ ¨ ¨Nm2

then m1 ´ k1 “ m2 ´ k2. Intuitively, this means that the number of λ-abstractions
and applications can be matched by performing some η-expansions.
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2. Fixed Points and Fixed Point Combinators

In λ-calculus a fixed point of a λ-term F is an X P Λ satisfying FX “β X. The
Fixed Point Theorem states that all λ-terms have a fixed point [2, Thm. 2.1.5], a
result that follows from the existence of fixed point combinators.

Theorem 2.1. For every λ-term M , there exists X such that MX “β X. Actually,
there exists a closed λ-term Y such that for any λ-term M , MpYMq “β YM .

In this section we start by defining fixed points relative to some λ-theory T , and
then provide some notions of fixed point combinators and examples.

Definition 2.2. Let T be a λ-theory.

(1) Given two λ-terms M,N , we say that N is a fixed point of M in T whenever
MN “T N .

(2) For M P Λ, we let FixT pMq “ trN sT | N P Λ,MN “T Nu be the set of
all (T -classes of) fixed points of M in T .

(3) Similarly, for M P Λo, we let FixoT pMq “ FixT pMq X ΛoT be the set of
(T -classes of) all closed fixed points of M in T .

When T “ λβ we simply say that N is a fixed point of M and write FixpMq
and FixopMq for the set of its open and closed fixed points, respectively.

Remark 2.3. Given a λ-theory T and λ-terms M,N , if N PT FixT pMq then for all
λ-theories T 1 Ě T we have N PT 1 FixT 1pMq. In particular, if N is a fixed point of
M we have N PT FixT pMq for all λ-theories T .

Example 2.4.

(i) Since IM “β M for all M P Λ, we have that every λ-term is a fixed point of
the identity I. Therefore FixpIq “ Λλβ and FixopIq “ Λoλβ .

(ii) Since FM “β I for all M P Λ, we have that only λ-terms β-convertible
with I are fixed points of F and therefore that both FixpFq and FixopFq are
singletons.

2.1. Fixed Point Combinators. As shown in the Fixed Point Theorem, every
λ-term has at least one fixed point, since fixed points can be constructed through
fixed point combinators.

Definition 2.5.

(i) A λ-term Y is a fixed point combinator (or fpc) if Y x “β xpY xq for every
x R FVpY q,

(ii) An fpc Y is reducing if Y x�β xpY xq for every x R FVpY q,
(iii) An fpc Y is terminal if it is reducing and there is a reduction ρ : Y x�β xpY xq

with the property that the sequence of terms in the infinite reduction

Y x
ρ

ÝÝÝ�β xpY xq
xρ

ÝÝÝÝ�β x
2pY ρq

xpxρq
ÝÝÝÝÝ�β x

3pY xq
x3
pρq

ÝÝÝÝÝ�β ¨ ¨ ¨

is cofinal in the reduction graph GβpY xq.

Note that, following a well-established tradition [10, 11], we do not require that
fpc’s are actual combinators in the sense of being closed λ-terms. From the existence
of closed fpc’s Y it follows however that YM Pλβ FixpMq, therefore FixT pMq ‰ H
(resp. FixoT pMq ‰ H) for all (closed) λ-terms M .
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Definition 2.6. Let T P λT and M P Λ. A fixed point N PT FixT pMq is called
canonical if N “T YM for some fpc Y .

We now provide some examples of open and closed fpc’s, reducing and non-
reducing fpc’s and terminal and non-terminal fpc’s.

Example 2.7. ‚ Curry’s fixed point combinator Y “ λf.∆f∆f where ∆f “

λx.fpxxq, which is closed and not reducing.
‚ Geuvers and Verkoelen’s fixed point combinator λf.p∆pλxy.fpyxyqq∆q de-

fined in [12] is also closed and not reducing.
‚ Turing’s fixed point combinator Θ “ WW where W “ λwx.xpwwxq,

which is closed and reducing.
‚ Turing’s fpc can be parametrized by setting ΘM “ VVM for M P Λ and

V “ λvpx.xpvvpxq. Indeed ΘMx “ VVMx�β xpVVMxq “ xpΘMxq, so
ΘM is a reducing fpc for all M P Λ. Notice that for any variable z, Θz is
open and terminal, while ΘΩ3 is closed and not terminal.

‚ Polonsky’s fpc is introduced here and works for arbitrary A,B P Λ. The fpc
is the λ-term XZ where (recall that rM,N s “ λz.zMN for z R FVpMNq):

X “ λyx.xpypyAFqKpλz.rz, yBFsqxq and Z “ λx.rx,Xs.

Note that ZMK �β M and ZMF �β X hold. The fpc XZ is reducing:

XZx�β xpZpZAFqKpλz.rz, ZBFsqxq�β xpZXKpλz.rz,Xsqxq�β xpXZxq.

Whether XZ is closed or terminal depends on the chosen A,B P Λ.

It is easy to check that all fpc’s have the same Böhm tree, therefore all canonical
fixed points are equated in every λ-theory T Ě B. There are however λ-terms that
are not fpc’s but have the same Böhm tree as a fixed point combinator; such terms
are called weak fixed point combinators (or looping combinators in [7, 13]):

Definition 2.8. A λ-term Y is a weak fixed point combinator if, for all x R FVpY q:

Y x “B xpY xq.

Since the Böhm tree of a weak fpc is equal to that of an fpc, the following
alternative characterization of weak fpc’s is easily obtained.

Proposition 2.9. A λ-term Y is a weak fpc if and only if there exists a family of
λ-terms pYiqiPN such that Y “ Y0 and, for all i P N and x fresh, Yix “β xpYi`1xq.

Proof. pðq is trivial while pñq is an easy coinductive argument. �

Since all the λ-terms Yi’s above are weak fpc’s themselves, this gives us the
following coinductive characterization of weak fixed point combinators: a λ-term
Y is a weak fpc if and only if Y x “β xpY

1xq for some weak fpc Y 1 and x R FVpY q.

Example 2.10. Define by double recursion [19], two β-distinct λ-terms Y and Y 1

such that Y x “β xpY
1xq and Y 1x “β xpY xq. Then, both Y and Y 1 are weak fpc’s.

Dealing with fpc’s and weak fpc’s suggests the following notions.

Definition 2.11. Let M P Λ.

‚ A variable x P FVpMq eventually disappears from M , written x Rβ M if
there exists M 1 such that M �β M

1 and x R FVpM 1q.
‚ Given k P N, we say that M is k-constant if x Rβ M

kpxq, for x R FVpMq.
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Clearly, if M is k-constant for some k P N and x R FVpMq then x Rβ ΘxM . By
exploiting this fact, we prove in Corollary 3.4 that for every k-constant λ-term M
the set FixpMq is a singleton, thus generalizing Example 2.4(ii).

2.2. Derived Fixed Point Combinators. An interesting line of research [19],
consists in defining new fixed point combinators starting from existing ones. Notice,
for instance, that ∆δ “ λw.δpwwq “β W where δ “ λyx.xpyxq, therefore Yδ “β
pλx.δpxxqqpλx.δpxxqq “β Θ. In other words, Turing’s fixed point combinator can
be obtained from Curry’s one by applying δ.

The following properties concerning the interaction between fpc’s and δ have
been pointed out by Böhm (see [2, Lemma 6.5.3]).

Lemma 2.12. Let Y P Λ.

(i) Y is an fpc if and only if δY “β Y ,
(ii) if Y is a (reducing) fpc then also Y δ is.

Statman raised in [29] the following natural question and conjectured that it has
a negative answer. (This question will be discussed more thoroughly in Section 6.)

Problem 1. Is there a double fpc, that is an fpc Y satisfying Y “β Y δ?

This problem is interesting because Lemma 2.12 tells us that starting from an
fpc Y , it is always possible to define infinitely many fpc’s pYnqnPN by setting:

Y0 “ Y, Yn`1 “ Ynδ.

The difficult part is to prove that all the fpc’s so obtained are β-distinct, a result
that would clearly follow from Statman’s conjecture. In the following case we know
the answer, but the general case is an open question.

Example 2.13. The Scott sequence pYnqnPN is generated by taking as Y0 Curry’s
fpc Y. As mentioned earlier, Turing’s fpc Θ occurs as Y1 in such a sequence. As
shown by Klop in [19, Thm. 2.1] with an ad hoc argument, the Scott sequence
contains no repetitions (i.e. Yi “β Yj if and only if i “ j).

Other fpc’s can be found starting from existing ones by mechanical search.

Example 2.14. Let Y P Λ be an fpc. Klop’s Bible4 fixed point combinator is given
by � “ λe.BYBeL, where B is the composition, and works for arbitrary L P Λ.
Notice that L remains in passive position during the reduction:

�xÑβ BYBxLÑβ Y pBxqL “β BxpY pBxqqLÑβ xpY pBxqLq “β xp�xq.

2.3. The fixed point property. We have seen in Example 2.4 that, on the one
hand, there are λ-terms having infinitely many fixed points, like the identity I. On
the other hand, there are λ-terms M possessing only one fixed point, namely those
having a constant output like the second projection F. Indeed, whenever there is an
M 1 such that MN “β M

1 for all N , we have that FixpMq is a singleton. Therefore
it makes sense to wonder how many fixed points a λ-term M possesses, as Intrigila
and Biasone did (in the closed case) [17].

The following terminology is inspired by the range property of λ-calculus [2,
Thm. 17.1.16].

4The name of such a combinator comes from the Dutch translation of “bible”, namely bijbel.
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Definition 2.15. Let T be a λ-theory.

‚ A closed λ-term M has the fixed point property ( fpp) in T whenever
FixoT pMq is either a singleton or infinite.

‚ A λ-term M has the open fixed point property in T if FixT pMq is either
a singleton or infinite.

‚ The λ-theory T satisfies the fixed point property (resp. open fpp) if every
closed λ-term (resp. possibly open λ-term) has the same property in T .

As usual, when T is omitted, we assume that we are considering T “ λβ. In
this terminology, the Problem 25 of the TLCA list can be rephrased as follows.

Problem 2. [16] Does λβ satisfy the fixed point property?

Some modest advances on this problem are presented in Section 4, while in the
next section we give a positive answer to the analogue question concerning the
open fixed point property. However, we will be also interested in the following
generalization of Problem 2 to arbitrary λ-theories.

Problem 3. What are the λ-theories satisfying the fixed point property?

In Section 5 we will show that no sensible λ-theory T satisfies the fixed point
property (Theorem 5.4).

3. Canonical Open Fixed Points Are Not Normal

In this section we show that λβ satisfies the open fixed point property. More
precisely, we show that every λ-term exhibiting a non-constant behaviour has infin-
itely many canonical fixed points. Such a result is not particularly difficult to prove
and motivates the choice made by Intrigila and Biasone of raising the question for
closed fixed points only. (Cf. [18], where such a property is proved for a λ-calculus
having infinitely many constants.)

The proof relies on the following property of Turing’s parametrized fpc, that will
have interesting consequences for closed fixed points as well (e.g., Proposition 4.4).

Lemma 3.1. For all M,N P Λ, we have ΘM “β ΘN if and only if M “β N .

Proof. pñq First, notice that the head reduction of Θzx is given by:

(3) Θzx “ VVzxÑβ pλzx.xpVVzxqqzxÑβ pλx.xpVVzxqqxÑβ xpVVzxq

Suppose now that ΘM “β ΘN holds, then there are two standard reductions ρ, σ
from ΘMx and ΘNx toward a common reduct X, namely:

ΘMx “ VVMx
ρ
�β X

σ
β� VVNx “ ΘNx.

Each of these reductions must again factor through an initial segment of (3) and
there are two subcases. If this segment is empty, then ρ and σ are actually internal
reductions. By inspection, the only subterms of ΘMx, ΘNx that may have redexes
are M and N , respectively. Thus ρ and σ yield a confluence between M and N , so
we are done.

Otherwise, ρ and σ factor through a segment of (3) of the same length (in order
to result in the same shape of the final λ-term). In this case, the internal reductions
which follow the segment are again a confluence between ΘMx and ΘNx, allowing
us to conclude by induction hypothesis.
pðq Trivial. �
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Lemma 3.2. Let M P Λ and z R FVpMq. If z Rβ ΘzM then FixpMq is a singleton.

Proof. Let σ : ΘzM �β X be a standard reduction, with z R FVpXq.
We consider the projection of σ across the canonical reduction sequence

ΘzM �β MpΘzMq�β MpMpΘzqq�β ¨ ¨ ¨

�β M
kpΘzMq “MkpVVzMq�β ¨ ¨ ¨

Notice that the redex VV occurring inside each term in the sequence above is
created during the contraction of this redex in the previous term.

In particular, for any given k, we know that such a redex could not have been
contracted by any reduction starting with ΘzM and shorter than k steps.

We now complete the projection diagram with k “ |σ|, the length of σ:

ΘzM

σ
����

// // M |σ|pVV zMq

ρ
����

X // // Z

As just observed, the underlined redex cannot stand in the family relation to any
redex contracted in σ (since it requires |σ| redex contractions to be created).

Therefore, this redex remains untouched by the reduction ρ. As a result, the
reduction ρ : M |σ|pVVzMq�β Z lifts as pρ0; ¨ ¨ ¨ ; ρ`qrVVz{vs, where

ρ0 : M |σ|pvMq�βZ0rvM, . . . , vM s, ρi : M �β Mi p1 ď i ď `q

Z “Z0rVVzM1, . . . ,VVzM`s

But since z is not a free variable of X, it cannot occur in Z either. That is, we
must have ` “ 0, and therefore the reduction ρ0 is of the form:

ρ0 : M |σ|pvMq�β Z0, for v R FVpZ0q.

Putting it all together, we find

ΘzM �β M
kpvMqrVVz{vs�β Z0rVVz{vs “ Z0.

Now we are done, since for X “β MX and k “ |σ|, we have:

X “β M
kpXq “MkpvMqrKX{vs “β Z0rKX{vs “ Z0

whence all fixed points of M are β-convertible with Z0. �

Proposition 3.3. Let M P Λ and let y, z R FVpMq be distinct variables. If
ΘyM “β ΘzM then the set FixpMq is a singleton.

