
Full Abstraction for Resource Calculus with
Tests∗

Antonio Bucciarelli1, Alberto Carraro1,3, Thomas Ehrhard1, and Giulio
Manzonetto2

1 Laboratoire PPS, CNRS, Université Paris-Diderot, Paris, France
{antonio.bucciarelli,alberto.carraro,thomas.ehrhard}@pps.jussieu.fr

2 Intelligent Systems, Radboud University, Nijmegen, The Netherlands
g.manzonetto@cs.ru.nl

3 Department of Computer Science, Ca’Foscari University, Venice, Italy

Abstract
We study the semantics of a resource sensitive extension of the λ-calculus in a canonical reflexive object
of a category of sets and relations, a relational version of the original Scott D∞ model of the pure λ-
calculus. This calculus is related to Boudol’s resource calculus and is derived from Ehrhard and Regnier’s
differential extension of Linear Logic and of the λ-calculus. We extend it with new constructions, to be
understood as implementing a very simple exception mechanism, and with a “must” parallel composition.
These new operations allow to associate a context of this calculus with any point of the model and to prove
full abstraction for the finite sub-calculus where ordinary λ-calculus application is not allowed. The result
is then extended to the full calculus by means of a Taylor Expansion formula.

1998 ACM Subject Classification F.4.1 Lambda calculus and related systems

Keywords and phrases resource lambda calculus, relational semantics, full abstraction, differential
linear logic

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

In concurrent calculi like CCS [11], guarded processes are resources which can be used only once
by other processes. This fundamental linearity of resources leads naturally to non-determinism,
since several agents (senders and receivers) can interact on the same channel. In general, various
synchronization scenarios are possible, giving rise to different behaviours. On the other hand in
the λ-calculus, a function (receiver) can duplicate its argument (sender) arbitrarily. Thanks to this
asymmetry, the λ-calculus enjoys a strong determinism (Church-Rosser), but for the same reason it
lacks any form of control on resource handling.

Resource Lambda Calculi. Resource λ-calculi stem from an attempt to combine the functionality
of the λ-calculus and the resource sensitivity of process calculi. Boudol has been the first to design a
resource conscious functional programming language, the resource λ-calculus, extending the usual
one along two directions [2]: a function is not necessarily applied to a single argument but can
also be applied to a multiset of arguments called resources; a resource can be either linear (it must
be used exactly once) or reusable (it can be used ad libitum). In this context, the evaluation of a
function applied to a multiset of resources gives rise to several possible choices, corresponding to the

∗ This work was partially supported by NWO Project 612.000.936 CALMOC (CAtegorical and ALgebraic Models of
Computation) and ANR Project ANR-07-BLAN-0324 CHOCO.

© John Q. Open and Joan R. Access;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Full Abstraction for Resource Calculus with Tests

different possibilities of distributing the resources in the multiset among the occurrences of the formal
parameter. From the viewpoint of concurrent programming, this was a natural step to take since one
of the main features of this programming setting is the consumption of resources which cannot be
copied. Milner’s π-calculus [12] features this phenomenon in great generality, and Boudol’s calculus
keeps track of it in a functional setting.

Together with Regnier, Ehrhard observed that this idea of resource consumption can be under-
stood as resulting from a differential extension of λ-calculus (and of Linear Logic) [6]. Instead of
considering two kinds of resources, they defined two kinds of applications: the ordinary application
and a linear one. In a simply typed setting, linear application of a term M : A → B to a multiset
made of n terms N1, . . . , Nn : A, combined with ordinary application to a term N : A, corresponds
to computing M (n)(N)(N1, . . . , Nn), where M (n) is the n-th derivative of M , which is of type
A→ (An → B) and associates a symmetric n-linear map with any element of A. The symmetry of
this multilinear map corresponds to the Schwarz Lemma of differential calculus and is implemented
in the resource λ-calculus by the use of multisets for representing linear applications.

The main difference between the resource λ-calculus and the differential λ-calculus is that the first
is lazy and is endowed with an explicit substitution mechanism. Therefore, Boudol’s calculus is not
an extension of the ordinary λ-calculus. Also, the resource λ-calculus is rather affine than linear, since
depletable resources cannot be duplicated but can be erased. Another difference lies in the respective
origins of these calculi: the resource λ-calculus originates from syntactical considerations related
to the theory of concurrent processes, while the differential one arises from denotational models of
linear logic where the existence of differential operations has been observed. These models are based
on the well known relational model of Linear Logic and the interpretation of the new differential
constructions is as natural and simple as the interpretation of the ordinary LL constructions.

Two main syntaxes have been proposed for the differential λ-calculus: Ehrhard and Regnier’s
original one [6], simplified by Vaux in [17], and Tranquilli’s resource calculus of [16] whose syntax
is close to Boudol’s one. These calculi share a common semantical backbone as well as similar
connections with differential Linear Logic and proof nets. We adopt roughly Tranquilli’s syntax and
call our calculus ∂λ-calculus.

Full Abstraction. A natural open problem when a new calculus is introduced is to characterize
when two programs are operationally equivalent, namely when one can be replaced by the other in
every context without noticing any difference with respect to a given observational equivalence. In
this paper we prove a full abstraction result (a semantical characterization of operational equivalence)
for the ∂λ-calculus in the spirit of [3]. As in that paper, we extend the language with a convergence
testing mechanism. Implicitly, this extension already appears in [5], in a differential LL setting:
it corresponds to the 0-ary tensor and par cells. To implement the corresponding extension of the
λ-calculus, we introduce two sorts of expressions: the terms (variable, application, abstraction, “throw”
τ̄(P) where P is a test) and the tests (empty test, parallel composition of tests and “catch” τ(M)
where M is a term). Parallel composition allows to combine tests in such a way that the combination
succeeds if and only if each test succeeds. Outcomes of tests (convergence or divergence) are the
only observations allowed in our calculus, and the corresponding contextual equivalence and preorder
on terms constitute our main object of study.

This extended ∂λ-calculus, that we call ∂λ-calculus with tests, has a natural denotational in-
terpretation in a model of the pure λ-calculus introduced by Bucciarelli, Ehrhard and Manzonetto
in [4], which is indeed a denotational model of the differential pure nets of [5] as one can check
easily. This model is a reflexive object D in the Kleisli category of the LL model of sets and relations
where !X is the set of all finite multisets over X . An element of D can be described as a finite tree
which alternates two kinds of layers: multiplicative layers where subtrees are indexed by natural
numbers and exponential layers where subtrees are organized as non-empty multisets. To be more

A. Bucciarelli, A. Carraro, T. Ehrhard and G. Manzonetto 3

precise, `−? (negative) pairs of layers alternate with ⊗−! (positive) pairs, respecting a strict polarity
discipline very much in the spirit of Ludics [9]. The empty positive multiplicative tree corresponds to
the empty tensor cell and the negative one to the empty par cell. The corresponding constructions τ ,
τ̄ are therefore quite easy to interpret.

We use this logical interpretation to turn the elements of D into ∂λ-calculus terms with tests.
More precisely, with each element α of D, we associate a test α+L·M with a hole L·M for a term, and we
show that α belongs to the interpretation of a (closed) term M iff the test α+LMM converges. From
this fact, we derive a full abstraction result for the fragment of the ∂λ-calculus with tests in which
all ordinary applications are trivial, that we call ∂0λ-calculus with tests. To extend this result to the
∂λ-calculus with tests, we use the Taylor formula introduced in [6] which allows to turn any ordinary
application into a sum of infinitely many linear applications of all possible arities. One exploits then
the fact that the Taylor formula holds in the model, as well as a simulation lemma which relates the
head reduction of a term with the head reduction of its Taylor expansion.

Contributions. The definability of the elements of D in the ∂λ-calculus with tests is the main
conceptual contribution of this paper: it shows that, in the ∂λ-calculus with tests, the standard syntax
vs. semantics dichotomy is essentially meaningless. We also consider the use of the Taylor expansion
to reduce the full abstraction problem to its ∂0λ version as an original and promising reduction
technique. Notice that the tests added to the calculus are needed to develop this new methodology,
although we conjecture they do not add discriminating power to the calculus (contrary to [3]).

Notations and basic definitions. We denote by N the set of natural numbers and by 1 an arbitrary
singleton set. We write Sk for the set of all permutations of {1, . . . , k}.

Let S be a set. We write P(S) (resp. Pf(S)) for the set of all (resp. finite) subsets of S. A multiset
a over S can be defined as an unordered list a = [α1, α2, . . .] with repetitions such that αi ∈ S for
all indices i. A multiset a is called finite if it is a finite list, we denote by #a its cardinality. We
writeMf(S) for the set of all finite multisets over S. Given two multisets a = [α1, α2, . . .] and
b = [β1, β2, . . .] the multiset union of a, b is defined by a] b = [α1, β1, α2, β2, . . .]. Given two finite
sequences of multisets ~a,~b of the same length n we define ~a]~b = (a1] b1, . . . , an] bn).

An operator F (−) is extended by linearity by setting F (Σixi) = ΣiF (xi).

2 The ∂0λ-Calculus with Tests

We now introduce the ∂0λ-calculus with tests which is the promotion-free fragment of the ∂λ-calculus
with tests presented in Section 5. The ∂0λ-calculus with tests has four syntactic categories: terms
that are in functional position, bags that are in argument position and represent multisets of linear
resources, tests that are “corked” multisets of terms having only two possible outcomes and finite
formal sums representing all possible results of a computation.

