A relational model of a parallel and
non-deterministic A-calculus

Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto
{antonio.bucciarelli, thomas.ehrhard, giulio.manzonetto} @pps.jussieu.fr

Laboratoire PPS, Université Paris 7,
2, place Jussieu (case 7014), 75251 Paris Cedex 05, France

Abstract. We recently introduced an extensional model of the pure
A-calculus living in a canonical cartesian closed category of sets and re-
lations [6]. In the present paper, we study the non-deterministic features
of this model. Unlike most traditional approaches, our way of interpret-
ing non-determinism does not require any additional powerdomain con-
struction: we show that our model provides a straightforward semantics
of non-determinism (may convergence) by means of unions of interpreta-
tions as well as of parallelism (must convergence) by means of a binary,
non-idempotent, operation available on the model, which is related to
the miz rule of Linear Logic. More precisely, we introduce a A-calculus
extended with non-deterministic choice and parallel composition, and we
define its operational semantics (based on the may and must intuitions
underlying our two additional operations). We describe the interpreta-
tion of this calculus in our model and show that this interpretation is
sensible with respect to our operational semantics: a term converges if,
and only if, it has a non-empty interpretation.

Keywords: \-calculus, relational model, non-determinism, parallel com-
position, denotational semantics.

1 Introduction

Pure and typed A-terms are specifications of sequential and deterministic pro-
cesses. Several extensions of the A-calculus with parallel and /or non-deterministic
constructs have been proposed in the literature, either to increase the expressive
power of the language, in the typed [19,17,14] and untyped [4, 5] settings, or to
study the interplay between higher order features and parallel /non-deterministic
features [16,8,9].

When introducing non-determinism in a functional setting, it is crucial to
specify what notion of convergence is chosen. Two widely used notions are:

— the must convergence: a non-deterministic choice converges if all its compo-
nents do. This characterizes the demonic non-determinism.

— the may convergence: a non-deterministic choice converges if at least one of
its components does. This characterizes the angelic non-determinism.



The usual denotational models of functional calculi do not accommodate may
non-determinism: let TRUE and FALSE be two convergent terms!, whose denota-
tions in standard models are distinct.

What semantic value should take the non-deterministic term TRUE + FALSE,
which may converges to TRUE and to FALSE? The value should be both TRUE
and FALSE if we want the semantics to be invariant under reduction!

The typical way of interpreting “multi-valued” terms, like the one above, is
to use models based on powerdomains [18], often defined as filter models with
respect to suitable notions of intersection and union types [8,9]. The seman-
tics of TRUE 4 FALSE becomes some kind of join of both values, available in
the powerdomain (similar techniques are also used for interpreting must non-
determinism). In this framework, both kinds of non-determinism are modelled
by some idempotent, commutative and associative operations.

In a recent paper [11], Faure and Miquel define a categorical counterpart
of the syntactical notion of parallel execution: the aggregation monad. Power-
domains, sets with union and multisets with multi-union are all instances of
aggregation monads (in categories of domains and of sets, respectively). In gen-
eral, the notion of parallel composition modelled by an aggregation monad is
neither idempotent, nor commutative, nor associative.

There are however models of the ordinary A-calculus where aggregation, con-
sidered as parallel composition (that is, as must non-determinism), can be in-
terpreted without introducing any additional structure, such as the above men-
tioned aggregation monads or powerdomain constructions.

This is the case in models of multiplicative exponential linear logic (MELL),
where aggregation can be interpreted by the miz rule, if available. This rule
allows to “put together” two proofs whatsoever [7]. More precisely, parallel com-
position is obtained by combining the mix rule with the contraction rule. Indeed,
mix can be seen as a linear morphism X ®Y — XZ&Y so that there is a morphism
7A®7TA — 7A, obtained by composing the mix morphism 7TA® 74 — TAR 7A
with the contraction morphism 74 % 74 — ?A. This composite morphism de-
fines a commutative algebra structure on 7A, which is used to model the “parallel
composition” of MELL proofs. Thus, to obtain a model of parallel A-calculus, it
is sufficient to solve the equation D = D = D, with an object D of shape 7A.