Proof. Since ΘyM “β ΘzM they have a common reduct X, that is, ΘyM �β

X β� ΘzM . Clearly neither y nor z can occur in X, so we conclude by Lemma 3.2.
�

Since x Rβ M
kpxq entails z Rβ ΘzM which in turn implies ΘyM “β ΘzM , we

obtain the following property of k-constant λ-terms.

Corollary 3.4. Let k P N. For every k-constant λ-term M the set FixpMq is a
singleton.

Theorem 3.5. For every λ-term M , either M is k-constant for some k P N, or it
has infinitely many, pairwise distinct, canonical fixed points.
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Proof. If M is k-constant, then FixpMq is a singleton by Corollary 3.4. Otherwise,
given a fresh variable x, every M 1 satisfying ΘxM �β M

1 contains a free occurrence
of x. This entails that ΘyM ‰β ΘzM for all distinct y, z that do not occur in M .
Therefore tΘzM | z P Var´ FVpMqu Ď FixpMq and this set is infinite. �

We obtain the following result concerning the open fpp for λβ.

Theorem 3.6. The λ-theory λβ satisfies the open fixed point property.

4. Some Results Concerning Sets of Fixed Points in λβ

4.1. First observations. In this section we work in λβ.

Example 4.1. The following examples are meant to illustrate the basic behaviour
of the sets FixpMq and FixopMq.

(1) Define, for any n ě 1, Appn “ λfx1 . . . xn.f x1 ¨ ¨ ¨xn. Let 0n Ď Λ be the
set of λ-terms M such that M “β λy1 . . . yn.N for some λ-term N .

(Notice that 0n`1 Ď 0n for each n; the elements of 0n ´ 0n`1 are some-
times called terms of order n.)

If M P 0n, then M “β λy1 . . . yn.N for some N , and hence

AppnM “β λx1 . . . xn.M x1 ¨ ¨ ¨xn

“β λx1 . . . xn.N rx1{y1, . . . , xn{yns “α λy1 . . . yn.N “M,

whence M Pλβ FixpAppnq.
Conversely, if M R 0n, then AppnM �β λx1 . . . xn.Mx1 ¨ ¨ ¨xn P 0n,

and thus M Rλβ FixpAppnq. Hence, FixpAppnq “ trM sβ |M P 0nu.
(2) For all λ-terms F we prove that FixpF q ‰ trΩsβ , rKsβu ‰ FixopF q.

Assume, by contradiction, that F satisfies FixpF q “ trΩsβ , rKsβu. Ob-
serve that rΩsβ “ tM | M �β Ωu, whence F Ω “β Ω if and only if
F Ω �β Ω. Split on cases according to the solvability of F .
‚ If F is unsolvable then F �β λx.Ω, but then F K “β Ω ‰β K, a

contradiction.
‚ If F is solvable, then F �β λx1 . . . xn.xiN1 ¨ ¨ ¨Nk for some n, i, k ě 0.

As pλx1 . . . xn.xiN1 ¨ ¨ ¨NkqΩ �β Ω, we must have i, n “ 1 and k “ 0.
Hence, F “β I and thus FixpF q “ Λλβ , a contradiction.

(3) Let x R FVpMq and F “ λx.M (note that if M is closed, then so is F ).
Then if N “β M we have F N “β M “β N , hence N Pλβ FixpF q; and
if N ‰β M , then F N “ pλx.MqN Ñβ M rN{xs “ M ‰β N , whence
N Rλβ FixpF q. Thus, for every M P Λ, there exists a λ-term F such that
FixpF q “ trM sβu. If M P Λo, we may choose F P Λo.

(4) Define x¨y by xT y “ λz.zT , where z R FVpT q. Set F “ λx.xxxy, X “ xIy,
and Z “ λxy.xxyy. Then, we have:

FX “β XxXy “β xIyxxIyy “β xxIyyI “β IxIy “β xIy “ X

FZ “β ZxZy “β λy.xZyxyy “β λy.xyyZ “β λy.Zy “β Z

yet at the same time

XpKIqK “ xIypKIqK “β pKIqIK “β IK “β K

ZpKIqK “β KIxKy “β I.
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The last two equations show that X ‰β Z. Hence, there is a closed λ-term
F with FixλβpF q ‰ Λβ (since FΩ ‰β Ω) such that there are at least two
elements in FixoλβpF q having distinct normal forms.

The first result of the section is that unless FixpF q and FixopF q are singletons,
they cannot solely consist of equivalence classes of λ-terms in normal forms.

Proposition 4.2. Let F be a closed λ-term. If FixpF q contains at least two ele-
ments, then at least one element does not have a normal form.

Proof. By the Fixed Point Theorem, F has at least one fixed point of the form Y F
for some fpc Y . We shall prove that if Y F has a normal form, then F has at most
one fixed point; the desideratum follows immediately from this.

Any λ-term having a normal form is an isolated point in the tree topology on Λ
[2, Lem. 14.3.23]; hence Y F is isolated.

By the Continuity Theorem [2, Thm. 14.3.22], the map X ÞÑ XF is continuous,
whence there is a neighborhood of Y in the tree topology that is mapped to the
singleton Y F . As the Böhm tree of Y is λf.fpfpfp¨ ¨ ¨ qqq and the tree topology has
as basic opens all (extensions of) finite approximants of Böhm trees (see, e.g., [2,
Cor. 10.2.7]), there exists a k ą 0 such that pλf.fkpΩqq is mapped to Y F . Hence
pλf.fkpΩqqF “ Y F and pλf.fkpΩqqF is a normalizing term.

By the Genericity Lemma [2, Prop. 14.3.24], there is a fresh variable z such
that F kpΩq “ pλf.fkpΩqqF “ F kpzq. As z is fresh, for any term M , we have
F kpMq “ pλf.fkpΩqqF , and thus F kpMq “ Y F .

If M is a fixed point of F , then M “β FM , and thus M “β F kpMq “ Y F ,
concluding the proof. �

The results in the rest of this section concern terms which have no weak head
normal form, namely terms that do not reduce to an abstraction regardless of which
substitution is applied to them.

Definition 4.3. We denote by Z the subset of Λ consisting of terms M such that,
for all substitutions ϑ and terms N with Mϑ�β N , N is not of the form λx.N 1.

The elements of Z are sometimes called “zero terms”, but this name has some-
times been applied in the literature to terms having weaker properties. The inte-
rested reader is invited to consult the subsection below for a discussion.

4.2. A terminological aside: Z. Terms of order 0 are, by definition, terms that
cannot be converted to a lambda abstraction. Historically, these terms have some-
times been called zero terms [21, 5]. At other times, the expression “zero terms”
has been used, even by the same authors, to refer to the class of unsolvable terms
of order zero. Moreover, this usage is apparently becoming popular, with a number
of active researchers employing “zero terms” in this restricted sense [6, 3].

The meaning of the expression“zero term” is therefore disputed, and to avoid
ambiguity, we will eschew this term altogether. Yet, we do find that the termino-
logical shift has a decent motivation — especially, with the advent of the infinitary
λ-calculus — and shall now briefly comment on it.

Recall that the three canonical infinitary semantics of the λ-calculus are based
on Böhm trees (BT), Lévy-Longo trees (LLT), and Berarducci trees (BeT). These
semantics are obtained by coinductively quotienting terms by a chosen subset, the
elements of which are deemed to be “meaningless” — similarly to quotienting an
algebraic structure by some ideal. These sets, respectively, are as follows.
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Meaningless Set Unsolvable Z Mute

Definition @ϑ : Var Ñ Λ, ~P P Λ:

Mϑ~P ‰β I

@ϑ : Var Ñ Λ, P P Λ:
Mϑ ‰β λx.P

M�βN ñ DP,Q P Λ:
N �β pλx.P qQ

Complement Solvable:
Dϑ : Var Ñ Λ, ~P P Λ:

Mϑ~P “β I

Functional:
Dϑ : Var Ñ Λ, P P Λ:

Mϑ “β λx.P

Root-stable:
DZ P 00 ´ 01, P P Λ:

M “β ZP

Syntactic

Characterization

No head normal

form

No weak head

normal form

No top normal form

Infinitary

Semantics

BTpMq “ K LLTpMq “ K BeTpMq “ K

Closure

Properties

Substitution

Left application
Abstraction

Substitution

Left application

Substitution

Figure 1. Comparing unsolvable terms, terms in Z, and mute terms.

Unsolvable terms: M is solvable if, for some substitution ϑ : Var Ñ Λ, and

some terms ~P , Mϑ~P “β I. M is unsolvable if it is not solvable.
Unsolvable terms of order 0: These are elements of the set Z defined in

Definition 4.3. It is easy to check that the following are equivalent:
‚ M P Z,
‚ Mϑ R 01 for all ϑ : Var Ñ Λ,
‚ M has no weak head normal form.

Mute terms: M is mute if every reduct of M reduces to a β-redex. Equiv-
alently, M has no top normal form (i.e., it is a root-active term) [28].

The relationships between these sets are summarized in Figure 1.
Intuitively, one thinks of elements of Z as terms that are not convertible to

a lambda abstraction (i.e., terms of order 0), which would make the terminology
“zero terms” appropriate. The subtlety is that terms of order 0 are not closed under
substitution. Indeed, a more robust notion is obtained by defining zero terms to
be terms which are hereditarily of order 0 (in the sense that, all their instances are
such). In such an interpretation, zero terms will be precisely the elements of Z.

4.3. Fixed points of elements of Z. We first prove the proposition below.

Proposition 4.4. If F belongs to Z, then FixpF q is infinite. Moreover, if F is
closed then FixopF q is infinite as well.

Proof. Let, for n ě 0, Xn “ YnF , where Yn “ Θcn are pairwise β-distinct fpc’s
by Lemma 3.1. Observe that trXnsβ | n P Nu Ď FixpF q. Moreover, when F is
closed, then so is YnF and hence rXnsβ is an element of FixopF q. The remainder
of the proof is devoted to showing the claim below, from which the main result
immediately follows.

Claim 1. For m ‰ n, Xn ‰β Xm.

Subproof. The proof uses Claim 2, proved below.
Suppose that Xn “β Xm. By the Church–Rosser Theorem, there is a λ-term X

such that Xn �β X β� Xm, and by Claim 2 we obtain

YnF �β F0pF1p¨ ¨ ¨ZFkqq “ X “ F 10pF
1
1p¨ ¨ ¨Z

1F 1k1qq β� YmF
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We posit that k “ k1. For contradiction and without loss of generality, assume
that k ă k1. Then we have

Z “ F 1k, Fk “ F 1k`1p¨ ¨ ¨Z
1F 1k1q

which contradicts that F “β F
1
k belongs to Z, while Yn “β Z is an fpc.

Hence k “ k1, but then X has at depth k ` 1 the subterm Z “ Z 1 which is a
β-reduct of both Yn and Ym. This is impossible by Lemma 3.1, unless n “ m. �

Claim 2. For any n ě 0 and any λ-term X such that YnF �β X, there is a k ě 0
and there are λ-terms F0, F1, . . . , Fk, Z with F �β F0, F �β F1, . . . , F �β Fk
and Yn �β Z such that X “ F0pF1p¨ ¨ ¨ZFkqq (intuitively, k is the number of
“unfoldings” of the fpc Yn applied to F ).

Subproof. Since Yn is a reducing fpc, we may consider the infinite reduction se-
quence

YnF �β F pYnF q�β F pF pYnF qq�β ¨ ¨ ¨

Notice that in any reduction sequence starting from YnF there can only be one
reduction step contracting a redex which occurs at the root. Indeed, since we are
considering Yn “ Θcn

“ VVcn a redex is created at the root only if it is of shape
pλx.xΘx

cn
qF0 with Θcn

x�β Θx
cn

and F �β F0. Its contractum will therefore have

shape F0Θ
F0
cn

and none of its descendants will have a redex at the root since F P Z
entails that F0 never reduces to an abstraction. Similarly, in any reduction sequence
of this kind there is at most one reduction step contracting a redex occurring at a
position of depth k in the right-spine of the syntax tree: this deeper redex can be
created only once all redexes at previous positions in the spine have been contracted
(those reduction steps correspond to steps in the fixed point combinator unfolding).

Assume wlog that the reduction sequence YnF �β X contracts k ě 0 redexes
in the right-spine of the syntax tree of Yn. Consider the projection of YnF �β X
across YnF �β F pF p¨ ¨ ¨F pYnF qqq (k` 1 F ’s) and write the projection diagram as:

YnF
β // //

β
����

F pF p¨ ¨ ¨F pYnF qqq

β
����

X
β

// // H

By the above arguments, the reduction X �β H consist solely of steps inside
descendants of F and Yn, whence, X “ F0pF1p¨ ¨ ¨ZFkqq for λ-terms Z,F0, . . . , Fk
with Yn �β Z, F �β F0, F �β F1, . . . , F �β Fk, as desired. �

The result now follows, as trXnsβ | n P Nu is infinite by Claim 1. �

4.4. Recurrent elements of Z as fixed points. Recall that a λ-term M is
recurrent if, for all λ-terms N , M �β N implies N �β M . For example, Ω and
ΘI are recurrent elements of Z, λy.ypΘIq is recurrent, but does not belong to Z,
and Ω3 “ ∆3∆3 is an element of Z, but is not recurrent.

We proceed to prove a general result that recurrent terms belonging to Z can only
be fixed points of a combinator if all λ-terms are fixed points of that combinator,
unless the combinator is constant. We first prove Lemma 4.6 below; the general
result is Theorem 4.7.
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The proofs of both lemma and theorem make use of a result colloquially called
“Barendregt’s Lemma”; we use it in the following form due to van Daalen (see, e.g.,
[9] for a comprehensive treatment):

Lemma 4.5 (Barendregt’s Lemma).
Let M rL{xs �β N . Then there exist a k-hole context Crx1, . . . , xks (with k ě 0),
λ-terms xP 1

1 ¨ ¨ ¨P
1
m1
, . . . , xP k1 ¨ ¨ ¨P

k
mk

with x R FVpCrsq and Q1, . . . , Qk such that

(i): M �β CrxP
1
1 ¨ ¨ ¨P

1
m1
, . . . , xP k1 ¨ ¨ ¨P

k
mk
s.