Formally, we have the following grammar:

(Λτ̄) M,N,L,H ::= x | λx.M |MP | τ̄(Q) terms

(Λb) P ::= [L1, . . . , Lk] bags

(Λτ) Q,R ::= τ [L1, . . . , Lk] tests

(Λe) A,B ::= M | P | Q expressions

Tests are multisets of terms, the “τ” being a tag for distinguishing them from bags.
Throughout the paper, we will enforce the distinction between bags and tests by using systematic-

ally the following notational conventions.
For bags, we use the usual multiset notation: [] is the empty bag and P] P ′ is the union of bags.
For tests, ε is the empty multiset and Q|R is the multiset union of Q and R. In other words,
ε = τ [] and τ [L1, . . . , Lk] | τ [Lk+1, . . . , Ln] = τ [L1, . . . , Ln].

4 Full Abstraction for Resource Calculus with Tests

Terms are the real protagonists of the ∂0λ-calculus with tests. The term λx.M represents the
λ-abstraction andMP the application of a termM to a bag P of linear resources. Thus, in (λx.M)P ,
each resource in P is available exactly once for λx.M and if the number of occurrences of x in M
“disagrees” with the cardinality of P then the result is 0.

We set I := λx.x, where the symbol ‘:=’ denotes definitional equality.
Tests are expressions which can produce two results: either success, represented by ε, or failure,

represented by 0 (see later, when sums of expressions are introduced). The test Q|R represents
the (must-)parallel composition of Q and R (i.e., Q|R succeeds if both Q and R succeed). The
composition is parallel in the sense that the order of evaluation is inessential.

The operator τ̄(·) allows to build a term out of a test: intuitively, the term τ̄(Q) may be thought
of as Q preceded by an infinite sequence of dummy λ-abstractions. Dually, the “cork construction”
τ [L1, . . . , Lk] may be thought of as an operator applying to all its arguments an infinite sequence of
empty bags. This suggests in particular that it is sound to reduce τ [τ̄(Q)] to Q.

Hence the term τ̄(Q) raises an exception encapsulating Q and the test τ [L1, . . . , Lk] catches the
exception possibly raised by any of the Li’s and replaces Li by the multiset of terms encapsulated in
that exception. The context of the exception is thrown away by the dummy abstractions of τ̄ and the
dummy applications of τ . A test needs to catch an exception in order to succeed; for instance, τ [M]
fails as soon as M is a τ̄ -free, closed term.

We will write ‖ni=1 Ri for R1| · · · |Rn; obviously we have ‖0i=1 Ri = ε and ‖1i=1 Ri = R1.
Expressions are either terms, bags or tests and will be used to state results holding for all categories.
Sums. Let 2 be the semiring {0, 1} with 1 + 1 = 1 and multiplication defined in the obvious way.
For any set A, we write 2〈A〉 for the free 2-module generated by A, so that 2〈A〉 ∼= Pf(A) with

addition corresponding to union, and scalar multiplication defined in the obvious way. However we
prefer to keep the algebraic notations for elements of 2〈A〉, hence set unions will be denoted by +
and the empty set by 0. This amounts to say that 2〈Λτ̄ 〉 (resp. 2〈Λτ 〉, 2〈Λb〉) is the set of finite formal
sums of terms (resp. tests, bags) with an idempotent sum.

We also set 2〈Λe〉 = 2〈Λτ 〉 ∪ 2〈Λτ̄ 〉 ∪ 2〈Λb〉. This is an abuse of notation as 2〈Λe〉 here does
not denote the 2-module generated over Λτ ∪ Λτ̄ ∪ Λb, but rather the union of the three 2-modules;
this means that sums should be taken only in the same sort.

Typical metavariables to denote sums are: M,N,L,H ∈ 2〈Λτ̄ 〉, P ∈ 2〈Λb〉, Q,R ∈ 2〈Λτ 〉,
A,B ∈ 2〈Λe〉. The α-equivalence relation and the set FV(A) of free variables of A are defined as
usual, like in the ordinary λ-calculus [1]. We write degx(A) for the number of free occurrences of x
in A. Hereafter, (sums of) expressions are considered up to α-equivalence.

2.1 Two Kinds of Substitutions

Notice that the grammar for terms and tests does not include any sums, so they may arise only on
the “surface”. However, as syntactic sugar – and not as actual syntax – we extend all the constructors
to sums by multilinearity, setting for instance (ΣiMi)(ΣjPj) := Σi,jMiPj , in such a way that the
following equations hold:

λx.(ΣiMi) = Σiλx.Mi M(ΣiP) = ΣiMPi (ΣiMi)P = ΣiMiP τ [ΣiMi] = Σiτ [Mi]
(ΣiRi) | Q = Σi Ri | Q [ΣiLi] = Σi[Li] (ΣiPi)] P = ΣiPi] P τ̄(ΣiRi) = Σiτ̄(Ri)

As an example of this extended (meta-)syntax, we may write (x1 + x2)[y1 + y2] instead of x1[y1] +
x1[y2] + x2[y1] + x2[y2]. This kind of meta-syntactic notation is discussed thoroughly in [8].

Observe that in the particular case of empty sums, we get λx.0 := 0, M0 := 0, 0P := 0,
τ [0] := 0, τ̄(0) := 0, R|0 := 0, [0] := 0 and 0] P := 0. Thus 0 annihilates any term, bag or test.

We now introduce two kinds of substitutions: the usual λ-calculus substitution and a linear one,
which is proper to differential and resource calculi (see [2, 6, 16]).

A. Bucciarelli, A. Carraro, T. Ehrhard and G. Manzonetto 5

Let A ∈ Λe and N ∈ Λτ̄ . The (capture-free) substitution of N for x in A, denoted by A{N/x},
is defined as usual. Accordingly, A{N/x} denotes a term of the extended syntax. Finally, we extend
this operation to sums as in A{N/x} by linearity in A.

The linear (capture-free) substitution of N for x in A, denoted by A〈N/x〉, is defined as follows
(in this definition we strongly use the extended syntax.):

y〈N/x〉 =

{
N if y = x,

0 otherwise,

[L1, . . . , Lk]〈N/x〉 = Σki=1[L1, . . . , Li〈N/x〉 . . . , Lk],
τ [L1, . . . , Lk]〈N/x〉 = Σki=1τ [L1, . . . , Li〈N/x〉, . . . , Lk],

(MP)〈N/x〉 = M〈N/x〉P +M(P 〈N/x〉), τ̄(Q)〈N/x〉 = τ̄(Q〈N/x〉),
(λy.M)〈N/x〉 = λy.M〈N/x〉, (in the abstraction case we assume wlog x 6= y).

Roughly speaking, linear substitution replaces the resource to exactly one linear free occurrence
of the variable. In presence of multiple occurrences, all possible choices are made and the result is
the sum of them. For example (y[x][x])〈I/x〉 = y[I][x] + y[x][I].

An example of regular substitution is (x[x]){(z1 + z2)/x} = z1[z1] + z1[z2] + z2[z1] + z2[z2].
Turning to the extension of linear substitution to sums: the term A〈N/x〉 belongs to the extended

syntax, and we extend it to sums as in A〈N/x〉 by linearity in A, as we did for usual substitution.
Observe that A〈N/x〉 is linear in A and in N, whereas A{N/x} is linear in A but not in N.
Linear substitutions commute in the sense expressed by the next lemma, whose proof is rather

classic and is omitted.

I Lemma 1 (Schwarz Lemma, cf. [6]). For A ∈ 2〈Λe〉, M,N ∈ 2〈Λτ̄ 〉 and y /∈ FV(M)∪FV(N)
we have:

A〈M/y〉〈N/x〉 = A〈N/x〉〈M/y〉+ A〈M〈N/x〉/y〉.

In particular, if x /∈ FV(M) the two substitutions commute.

Given a bag P = [L1, . . . , Lk] such that x /∈ FV(P) it makes sense to define A〈P/x〉 :=
A〈L1/x〉 · · · 〈Lk/x〉, because this expression does not depend on the enumeration L1, . . . , Lk. In
particular, A〈[]/x〉 = A. Given bags P1, . . . , Pn we set A〈~P/~x〉 := A〈P1/x1〉 · · · 〈Pn/xn〉.

2.2 The Operational Semantics

We are going to introduce the reduction rules defining the operational semantics of the ∂0λ-calculus
with tests and show that it enjoys Church-Rosser and strong normalization, even in the untyped
version of the calculus.

IDefinition 2. The reduction semantics of the ∂0λ-calculus with tests is generated by the following
rules (in the abstraction case we suppose wlog that x 6∈ FV(P)):

(λx.M)P →β M〈P/x〉{0/x}, τ̄(Q)P →τ̄

{
τ̄(Q) if P = [],
0 otherwise,

τ [λx.M]|R→τ τ [M{0/x}]|R, τ [τ̄(Q)]|R→γ Q|R.

Notice that the reduction preserves the sort of an expression in the sense that terms rewrite to (sums
of) terms and tests to (sums of) tests. Also remark that, if M has k free occurrences of x (represented
by x1, . . . , xk) then we have M〈L1/x〉 · · · 〈Lk/x〉{0/x} = Σσ∈Sk

M{Lσ(1)/x
1, . . . , Lσ(k)/x

k}; it
is equal to 0 otherwise (namely, when degx(M) 6= k).