This is precisely what we did in [6], in a particularly simple model of linear
logic: the model of sets and relations. Similar constructions are possible in other,
richer models, such as the well known model of coherence spaces [12], or the
model of hypercoherences [10]: the mix rule is available there, as well as in
many other models. This shows that coherence (which prevents the above join
of TRUE and FALSE) is not an obstacle to the interpretation of the must non-
determinism in the pure A-calculus®. Our model D of [6] satisfies the recursive
equation D = ?(A) where A = (D)4, and therefore, D has the commutative

! They could be the actual boolean constants in a typed A-calculus with constants, or
the projections Azxy.r, \ry.y as pure A-terms.

2 In a typed language like PCF, this would be more problematic, since the object
interpreting the type of booleans does not have the above mentioned structure.



algebra structure mentioned above. It is precisely this structure that we use for
interpreting parallel composition, just as Danos and Krivine did in [7] for an
extension of Ap-calculus with a parallel composition operation.

But the category of sets and relations has another feature, which allows for
a direct interpretation of the may non-determinism as well: morphisms are ar-
bitrary relations between sets (interpreting types), and hence morphisms are
closed under arbitrary unions. Thanks to this union operation on morphisms,
may non-determinism can be interpreted directly, without introducing any ad-
ditional powerdomain construction or aggregation monad. Of course, this op-
eration is not available in the coherence or hypercoherence space models. Note
that, if we consider M + N — M as a reduction rule of our calculus, then
our semantics is not invariant under reduction, since the process of performing
non-deterministic choices entails a non recoverable loss of information. But the
situation is fundamentally similar with the powerdomain-based interpretations.

To summarize, in our model D, the semantic counterparts of may and must
non-determinism are at hand: they are simply the set-theoretic union and the
mix-based algebraic operation. In this framework, parallel composition is no
longer idempotent. This is quite natural if we consider each component of a
parallel composition as the specification of a process whose execution requires
the consumption of some kind of resources.

Contents. We introduce an extension of A-calculus with parallel composition
and non-deterministic choice, called A |-calculus, and we define its operational
semantics by associating with each term a generalized hnf (head normal form),
which is a set of multisets of terms whose head subterms are variables®. Roughly
speaking, the operational value of a term is the collection of all possible outcomes
of its head reductions. When the head subterm is M + N (may non-deterministic
choice), the head reduction goes on by choosing either M or N, and when the
head subterm is M||N (must parallelism), the head reduction forks.

We provide the denotational semantics of the A -calculus in D, considered
as a A-model, and endowed with two additional operations which turn it into a
semiring. We prove the soundness with respect to S-reduction, and we show that
the interpretations of the hnf’s of a term M are included in the interpretation of
M. Next, we generalize Krivine’s realizability technique to our extended calculus,
showing that our denotational model is sensible: the operational value of a term
is non-empty (i.e., a term is solvable) if, and only if, its denotation is non-empty.

2 Preliminaries

To keep this article self-contained we summarize some definitions and results
that will be used in the sequel. In particular, we present our semantic framework
MRel and we recall the construction of a specific reflexive object D of MRel,
that we have introduced in [6]. Our main reference for category theory is [1].

3 This is reminiscent of the capability semantics of [8], but we consider different notions
of convergence and of head normal form.



2.1 Multisets and sequences

Let S be a set. We denote by P(S) the collection of all subsets of S. A multiset m
over S can be defined as an unordered list m = [aq, ag, .. .| with repetitions such
that a; € S for all . A multiset m is called finite if it is a finite list, we denote by
[] the empty multiset. Given two multisets m; = [a1, az, . ..] and ma = [b1, ba, .. .]
the multi-union of my, mg is defined by m1 W me = [a1,b1,a2,be,...]. We will
write M (S) for the set of all finite multisets over S.

We denote by N the set of natural numbers. Given two N-indexed sequences
o = (01,02,...),7 = (11, T2,...) of multisets we define the multi-union of o
and 7 componentwise as cWr = (01 W 11,02 W T2,...). An N-indexed sequence
o = (my,ma,...) of multisets is quasi-finite if m; = [] holds for all, but a
finite number of indices . If S is a set, then we denote by M ;(S)“) the set
of all quasi-finite N-indexed sequences of multisets over S. We write x for the
N-indexed sequence of empty multisets, i.e., x is the only inhabitant of M ;(0)(“).