(ii): pxP i1 ¨ ¨ ¨P
i
mi
qrL{xs�β Qi.

(iii): N “ CrQ1, . . . , Qks.

Lemma 4.6. If R “ CrQs is a recurrent term belonging5 to Z, and R�β Q, then
either Crzs�β R or Crzs�β z (for z R FVpCrsq).

Proof. Let z R FVpCrsq and assume, for purposes of contradiction, that neither
Crzs �β R, nor Crzs �β z. Assume now Crzs �β N . If z R FVpNq, we have
that R “ CrQs�β N rQ{zs “ N , and by recurrence of R, that N �β R and hence
Crzs�β R, contradicting the assumptions. Hence, we must have z P FVpNq and,
since N is an arbitrary reduct of Crzs and we have assumed that Crzs does not
β-reduce to z, every reduct of Crzs must contain z as a free variable strictly below
the root.

As R is recurrent and R �β Q, we have Q�β R. Thus, we have the reduction
sequence

R “ CrQs�β CrRs “ CrCrQss�β CrCrRss�β CrCrCrRsss�β ¨ ¨ ¨

Hence, for all n ě 1 we have R �β CnrRs, and thus by recurrence of R that
CnrRs �β R. Observe that for every n ě 1, the λ-term CnrRs is an element of Z
as it is a reduct of R.

Claim 3. Let n ě 0 and assume CnrRs �β W . Then the length of the longest
position in W is at least n.

Subproof. Proceed by induction:

‚ n “ 0: Trivial.
‚ n ě 1: By Barendregt’s Lemma, we have that CrCn´1rRss �β W implies

the existence of a k-hole context Drx1, . . . , xks (with k ě 0) together with
λ-terms zP 1

1 ¨ ¨ ¨P
1
m1
, . . . , zP k1 ¨ ¨ ¨P

k
mk

and Q1, . . . , Qk such that z does not
occur free in Drs and the following hold:

(1) Crzs�β DrzP
1
1 ¨ ¨ ¨P

1
m1
, . . . , zP k1 ¨ ¨ ¨P

k
mk
s,

(2) pzP i1 ¨ ¨ ¨P
i
mi
qrCn´1rRs{zs�β Qi for all 1 ď i ď k, and

(3) W “ DrQ1, . . . , Qks.

5In fact, it is easy to see that this lemma holds for all recurrent R, not just members of Z.

This is because any recurrent term can be presented as R “ NrR1, . . . , Rks, where Nrx1, . . . , xks
is a normal context (no redexes), and Ri are root-recurrent (recurrent and reducing to a redex).
(This normal form for recurrent terms is obtained by induction on the term structure of R.)

If we now have R “ CrQs �β CrRs, with R “ NrR1, . . . , Rks and N normal, then CrRs “

NrR11, . . . , R
1
ks and so CrNr~Rss “ Nr~R1s. This can only happen if Crxs “ x, Crxs “ Nr~R1s, or

Nr~Rs “ Ri for some i — in which case Ri “ R �β CrRis and our lemma applies.

Since we will not need this level of generality, we do not pursue this observation further.
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As Cn´1rRs is an element of Z, hence cannot reduce to an abstraction,
there is a k-hole context D1rx1, . . . , xks such that we may write (i),(ii),(iii)
above as (i) Crzs �β D

1rz, . . . , zs, (ii) Cn´1rRs �β Qi for all 1 ď i ď k,
and (iii) W “ D1rQ1, . . . , Qks. Note that by the previous observations,
D1rz, . . . , zs cannot have a variable at the root as otherwise Crzs �β z, a
contradiction. Moreover, we cannot have k “ 0 because, as shown earlier,
every reduct of Crzs must contain z as a free variable and z does not occur
in D1rs. Hence, the length of the longest position in D1rQ1, . . . , Qks is at
least one more than the length of the longest position in any of the Qi’s.

But as Cn´1rRs �β Qi for all 1 ď i ď k, the induction hypothesis
furnishes that the longest position in any Qi is at least n ´ 1, hence the
length of the longest position in W is at least n. �

Let d ě 1 be an integer strictly greater than the length of the longest position
in R. By Claim 3 above, CdrRs �β R implies that the length of the longest
position in R is at least d, a contradiction. Hence, the original assumption leads
to contradiction, and we must thus have either Crzs �β R, or Crzs �β z, as
desired. �

Theorem 4.7. Let F be any λ-term. If there is a recurrent R P Z such that
R Pλβ FixpF q, then the following hold:

(1) For a fresh variable z, either Fz �β R or Fz �β z.
(2) Either F “β KR or F “β I.
(3) In any λ-theory T , either FixT pF q “ trRsT u or FixT pF q “ ΛT . Thus, if

F P Λo then either FixoT pF q “ trRsT u or FixoT pF q “ ΛoT .

Proof. First, we observe that (1) implies both (2) and (3).

(2): If Fz �β R for a fresh z, then z must be erased in the reduction sequence
which has therefore length at least 1. By the Standardization Theorem [2,
11.4.7], Fz �h pλz.Crzsqz Ñβ Crzs �β R, hence F �h pλz.Crzsq �β

pλz.Rq “β KR.
If Fz �β z, then F must β-reduce to an abstraction whence the re-

duction sequence is non-empty. By the Standardization Theorem, Fz �h

pλz.Crzsqz Ñβ Crzs�β z, hence F �h pλz.Crzsq�β pλz.zq and F “β I.
(3): Immediate by 2.

The remainder of the proof is devoted to proving (1). By the above observations,
this suffices to prove the theorem.

Suppose FR “β R for R a recurrent term in Z. By the Church–Rosser Theorem,
there is a λ-term N such that FR �β N β� R. By recurrence of R, we obtain
N �β R and consequently FR �β R. Let x R FVpF q and set M “ Fx. By
Barendregt’s Lemma there is a context Crx1, . . . , xks with x R FVpCrsq, λ-terms
P 1

1 , . . . , P
1
m1

, . . . , P k1 , . . . , P
k
mk

and Q1, . . . , Qk such that:

(i) M �β CrxP
1
1 ¨ ¨ ¨P

1
m1
, . . . , xP k1 ¨ ¨ ¨P

k
mk
s,

(ii) pxP i1 ¨ ¨ ¨P
i
mi
qrR{xs�β Qi for all 1 ď i ď k,

(iii) R “ CrQ1, . . . , Qks.

Since R P Z, point (ii) yields that

pxP i1 ¨ ¨ ¨P
i
mi
qrR{xs “ RpP i1rR{xsq ¨ ¨ ¨ pP

i
mi
rR{xsq

�β Qi “ RiS
i
1 ¨ ¨ ¨S

i
mi
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where R�β Ri and P ij rR{xs�β S
i
j .

For all i with 1 ď i ď k, consider the one-hole context

Cirzs “ CrQ1, . . . , Qi´1, z ~S
i, Qi`1, . . . , Qks

Point (iii) yields that R “ CirRis for each i, so we may apply Lemma 4.6 to
conclude that either Cirzs�β z or Cirzs�β R, for each i.

If, for some i, Cirzs indeed reduces to z, then we conclude the proof by the
following sequence of inferences:

(1) The vector ~Si must be empty, so that mi “ 0;
(2) By the Genericity Lemma [2, Prop. 14.3.24], CrQ1, . . . , Qi´1, z,Qi`1 . . . , Qks “

Cirzs�β z implies that Crx1, . . . , xks�β xi, since Qj “ Rj ~S
j are unsolv-

able, and z is normal;

(3) Hence Fx�β Crx~P
1, . . . , x ~P ks�β x.

Suppose, on the other hand, that for each i, there is a reduction ρi : Cirzs�β R.
We then conclude by the following sequence of inferences.

(1) For each i, we have the reduction ρ˚i “ ρirRi{zs : R “ CirRis�β R which
erases the displayed occurrence of Ri along the way.

(2) By the Church–Rosser theorem, these can be joined together to yield

C1rR1s

ρ˚1 ����

C2rR2s

ρ˚2 ����

¨ ¨ ¨ Ck´1rRk´1s

ρ˚k´1 ����

CkrRks

ρ˚k ����

CrQ1, . . . , Qks

R

--

R

**

¨ ¨ ¨ R

ss

R

qqZ

where all the alternative paths from CrQ1, . . . , Qks to Z are equivalent,
hence no subterm of Z descends from Qi (which gets erased by ρ˚i ).

(3) The equivalent composite reductions above therefore lift to a reduction
Crx1, . . . , xks�β Z.

(4) By recurrence, also Z �β R.

(5) By point (i), we get Fx�β Crx1
~P 1, . . . , xk ~P

ks�β Z �β R, as desired.

This completes the proof of (1), and of the theorem. �

The assumptions that the λ-term R is recurrent and belongs to Z cannot be
omitted, as seen in the next example.

Example 4.8. Consider the following examples.

(1) Let F “ λxy.ypxIq. Then, FixpF q “ trλy.yM sβ |M P Λ, y R FVpMqu and
FixopF q “ trλy.yM sβ |M P Λou. Clearly, both FixpF q and FixopF q are
infinite and have empty intersection with Z. Furthermore, both FixpF q
and FixopF q contain infinitely many distinct elements rQsβ where Q is a
closed recurrent term, namely all λ-terms Q of the form Q “ λy.yR where
R is a closed recurrent term.

Thus, F is a closed λ-term with infinitely many non-β-convertible closed
recurrent terms as fixed points, showing that the assumption of R P Z in
Theorem 4.7 cannot be omitted.
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(2) Define J “ λwxy.xpwwxyq and note that JJiz �β ipJJizq. Set F “ JJI
and, for each n ě 0, consider Yn “ Θcn .

Then, as Yn is an fpc, we get trYnF sβ | n P Nu Ď FixpF q. Furthermore,
by Lemma 3.1 and the construction of F it is easy to see that for m ‰ n
we have YmF ‰β YnF , whence FixopF q is infinite. Furthermore, note that
YnF �β F pYnF q�β IpF pYnF qq and that F pYnF q does not reduce to YnF
whence none of the YnF is recurrent. It is straightforward to check that
for any n ě 0, we have YnF P Z.

Hence, F is a closed λ-term with infinitely many non-β-convertible ele-
ments of Z as fixed points, showing that the assumption of R being recurrent
in Theorem 4.7 cannot be omitted.

As an application of the previous theorem, recall the notion of Plotkin terms
from [25]: these are λ-terms P such that, for fresh x, every reduct of Px contains
x, and yet PX “β P I for every closed X P Λo.

The standard construction of such terms (see [2, Def. 17.3.26]) yields a zero term
Z “β P I which moreover satisfies PZ “β Z (since Z P Λo). If Z was recurrent,
then Theorem 4.7 would apply, implying that P is either identity or constant on
all (open) terms. Since P is neither, it follows that Z is not recurrent6.

5. The Fixed Point Property Fails in All Sensible Theories

In this section we prove that no sensible λ-theory T can satisfy the fixed point
property. More precisely, we are going to show that the λ-term defined as follows

Ξ “ λxy.xpxpKyqqΩ

only has two possible fixed points modulo T . Interestingly, Ξ is also a counter-
example to the open fixed point property. This shows that, in contrast to the
theory λβ, neither fixed point properties hold in, say, H,B or H˚.

Lemma 5.1. Ω PH FixHpΞq, hence Ω PT FixT pΞq for every sensible λ-theory T .

Proof. We have ΞΩ “H λy.ΩpΩpKyqqΩ “H Ω. �

We now show that the only solvable fixed point of Ξ in every sensible λ-theory
T is the identity.

Proposition 5.2. Let M P Λ and T be a sensible λ-theory. If M PT FixT pΞq then
M ‰T Ω entails M “T I.

Proof. All the equalities in this proof are intended to take place in the λ-theory T .
Let M ‰ Ω be a fixed point of Ξ in T . Since M is solvable, it has a hnf:

(4) M “ λx0 . . . xk.x
1M1 ¨ ¨ ¨Mm

Claim 4. The head variable x1 of the hnf of M must be x0.

Subproof. From M “ ΞM it follows, for fresh variables y and z, that:

(5) My “ ΞMy “MpMpKyqqΩ “ pMzΩqrMpKyq{zs.

6 One might suspect that this non-recurrence is due to Plotkin terms being universal generators,
but this is not so; the termWWc0, withWwn “ Kpwwc0qrEn,wwpS`nqs is a universal generator,

and it is recurrent.



20 MANZONETTO, POLONSKY, SAURIN, AND SIMONSEN

Now, let pyiqiPN be fresh variables and denote by σi the substitution rMpKyiq{yi`1s.
By iterating equation (5) we get

(6) My0 “ pMy1Ωqσ0 “ pMy2Ω
„2qσ1σ0 “ ¨ ¨ ¨ “ pMynΩ„nqσn´1 ¨ ¨ ¨σ0

In particular, taking n “ k, we get

My0 “ pMykΩ
„kqÝÑσ k “ x1M1 ¨ ¨ ¨Mmryk{x0sr~Ω{~xsÝÑσ

k

“ pMyk`1Ω
„k`1qÝÑσ k`1

“ x1M1 ¨ ¨ ¨Mmryk`1{x0sr~Ω{~xsÝÑσ
k`1Ω

whence x1 cannot be a free variable, for no consistent theory can satisfy x1 ~P “ x1 ~Q
with unequal number of P ’s and Q’s.

Since M is solvable, so is My0, and, by (6), so are MynΩ„n, for all n P N.
By Lemma 1.6, we get x1 “ x0. �

We now need to prove that also the indices k,m must be equal to 0.

Claim 5. If k “ 0 then also m “ 0.