We denote by → ⊆ 2〈Λe〉 × 2〈Λe〉 the contextual closure of →β ∪ →τ̄ ∪ →τ ∪ →γ .
In particular, parallel composition is treated asynchronously, thus R → R entails Q|R → Q|R
(which is equal to R|Q). This means, for instance, that if L → τ̄(Q), then τ [L,L1, . . . , Lk] →
τ [τ̄(Q), L1, . . . , Lk]→ Q | τ [L1, . . . , Lk]. We write� for the transitive and reflexive closure of→.

I Definition 3. An expression A is in normal form (nf, for short) if there is no B such that A→ B.
A sum of expressions A is in nf if A 6= 0 and all its summands are in nf.

6 Full Abstraction for Resource Calculus with Tests

It is easy to check that a term M ∈ Λτ̄ is in normal-form if either M = λ~x.yP1 · · ·Pn or M =
λ~x.τ̄(‖ni=1 τ [yiP i1 · · ·P iki

]) where n ≥ 0, ki ≥ 0 and each P ij is a bag of terms in nf.

I Theorem 4. The ∂0λ-calculus with tests is strongly normalizing and Church-Rosser.

Proof. The fact that there are no infinite reduction chains is trivial, since every reduction step
decreases the size1 of an expression. For the Church-Rosser property just check local confluence and
conclude by Newman’s lemma. J

I Lemma 5. For any closed term M , either τ [M]� ε or τ [M]� 0.

Proof. As ∂0λ-calculus with tests is strongly normalizing, we have that M � Σki=1Mi, where each
Mi is a closed nf. If k = 0 then τ [M] � 0 since τ [0] = 0. Otherwise for each Mi there are two
possibilities:

Mi = λ~x.xjP1 · · ·Pn with xj ∈ ~x and n ≥ 0. Then τ [Mi]� τ [(xjP1 · · ·Pn){0/~x}] = τ [0] =
0.
Mi = λ~x.τ̄(‖nj=1 τ [xjP j1 · · ·P

j
kj

]) with n ≥ 0 and xj ∈ ~x. If n = 0 then ‖nj=1 τ [xjP j1 · · ·P
j
kj

] =
ε and τ [λ~x.τ̄(ε)]� τ [τ̄(ε)]→ ε. If n > 0 then τ [Mi]� τ [τ̄(‖nj=1 τ [0P j1 {0/~x} · · ·P

j
kj
{0/~x}])] =

0.
We conclude since τ [M]� Σki=1τ [Mi], and this latter expression reduces to a finite (possibly empty)
sum of ε’s, which is thus equal to 0 or ε. J

I Corollary 6. If R is a closed test then either R� ε or R� 0.

Contexts. A test-context CL·M is a test having one occurrence of a hole, denoted by L·M, appearing
in term-position. The set of test-contexts is denoted by ΛτL·M. Given M ∈ Λτ̄ we indicate by CLMM
the test resulting by blindly replacing M for the hole (allowing capture of free variables) in CL·M. We
say that CL·M is closed if it contains no free variable; it is closing M if CLMM is closed.

I Definition 7. The operational pre-order vO is defined by:

M vO N ⇔ ∀CL·M ∈ ΛτL·M closing M,N (CLMM� ε⇒ CLNM� ε).

We set M ≈O N iff M vO N and N vO M .

The restriction of observations to test-contexts deserves a discussion. First, note that tests provide
a canonical notion of observation since – by design – they either converge (to ε) or diverge. Hence,
the choice of test-convergence as the basic observation in our calculus is very natural. A second
motivation comes a posteriori. Indeed, as long as we keep D as adequate semantic framework, vO is
the smallest among the possible operational preorders, since it coincides with the one induced by the
model (cf. Thm 20). In particular, it is smaller than the observational preorder based on solvability,
defined in [14] for the test-free fragment of the calculus (and we conjecture they are actually equal).

3 A Relational Semantics

This section is devoted to build a relational model D of ∂0λ-calculus with tests, that has been first
introduced in [4] as a model of the ordinary λ-calculus. We first give a sketchy presentation of the
ambient Cartesian closed category MRel.

1 The definition of the size of an expression is easy and we omit it. Just remark that the size of a sum is the sum of the
sizes of its summands.

A. Bucciarelli, A. Carraro, T. Ehrhard and G. Manzonetto 7

The objects of MRel are all the sets. A morphism from S to T is a relation fromMf(S) to T ,
in other words, MRel(S, T) = P(Mf(S)× T). The identity of S is the relation IdS = {([α], α) :
α ∈ S}. The composition of s : S → T and t : T → U is defined by:

t ◦ s = {(m, c) : ∃(m1, β1), . . . , (mk, βk) ∈ s such that m =]ki=1mi and ([β1, . . . , βk], c) ∈ t}.

The categorical product S & T of two sets S and T is their disjoint union. The terminal object is the
empty set ∅.

An infinite sequence α = (a1, a2, . . .) of multisets is quasi-finite if ai = [] holds for all but a
finite number of indices i. If S is a set, we denote byMf(S)(ω) the set of all quasi-finite N-indexed
sequences of multisets over S.

We build a family of sets (Dn)n∈N as follows: D0 = ∅, Dn+1 = Mf(Dn)(ω). Since the
operation S 7→ Mf(S)(ω) is monotonic w.r.t. inclusion and D0 ⊆ D1, we have Dn ⊆ Dn+1 for all
n ∈ N. Finally, we set D =

⋃
n∈N Dn.

To define an isomorphism between D and Mf(D) × D just remark that every element α =
(a1, a2, a3, . . .) ∈ D stands for the pair (a1, (a2, a3, . . .)) and vice versa. Hence D ∼= [D⇒D] (we
have a canonical bijection between these two sets, and therefore an isomorphism in MRel). Given
α = (a1, a2, a3, . . .) ∈ D and a ∈ Mf(D), we write a ::α for the element (a, a1, a2, a3, . . .) ∈ D.
We denote by ∗ the element ([], [], . . . , [], . . .) ∈ D. Remark that [] :: ∗ = ∗.

3.1 Interpreting the ∂0λ-calculus with tests

For all terms M , bags P , tests Q and repetition-free sequences ~x, ~y, ~z respectively containing the
free variables of M,P,Q, we define by mutual induction the interpretations JMK~x : Dn → D,
JP K~y : Dm →Mf(D) and JQK~z : Dk → 1 (n,m, k are the lengths of ~x, ~y, ~z) as follows2:

JxiK~x = {(([], . . . , [], [α], [], . . . , []), α) : α ∈ D}, where [α] stands in i-th position,
Jλy.MK~x = {(~a, b ::α) : ((~a, b), α) ∈ JMK~x,y}, where we suppose wlog that y /∈ ~x,
JMP K~x = {(~a0] ~a1, α) : ∃b ∈Mf(D) (~a0, b ::α) ∈ JMK~x, (~a1, b) ∈ JP K~x},
J[L1, . . . , Lk]K~x = {(]ki=1~ai, [β1, . . . , βk]) : (~ai, βi) ∈ JLiK~x, 1 ≤ i ≤ k},
Jτ̄(Q)K~x = {(~a, ∗) : ~a ∈ JQK~x},
Jτ [M]K~x = {~a : (~a, ∗) ∈ JMK~x},
JQ|RK~x = {~a0] ~a1 : ~a0 ∈ JQK~x,~a1 ∈ JRK~x},
JεK~x = {([], . . . , [])}.

The interpretation is then extended to the elements of 2〈Λe〉 by setting JΣki=1AiK~x = ∪ki=1JAiK~x.
Note that J[]K~x = {([], . . . , [])} ∈ Mf(D)n+1. Since every test R is of the form τ [L1, . . . , Lk]

we might define its interpretation directly by setting JRK~x = {]ki=1~ai : (~ai, ∗) ∈ JLiK~x, 1 ≤ i ≤ k}.
Hereafter, whenever we write JAK~x we suppose that ~x is a repetition-free list of variables of length

n containing FV(A). Moreover, we will sometimes silently use the fact JMK~x,y = {((~a, []), α) :
(~a, α) ∈ JMK~x} whenever y /∈ ~x.

Clearly the interpretation is monotonic, i.e., for any test context CL·M with free variables ~y, if
JMK~x ⊆ JNK~x then JCLMMK~x,~y ⊆ JCLNMK~x,~y .

The following substitution lemmas are needed for proving the invariance of the interpretation
under reduction. The proofs are in Appendix A.

2 SinceMf(S&T) ∼=Mf(S)×Mf(T) we have, up to isomorphism, JMK~x ⊆Mf(D)n×D, JP K~y ⊆Mf(D)m+1

and JQK~z ⊆Mf(D)k × 1 ∼=Mf(D)k.

8 Full Abstraction for Resource Calculus with Tests

I Lemma 8 (Linear Substitution Lemma). Let M ∈ Λτ̄ , Q ∈ Λτ and P = [L1, . . . , Lk] ∈ Λb
such that degy(M) = degy(Q) = k. We have:

(i) (~a, α) ∈ JM〈P/y〉K~x iff there exist (~ai, βi) ∈ JLiK~x (for 1 ≤ i ≤ k) and ~a0 ∈ Mf(D)n such
that ((~a0, [β1, . . . , βk]), α) ∈ JMK~x,y and]ki=0~ai = ~a.