Subproof. Assume, by contradiction, that k “ 0 while m ą 0. On the one hand, we
have M “ λx0.x0M1 ¨ ¨ ¨Mm. On the other hand, we have:

ΞM “ λy.MpMpKyqqΩ
“ λy.MpKyM 1

1 ¨ ¨ ¨M
1
mqΩ for M 1

i “MirKy{x0s

“ λy.KyM 1
1 ¨ ¨ ¨M

1
mM

2
1 ¨ ¨ ¨M

2
mΩ for M2

i “MirKyM 1
1 ¨ ¨ ¨M

1
m{x0s

“ λy.yM 1
2 ¨ ¨ ¨M

1
mM

2
1 ¨ ¨ ¨M

2
mΩ as we assumed m ą 0.

Since M “ ΞM we must have m “ 2m, which is impossible for m ą 0. �

Claim 6. If k “ m then k “ 0.

Subproof. By induction on k P N, we show that M “ λx0 . . . xk.x0M1 ¨ ¨ ¨Mk implies
M “ I.
k “ 0 : Trivial, since M has already the required form.
k ą 0 : In the induction case, we have the following chain of equalities:

M “ ΞM as M PT FixT pΞq
“ λy.MpMpKyqqΩ by def. of Ξ
“ λy.Mpλx1 . . . xk.KyM 1

1 ¨ ¨ ¨M
1
kqΩ for M 1

i “MirKy{x0s

“β λy.Mpλx1 . . . xk.yM
1
2 ¨ ¨ ¨M

1
kqΩ since k ą 0

“ λy.pλw0 . . . wk.w0N1 ¨ ¨ ¨Nkqpλx1 . . . xk.yM
1
2 ¨ ¨ ¨M

1
kqΩ by α-renaming M

“β λyw2 . . . wk.ppλx1 . . . xk.yM
1
2 ¨ ¨ ¨M

1
kqN

1
1 ¨ ¨ ¨N

1
kqrΩ{w1s

for N 1j “ Njrλx1 . . . xk.yM
1
2 ¨ ¨ ¨M

1
k{w0s

“β λyw2 . . . wk.yM
2
2 ¨ ¨ ¨M

2
k

where M2
i “M 1

irN
1
1{x1s ¨ ¨ ¨ rN

1
k{xksrΩ{w1s

“ λz0 . . . zk´1.z0P1 ¨ ¨ ¨Pk´1 by α-renaming
“ I by ind. hyp.

Since M “ λx0.x0, we conclude that k “ 0. �

Assume now k ą 0 and k ‰ m towards a contradiction. Easy calculations give

MyΩ “ λx2 . . . xk.ypM1ry{x0srΩ{x1sq ¨ ¨ ¨ pMmry{x0srΩ{x1sq

As a matter of notation we set V “ λy.MyΩ, and to simplify the reasoning on the
indices we perform some α-renaming, namely we let:

V “ λyz1 . . . zk´1.yV1 ¨ ¨ ¨Vm
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where Vi “ Miry{x0srΩ{x1srz1{x2s ¨ ¨ ¨ rzk´1{xks for 1 ď i ď m. We first prove the
following claims.

Claim 7. For all n P N, we have My “ V npMpKnyqq.

Subproof. We proceed by induction on n.

‚ Case n “ 0. Trivial since My “MpK0yq “ V 0pMpK0yqq.
‚ Case n` 1. We have

My “ ΞMy as M PT FixT pΞq
“ MpMpKyqqΩ by def. of Ξ
“ V pMpKyqq by def. of V
“ V pV npMpKnpKyqqqq by induction hypothesis
“ V n`1pMpKn`1yqq �

In the proofs below we use the following basic properties of K (for a fresh x):

(K1) for all i, j ě 0 we have λw1 . . . wi.K
jx “β Ki`jx,

(K2) if i ą j then pKixqP1 ¨ ¨ ¨Pj “β Ki´jx for arbitrary P1, . . . , Pj P Λ,
(K3) if i ď j then pKixqP1 ¨ ¨ ¨Pj “β xPi`1 ¨ ¨ ¨Pj for arbitrary P1, . . . , Pj P Λ.

Claim 8. For all n ě m, we have My “ V pV npKn`1´m`kyqq.

Subproof. We establish the following chain of equalities:

My “ V n`1pMpKn`1yqq by Claim 7
“ V n`1pλx1 . . . xk.pK

n`1yqM 1
1 ¨ ¨ ¨M

1
mq by (4) with x1 “ x0

where M 1
i “MirK

n`1y{x0s for 1 ď i ď m
“β V n`1pλx1 . . . xk.K

n`1´myq by pK2q, since n` 1 ą m
“β V n`1pKn`1´m`kyq by pK1q �

We split into subcases, depending on whether m is greater than k.

Claim 9. When k ą m we have for all n P N (and for appropriate Xi P Λ):

(i) V npV yq “ λx1 . . . xk´1`pk´1´mqn.yX1 ¨ ¨ ¨Xm,

(ii) if n ě m then My “ Kp2`nqpk´mqy.

Subproof. piq We proceed by induction on n.

‚ If n “ 0 then the case follows by definition of V .
‚ If n ą 0 then we have:

V npV yq “ V pV n´1pV yqq by def.
“ V pλx1 . . . xk´1`pk´1´mqpn´1q.yX1 ¨ ¨ ¨Xmq by ind. hyp.

“β λz1 . . . zk´1.pλx1 . . . xk´1`pk´1´mqpn´1q.y ~XqV
1
1 ¨ ¨ ¨V

1
m

where V 1i “ Virλx1 . . . xk´1`pk´1´mqpn´1q.y ~X{ys for 1 ď i ď m
“β λz1 . . . zk´1xm`1 . . . xk´1`pk´1´mqpn´1q.yX

1
1 ¨ ¨ ¨X

1
m as k ą m.

where X 1i “ XirV
1
1{x1s ¨ ¨ ¨ rV

1
m{xms

So the number of abstractions is k´ 1` k´ 1` pk´ 1´mqpn´ 1q ´m “ k´ 1`
pk ´ 1´mqn.
piiq For n ě m we have the following:

My “ V npV pKn`1´m`kyqq by Claim 8
“ λx1 . . . xk´1`pk´1´mqn.pK

n`1´m`kyqX1 ¨ ¨ ¨Xm by piq

“β λx1 . . . xk´1`pk´1´mqn.K
pn`1´m`kq´my by pK2q as n ě m, k ą m

“β Kk´1`pk´1´mqn`pn`1´m`kq´my by pK1q
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So, the number of K’s is k ´ 1` pk ´ 1´mqn` pn` 1´m` kq ´m “ pk ´ 1´
mqn` n` 2k ´ 2m “ pk ´ 1´m` 1qn` 2pk ´mq “ pk ´mqpn` 2q. �

In Claim 9(ii) we have shown that, for all n large enough, My has a hnf with
pk´mqpn`2q external λ-abstractions and 0 applications. By Remark 1.9, we have
pk ´ mqpn ` 2q “ k ´ m for all such n, which is only possible if this quantity is
independent from n. As we are supposing k ą m this is impossible.

Claim 10. When 0 ă k ă m we have for all n P N (and for appropriate Xi P Λ):

(i) V npV yq “ λx1 . . . xk´1.yX1 ¨ ¨ ¨Xm`pm´k`1qn,
(ii) if n ě m then My “ λx1 . . . xk´1.yX1 ¨ ¨ ¨Xpm´kqn`2m´k´1.

Subproof. piq We proceed by induction on n.

‚ If n “ 0 then the case follows by definition of V .
‚ If n ą 0 then we have:

V npV yq “ V pV n´1pV yqq by def.
“ V pλx1 . . . xk´1.yX1 ¨ ¨ ¨Xm`pm´k`1qpn´1qq by ind. hyp.
“β λ~z.pλx1 . . . xk´1.yX1 ¨ ¨ ¨Xm`pm´k`1qpn´1qqV1 ¨ ¨ ¨Vm
“β λz1 . . . zk´1.yX

1
1 ¨ ¨ ¨X

1
m`pm´k`1qpn´1qVk ¨ ¨ ¨Vm as k ă m

where X 1i “ XirV1{x1s ¨ ¨ ¨ rVk´1{xk´1s for 1 ď i ď m.

So the number of applications is m`pm´k`1qpn´1q`m´k`1 “ m`pm´k`1qn.

piiq For n ě m we have the following:

My “ V npV pKn`1´m`kyqq by Claim 8
“ λx1 . . . xk´1.pK

n`1´m`kyqX1 ¨ ¨ ¨Xm`pm´k`1qn by piq
“β λx1 . . . xk´1.yXpn`1´m`kq`1 ¨ ¨ ¨Xm`pm´k`1qn

where the last equality follows by pK3q since k ă m ď n so that m`pm´k`1qn´
pn`1´m`kq “ pm´k`1qn`m´n´1`m´k “ pm´k`1´1qn`2m´k´1 “
pm ´ kqn ` 2m ´ k ´ 1 ą 0. In particular, the number of applications is what is
claimed. �

By Claim 10(ii), for all n large enough, My has a hnf with pm´kqn`2m´k´1
applications and k´1 external abstractions, so the difference is pm´kqn`2m´2k.
By Remark 1.9, we must have pm ´ kqn ` 2m ´ 2k “ m ´ k for all such n, which
is only possible if this quantity is independent from n. As we are supposing k ă m
this is impossible.

As we ruled out all other possibilities, we conclude k “ m “ 0 and M “ I. �

As a consequence of Lemma 5.1 and Proposition 5.2 we obtain the following.

Corollary 5.3. For every sensible λ-theory T , FixoT pΞq “ FixT pΞq “ trΩsT , rIsT u
is of cardinality 2.

We are now able to present the main result of the paper.

Theorem 5.4. No sensible λ-theory T satisfies the fixed point property.

This gives a partial answer to Problem 3 and has the following corollary.

Corollary 5.5. The λ-theory B satisfies the range property, but not the fixed point
property.
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We conclude this section with one more observation.

Proposition 5.6. Let T be a sensible λ-theory. For all k ą 0, there exists Mk P Λo

such that FixT pMkq “ FixoT pMkq has cardinality k.

Proof. We define inductively the following sequence of terms:

F1 “ F “ λxy.y, F2 “ Ξ, Fn`1 “ λx.rΞpπ1xq, π1xFnpπ2xqs for n ě 2.

and proceed by induction on k.
The case k “ 1 is trivial since FixT pFq “ FixoT pFq “ trIsT u.
The case k “ 2 follows by Proposition 5.2.
Assume k ą 2. Suppose that X P FixT pFkq, which means that X “T FkX.

Then X must be such that X “T rX1, X2s, where

X1 “T ΞX1 X2 “T X1Fk´1X2

Since X1 “T ΞX1, Proposition 5.2 entails that either X1 “T Ω or X1 “T I. In the
former case we must have also X2 “T Ω. In the latter, the fact that X1 “T I entails
that X2 “T Fk´1X2. By induction hypothesis, there are exactly k´ 1 solutions to
this equation (modulo T ). It is easy to check that each of these solutions indeed
furnishes a fixed point of Fk. Therefore the set

FixT pFkq “ trrΩ,ΩssT u Y trrI, XssT | X PT FixT pFk´1qu

consists of closed terms and, by Remark 1.9, has cardinality k. �

6. The Double Fixed Points Problem

In this section we focus on Problem 1, originally stated by Statman [29] and
attacked by Intrigila [15], namely the question of whether double fixed point com-
binators exist. Intrigila’s proposal is centered on the remark that, in the Böhm tree
model, both Y and Y δ are indeed equated and thus that somehow fixed point un-
rollings had to be tamed with. While Intrigila defined a notion of weight to perform
this task, we approach the question differently by factoring the behaviour of the
fixed point combinator itself through a notion of interpretation of the λY-calculus in
the λ-calculus and the identification of structural properties of this interpretation
from which the non-existence of double fixed point combinators would follow.

6.1. Background on the λY-calculus. The λY-calculus is an extension of the
untyped λ-calculus with a unary term constructor Y representing a fixed point
combinator. Formally, the set ΛY of λY-terms is generated by the following gram-
mar:

ΛY : M,N ::“ x |MN | λx.M | YM

In order to endow the Y construct with the behaviour of a fixed point combinator,
we consider an additional reduction ÑY, which is the contextual closure of the rule:

(Y) YM ÑMpYMq

The λY-calculus thus becomes a higher-order rewriting system with reduction
ÑβY generated by the rules pβq and pYq. Most of the notions introduced in Section 1
for the λ-calculus are inherited by the λY-calculus in the obvious way. In particular,
a λY-theory is a congruence on ΛY containing the βY-conversion.

Several standard references provide background on the λY-calculus [1, 24, 30].
The usual rewriting-theoretic properties of the λ-calculus carry over to the λY-
extension with virtually the same proofs. We still review these arguments as later
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on we will employ some refinements of them, but we refer to Appendix A for the
most technical proofs.

Theorem 6.1. The reduction ÑβY is confluent.

Proof. The λY-calculus possesses two rewriting rules. By inspection, it is evident
that the system is orthogonal — there is no possible overlap between redex-patterns
of the two rules. We conclude since, by [4, Thm. 11.6.19], every orthogonal higher-
order term rewriting system is confluent. �

As a consequence, two βY-convertible λY-terms M and N have a common reduct:

Corollary 6.2. Let M,N P ΛY. If M “βY N , then there exists Z P ΛY such that
M �βY Z βY� N .

In fact, the system λY is a conservative extension of the λ-calculus.

Corollary 6.3. λY is conservative over λ.

Proof. Let M,N P Λ such that M “βY N . By Corollary 6.2, there is a λY-term Z
such that M �βY Z βY� N . Since neither M nor N contain the symbol Y, and this
symbol cannot be created by β-reduction, there is no point during these reductions
where such a symbol can appear. Consequently, there is no point during these
reductions where the Y-rule can be applied. We conclude that these reductions in
λY are actually reductions in λ, hence M “β N holds. �

6.1.1. Standardization and Parallel Reduction. We now present some reduction re-
lations that are well-known in the setting of the λ-calculus, and are here extended
to the λY-calculus.

Definition 6.4.

(1) The weak head reduction is defined by the following two rules (for k ě 0):

pλx.MqN0 ¨ ¨ ¨Nk Ñw M rN0{xsN1 ¨ ¨ ¨Nk

YN0 ¨ ¨ ¨Nk Ñw N0pYN0qN1 ¨ ¨ ¨Nk

(2) The standard reduction is obtained from the weak head reduction by setting:

M Ñw M
1 M 1 �s N

M �s N x�s x

M �s M
1

YM �s YM
1

M �s M
1

λx.M �s λx.M
1

M �s M
1 N �s N

1

MN �s M
1N 1

(3) The parallel reduction is the least congruence closed under simultaneous
development:

M ñp M
1 N ñp N

1

pλx.MqN ñp M
1rN 1{xs

M ñp M
1 YM ñp N

YM ñp M
1N xñp x

M ñp M
1

YM ñp YM
1

M ñp M
1

λx.M ñp λx.M
1

M ñp M
1 N ñp N

1

MN ñp M
1N 1

We refer to the Appendix for the basic results on these notions of reduction,
including the Standardization Theorem. The proofs in the next two sections will
only use the following facts about parallel reduction — whose proofs may be found
there as well. Note that the transitive closure of parallel reduction is equal to �βY.
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Proposition 6.5. For M,N P ΛY, we have that M ñp M
1 and M 1 �Y N entail

M ñp N . In particular, M �Y N implies M ñp N .

Proposition 6.6. For M,N P ΛY, we have that M ñp M
1 and N ñp N

1 entail
M rN{xs ñp M

1rN 1{xs.

6.1.2. The Simply-Typed Case. We now consider the version of λY endowed with
simple types over one ground type o. The typing restriction will prove to have
several important advantages.

Definition 6.7. The typed λY-calculus, λYÑ, is an extension of the simply-typed
λ-calculus obtained by adding a new unary term constructor YA, for each type A:

A,B P T ::“ o | AÑ B

M,N P ΛÑY ::“ x |MN | λx:A.M | YAM

The typing rule for the new term constructor is the following:

Γ $M : AÑ A
Γ $ YAM : A

The reduction rule is as in the untyped case:

(Y) YAM ÑMpYAMq

Proposition 6.8. λYÑ satisfies the subject reduction property.

Proof. Routine. �

6.2. Interpretation of the Constructor Y by Fixed Point Combinators.

6.2.1. Interpretation by Fixed Point Combinators. We have seen that in a λY-term
M the constant Y represents a generic fixed point combinator. Therefore it is
possible to retrieve a regular λ-term by substituting some fpc Y for every occurrence
of Y in M . The λ-term M 1 so defined is called the “interpretation of M in Λ” —
and it depends on Y . In the next definition we are more liberal and consider also
the case where Y is substituted by a weak fixed point combinator.

Definition 6.9. Given a weak fpc Y P Λ, we define the interpretation of a λY-term
in Λ with respect to Y as the map v¨wY : ΛY Ñ Λ given by:

vxwY “ x

vMNwY “ vMwY vNwY

vλx.MwY “ λx.vMwY

vYMwY “ Y vMwY

Such an interpretation is clearly compositional and enjoys several interesting
properties.

Lemma 6.10 (Substitution Lemma for λY).
Let M,N P ΛY and let Y P Λ be a weak fpc. Then, for all x R FVpY q, we have:

vM rN{xswY “ vMwY rvNwY {xs.

Proof. Straightforward by compositionality of the interpretation map v¨wY . �

In general a weak fpc Y can be such that Y x�β xpY
1xq for Y ‰β Y

1, and in this
case the interpretation is unsound: we have YxÑY xpYxq but vYxwY ‰β vxpYxqwY .
However, when Y is an actual fpc the resulting interpretation is sound.
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Proposition 6.11 (Soundness).
Let Y P Λ be an fpc. For all M,N P ΛY, if M “βY N then vMwY “β vNwY .

Proof. First, notice that by Lemma 6.10, if M “β M 1, then we have vMwY “β

vM 1wY . Notice also that, if M “Y M
1, then we have vMwY “β vM

1wY because Y is
an fpc. The result then easily follows by induction on the number of alternations
between “β and “Y in a proof that M “βY N . �

Remark 6.12. The converse to the above proposition fails for two reasons. One of
these is rather trivial, the other much deeper.

‚ The first problem has to do with the fact that the interpretation function
v¨wY is not injective even with respect to α-conversion. For example, fix
any untyped fpc Y , and consider M “ λx.rY x, Yxs and N “ λx.rYx, Y xs.
Trivially vMwY “ vNwY , but M ‰βY N by a Church–Rosser argument.

‚ The exotic reason is related to the Plotkin terms already discussed on
Page 19: there exist (unsolvable) λ-terms P P Λo with the property that
PX “β P I for all X P Λo, and yet Px�β P

1 implies that x P FVpP 1q.
For the counterexample now take M“P I and N“P pλz.Yzq. Just as x

can never be erased from Px by any β-reduction, also Y can never be erased
from P pλz.Yzq by any βY-reduction. Yet, for a closed fpc Y , vλz.YzwY
becomes a closed λ-term, and so vNwY “β P I “β vMwY .

6.2.2. Interpretation of Y by Fpc’s in the Typed Case. We now prove that both of
the pathologies described in Remark 6.12 disappear when considering the simply-
typed λY-calculus. We start by showing that the interpretation becomes injective.

Definition 6.13. For a given fpc Y , the interpretation of λYÑ in Λ is defined as
in the untyped case, namely forgetting the types.

Proposition 6.14. Let Y be an fpc. Then the map

v¨wY : ΛÑY Ñ Λ

is injective — with respect to syntactic equality.

Proof. The structure of vMwY is completely determined by M ; the only two clauses
in the definition of v¨wY which result in the same term constructor are those for the
application and for Y.

vM1M2wY “ vM1wY vM2wY

vYNwY “ Y vNwY

Suppose there are M1,M2, N P ΛÑY such that

vM1wY vM2wY “ Y vNwY

Then we must have vM1wY “ Y . We claim that this is impossible. First of all, note
that Y itself is not a λYÑ-term, so M1 ‰ Y. Now, if Y occurs in M1 then Y occurs
as a strict subterm of vM1wY “ Y . This is impossible for finite terms.

Otherwise Y does not occur in M1, vM1wY “M1 and M1 is a Y-free simply-typed
term, thus normalizing, which Y is not. �
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Proposition 6.15. Let M,N P ΛÑY . Suppose that, for every fpc Y , vMwY “β

vNwY . Then M “βY N .

Proof. We consider the interpretation of Y by Turing’s fpc Θ and to lighten the
notation we simply write v¨w for v¨wΘ. We first show that for any one-step reduct
vMw Ñβ Z

1 there exists a λYÑ-term Z such that

M “βY Z, vZw “ Z 1.

To see this, write vMw “ CrRs, where R is the contracted redex. Notice that R
cannot be a proper subterm of Θ, which has only one redex, occurring at the root:

Θ “ WW, W “ λwx.xpwwxq

Case 1: If R is indeed the λ-term Θ “ WW, then it must descend from an
occurrence of Y; in this case we have

vMw “ CrΘs “ C 1rΘvNws, Crxs “ C 1rxvNws

M “ C0rYN s, vC0rXsw “ C 1rvXws

vMw Ñβ Z
1 “ C 1rpλx.xpWWxqqvNws

But now we have

M “ C0rYN s ÑY C0rNpYNqs βÐ C0rpλx.xpYxqqN s “ Z

vZw “ vC0rpλx.xpYxqqN sw

“ C 1rvpλx.xpWWxqqNws

“ C 1rpλx.xpWWxqqvNws “ Z 1

where we find M “βY Z and vZw “ Z 1.
Case 2: If R does not come from Y, then the only possibility left is that it is

the image of a redex which already appears in M :

vC0rXsw “ CrvXws, vpλx.P qQw “ R

M “ C0rpλx.P qQs Ñβ C0rP rQ{xss “ Z

vMw “ vC0rpλx.P qQsw “ CrRs Ñβ Z
1 “ CrvP wrvQw{xss

vZw “ vC0rP rQ{xssw “ CrvP rQ{xsws

By Lemma 6.10, we have vP wrvQw{xs “ vP rQ{xsw, hence Z 1 “ vZw and
M Ñβ Z.

The result then follows by induction, applying Proposition 6.14. �

6.3. The Reduction Extension Properties. We now present structural proper-
ties of the interpretation map v´wY that we call “reduction extension properties”.
To present them in diagrammatic form, we first need to introduce some notations.

Notation 6.16. Let M,N P ΛY, and let Y be a weak fpc. We write

vMwY
v¨wY
� vNwY

whenever M �βY N .
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Definition 6.17. A weak fpc Y satisfies the reduction extension properties if the
following properties hold for all M P ΛY. (Note that M 1, N P ΛY while P P Λ.)

Property I. vMwY
β // //

v¨wY ## ##

P

β
����

vNwY

Property II. vMwY
β // //

v¨wY $$ $$

vM 1wY

v¨wY
����

vNwY

where solid arrows denote the assumption reductions and dotted arrows denote the
entailed ones. In words, Property I states that for all M P ΛY, P P Λ, vMwY �β P
entails that there exists an N P ΛY such that M �βY N and P �β vNwY . Similarly,
Property II states that for all M,M 1 P ΛY, vMwY �β vM

1wY entails that there exists
an N P ΛY such that M �βY N βY�M 1.

Those properties are interesting because of the following observation.

Proposition 6.18. Let Y P Λ be a weak fpc. If Y satisfies the reduction extension
properties then Y ‰β Y δ.

Proof. Suppose, by way of contradiction, that Y “β Y δ holds. This entails that
Y x “β Y δx, so by confluence these λ-terms have a common reduct X satisfying
Y x �β X β� Y δx. Furthermore, by definition of v¨wY , we have Y x “ vYxwY and
Y δx “ vYδxwY . By Property I, Yx�βY M for some M P ΛY such that X �β vMwY .

Now vYδxwY �β X �β vMwY and this entails, by Property II, that Yδx �βY

N βY�M . Therefore Yδx�βY N βY�M βY� Yx. This is a contradiction, since no
βY-reduct of Yx contains a δ, while every reduct of Yδx contains one — it occurs at
the innermost position, with a unique descendant of Y applied to it. �

Remark 6.19.

(1) We will prove Reduction Extension Property I for a class of reducing fpc’s.
We conjecture that this property actually holds for all reducing fpc’s, and
that our technique will be useful to treat the general case as well.

(2) Property I can be satisfied by a weak fpc Y satisfying Y x�β xpY
1xq even

when Y ‰β Y
1, because we might have Y 1x�β xpY xq, and Y x�β x

2pY xq.
(3) An fpc Y satisfying Property I, cannot satisfy Property II for all M P ΛY,

because together they would imply the completeness of the interpreta-
tion v¨wY — in contradiction with Remark 6.12.

(4) Luckily, the above proof only involves typable λY-terms. So we only need
these properties to hold for all M P ΛÑY . We conjecture that Property II
indeed holds for all reducing fpc’s Y and M P ΛÑY .

(5) Our proof of Property I for a class of reducing fpc’s is obtained by consid-
ering a larger class of weak fpc’s, namely the hereditarily reducing ones.

6.4. Hereditarily Reducing Weak Fpc’s. In order to state Property I in its
most general form, we now introduce the class of hereditarily reducing weak fpc’s.

We have seen in Definition 2.5(ii) that an fpc Y is reducing whenever Y x �β

xpY xq. The problem is that the set of reducing fpc’s is not closed under β-reduction,
as shown by the following counterexample.

Example 6.20. Let us consider the following variant ΘI of Turing’s fpc:

ΘI “ WIWI, WI “ λwx.xpIwwxq
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It is easy to check that ΘI is reducing. Obviously, WI �β W and hence ΘI �β Θ,
but if we only contract Iw in the second occurrence of WI in ΘI, we obtain the fpc

Θ1 “ WIW

which is no longer reducing.

This situation motivates the introduction of the following notion. It amounts to
relaxing the requirement Y x�β xpY xq to mere syntactic separability of x from Y .

Definition 6.21. A weak fpc Y P Λ is hereditarily reducing whenever it satisfies
the following property:

(7)
@K ě 0,@x R FVpY q,@N P Λ such that Y x�β N,

Dk ě K, DY ˚ P Λ such that x R FVpY ˚q & N �β x
kpY ˚xq

We denote by Y the set of all hereditarily reducing weak fpc’s.

While the above definition might seem quite intricate at first, its essential mean-
ing is borne in the requirement that x R FVpY ˚q. Indeed, Y consists of all weak
fpc’s Y such that any reduction starting with Y x can be continued until the vari-
able x is once again separated, on the syntactic level, from the “engine” producing
the infinite Böhm tree xpxpxp¨ ¨ ¨ qqq.

Lemma 6.22.

(1) If Y is a terminal fpc then Y P Y .
(2) If Y is a weak fpc, then Y δ P Y .

Proof. (1) It follows easily from the definition of terminal fpc’s (see Definition 2.5).
(2) We divide the proof into claims.

Claim 1. Let Crs be a context such that λx.Crxs is a weak fpc and x R FVpCrsq.
For every n P N there exists a weak fpc Y 1 such that Crδsx�β x

npY 1xq.

Subproof. Proceed by induction on n. In case n “ 0, we can simply take Y 1 “ Crδs.
Otherwise, for all z R FVpCrsq there is N P Λ such that pλx.Crxsqz �β zN and
since the latter is a weak hnf it can be reached by performing weak head reduction:

pλx.Crxsqz Ñw Crzs�w zN
1 �β zN

for some N 1 P Λ. Notice that λz.N, λz.N 1 must be weak fpc’s as well. As weak
head reductions are closed under substitution, we obtain (using rδ{zs)

pλx.CrxsqδxÑw Crδsx�w δDrδsxÑw pλx.xDrδsxqxÑw xpDrδsxq

for some Drs such that Drδs is again a weak fpc, so we conclude by induction
hypothesis. �

Claim 2. Let λy.Crys be a weak fpc and x, y R FVpCrsq. For all reduction sequences
Crδsx�β N there exist Z P Λ, n P N such that N �β x

npZxq and x R FVpZq.