(ii) ~a ∈ JQ〈P/y〉K~x iff there exist (~ai, βi) ∈ JLiK~x (for 1 ≤ i ≤ k) and ~a0 ∈ Mf(D)n such that
(~a0, [β1, . . . , βk]) ∈ JQK~x,y and]ki=0~ai = ~a.

I Lemma 9 (Regular Substitution Lemma). Let M ∈ Λτ̄ , Q ∈ Λτ and N ∈ 2〈Λτ̄ 〉. We have:

(i) (~a, α) ∈ JM{N/y}K~x iff ∃k ∈ N, ∃β1, . . . , βk ∈ D, ∃~a0, . . . ,~ak ∈ Mf(D)n such that
(~ai, βi) ∈ JNK~x (for 1 ≤ i ≤ k), ((~a0, [β1, . . . , βk]), α) ∈ JMK~x,y and ~a =]kj=0~aj ,

(ii) ~a ∈ JQ{N/y}K~x iff ∃k ∈ N, ∃β1, . . . , βk ∈ D, ∃~a0, . . . ,~ak ∈ Mf(D)n such that (~ai, βi) ∈
JNK~x (for 1 ≤ i ≤ k) and (~a0, [β1, . . . , βk]) ∈ JQK~x,y and ~a =]kj=0~aj .

The substitution lemmas above generalize straightforwardly to sums. Although Lemma 9 is stated
in full generality, for the ∂0λ-calculus with tests it is only useful for N = 0. However, this formulation
will be needed in Section 5 for the ∂λ-calculus with tests.

I Theorem 10. D is a model of the ∂0λ-calculus with tests, i.e., if A� B then JAK~x = JBK~x.

Proof. It is easy to check that the interpretation is contextual. The fact that the semantics is invariant
under reduction follows from Lemmas 8 and 9. J

4 First Full Abstraction Results

A model is equationally fully abstract (FA, for short) if the equivalence induced on terms by their
interpretations is exactly ≈O; it is inequationally FA if the induced preorder is vO. Every inequation-
ally FA model is also FA. In this section we prove that D is inequationally FA for the ∂0λ-calculus
(Thm. 20), i.e., that JMK~x ⊆ JNK~x iff M vO N .

4.1 Building Separating Test-Contexts

In this section we are going to associate a test-context α+L·M with each element α ∈ D, the idea being
that – for every closed term M – we have α ∈ JMK iff α+LMM� ε.

I Definition 11. Let α ∈ D. The rank of α, written rk(α), is the least n ∈ N such that α ∈ Dn+1;
the length of α, written `(α), is 0 if α = ∗, and it is the unique r such that α = a1 :: · · · ::ar ::∗ with
ar 6= [], otherwise.

Note that if α = a1 :: · · · ::ar ::∗ then for all 1 ≤ i ≤ r and αi ∈ ai we have rk(α) > rk(αi). Hence
rk(α) = 0 entails α = ∗ and the following definition is well-founded.

I Definition 12. For α ∈ D of the form α = [α1
1, . . . , α

1
k1

] :: · · · :: [αr1, . . . , αrkr
] ::∗ with `(α) = r,

define by mutual induction a closed term α– and a test-context α+L·M as follows:
α– = λx1 . . . xr.τ̄(‖ri=1 ((αi1)+LxiM| · · · |(αiki

)+LxiM)),
α+L·M = τ [L·M[(α1

1)–, . . . , (α1
k1

)–] · · · [(αr1)–, . . . , (αrkr
)–]].

Given a = [α1, . . . , αk] we set a– = [α–
1, . . . , α

–
k].

For instance, we have ∗– = τ̄(ε) (as the empty parallel composition is equal to ε) and ∗+L·M = τ [L·M].
The next lemma, along with its corollaries, shows the interplay between the elements of D and

the terms/tests of Definition 12. It provides the main motivation for our extension of the ∂λ-calculus.

A. Bucciarelli, A. Carraro, T. Ehrhard and G. Manzonetto 9

I Lemma 13. Let α ∈ D. Then:
(i) Jα–K = {α},

(ii) Jα+LxMKx = {[α]}.

Proof. The points (i) and (ii) are proved simultaneously by induction on rk(α). We write IH(i) and
IH(ii) for the induction hypotheses concerning (i) and (ii), respectively.

If rk(α) = 0 then α = ∗, hence J∗–K = Jτ̄(ε)K = {∗} and J∗+LxMKx = Jτ [x]Kx = {[∗]}.
If rk(α) > 0 and `(α) = r, we have α = a1 :: · · · ::ar ::∗ with ai = [αi1, . . . , αiki

] for 1 ≤ i ≤ r.
We prove (i). Remember that by definition Jα–K = Jλy1 . . . yr.τ̄(‖ri=1‖

ki
j=1 (αij)+LyiM)K. So we

have β ∈ Jα–K iff β = b1 :: · · · ::br ::∗ and for all 1 ≤ i ≤ r, 1 ≤ j ≤ ki there is ~d ij ∈ J(αij)+LyiMK~y
such that~b =]ri=1]

ki
j=1

~d ij . By IH(ii) we have ~d ij ∈ J(αij)+LyiMK~y iff ~d ij = (~[], [αij], ~[]) where [αij]
appears in i-th position. Therefore]ki

j=1
~d ij = (~[], ai, ~[]) and bi = ai for every index i. Thus β = α.

We prove (ii). By def. Jα+LxMKx = Jτ [xa–
1 · · · a–

r]Kx. So we have c ∈ Jα+LxMKx iff there are
bi = [βii , . . . , βiki

], c0, c i1 , . . . , c iki
∈ Mf(D) (for 1 ≤ i ≤ r) such that (c0, b1 :: · · · :: br ::∗) ∈ JxKx,

(cij , βij) ∈ J(αij)–Kx (for all 1 ≤ i ≤ r and 1 ≤ j ≤ ki) and c = c0] (]ri=1]
ki
j=1 c

i
j). As, by IH(i),

J(αiji
)–Kx = {([], αij)} we get cij = [] and βij = αij . Thus c = c0, α = b1 :: · · · ::br ::∗ and from this

it follows that (c, α) ∈ JxKx. We conclude that c = [α]. J

I Corollary 14. Jα+LMMK~x = {~c : (~c, α) ∈ JMK~x}.

Proof. By Lemma 13(ii) we have that Jα+LyMK~x,y = {([], . . . , [], [α])}. As α+L·M does not have
outer λ-abstractions we have α+LMM = α+LyM〈[M]/y〉. We then apply Lemma 8 to conclude. J

I Corollary 15. All finite subsets of D are definable.

Proof. By Lemma 13(i), for every finite set u = {α1, . . . , αk} we have Jα–
1 + · · ·+ α–

kK = u. J

Lemma 13 reveals the behaviour of a test-context α+L·M when applied to a term β–.

I Corollary 16. Let α, β ∈ D. If α = β then α+Lβ–M� ε, otherwise α+Lβ–M� 0.

Proof. By Lemma 13, Jα+Lβ–MK = {()} ⊆ Mf(D)0 if α = β, ∅ otherwise. By Corollary 6, we
know that α+Lβ–M reduces either to ε or to 0. The result follows by soundness (Thm. 10). J

4.2 (In)equational Full Abstraction

In this subsection, we show that the operational preorder vO (see Def. 7) coincides with the inclusion
of interpretations in D. The proof of this full abstraction result needs a couple of preliminary lemmas.

I Lemma 17. Let Q ∈ Λτ , FV(Q) ⊆ ~x and ~a ∈ Mf(D)n. Then ~a ∈ JQK~x ⇔ JQ〈~a–/~x〉K 6= ∅
and degxi

(Q) = #ai.

Proof. The result follows by applying n times (one for each variable in ~x) Lemma 8 and Cor. 14. J

I Remark 18. (α+LMM)〈~a–/~x〉 = α+LM〈~a–/~x〉M.

The ensuing lemma is the key argument for proving that the model D is inequationally fully abstract.

I Lemma 19. Let M ∈ Λτ̄ , ~x ⊇ FV(M), α ∈ D and ~a ∈Mf(D). Then the following statements
are equivalent:

(i) (~a, α) ∈ JMK~x,
(ii) α+LM〈~a–/~x〉M� ε.

Proof. We have the following chain of equivalences:

10 Full Abstraction for Resource Calculus with Tests

(~a, α) ∈ JMK~x⇔ ~a ∈ Jα+LMMK~x, by Corollary 14,
⇔ Jα+LM〈~a–/~x〉MK 6= ∅ and degxi

(M) = #ai, by Lemma 17, using Remark 18,
⇔ α+LM〈~a–/~x〉M� ε, by Corollary 6, i.e. the fact that closed tests can only reduce to either ε or

0, and Theorem 10, i.e. the soundness of the model. J

We are now able to prove the main result of the section.

I Theorem 20. D is inequationally fully abstract for the ∂0λ-calculus with tests:

JMK~x ⊆ JNK~x ⇔M vO N

Proof. (⇒) Assume that JMK~x ⊆ JNK~x, and let CL·M be a context closing both M and N and such
that CLMM� ε. By Thm. 10, JCLMMK = JεK = {()}. By monotonicity of the interpretation we get
JCLMMK ⊆ JCLNMK, thus JCLNMK 6= ∅. By Cor. 6 this entails that CLNM� ε.

(⇐) Suppose, by the way of contradiction, that M vO N holds but there is an element (~a, α) ∈
JMK~x−JNK~x. Then the test-contextCL·M = α+L(λ~x.L·M)~a–M is such thatCLMM� α+LM〈~a–/~x〉M�
ε and CLNM 6� ε by Lemma 19. This leads to a contradiction. J

The rest of the paper is devoted to extend the above result to the ∂λ-calculus with tests. The main
ingredients will be the Taylor expansion and the head-reduction introduced in Subsections 6.1 and
5.1, respectively.

5 The ∂λ-Calculus with Tests

The ∂λ-calculus with tests is an extension of the ∂0λ-calculus with tests with a promotion operator
available on resources. In this calculus a resource can be linear (it must be used exactly once) or not
(it can be used ad libitum) and in the latter case it is decorated with a “!” superscript.

Syntax. The grammar generating the terms, the tests and the expressions of the ∂λ-calculus with
tests, is the same as the one for the ∂0λ-calculus with tests (in particular tests are still plain multisets
of linear resources), excepting the rule for bags which becomes:

P ::= [L1, . . . , Lk,N!] bags

where N is a finite sum of terms of this new syntax. We write Λτ̄! for the set of terms generated by
this new grammar, Λτ! for the set of tests, Λb! for the set of bags, Λe! for the set of expressions.

It should be clear that from now on bags are no more plain multisets of terms: they are
compound objects, consisting of a multiset of terms [L1, . . . , Lk] and a sum of terms N, de-
noted as [L1, . . . , Lk,N!]. We shall deal with them as if they were multisets, defining union by
[L1, . . . , Lk,N!]] [Lk+1, . . . , Ln,M!] := [L1, . . . , Ln, (N + M)!]. This operation is commutative,
associative and has [0!] as neutral element.

The ∂0λ-calculus with tests is the sub-calculus of the ∂λ-calculus with tests in which all bags
have the shape [L1, . . . , Lk, 0!], and this identification is compatible with the reduction rules.

As in the ∂0λ-calculus with tests, we extend this syntax by multilinearity to sums of expres-
sions with the only exception that the bag [L1, . . . , Lk, (N + M)!] is not required to be equal to
[L1, . . . , Lk,N!] + [L1, . . . , Lk,M!]. The intuition is that in the first expression N + M can be used
several times and each time one can choose non-deterministically N or M, whereas in the second
expression one has to choose once and for all one of the summands, and then use it as many times as
needed.

Substitutions. Linear substitution is denoted and defined as in the ∂0λ-calculus with tests, except
of course for bags, where we set:

[L1, . . , Lk,N!]〈N/x〉 = Σki=1[L1, . . , Li〈N/x〉, . . , Lk,N!] + [L1, . . , Lk,N〈N/x〉,N!] .

A. Bucciarelli, A. Carraro, T. Ehrhard and G. Manzonetto 11

For example, (x[x!])〈y/x〉〈z/x〉 = y[z, x!] + z[y, x!] + x[y, z, x!]. Remark that in the !-free case,
that is when N = 0, the above definitions and notations agree with those introduced in Subsection 2.1,
because in that case we have [L1, . . . , Lk,N〈N/x〉,N!] = 0, since 0〈N/x〉 = 0.

We also define the regular substitutionA{N/x} for the ∂λ-calculus with tests, by simply replacing
each occurrence of x in the expression A with N: in that way we get an expression of the extended
syntax, since N is a sum in general. For instance, x[x!]{(y + z)/x} = y[y!, z!] + z[y!, z!].

Both substitutions are then generalized to sums: linear substitution is extended to A〈N/x〉 by
bilinearity in A and N, while ordinary substitution to A{N/x} by linearity in A.

A Schwarz lemma, analogous to Lemma 1, holds for the ∂λ-calculus with tests. Hence, given
a sums of expressions A and a bag P = [L1, . . . , Lk] with x /∈ FV(P), it still makes sense to set
A〈P/x〉 := A〈L1/x〉 · · · 〈Lk/x〉 because this expression does not depend on the enumeration of
L1, . . . , Lk. In particular A〈[]/x〉 = A.

Operational semantics. The reduction rules of ∂λ-calculus extend those of the ∂0λ-calculus with
tests in the sense that they are equivalent on !-free expressions.

The rules (τ) and (γ) are exactly the same, while the β-reduction and τ̄ -reduction are rephrased
as follows:

(λx.M)[L1, . . , Lk,N!]→β M〈[L1, . . , Lk]/x〉{N/x}, where wlog x 6∈ FV([L1, ..., Lk]),

τ̄(Q)[L1, . . . , Lk,N!]→τ̄

{
τ̄(Q) if k = 0,
0 otherwise.

The ∂λ-calculus with tests is still Church Rosser (just adapt the proof in [15]), while it is no more
strongly normalizing. For instance the term Ω = (λx.x[x!])[(λx.x[x!])!] has an infinite reduction
chain, just like the paradigmatic homonymous unsolvable λ-term. Indeed, the usual λ-calculus can be
embedded into the ∂λ-calculus with tests by translating every application MN into M [N !].

In this framework a test-context CL·M is a test of the ∂λ-calculus with tests having a single
occurrence of its hole, appearing in term-position. The set of test-contexts is denoted by Λτ !

L·M.
A test Q converges, notation Q↓, if there exists a sum Q such that Q� ε+ Q.

I Definition 21. The operational pre-order v!
O on the ∂λ-calculus with tests is defined by:

M v!
O N ⇔ ∀CL·M ∈ Λτ !

L·M closing M,N (CLMM↓ ⇒ CLNM↓).

We then set M ≈!
O N iff M v!

O N and N v!
O M .

Relational semantics. The ∂λ-calculus with tests can be interpreted into D by extending the interpret-
ation of the ∂0λ-calculus with tests as follows (where ~L = L1, . . . , Lk):

J[~L,N!]K~x = {(]k+m
r=1 ~ar, [β1, . . . , βk+m]) : (~aj , βj) ∈ JLjK~x, 1 ≤ j ≤ k and

(~ai, βi) ∈ JNK~x, k < i ≤ k +m}.

It is easy to check that both Lemma 8 and Lemma 9 generalize to this context. From these lemmas it
ensues that D is also a model of the ∂λ-calculus with tests.

I Theorem 22. D is a model of ∂λ-calculus with tests.

5.1 Head Reduction

We now provide a notion of head-reduction for the ∂λ-calculus with tests. Intuitively, the head-
reduction is obtained by reducing a head-redex, that is a redex occurring in head-position in an
expression A. The interest of introducing this reduction strategy is that it “behaves well” with respect
to the Taylor expansion in the sense of Proposition 32.

We start by defining the notion of redex.

12 Full Abstraction for Resource Calculus with Tests

x◦ = {x}, (λx.M)◦ = {λx.M ′ : M ′ ∈M◦}, (MP)◦ = {M ′P ′ : M ′ ∈M◦, P ′ ∈ P ◦},
(τ̄(Q))◦ = {τ̄(Q′) : Q′ ∈ Q◦}, (τ [M1, . . . ,Mk])◦ = {τ [M ′1, . . . ,M ′k] : M ′i ∈M◦i , for 1 ≤ i ≤ k},

[L1, . . . , Lk,N!]◦ = {[L′1, . . . , L′k]] P : L′i ∈ L◦i , for 1 ≤ i ≤ k, P ∈Mf(N◦)},
(Σki=1Ai)◦ = ∪ki=1A

◦
i .

Figure 1 The Taylor expansion A◦ of A ∈ 2〈Λe! 〉.

I Definition 23. A term-redex is any term of the form (λx.M)P or τ̄(Q)P . A test-redex is any
test of the form τ [λx.M], τ [τ̄(Q)].

Among term- and test-redexes we distinguish those redexes that are in “head” position.

I Definition 24. A head-redex is:
either a term-redex H in terms of shape λ~y.H ~P ,
or a term-redex H in tests of shape τ [H ~P]|Q,
or a test-redex R in tests of shape R|Q.

I Definition 25. We say that A → B is a step of head-reduction if B is obtained from A by
contracting a head-redex. If A→ B is a step of head-reduction then also A+ A→ B + A is.
One-step head-reduction is denoted by→h, while�h indicates its reflexive and transitive closure.
Notice that, unlike in ordinary λ-calculus, an expression A may have more than one head-redex,
hence there may be more than one head-reduction step starting from A.

The head-reduction induces a notion of head-normal form on (finite sums of) expressions.

I Definition 26. An expression A is in head-normal form (hnf, for short) if there is no B such that
A→h B; a sum A is in hnf if A 6= 0 and each summand is in hnf.

This notion of hnf differs from that given by Pagani and Ronchi della Rocca in [14]. We keep this
name because their definition captures the notion of “outer-normal form” rather than that of head
normal form, and in fact they changed terminology in [13].

It is easy to check that a term M is in hnf iff M := λ~x.y ~P or M := λ~x.τ̄(Q); a test R is in hnf
iff R := ε, R := τ [x~P] or R := Q1|Q2 for some tests Q1, Q2 in hnf.