Subproof. By induction on the length of the standard reduction ρ : Crδsx �s N ,
which exists by the Standardization Theorem for Λ. There are two cases.

Case 1: All reductions in ρ happen in the context rsx, in other words Crδs
reduces but does not “eat” the x. In this case, N has already the correct
form for n “ 0 because Crδs cannot create the variable x along its reduction.
(This case includes the degenerate case of an empty reduction sequence.)
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Case 2: Otherwise, the standard reduction ρ must have the following form

Crδsx�w δDrδsxÑw pλx.xpDrδsxqqxÑw xpDrδsxq�s N

which entails N “ xN 1 for some N 1 satisfying σ : Drδsx �s N
1 for a

shorter (possibly empty) standard reduction σ. As λy.Drys is a weak fpc
we conclude by applying the induction hypothesis. �

Now, since every weak fpc Y �β λx.Crxs for an appropriate context Crs, Claim 1
entails that Y δx�β x

kpY 1xq for arbitrarily large k. Therefore Y δ P Y follows from
Claim 2 by applying Church–Rosser. �

The property that Y weak fpc entails Y P Y is false, as evidenced by the fol-
lowing example.

Example. Given a reducing fpc Y , consider B “ λx.Y pBxqx which is a modi-
fied version of the Bible fpc. Clearly Bx Ñβ Y pBxqx �β BxpY pBxqqx �β

xpY pBxqxq �β xkpY pBxqxq. Moreover, this reduction sequence is unavoidable
in the construction of its Böhm tree, therefore B R Y since x P FVpY pBxqq.

Definition 6.23. Let Y, Y 1 P Λ, and let x R FVpY Y 1q. Define

Y

í

k Y
1 if and only if Y x�β x

kpY 1xq.

We write Y

í

Y 1 whenever Y

í

k Y
1 holds for some k P N.

Proposition 6.24. Let Y P Y .

(1) If Y

í

Y 1 then Y 1 P Y . Hence Y is closed under

í

.
(2) If Y �β Y

1 then Y

í

Y 1. Hence Y is closed under β-reduction.
(3) If Y 1 �β Y then Y 1 P Y . Hence Y is closed under β-conversion.
(4) For k, k1 P N, Y

í

k Y
1 and Y 1

í

k1 Y
2 entail Y

í

k`k1 Y
2. So

í

is transitive.

Proof. Fix Y P Y .

(1) Suppose that Y

í

Y 1 because, say, Y

í

k0
Y 1.

Toward Y 1 P Y , let K P N, Y 1x�β Y
2 be given.

From Y x�β x
k0pY 1xq, Y 1x�β Y

2, we get Y x�β x
k0pY 2q.

Since Y P Y , let k ě K ` k0, Y
˚PΛ, x R FVpY ˚q be such that

xk0pY 2q�β x
kpY ˚xq “ xk0`K`k

1

pY ˚xq

Since the above reduction is entirely in Y 2, Y 2 �β x
K`k1pY ˚xq.

(2) If Y �β Y
1, then Y x�β x

0pY 1xq, so Y

í

0 Y
1. By (1), Y 1 P Y .

(3) Assume Y 1 �β Y . Then Y 1x�β Y x.
Let Y 1x�β Z, K ě 0 be given.
By Church–Rosser, there exists a Z0 such that Y x�β Z

0
β� Z.

Since Y P Y , there exists a k ě K, and a reduction Z0 �β x
kpZ 1xq.

So we have Z �β Z
0 �β x

kpZ 1xq, as required.

(4) From Y x�β x
kpY 1xq, Y 1x�β x

k1pY 2xq, we immediately find that

Y x�β x
k`k1pY 2xq. �

Lemma 6.25. The set Y contains all double fpc’s.

Proof. If Y is a double fpc, then Y “β Y δ. By Lemma 6.22(2), Y δ P Y . By
Proposition 6.24(3) Y is closed under “β , so we get Y P Y . �
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6.5. Non-Uniform Reduction Extension Properties. To allow for the fact
that weak fpc’s may change at various stages on the Böhm tree, the statements of
the Reduction Extension Properties need to be refined accordingly.

Notation 6.26. Let �r be a notion of reduction for λY, and let Y, Y 1 be weak fpc’s.
We write

vMwY
v¨w
ÝÑÝÑr vNwY 1 if and only if M �r N and Y

í

Y 1.

As special cases, we consider

‚ vMwY
v¨w
ÝÑÝÑ vNwY 1 if M �βY N and Y

í

Y 1.

‚ vMwY
v¨w
ùñùñ vNwY 1 if M ñp N and Y

í

Y 1.

Definition 6.27. (Non-Uniform Reduction Extension Properties) A weak fpc Y P
Λ satisfies the non-uniform reduction extension properties if the following hold.

Property I. vMwY
β // //

v¨w $$ $$

P

β
����

vNwY 1

Property II. vMwY
β // //

v¨w $$ $$

vM 1wY 1

v¨w
����

vNwY 2

We now show that Non-Uniform Property I holds for all hereditarily reducing
weak fpc’s. From now on, and until the end of the section, we consider fixed Y P Y
and M P ΛY.

Lemma 6.28. If Y

í

Y 1 holds then there exists N P ΛY such that M �Y N and
vMwY �β vNwY 1 .

Proof. We proceed by structural induction on M .

M “ x: In this case we just take N “ x.
M “ λx.M0: By definition, we have vMwY “ λx.vM0wY . By induction hy-

pothesis, there exists N0 P ΛY such that M0 �Y N0 and vM0wY �β

vN0wY 1 hold. As a consequence, λx.M0 �Y λx.N0. Moreover, vMwY “

λx.vM0wY �β λx.vN0wY 1 “ vλx.N0wY 1 .
M “M1M2: By definition, we have vMwY “ vM1wY vM2wY . By induction

hypothesis, there exist N1, N2 P ΛY such that Mi �Y Ni and vMiwY �β

vNiwY 1 for i P t1, 2u. As a consequence, M1M2 �Y N1N2. Moreover,
vMwY “ vM1wY vM2wY �β vN1wY 1vN2wY 1 “ vN1N2wY 1 .

M “ YM3: By definition, we have vMwY “ vYM3wY “ Y vM3wY . By induction
hypothesis, there exists N3 P ΛY such that M3 �Y N3 and vM3wY �β

vN3wY 1 . Since Y

í

Y 1 holds, there exists k P N such that Y x �β x
kpY 1xq.

Setting N “ Nk
3 pYN3q, we have

M “ YM3 �Y YN3 ÑY N3pYN3q ÑY N3pN3pYN3qq ÑY ¨ ¨ ¨

�Y N
k
3 pYN3q “ N

vMwY “ Y vM3wY �β Y vN3wY 1

“ Y xrvN3wY 1{xs

�β x
kpY 1xqrvN3wY 1{xs

“ vN3w
k
Y 1pY

1vN3wY 1q “ vN
k
3 pYN3qwY 1 “ vNwY 1 . �
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Lemma 6.29. If vMwY ñp M
1 then there exist N P ΛY and Y 1 P Y such that

vMwY
v¨w
ùñùñ vNwY 1 and M 1 �β vNwY 1 .

Proof. We proceed by induction on a derivation of vMwY ñp M
1.

vMwY “ xñp x: Here M 1 “ x, so we can take Y 1 “ Y and N “ M “ x.

Then certainly M ñp N “ x, M 1 �β vNwY 1 “ x.
vMwY “ λx.vM0w ñp λx.M

1
0: Here M “ λx.M0, vM0w ñp M 1

0 and M 1 “

λx.M 1
0. By induction hypothesis, there are N0 P ΛY and Y 1 P Y such that

Y

í

Y 1 and M0 ñp N0 with M 1
0 �β vN0wY 1 . Letting N “ λx.N0, we verify

M “ λx.M0 ñp λx.N0 “ N

M 1 “ λx.M 1
0 �β λx.vN0wY 1 “ vNwY 1 .

vMwY “ UV ñp M
1
1M

1
2: In this case, there are two possibilities:

‚ M “ YM2, U “ Y ñp M
1
1 and V “ vM2wY ñp M

1
2.

By induction hypothesis, there are N2 P ΛY and Y2 P Y such that
Y

í

Y2 and M2 ñp N2 with M 1
2 �β vN2wY2

.
Since Y ñp M

1
1 and Y

í
Y2, we get

M 1
1x β� Y x�β x

k2pY2xq

By Church–Rosser, there exist k12 ě k2 and Y 12 P Λ such that

M 1
1x�β x

k12pY 12q β� xk2pY2xq

Now, using the fact that Y P Y , we obtain Y ˚ P Λ, k˚ ě k12 such that

xk
1
2pY 12q�β x

k˚pY ˚xq

and certainly Y

í

Y ˚. Moreover, we have (i) M 1
1x �β xk

˚

pY ˚xq

therefore M 1
1

í

Y ˚ and (ii) Y2x �β x
k˚´k2pY ˚xq and hence Y2

í

Y ˚.
By Lemma 6.28, there exists N˚2 P ΛY such that

N2 �Y N
˚
2 , vN2wY2

�β vN
˚
2 wY ˚

Now M ñp YN2 �Y YN˚2 , and so M ñp YN˚2 . Moreover, M 1 “

M 1
1M

1
2 �β M 1

1vN2wY2
�β M 1

1vN
˚
2 wY ˚ �β vN

˚
2 w

k˚

Y ˚pY
˚vN˚2 wY ˚q “

vN˚2
k˚
pYN˚2 qwY ˚ .

‚ M “ M1M2, U “ vM1wY ñp M
1
1, V “ vM2wY ñp M

1
2 and M 1 “

M 1
1M

1
2. By induction hypothesis, for i P t1, 2u, there are Ni P ΛY and

Yi P Y such that Y

í

Yi and Mi ñp Ni with M 1
i �β vNiwYi

.
From the first of these conditions Y

í

Y1, Y

í

Y2, we get

xk1pY1xq β� Y x�β x
k2pY2xq

By Church–Rosser, there exist k12 ě maxtk1, k2u and Y12 P Λ such
that

xk1pY1xq�β x
k12pY12q β� xk2pY2xq

Now, using the fact that Y P Y , we obtain Y ˚ P Λ, k˚ ě k12 such
that

xk12pY12q�β x
k˚pY ˚xq
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and certainly Y

í

Y ˚. Moreover, for i P t1, 2u, we have Yix �β

xk
˚
´kipY ˚xq and therefore Yi

í

Y ˚. By Lemma 6.28, there exist
N˚1 , N

˚
2 P ΛY such that

Ni �Y N
˚
i , vNiwYi �β vN

˚
i wY ˚ pi P t1, 2uq

Now M “ M1M2 ñp N1N2 �Y N˚1 N
˚
2 , and so M ñp N˚1 N

˚
2 .

Moreover, M 1 “ M 1
1M

1
2 �β vN1wY1

vN2wY2
�β vN

˚
1 wY ˚vN

˚
2 wY ˚ “

vN˚1 N
˚
2 wY ˚ .

vMwY “ pλx.M0qM1 ñp M
1
0rM

1
1{xs,Mi ñp M

1
i : In this case, there are two

possibilities:
‚ M “ pλx.P0qP1 and Mi “ vPiwY .

By induction hypothesis, we find Y0, Y1 with Y

í

Yi, k0, k1 ě 0, and
Q0, Q1 such that for each i P t0, 1u the following holds

Y x�β x
kipYixq,

Pi ñp Qi,

M 1
i �β vQiwYi

.

As in the previous case, we first obtain Y ˚ with Y0, Y1

í

Y ˚ such that

xk0pY0xq�β x
k˚pY ˚xq β� xk1pY1xq

Next, for each i P t0, 1u, we apply Lemma 6.28 on Yi

í

Y ˚ and Qi in
order to obtain Q10, Q

1
1 satisfying

Qi �Y Q
1
i,

vQiwYi
�β vQ

1
iwY ˚ .

From Pi ñp Qi �Y Q
1
i, we obtain Pi ñp Q

1
i, and so

M “ pλx.P0qP1 ñp Q
1
0rQ

1
1{xs.

Moreover, from M 1
i �β vQiwYi �β vQ

1
iwY ˚ , we have M 1

i �β vQ
1
iwY ˚

and therefore

M 1 “M 1
0rM

1
1{xs�β vQ

1
0wY ˚rvQ

1
1wY ˚{xs “ vQ

1
0rQ

1
1{xswY ˚ .

where the last equality is by the substitution lemma.
‚ M “ YP, λx.M0 “ Y and M1 “ vP wY . Then Mi ñp M

1
i gives

Y x “ pλx.M0qxÑβ M0 �β M
1
0

vP wY ñp M
1
1

By induction hypothesis, we find Y

í

Y 1, P ñp Q with M 1
1 �β vQwY 1 .

Since Y

í

Y 1, there exists k0 P N such that Y x �β x
k0pY 1xq. Notice

that we also have Y x�β M
1
0. Now let these reductions be joined

xk0pY 1xq�β Z β�M 1
0.

Using that Y P Y , let k ě k0, Y ˚ P Λ be such that Z �β x
kpY ˚xq.

Then we obtain

xk0pY 1xq�β x
kpY ˚xq β�M 1

0.

In particular Y 1

í

Y ˚, and by the previous lemma, there is R P ΛY

such that

Q�Y R, vQwY 1 �β vRwY ˚ .
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As P ñp Q we get, setting N “ RkpYRq, that

YP ñp YQ�Y YRÑY RpYRq ÑY ¨ ¨ ¨ ÑY R
kpYRq

and so M ñp N . At the same time, from M 1
0 �β x

kpY ˚xq, M 1
1 �β

vQwY 1 �β vRwY ˚ we find

M 1
0rM

1
1{xs�β x

kpY ˚xqrvRwY ˚{xs

“ vRwkY ˚pY
˚vRwY ˚q

“ vRkpYRqwY ˚

and hence M 1 �β vNwY ˚ . Indeed, we also have Y

í

Y 1

í

Y ˚ from
which we conclude by transitivity. �

We are now ready to prove that Non-Uniform Reduction Extension Property I
holds for all Y P Y .