The following two lemmas concern reduction properties of !-free closed tests.

I Lemma 27. Let R ∈ Λτ . If R is closed and R 6= ε then it has a head-redex (hence, R→h R′ for
some R′).

Proof. By induction on R. It suffices to consider the case R = τ [M]. We then proceed by cases on
the structure of M (which must be closed). If M = λx.N then R head-reduces using (τ). If M is
an application then it must be written either as M = (λy.N)P1 · · ·Pk or as M = τ̄ [Q]P1 · · ·Pk (in
both cases k ≥ 1) and hence R head-reduces using either (β) or (τ̄), respectively. If M = τ̄(Q) then
R head-reduces using (γ). J

I Lemma 28. If R ∈ Λτ is closed then R� ε iff R�h ε.

Proof. (⇒) Suppose, by contradiction, that R� ε but R 6�h ε. By confluence (Thm. 4), we cannot
have R �h 0. Thus, since R ∈ Λτ is strongly normalizing, the only way to have R 6�h ε is that
R�h R where R 6= ε is in hnf. This is impossible by Lemma 27.

(⇐) Trivial since�h ⊆�. J

One should be careful when trying to extend the above result to terms M ∈ Λτ̄ . For instance, it is
false that M � 0 iff M �h 0 as shown by this easy counter-example: the term M := λx.x[I[]] is in
hnf but M → λx.x[0] := 0.

A. Bucciarelli, A. Carraro, T. Ehrhard and G. Manzonetto 13

6 Full Abstraction via Taylor Expansion

In this section we are going to define the Taylor expansion of terms and tests of the ∂λ-calculus
with tests. We will then use this expansion, combined with head-reduction, to generalize the full
abstraction results obtained in Subsection 4.2 to the framework of ∂λ-calculus with tests.

6.1 Taylor Expansion

The (full) Taylor expansion was first introduced in [6, 7], in the context of λ-calculus. The Taylor
expansion M◦ of an ordinary λ-term M gives an infinite formal linear combinations of terms
(equivalently, a set of terms) of the ∂0λ-calculus. In the case of ordinary application it looks like:

(MN)◦ =
∞∑
n=0

1
n!M [N, . . . , N︸ ︷︷ ︸

n times

]

in accordance with the intended meaning and the denotational semantics of application in the resource
calculus. In the syntax of Ehrhard-Regnier’s differential λ-calculus the above formula looks like∑∞
n=0

1
n!M

(n)(0)(N, . . . , N), hence the connection with analytical Taylor expansion is evident.
Following [10], we extend the definition of Taylor expansion from ordinary λ-terms to the

expressions of the ∂λ-calculus with tests. Since in our context the sum is idempotent, the coefficients
disappear and our Taylor expansion corresponds to the support of the actual Taylor expansion.

As the set 2〈Λe〉∞ of possibly infinite formal sums of expressions is isomorphic to P(Λe), in the
following we may use sets instead of sums.

I Definition 29. Let A ∈ 2〈Λe! 〉. The (full) Taylor expansion of A is the set A◦ ⊆ Λe which is
defined (by structural induction on A) in Figure 1.

As previously announced, the Taylor expansion of an expression A can be infinite. For example, we
have that (λx.x[x!])◦ = {λx.x[xn] : n ∈ N}.

To lighten the notations, we will adopt for infinite sets of expressions the same abbreviations
as introduced for finite sums in Subsection 2.1 (including those for substitutions). For instance, if
X,Y ⊆ Λτ̄ then λx.X denotes the set {λx.M ′ : M ′ ∈ X} and X〈Y/x〉 = ∪M∈X,N∈YM〈N/x〉.

In [10] it is proved that MRel is a differential Cartesian closed category that “models the Taylor
expansion”. This property entails that Taylor expansion preserves the meaning of an expression in D,
as expressed in the next theorem.

I Theorem 30. JAK~x = ∪A∈A◦JAK~x, for all A ∈ 2〈Λe! 〉.

Proof. By adapting the proof in [10] of the analogous theorem for the differential λ-calculus. J

We now need to prove the following technical lemma stating the commutation of Taylor expansion
with respect to ordinary and linear substitutions (see Appendix A for the full proof of this result). For
the sake of readability, in the next statements we use sums and unions interchangeably.

I Lemma 31. Let A ∈ Λe! , N ∈ Λτ̄! and N ∈ 2〈Λτ̄! 〉. Then, for x /∈ FV(N) ∪ FV(N):
(i) (A〈N/x〉)◦ = A◦〈N◦/x〉,

(ii) (A{N/x})◦ =
⋃
P∈Mf(N◦)A

◦〈P/x〉{0/x}.

The next proposition is devoted to show how Taylor expansion interacts with head-reduction. To
ease the formulation of the next proposition we assimilate 2〈Λe! 〉 to Pf(Λe!).

I Proposition 32. Let A ∈ Λe! and let A′ ∈ A◦ be such that A′ →h B′, for some B′. Then there
exists B such that A→h B and B′ ⊆ B◦.

14 Full Abstraction for Resource Calculus with Tests

Proof. The idea is that the syntactic tree of A has the same structure as that of A′ and we can define
a surjective mapping of the redexes of A′ into those of A.

We only treat the case A′ = λ~x.H ′P ′1 · · ·P ′p where H ′ = (λy.M ′)P ′ is a head-redex. From
A′ ∈ A◦ we get A = λ~x.HP1 · · ·Pp for some H such that H ′ ∈ H◦. Hence, supposing wlog P ′ =
[~L′, ~N ′], we have that H = (λy.M)[~L,N!] where M ′ ∈M◦, the lengths of ~L′ and ~L coincide, L′i ∈
L◦i for all i and [~N ′] ∈Mf(N◦). We now know that H ′ →h M

′〈[~L′]/y〉〈[~N ′]/y〉{0/y} and H →h

M〈[~L]/y〉{N/y}. By Lemma 31, (M〈[~L]/y〉{N/y})◦ = ∪P∈Mf(N◦)M
◦〈[~L◦]/y〉〈P/y〉{0/y} ⊇

M〈P ′/y〉{0/y}.
We can conclude that λ~x.M ′〈P ′/y〉{0/y}P ′1 · · ·P ′p ⊆ (λ~x.M〈[~L]/y〉{N/y}P1 · · ·Pp)◦.
All other cases are simpler. J

Note that the above proposition is false for regular β-reduction. E.g., take A := x[(I[y])!] and
A′ := x[I[y], I[y]] ∈ A◦, then A′ →β x[y, I[y]] and A→β x[y!] but x[y, I[y]] /∈ (x[y!])◦.

I Corollary 33. Let R ∈ Λτ! be a closed test. If there is an R′ ∈ R◦ such that R′ � ε, then R↓.

Proof. Suppose that there exists R′ ∈ R◦ such that R′ � ε. By Lemma 28 there is a head-reduction
chain of the form R′ →h R′1 →h · · · →h R′n = ε. By iterated application of a corollary3 of Prop. 32
there are tests Ri (for i = 1, . . . , n) such that R→h R1 →h · · · →h Rn with R′i ⊆ R◦i . We conclude
since ε ∈ R◦n is only possible when ε ∈ Rn. J

6.2 Full Abstraction for the ∂λ-Calculus with Tests

We are now going to prove that the relational model D is fully abstract for the ∂λ-calculus with tests.

I Lemma 34. Given A ∈ Λe! and M ∈ Λτ̄! we have:

(i) (α+LMM)◦ = α+LM◦M, for all α ∈ D,
(ii) (A〈a–/x〉)◦ = A◦〈a–/x〉, for all a ∈Mf(D).

Proof. Easy, as α+L·M and a– are !-free, and (·)◦ behaves like the identity on !-free expressions. J

I Proposition 35. Let M ∈ Λτ̄! , ~x ⊇ FV(M), α ∈ D and ~a ∈ Mf(D). Then the following
statements are equivalent:

(i) (~a, α) ∈ JMK~x,
(ii) α+LM〈~a–/~x〉M↓.

Proof. (i⇒ ii) Suppose (~a, α) ∈ JMK~x, then by Thm. 30 there is an M ′ ∈M◦ such that (~a, α) ∈
JM ′K~x. Applying Lemma 19 we know that α+LM ′〈~a–/~x〉M � ε. Now, since α+LM ′〈~a–/~x〉M ∈
(α+LM〈~a–/~x〉M)◦ (by Lemma 34), we can apply Corollary 33 and get α+LM〈~a–/~x〉M↓.

(ii⇒ i) Suppose that α+LM〈~a–/~x〉M� ε+ Q, for some Q; then Jα+LM〈~a–/~x〉MK~x 6= ∅. Hence,
by Theorem 30, there is a closed test R ∈ (α+LM〈~a–/~x〉M)◦ such that JRK 6= ∅. By Lemma 34
R = α+LM ′〈~a–/~x〉M for some M ′ ∈M◦ and since its interpretation is non-empty we have R� ε.
By applying Lemma 19 we get (~a, α) ∈ JM ′K~x ⊆ JMK~x (by Theorem 30). J

We are finally able to prove the main result of the paper, namely the fact that D is a fully abstract
model of ∂λ-calculus with tests.