Theorem 6.30. Let Y P Y . For all M P ΛY, M 1 P Λ:

vMwY �β M
1 ñ DpN,Y 1q : vMwY

v¨w
ÝÑÝÑ vNwY 1 ,M

1 �β vNwY 1

Proof. By induction on the length of the reduction sequence vMwY �β M
1.

vMwY “M 1: Take N “M,Y 1 “ Y .

vMwY �β M0 Ñβ M
1: By induction hypothesis, there are N0 P ΛY, Y

í

Y0

and reductions

ρ : M �βY N0

σ : M0 �β vN0wY0

Projecting the redex R contracted in M0
R
Ñβ M

1 over σ induces a parallel
reduction

Rzσ : vN0wY0 ñp M1

and the finite reduction σzR : M 1 �β M1.
By Lemma 6.29, we can find N1 P ΛY, Y0

í

Y1 and reductions

ρ1 : N0 ñp N1

σ1 : M1 �β vN1wY1

Now ρ ; ρ1 : M �βY N0 ñp N1 clearly yields a reduction

M �βY N1

and σzR ;σ1 : M 1 �β M1 �β vN1wY1
yields

M 1 �β vN1wY1

Furthermore, Y

í

Y0

í

Y1, from which we conclude since

í

is transitive. �

In the particular case of terminal (reducing) fpc’s, the theorem above entails
that also the Reduction Extension Property I from Definition 6.17 holds.

Corollary 6.31. Every terminal fpc Y satisfies the Reduction Extension Property I.

Proof. If Y is terminal, then Y P Y can be witnessed with Y 1 “ Y for any reduction
starting from Y x. (That is, the fpc never changes.) In particular, the previous
theorem is valid with Y 1 “ Y .

That is, vMwY �β M
1 implies vMwY

v¨wY
ÝÝÝÝÝ� vNwY β�M 1. �
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We end this section by presenting two conjectures: the first implies that Non-
Uniform Extension Property I holds for all reducing fpc’s (by Theorem 6.30), while
the second entails the non-existence of double fixed point combinators in the simply-
typed setting.

Conjecture 1. If Y is a reducing fpc then Y P Y .

Conjecture 2. In the simply-typed setting, every fpc Y P Y satisfies Non-Uniform
Reduction Extension Property II for all M P ΛÑY .

Indeed, from Lemma 6.25 and Theorem 6.30 we get that every double fpc would
satisfy Non-Uniform Reduction Property I. If Conjecture 2 holds, then Y more-
over satisfies Non-Uniform Reduction Property II. Now, the same argument as in
Proposition 6.18 applies: the interpretation of ΛÑY reflects conversion, leading to
the impossible λY-equality Yx “ Yδx.

7. Conservativity of Double Fixed Point Operators

We analyze another possible proof technique, suggested by Klop, for proving the
non-existence of double fixed point combinators. Consider the following λY-theory.

Definition 7.1. Let δ˚ be the λY-theory generated by the axiom Yx “ Yδx.

In [20], Klop raised the question of whether the λY-theory δ˚ generated by the
equation characterizing double fixed point combinators is a conservative extension
of the λ-calculus. The motivation for this question is that, if this theory was found
not to be conservative over Λ, this would immediately yield a proof of Statman’s
conjecture. Indeed, assuming that some fixed point combinator Y satisfies the
equation Y “β Y δ, any equation between pure λ-terms that is provable with the
axiom Yx “ Yδx could be derived in the pure λ-calculus using Y , showing that δ˚

is conservative over Λ.
The rest of the section is devoted to proving that Klop’s question has a positive

answer. This result shows that, unfortunately, this strategy cannot be used to settle
Statman’s conjecture.

7.1. The υ-Reduction. To characterize equality in δ˚ using standard rewriting
techniques, we introduce a new notion of reduction:

(υ) YδM Ñ YM

Lemma 7.2. For all M,N P ΛY, δ˚ $M “ N if and only if M “βYυ N .

Proof. pñq By definition, “βYυ is a contextual equivalence and therefore a λY-
theory. A simple inspection of the υ-rule shows that “βYυ validates every axiom of
the theory δ˚. We conclude since δ˚ is the least λY-theory validating these axioms.
pðq This implication follows by an easy induction on the length of the conversion

sequence M “M1 ØβYυ ¨ ¨ ¨ ØβYυ Mk “ N . �

The conservativity of δ˚ will follow from the confluence property enjoyed by βYυ-
reduction. Note that this system is not (weakly) orthogonal, due to the overlap
between λY- and υ-redexes. It is not terminating either, thus Newman’s lemma
does not apply. Therefore, we need to prove confluence directly. As a first step, we
show that υ-reduction enjoys the strong diamond property.

Proposition 7.3. Let M,N,P P ΛY. If N υÐ M Ñυ P , then there exists Q P ΛY

such that N Ñυ Q υÐ P .
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Proof. Assume that NυÐ M Ñυ P by contracting the redexes L and R respec-
tively. If the two redexes are disjoint, then we easily close the diagram

N
R{L
ÝÑυ Q

L{R
υÐÝ P.

Otherwise, one redex is contained in the other one, say, R occurs within L.
Since L is an υ-redex it must have the shape YδN 1, so the occurrence of R must be
contained in N 1, witnessed by N 1ÑυP

1. That is, for some λY-context Crs, we must
have:

N “ CrYN 1s
L

υÐ CrYδN 1s “M
R
Ñυ CrYδP

1s “ P.

We conclude since CrYN 1s
R{L
ÝÑυ CrYP

1s
L{R

υÐÝ CrYδP 1s. �

The rest of the section is devoted to proving the confluence of βYυ-reduction. We
start by defining the parallel version of υ-reduction and by studying its properties.

Definition 7.4. The notion of parallel υ-reductionñυ is given as the λY-contextual
closure of the following rule:

M ñυ M
1

YδM ñυ YM 1

Proposition 7.5 (Postponement of υ-reduction).

1. M
υ
+3

βY
����

M 1

βY

��
N

υ
+3 N 1

2. M
υ
+3

βY
����

M 1

βY
����

N
υ
+3 N 1

3. M
υ
// //

βY
����

M 1

βY
����

N
υ
// // N 1

Proof. 1. We proceed by induction on the derivation of M ñυ M
1.

Case xñυ x. This case is impossible, because x has no βY-redex.
Case λx.M0 ñυ λx.M 1

0 with M0 ñυ M 1
0. Clearly, the redex contracted in

λx.M 1
0 ÑβY N

1 must occur inside M 1
0, so that N 1 “ λx.N 10 and M 1

0 ÑβY N
1
0. By

induction hypothesis, there exists a term N0 such that M0 �βY N0 ñυ N
1
0. Since

reductions are contextual, we get M “ λx.M0 �βY λx.N0 ñυ λx.N
1
0 “ N 1.

Case M1M2 ñυ M
1
1M

1
2 with Mi ñυ M

1
i . We need to consider two subcases.

‚ If the redex contracted in M 1
1M

1
2 ÑβY N

1 occurs inside some M 1
i , say, in M 1

1,
then by induction hypothesis we obtain that M1 �βY N1 ñυ N

1
1, where

N 1 “ N 11M
1
2. So we take N “ N1M2, and find M “M1M2 �βY N1M2 ñυ

N 11M
1
2 “ N 1.

‚ Otherwise, the redex occurs at the root in M 1
1M

1
2. Since Y cannot occur as a

term on its own, the redex must be a β-redex. That is, M 1
1 “ λx.M 1

10, and
pλx.M 1

10qM
1
2 Ñβ M

1
10rM

1
2{xs “ N 1. In this case M1 ñυ M

1
1 can only arise

as λx.M10 ñυ λx.M
1
10, where M0 “ λx.M10 and M10 ñυ M

1
10. Therefore,

we have M “ pλx.M10qM2 Ñβ M10rM2{xs ñυ M
1
10rM

1
2{xs “ N 1.

Case YM3 ñυ YM 1
3 with M3 ñυ M

1
3. There are two subcases.

‚ If the redex contracted in YM 1
3 ÑβY N

1 occurs inside M 1
3, so that N 1 “ YN 13

with M 1
3 ÑβY N 13, then by induction hypothesis we have that M3 �βY

N3 ñυ N
1
3 and hence that M “ YM3 �βY YN3 ñυ YN 13 “ N 1.

‚ Otherwise, the redex contracted in YM 1
3 ÑβY N

1 is the Y -redex at the root,
and its contractum N 1 is M 1

3pYM
1
3q. From M3 ñυ M

1
3, we get YM3 ñυ

YM 1
3 which entails M3pYM3q ñυ M 1

3pYM
1
3q. Therefore M “ YM3 ÑβY

M3pYM3q ñυ M
1
3pYM

1
3q “ N 1.
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Case YδM4 ñυ YM 1
4 with M4 ñυ M

1
4. Again, there are two subcases.

‚ If the redex contracted in YM 1
4 ÑβY N

1 occurs inside M 1
4, with M 1

4 ÑβY N
1
4

and N 1 “ YN 14, then induction hypothesis yields M4 �βY N4 ñυ N
1
4. From

this it follows that M “ YδM4 �βY YδN4 “ N and N ñυ YN 14 “ N 1.
‚ Otherwise, the redex contracted in YM 1

4 ÑβY N
1 is the root redex, and N 1

is its contractum M 1
4pYM

1
4q. We have

M “ YδM4 ÑY δpYδqM4 Ñβ pλx.xpYδxqqM4

Ñβ M4pYδM4q

ñυ M
1
4pYM

1
4q “ N 1

where the ñυ-step arises by combining M4 ñυ M
1
4 with YδM4 ñυ YM 1

4

using the application rule.

2. By induction on M 1 �βY N
1, tiling 1 vertically.

3. By induction on M �υ M
1, tiling 2 horizontally. �

Remark. Notice that the above proof can be refined to a postponment of υ reduction
along β reduction instead of βY reduction.

Lemma 7.6 (Commutations of υ-reductions).

1. M
υ
+3

β
����

M 1

β
����

N
υ
+3 N 1

2. M
υ

+3

Y
����

M 1

Y
����

N
β
// // N 1

υ
+3 N2

3. M
υ

+3

βY
����

M 1

βY
����

N
β
// // N 1

υ
+3 N2

Proof. 1. This is immediate since the rules for β- and υ-reductions are orthogonal.
2. Recall that ñp denotes the parallel βY-reduction introduced in Definition 6.4.

Since, by Corollary A.5, M �Y N entails M ñp N we proceed by induction on the
derivation of the latter. The only interesting cases arise when M is a Y-redex or an
υ-redex.

Case YM0 ñp N0N1 with M0 ñp N0 and YM0 ñp N1. As YM0 ñυ M
1 “ YM 1

0,
we must have M0 ñυ M

1
0. By induction hypothesis, we can complete the diagram

M0 υ
+3

Y

��

M 1
0

Y
����

N0
β
// // N 10 υ

+3 N20

YM0 υ
+3

Y

��

YM 1
0

Y
����

N1
β
// // N 11 υ

+3 N21

From M 1
0 �Y N20 and YM 1

0 �Y N21 we get YM 1
0 �Y N20N

2
1 . So we have N “

N0N1 �β N
1
0N

1
1 ñυ N

2
0N

2
1 Y� YM 1

0 “M 1.
Case YδP ñp YδQ with P ñp Q. Suppose moreover that YδP ñυ YP 1 with

P ñυ P
1. By induction hypothesis, we can complete the diagram

P
υ

+3

Y

��

P 1

Y
����

Q
β
// // Q1

υ
+3 Q2

Thus we have N “ YδQ�β YδQ1 ñυ YQ2 Y� YP 1 “M 1.
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Case YδP ñp N1N2Q with δ ñp N1, Yδ ñp N2 and P ñp Q. We also suppose
that YδP ñυ YP 1 with P ñυ P

1. The fact that δ is a normal form entails N1 “ δ,
so we obtain YδP ñp δN2Q. Since the only Y-reducts of Yδ are λY-terms of the
form δkpYδq for some k we must have N2 “ δkpYδq. We also have the β-reduction:

N “ N1N2Q “ δpδkpYδqqQÑ2
β Qpδ

kpYδqQq

“ Qpδpδk´1pYδqqQq Ñ2
β QpQpδ

k´1pYδqQqq

Ñ
2pk´1q
β Qk`1pYδQq

By induction hypothesis, we have Q�β Rñυ S Y� P 1. Therefore

YδP
υ

+3

Y

��

YP 1

Y
����

δpδkpYδqqQ
β
// // Qk`1pYδQq

β
// // Rk`1pYδRq

υ
+3 Sk`1pYSq

Notice that Rk`1pYδRq ñυ Sk`1pYSq is obtained by putting together the re-
duction R ñυ S at k ` 2 disjoint positions, while using a single υ-reduction step
to remove the δ occurring at depth k ` 1. The Y-reduction YP 1 �Y S

k`1pYSq is
obtained as

YP 1 ÑY P
1pYP 1q�Y SpYP

1q Ñ SpP 1pYP 1qq�Y SpSpYP
1qq�Y ¨ ¨ ¨

�Y S
k`1pYP 1q�Y S

k`1pYSq

3. We proceed by induction on the length n of the reduction M �βY N .
Case n “ 0. In this case M “ N and there is nothing to prove.
Case n ą 0. The reduction M �βY N factors as M �βY N0 ÑβY N . By applying

the induction hypothesis to M �βY N0 of length n´ 1, we have

M
υ

+3

βY
����

M 1

βY
����

N0
β
// // N 10 υ

+3 N20

There are two subcases.

‚ If N0 ÑβY N contracts a β-redex, then we conclude by

N0
β
// //

β

��

N 10 υ
+3

β
����

N20

β
����

N
β
// // N 1

υ
+3 N2

where the square on the left exists by confluence of β, and the one on the
right by part 1.