I Theorem 36. D is inequationally fully abstract for the ∂λ-calculus with tests:

JMK~x ⊆ JNK~x ⇔M v!
O N.

3 If A′ ⊆ A◦ and A′ →h B′ then there exists B such that A→h B and B′ ⊆ B◦.

A. Bucciarelli, A. Carraro, T. Ehrhard and G. Manzonetto 15

Proof. (⇒) Suppose that JMK~x ⊆ JNK~x and there is a test-context CL·M (closing M,N) such that
CLMM↓. Since CLMM� ε+ Q, for some Q, we have JCLMMK 6= ∅. Thus, by monotonicity of the
interpretation we get JCLMMK ⊆ JCLNMK = J(CLNM)◦K 6= ∅. By Corollary 6 there is R ∈ (CLNM)◦
such that R� ε and we conclude that CLNM↓ by applying Proposition 35.

(⇐) Suppose by contradiction thatM v!
O N , but there is an (~a, α) ∈ JMK~x−JNK~x. By Prop. 35

α+LM〈~a–/~x〉M↓ and since M v!
O N we have α+LN〈~a–/~x〉M↓. Again, by Prop. 35 (~a, α) ∈ JNK~x.

Contradiction. J

Further Work. We have proved that D is a fully abstract model of the ∂λ-calculus and of the
∂0λ-calculus with tests. We strongly conjecture that it also equationally and inequationally fully
abstract for the corresponding calculi without tests. A possible approach to obtain these results might
be to define a “test-expansion” translating every test-context CL·M sending M ∈ Λτ̄! to ε+ R into a
term-context C ′L·M sending M to I + N. However, this generalization is non trivial and we keep it
for future work. Another open problem is to find a fully abstract model of these calculi where + is
treated as must non-determinism (a sum converges if all its summands converge).

References

1 H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, Amsterdam,
1984.

2 G. Boudol. The lambda-calculus with multiplicities (abstract). In Eike Best, editor, CONCUR,
volume 715 of Lecture Notes in Computer Science, pages 1–6. Springer, 1993.

3 G. Boudol, P.-L. Curien, and C. Lavatelli. A semantics for lambda calculi with resources. Math.
Struct. in Comp. Sci., 9(4):437–482, 1999.

4 A. Bucciarelli, T. Ehrhard, and G. Manzonetto. Not enough points is enough. In CSL’07, volume
4646 of LNCS, pages 298–312. Springer, 2007.

5 T. Ehrhard and O. Laurent. Interpreting a finitary pi-calculus in differential interaction nets. Inf.
Comput., 208(6):606–633, 2010.

6 T. Ehrhard and L. Regnier. The differential lambda-calculus. Theor. Comput. Sci., 309(1-3):1–41,
2003.

7 T. Ehrhard and L. Regnier. Böhm trees, Krivine’s machine and the Taylor expansion of lambda-
terms. In CiE, volume 3988 of LNCS, pages 186–197. Springer, 2006.

8 T. Ehrhard and L. Regnier. Uniformity and the Taylor expansion of ordinary lambda-terms. Theor-
etical Computer Science, 403(2-3):347–372, 2008.

9 J.-Y. Girard. From foundations to ludics. Bulletin of Symbolic Logic, 9(2):131–168, 2003.
10 G. Manzonetto. What is a categorical model of the differential and the resource lambda calculi?

June 2010. Submitted to Mathematical Structures in Computer Science.
11 R. Milner. A Calculus of Communicating Systems. Springer-Verlag, 1982.
12 R. Milner. The polyadic π-calculus: a tutorial. Logic and algebra of specification, pages 203–246,

1993.
13 M. Pagani and S. Ronchi Della Rocca. Linearity, non-determinism and solvability. Fundam. In-

form., 103(1-4):173–202, 2010.
14 M. Pagani and S. Ronchi Della Rocca. Solvability in resource lambda-calculus. In Proc. of

FOSSACS’10, volume 6014 of LNCS, pages 358–373. Springer, 2010.
15 M. Pagani and P. Tranquilli. Parallel reduction in resource lambda-calculus. In APLAS’09, volume

5904 of LNCS, pages 226–242. Springer, 2009.
16 P. Tranquilli. Intuitionistic differential nets and lambda-calculus. Theor. Comp. Sci. To appear.
17 L. Vaux. The differential λµ-calculus. Theor. Comput. Sci., 379(1-2):166–209, 2007.

16 Full Abstraction for Resource Calculus with Tests

A Technical Appendix

This technical appendix is devoted to give the proofs of some results in the paper. The following is an
equivalent but slightly more compact version of the linear substitution lemma.

I Lemma 8 (Linear Substitution Lemma). Let M ∈ Λτ̄ , Q ∈ Λτ and P ∈ Λb. Then we have:

(i) (~a, α) ∈ JM〈P/y〉K~x iff ∃d ∈ Mf(D), ∃~b,~c ∈ Mf(D)n such that ((~b, d), α) ∈ JMK~x,y,
(~c, d) ∈ JP K~x, ~a = ~b] ~c, and]d =]P = degy(M).

(ii) ~a ∈ JQ〈P/y〉K~x iff ∃d ∈ Mf(D), ∃~b,~c ∈ Mf(D)n such that (~b, d) ∈ JQK~x,y, (~c, d) ∈ JP K~x,
~a = ~b] ~c, and]d =]P = degy(Q).

Proof. The points (i) and (ii) are proved by mutual induction on M and Q.
(i) We only treat the case M = N0[N1, . . . , Nh].
(⇒) First, let us call P the set of all sequences ~P ′ = (P ′0, . . . , P ′h) of bags such that P ′0]· · ·]P ′h =

P and]P ′j = degy(Nj) for all j = 0, . . . , h. Also, note that by definition of linear substitution
we have (N0[N1, . . . , Nh])〈P/y〉 = Σ ~P ′∈PN0〈P ′0/y〉[N1〈P ′1/y〉, . . . , Nh〈P ′h/y〉]. Hence, by defin-

ition of interpretation, we have that (~a, α) ∈ JM〈P/y〉K~x iff there exist ~P ′ ∈ P, α1, . . . , αh ∈ D,
~a0, . . . ,~ah ∈ Mf(D)n such that (~a0, [α1, . . . , αh] :: α) ∈ JN0〈P ′0/y〉K~x, (~aj , αj) ∈ JNj〈P ′j/y〉K~x
(for 1 ≤ j ≤ h), and ~a =]hi=0~ai. Now by applying the induction hypothesis (i) we obtain that:
∃d0 ∈ Mf(D), ∃~b0,~c0 ∈ Mf(D)n such that ((~c0, d0), [α1, . . . , αh] ::α) ∈ JN0K~x,y, (~b0, d0) ∈
JP ′0K~x, ~a0 = ~b0] ~c0, and]d0 =]P ′0.
∀j = 1, . . . , k, ∃dj ∈Mf(D), ∃~bj ,~cj ∈Mf(D)n such that ((~cj , dj), αj) ∈ JNjK~x,y , (~bj , dj) ∈
JP ′jK~x, ~aj = ~bj] ~cj , and]dj =]P ′j .

Now let ~c =]hj=0~cj , ~b =]hj=0
~bj , and d =]hj=0dj . It is easy to see that ((~c, d), [α1, . . . , αh] ::

α) ∈ JMK~x,y, (~b, d) ∈ JP K~x, and ~a = ~b] ~c. This concludes the proof of the (⇒) implication.
(⇐) Suppose that ∃d ∈Mf(D), ∃~b,~c ∈Mf(D)n such that ((~c, d), α) ∈ JMK~x,y , (~b, d) ∈ JP K~x

and~b] ~c = ~a. Now we observe that by the definition of interpretation
∃d0, . . . , dh ∈Mf(D), ∃~c0, . . . ,~ch ∈Mf(D)n such that ((~c0, d0), [α1, . . . , αh] ::α) ∈ JN0K~x,y ,
((~cj , dj), αj) ∈ JNjK~x,y (for 1 ≤ j ≤ h),]hj=0~cj = ~c, and]hj=0dj = d, and]dj = degy(Nj)
(for 1≤j≤h).
∃P ′0, . . . , P ′h ∈ Λb, ∃~b0, . . . ,~bh ∈ Mf(D)n such that]hj=0P

′
j = P ,]hj=0

~bj = ~b, #P ′j =
degy(Nj) (for j = 0, . . . , h), and (~bj , dj) ∈ JP ′jK~x (for j = 0, . . . , h).

Note that #dj = #P ′j (for 1 ≤ j ≤ h). Now let ~aj = ~bj] ~cj (for j = 0, . . . , h). Then by
the induction hypothesis (i) we have that (~a0, [α1, . . . , αh] :: α) ∈ JN0〈P ′0/y〉K~x and (~aj , αj) ∈
JNj〈P ′j/y〉K~x (for 1 ≤ j ≤ h), and finally observing that ~a =]hj=0~aj , we can conclude that
(~a, α) ∈ JN0〈P ′0/y〉[N1〈P ′1/y〉, . . . , Nh〈P ′h/y〉]K~x ⊆ JM〈P/y〉K~x.

(ii) We just consider the caseQ = τ [N]. By definition of interpretation we have Jτ [N〈P/y〉]K~x =
{~a : (~a, ∗) ∈ JN〈P/y〉K~x}. Hence applying the induction hypothesis (i) and the fact that τ [N]〈P/y〉 =
τ [N〈P/y〉] we conclude that Jτ [N]〈P/y〉K~x = {~a]~b : ∃d ∈Mf(D), #d = #P = degy(Q), (~b, d) ∈
JP K~x, ((~a, d)) ∈ Jτ [N]K~x,y}. J

I Lemma 9 (Regular Substitution Lemma). Let M ∈ Λτ̄ , Q ∈ Λτ and N ∈ 2〈Λτ̄ 〉. We have:

(i) (~a, α) ∈ JM{N/y}K~x iff ∃β1, . . . , βk ∈ D, k = degy(M), ∃~a0, . . . ,~ak ∈ Mf(D)n such that
(~ai, βi) ∈ JNK~x (for 1 ≤ i ≤ k), ((~a0, [β1, . . . , βk]), α) ∈ JMK~x,y and ~a =]kj=0~aj ,

(ii) ~a ∈ JQ{N/y}K~x iff ∃β1, . . . , βk ∈ D, k = degy(Q), ∃~a0, . . . ,~ak ∈ Mf(D)n such that
(~ai, βi) ∈ JNK~x (for 1 ≤ i ≤ k) and (~a0, [β1, . . . , βk]) ∈ JQK~x,y and ~a =]kj=0~aj .

A. Bucciarelli, A. Carraro, T. Ehrhard and G. Manzonetto 17

Proof. The items (i) and (ii) are proved by mutual induction on M and Q.
(i) We only treat the case M = N0[N1, . . . , Nh].
(⇒) Suppose that (~a, α) ∈ JM{N/y}K~x. By definition of linear substitution we have that

(N0[N1, . . . , Nh]){N/y} = N0{N/y}[N1{N/y}, . . . , Nh〈N/y〉]. Hence, by definition, (~a, α) ∈
JN0{N/y}[N1{N/y}, . . . , Nh〈N/y〉]K~x iff there exist α1, . . . , αh ∈ D and ~a0, . . . ,~ah ∈ Mf(D)n
such that (~a0, [α1, . . . , αh] :: α) ∈ JN0{N/y}K~x, (~aj , αj) ∈ JNj{N/y}K~x (for 1 ≤ j ≤ h), and
~a =]hi=0~ai.

By applying the induction hypothesis (i) we obtain that

for `0 = degy(N0), ∃δ0
1 , . . . , δ

0
`0
∈ D, ∃~b01, . . . ,~b0`0

,~c0 ∈Mf(D)n such that

((~c0, [δ0
1 , . . . , δ

0
`0

]), [α1, . . . , αh] ::α) ∈ JN0K~x,y,

(~b0i , δ0
i) ∈ JNK~x, (for 1 ≤ i ≤ `0), (]`0

i=1
~b0i)] ~c0 = ~a0, and

∀j = 1, . . . , k, ∃δj1, . . . , δ
j
`j
∈Mf(D), for `j = degy(Nj), ∃~bj ,~cj ∈Mf(D)n such that

((~cj , [δj1, . . . , δ
j
`j

]), αj) ∈ JNjK~x,y,

(~b ji , δ
j
i) ∈ JNK~x, (for 1 ≤ i ≤ `j), (]kj

i=1
~b ji)] ~cj = ~aj .

Now let ~c =]hj=0~cj , ~b =]hj=0]
`j

i=1
~b ji , k = Σhj=0`j and [β1, . . . , βk] =]hj=0[δj1, . . . , δ

j
`j

]. It is

easy to see that ((~c, [β1, . . . , βk]), α) ∈ JMK~x,y and ~a = ~b] ~c. This concludes the proof of the (⇒)
implication.

(⇐) Suppose that ∃β1, . . . , βk ∈ D, ∃~b1, . . . ,~bk,~c ∈ Mf(D)n, k = degy(M), such that
((~c, [β1, . . . , βk]), α) ∈ JMK~x,y, (~bi, βi) ∈ JNK~x (for 1 ≤ i ≤ k), and (]ki=1bi)] ~c = ~a. Now we
observe that by definition of interpretation

∃α1, . . . , αh ∈ D, ∃(~c0, d0), . . . , (~ch, dh) ∈Mf(D)n+1 such that ((~c0, d0), [α1, . . . , αh] ::α) ∈
JN0K~x,y, ((~cj , dj), αj) ∈ JNjK~x,y (for 1 ≤ j ≤ h),]hj=0(~cj , dj) = (~c, [β1, . . . , βk]), and
]dj = degy(Nj) (for 0 ≤ j ≤ h).

We focus for a moment on the fact that (~bi, βi) ∈ JNK~x (for 1 ≤ i ≤ k) and]hj=0dj = [β1, . . . , βk].
Thus there exists a way of partitioning the set {1, . . . , k} into h + 1 subsets X0, . . . , Xh in such a
way that for all j = 0, . . . , h each i ∈ Xj is such that βi ∈ dj . Then we let ~ej =]i∈Xj

~bi.
Now let ~aj = ~ej] ~cj (for j = 0, . . . , h). Then by induction hypothesis (i) we have that

(~a0, [α1, . . . , αh] :: α) ∈ JN0{N/y}K~x and (~aj , αj) ∈ JNj{N/y}K~x (for 1 ≤ j ≤ h). Finally
observing that ~a =]hj=0~aj , we conclude (~a, α) ∈ JN0{N/y}[N1{N/y}, . . . , Nh{N/y}]K~x =
JM{N/y}K~x.

(ii) We just consider the caseQ = τ [M]. By definition of interpretation we have Jτ [M{N/y}]K~x =
{~a : (~a, ∗) ∈ JM{N/y}K~x}. Hence applying the induction hypothesis (i) and the fact that τ [M]{N/y} =
τ [M{N/y}] we conclude that Jτ [M]{N/y}K~x = {~a] (]ki=1

~bi) : ∃β1, . . . , βk ∈ D, k = degy(M),
(~bi, βi) ∈ JNK~x (1 ≤ i ≤ k), ((~a, [β1, . . . , βk])) ∈ Jτ [M]K~x,y}. J

I Lemma 31. Let A ∈ Λe! , N ∈ Λτ̄! and N ∈ 2〈Λτ̄! 〉. Then:

(i) (A〈N/x〉)◦ = A◦〈N◦/x〉,
(ii) (A{N/x})◦ =

⋃
P∈Mf(N◦)A

◦〈P/x〉{0/x}.

Proof. (i) By structural induction on A. We only treat the case A = M [~L,N!]. Observe that

A◦ = ∪P ′∈Mf(N◦)M
◦([~L◦]] P ′)

18 Full Abstraction for Resource Calculus with Tests

By definition of linear substitution we have

(A〈N/x〉)◦ = (M〈N/x〉[~L,N!])◦∪
∪ki=1(M [L1, . . , Li〈N/x〉, . . , Lk,N!])◦∪
∪ (M [~L,N〈N/x〉,N!])◦

= ∪P∈Mf(N◦)(M〈N/x〉)◦([~L◦]] P)∪
∪P ′∈Mf(N◦) ∪ki=1 M

◦([L◦1, . . , (Li〈N/x〉)◦, . . , L◦k]] P ′)∪
∪P ′′∈Mf(N◦)M

◦([~L◦, (N〈N/x〉)◦]] P ′′)
= ∪P∈Mf(N◦)M

◦〈N◦/x〉([~L◦]] P)∪
∪P ′∈Mf(N◦) ∪ki=1 M

◦([L◦1, . . , L◦i 〈N◦/x〉, . . , L◦k]] P ′)∪
∪P ′′∈Mf(N◦)M

◦([~L◦,N◦〈N◦/x〉]] P ′′)
by induction hypothesis,

= ∪P∈Mf(N◦)(M◦([~L◦]] P))〈N◦/x〉
= A◦〈N◦/x〉

(ii) By structural induction onA. Also here we only treat one case, namelyA = M [~L,M!] (where
#[~L] = k). In such a case we have

∪P∈Mf(N◦)A
◦〈P/x〉{0/x}= ∪P ′∈Mf(M◦) ∪P∈Mf(N◦) (M◦([~L◦]] P ′))〈P/x〉{0/x}

= ∪P ′∈Mf(M◦)∪P0,P1,P2∈Mf(N◦)
M◦〈P0/x〉{0/x}([~L◦]〈P1/x〉{0/x}] P ′〈P2/x〉{0/x})

= ∪P ′∈Mf((M{N/x})◦)(M{N/x})◦(([~L]{N/x})◦] P ′)
by induction hypothesis, using the fact that
∪P ′∈Mf(M◦) ∪P2∈Mf(N◦) P

′〈P2/x〉{0/x} is equal to
Mf(∪P∈Mf(N◦)M◦〈P/x〉{0/x})

= (M{N/x}[~L{N/x},M{N/x}!])◦
= (A{N/x})◦

J

	Introduction
	The 0-Calculus with Tests
	Two Kinds of Substitutions
	The Operational Semantics

	A Relational Semantics
	Interpreting the 0-calculus with tests

	First Full Abstraction Results
	Building Separating Test-Contexts
	(In)equational Full Abstraction

	The -Calculus with Tests
	Head Reduction

	Full Abstraction via Taylor Expansion
	Taylor Expansion
	Full Abstraction for the -Calculus with Tests

	Technical Appendix