‚ If N0 ÑβY N contracts a Y-redex, then we are done since

N0
β
// //

Y

��

N 10 υ
+3

Y
����

N20

Y
����

N
β
// // N 1

β
// // N2

υ
+3 N3
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where the square on the left exists by commutation of β and Y (which holds
by orthogonality), and the one on the right by part 2. �

Proposition 7.7.

1. M
υ

// //

βY
����

M 1

βY
����

N
β
// // N 1

υ
// // N2

2. M

βYυ
����

βYυ
// // M 1

βYυ
����

N
βYυ
// // N 1

Proof. 1. We proceed by induction on the length of M �υ M
1, omitting the base

case which is trivial. The inductive case is obtained via the following diagram:

M
υ

//

βY

����

M1 υ
// //

βY

����

M 1

βY

����

by Lemma 7.6p3q by IH

N
β

// // N 10 υ
// // N1

β
// // N 1k υ

// // N2

By applying postponment of υ-reduction to the bottom row, one turns N 10 �υ

N1 �β N 1k into N0 �β N 1 �υ N 1k for some N 1 from which the result follows
immediately.

2. Given the reductions M �βYυ N and M �βYυ M 1, we first apply υ-
postponement to each and then we complete the diagram

M

βY
����

βY
// // ¨

βY
����

υ
// // M 1

βY
����

¨

υ

����

βY
// // ¨

β
����

β
// // ¨

β
����

υ
// // ¨

β
����

¨

υ
����

β
// // ¨

υ
����

υ
// // ¨

υ����
N

βY
// // ¨

β
// // ¨

υ
// // N 1

The squares which appear along the main diagonal are obtained by confluence of
βY-, β- and υ-reductions, individually. The rectangles covering the bottom-left and
top-right corners are given by part 1. The remaining squares follow by commutation
of υ- and β-reductions (Lemma 7.6(1)). �

By the well-known Theorem 3.1.12 in [2], we obtain the following corollary.

Corollary 7.8. Let M,N P ΛY. If M “βYυ N then there exists a λY-term Z such
that M �βYυ Z βYυ� N .

Theorem 7.9. The λY-theory δ˚ is a conservative extension of λ-calculus.
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Proof. Let M,N P Λ and suppose that δ˚ $ M “ N . By Lemma 7.2 we have
M “βYυ N and, by Corollary 7.8, there exists a λY-term Z such that

M �βYυ Z βYυ� N

Since none of the reduction rules are able to create a new occurrence of the symbol Y,
there is no point in these reductions where Y - or υ-redexes can appear. Thus the
reductions above are actually β-reductions, so we conclude that M “β N . �

8. Conclusions

We have investigated two questions concerning (sets of) fixed points of terms in
λ-calculus, the veracity of the fixed point property, and the existence of a double
fixed point combinator. We have provided partial answers to both questions, and
established several promising new techniques for tackling full solutions.

One novel aspect of the present work is to consider the questions in different
λ-theories. For example, we have devised an example showing that the fixed point
property patently fails in any sensible lambda theory, thus proving a conjecture of
Intrigila and Statman.

Apart from the major problem of settling the status of the two main questions
in the most fine-grained λ-theory – that is, the “usual” theory whose equivalence
classes consist of terms that are β-equivalent – several lesser open problems remain;
for example, providing a characterization of the fixed point property in semi-sensible
theories, and investigating the usefulness of the novel technique for refuting the
existence of double fixed points combinators in the setting of (simple) types. We
urge the reader to peruse the conjectures and suggestions that occur throughout
the paper, both explicitly and in the running text.

Acknowledgements. We are grateful to the anonymous reviewers whose sugges-
tions helped improve and clarify this manuscript substantially.
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Appendix A. Technical Appendix

A.1. Standardization. The standard reduction can be thought of as a “canonical
serialization” of the usual multistep reduction. This idea is made precise by the
standardization theorem, which we now prove.

Lemma A.1 (Substitution Lemma). For M,M 1, N,N 1 P ΛY, we have:

(i) N �s N
1 implies M rN{xs�s M rN

1{xs,
(ii) M Ñw M

1 and N �s N
1 imply M rN{xs�s M

1rN 1{xs,
(iii) M �s M

1 and N �s N
1 imply M rN{xs�s M

1rN 1{xs.

Proof of Lemma A.1.

(i) By the fact that �s is a congruence.
(ii) First notice that M rN{xs Ñw M

1rN{xs. This can be seen by considering the
possible shape of M Ñw M

1, where

ppλy.M0qN0 ¨ ¨ ¨NkqrN{xs “ pλy.M0rN{xsqN0rN{xs ¨ ¨ ¨NkrN{xs

Ñw M0rN{xsrN0rN{xs{ysN1rN{xs ¨ ¨ ¨NkrN{xs

“M0rN0{ysrN{xsN1rN{xs ¨ ¨ ¨NkrN{xs

“ pM0rN0{ysN1 ¨ ¨ ¨NkqrN{xs

pYN0 ¨ ¨ ¨NkqrN{xs “ YN0rN{xs ¨ ¨ ¨NkrN{xs

Ñw N0rN{xspYN0rN{xsqN1rN{xs ¨ ¨ ¨NkrN{xs

“ pN0pYN0qN1 ¨ ¨ ¨NkqrN{xs

Next, we have M 1rN{xs�s M
1rN 1{xs by point (i).

Thus M rN{xs Ñw M
1rN{xs�s M

1rN 1{xs.
By the redex rule for �s, we have (ii).

(iii) By induction on M �s M
1, using (ii) in case of the redex rule. �

Lemma A.2. For M,N P ΛY, we have that M �s λx.N entails M �w λx.M 1

and M 1 �s N for some M 1 P ΛY.

Proof of Lemma A.2. We proceed by induction on the derivation of M �s λx.N .
Since M reduces to an abstraction, there are only two possibilities:

‚ M �s λx.N because M “ λx.M 1 and M 1 �s N . This case is trivial as
M �w λx.M

1 follows from the reflexivity of �w.
‚ M �s λx.N because M Ñw M1 and M1 �s λx.N . By induction hypoth-

esis, there exists M 1 P ΛY such that M1 �w λx.M 1 with M 1 �s N . Since
Ñw Ď �w and �w is transitive, we conclude M �w λx.M

1. �

Theorem A.3 (Standardisation). For all M,N,N 1 P ΛY, we have:

(i) M �s N ÑβY N
1 implies M �s N

1,
(ii) M �s N �βY N

1 implies M �s N
1,

(iii) M �βY N implies M �s N .

Proof of Theorem A.3. (i) By induction on the derivation of M �s N .

M Ñw M
1 �s N ÑβY N

1: By induction hypothesis, we haveM 1 �s N
1. Now

M Ñw M
1 �s N

1, whence M �s N
1.

M “ x�s x “ N : This case is inconsistent with N ÑβY N
1.
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M “ λx.M0 �s λx.M
1
0 “ N : Since N “ λx.M 1

0 is not a redex, the redex

contracted in N ÑβY N 1 must occur below, in M 1
0. So M 1

0 ÑβY M2
0

and N 1 “ λx.M2
0 . By induction hypothesis, M0 �s M

2
0 , whence M “

λx.M0 �s λx.M
2
0 “ N 1.

M “M1M2,Mi �s M
1
i : We distinguish two subcases.

‚ The redex contracted in N “ M 1
1M

1
2 ÑβY N 1 occurs at the root.

Note that it cannot be a Y-redex, since Y cannot occur on its own.
This entails that M 1

1 “ λx.M 1
0 is an abstraction and N 1 “M 1

0rM
1
2{xs,

being the contractum of pλx.M 1
0qM

1
2. Since M1 �s λx.M

1
0, we get by

Lemma A.2 a λY-term M0 such that M1 �w λx.M0 and M0 �s M
1
0.

Therefore, we obtain M “ M1M2 �w pλx.M0qM2 Ñw M0rM2{xs on
the one side. On the other side, we have M0 �s M

1
0 and M2 �s M

1
2.

By the substitution lemma for standard reductions, we get a standard
reduction M0rM2{xs�s M

1
0rM

1
2{xs. By an iterated application of the

rule combining Ñw and �s to get a standard reduction, we obtain
M �s M

1
0rM

1
2{xs “ N 1.

‚ The redex contracted in N “ M 1
1M

1
2 ÑβY N

1 occurs below, in some
Mi. So M 1

i ÑβY M
2
i , and N 1 “M2

1M
2
2 , where we set M2

3´i “M 1
3´i.

By induction hypothesis, M1 �s M
2
1 and M2 �s M

2
2 .

Thus M “M1M2 �s M
2
1M

2
2 “ N 1.

M “ YM3 �s YM
1
3 “ N : Again, we have two possibilities.

‚ The redex contracted in N “ YM 1
3 ÑβY N

1 is the root redex. Then
we have N 1 “ M 1

3pYM
1
3q. From M3 �s M

1
3, we obtain M3pYM3q �s

M 1
3pYM

1
3q. Now M “ YM3 Ñw M3pYM3q�s M

1
3pYM

1
3q “ N 1, whence

M �s N
1.

‚ The redex contracted in YM 1
3 ÑβY N 1 occurs in M 1

3. Then N “ YM2
3 ,

with M 1
3 ÑβY M2

3 . By induction hypothesis, we have that M3 �s M
2
3

holds. Now M “ YM3 �s YM
2
3 “ N 1, which concludes the proof.

(ii) By straightforward induction on N �βY N
1, using (i).

(iii) Immediate by (ii). �

A.2. Properties of parallel reduction. Notice that our definition of parallel
reduction allows superdevelopment of newly created Y -redexes. While not strictly
necessary, this simplifies some of our arguments.

One consequence of this is the following absorption lemma.

Lemma A.4. The following rule is admissible:

M ñp M
1 M 1 �Y N

1

M ñp N
1

Proof of Lemma A.4. First, consider the length of the reduction M 1 �Y N
1. When

M 1 �Y N
1 is empty, then M 1 “ N 1 and certainly M ñp N

1. Otherwise, M 1 �Y

N ÑY N
1, and induction yields that M ñp N . We now use a subsidiary induction

on the derivation of this fact. Let ∆ be the Y-redex contracted in the step N ÑY N
1.

xñp x “ N : This case is inconsistent with N
∆
ÑY N

1.

M1M2 ñp N1N2 “ N : We are in a case where N is an application N1N2 and

therefore redex ∆ fired in N1N2
∆
Ñ N 1 may not occur at the root because

Y is not itself a term. So ∆ Ď N1 or ∆ Ď N2. Writing N 1 “ N 11N
1
2, we
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have Ni Ñ
ď1
Y N 1i . Since Mi ñp Ni, we have by induction hypothesis, that

Mi ñp N
1
i , whence M ñp N

1.
λx.M0 ñp λx.N0 “ N : Clearly, ∆ Ď N0, so that N0 ÑY P and N 1 “ λx.P .

By induction, M0 ñp N0 ÑY P yields M0 ñp P , and hence

M “ λx.M0 ñp λx.P “ N 1

pλx.P qQñp P
1rQ1{xs “ N : with P ñp P

1 and Q ñp Q
1. Since Y cannot

occur as a term on its own, a Y-redex cannot be created by a substitution
instance P 1rQ1{xs. So ∆ is inside either P 1 or Q1. That is, either N 1 “

P 2rQ1{xs, where P 1
∆
ÑY P 2, or N 1 “ P 1rQ2{xs, where Q1

∆
ÑY Q2. In

either case, we can use induction hypothesis to get P ñp P
2, respectively

Qñp Q
2, and therefore M ñp N

1.
YP ñp YP

1 “ N : with P ñp P
1. We split into two subcases.

‚ If ∆ Ď P 1, so that YP 1
∆
ÑY YQ “ N 1, then P ñp P

1 ÑY Q yields by
induction P ñp Q. Then M “ YP ñp YQ “ N 1.

‚ If ∆ is the root redex YP 1, then N 1 “ P 1pYP 1q, and we need only apply
the Y-redex rule:

P ñp P
1 YP ñp YP

1

YP ñp P
1pYP 1q

YP ñp P
1Q: with M “ YP and N “ P 1Q

∆
ÑY N

1. That is, the last derivation

step looks as follows:

P ñp P
1 YP ñp Q

YP ñp P
1Q

Since P 1 cannot be Y itself, ∆ must be in either P 1 or in Q. In the former
case, we apply induction to P ñp P

1 ÑY P
˚ without changing the second

hypothesis, so the conclusion of the rule becomes YP ñp P
˚Q. In the

latter case, we apply induction to YP ñp Q ÑY Q
˚ without changing the

first hypothesis, so the conclusion becomes YP ñp P
1Q˚, as desired. �

Therefore, a Y-reduction sequence of arbitrary length can be turned into a single
step of parallel reduction.

Corollary A.5. For all M,N P ΛY, M �Y N entails M ñp N .

Parallel reduction also satisfies the usual substitution property.

Lemma A.6 (Substitution Lemma for ñp). For M,M 1, N,N 1 P ΛY, we have:

(i) N ñp N
1 implies M rN{xs ñp M rN

1{xs,
(ii) M ñp M

1 and N ñp N
1 imply M rN{xs ñp M

1rN 1{xs.

Proof of Lemma A.6.

(i) By the fact that ñp is a congruence.
(ii) By induction on M ñp M

1. The only interesting case is the redex rule

M “ pλy.P qQ P ñp P
1

M 1 “ P 1rQ1{ys Qñp Q
1
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In this case

M rN{xs “ pλy.P rN{xsqQrN{xs(8)

M 1rN 1{xs “ P 1rQ1{ysrN 1{xs “ P 1rN 1{xsrQ1rN 1{xs{ys(9)

Note that the side condition y R FVpN 1q needed for the application of the
substitution lemma in (9) is inherited under N ñp N 1 from the rules for
capture-avoiding substitution in (8), where y is chosen implicitly to be such
that y R FVpNq. By induction hypothesis, we have

P rN{xs ñp P
1rN 1{xs

QrN{xs ñp Q
1rN 1{xs

By applying the redex rule for ñp, we get

M rN{xs “ pλy.P rN{xsqQrN{xs ñp P
1rN 1{xsrQ1rN 1{xs{ys “M 1rN 1{xs. �
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