2.2 MRel: a cartesian closed category of sets and relations

We now present the category MRel, which is the Kleisli category of the functor
M (=) over the x-autonomous category Rel of sets and relations. We provide
here a direct definition, since in the sequel we will not use explicitly the monoidal
structure of Rel.

The objects of MRel are all the sets.

A morphism from S to T is a relation from M(S) to T, in other words,
MRel(S,T) = P(M;(S) x T).

— The identity of S is the relation Idg = {([a],a) | a € S} € MRel(S, S).
The composition of s € MRel(S,T) and t € MRel(T,U) is defined by:

tos={(m,c)| I(m1,b1),...,(mg,bx) € s such that
m=myW..."myg and ([by,...,bx],c) € t}.

We now provide an overview of the proof of cartesian closedness.
Theorem 1. The category MRel is cartesian closed.

Proof. The terminal object 1 is the empty set (), and the unique element of
MRel(S, () is the empty relation.

Given two sets S7 and Ss, their categorical product S7 &S in MRel is their
disjoint union:

Sl&SQ = ({1} X Sl) U ({2} X SQ)

and the projections 71, me are given by:
T, = {([(i,a)],a) | a € Sz} S l\/JR,el(Sl&Sg, Si), fori=1,2.

Given s € MRel(U, S1) and t € MRel(U, S2), the corresponding morphism
(s,t) € MRel(U, S1&S55) is given by:

(s,t) = {(m, (1,a)) [ (m,a) € s} U{(m,(2,)) | (m,b) € t}.



We will consider the canonical bijection between M(S1) x Mf(S2) and
M (51 & S2) as an equality, hence we will still denote by (m1,m2) the corre-
sponding element of M (51 &S5).

Given two objects S and T' the exponential object S=T is M(S) x T and
the evaluation morphism is given by:

evalst = {(([(m,b)],m),b) | m € M;(S) and b € T} € MRel((S=T)&S,T).

Given any set U and any morphism s € MRel(U &S, T), there is exactly one
morphism A(s) € MRel(U, S=T) such that:

evalgr o (A(s), Idg) = s,

namely, A(s) = {(p, (m,b)) | ((p,m),b) € s}.

The points of an object S, i.e., the elements of MRel(1,S), are relations
between M () and S. These are, up to isomorphism, the subsets of S.

2.3 An extensional reflexive object in MRel

A reflexive object of a cartesian closed category C (cce, for short) is a triple
U = (U, A,N) such that U is an object of C, and A\ € C(U = U,U) and
A e CU,U=U) satisfy Ao\ = Idy—y. U is called extensional if, moreover,
A oA = Idy; in this case we have that U 2 U=U.
We define a reflexive object D in MRel, which is extensional by construction.

We let (D;,)nen be the increasing family of sets defined by:

- DO = @7

— Dyy1 = My(Dy,) ).

Finally, we set D = J,,cpy Dn- So we have Dy = () and Dy = {x} = {([],[],...)}.
The elements of Dy are quasi-finite sequences of multisets over a singleton, i.e.,
quasi-finite sequences of natural numbers, and so on.

We say that 0 € D has rank n if n € N is minimum such that o € D,,.

In order to define an isomorphism in MRel between D and D = D =
M¢(D) x D just notice that every element ¢ = (01,09,...) € D stands for
the pair (o1, (02,...)) and vice versa. Given ¢ € D and m € M(D), we write
m :: o for the element 7 = (71,72, ...) € D such that 74 = m and 7,41 = o;. This
defines a bijection between M (D) x D and D, and hence an isomorphism in
MRel as follows:

Proposition 1. (Bucciarelli, et al. [6]) The triple D = (D, A, \) where:
- A={([m,0)],m::0) | me My(D),oc € D} ¢ MRel(D=D, D),
- A={([m ::0],(m,0)) | me M;(D),oc € D} € MRel(D,D=D),
s an extensional reflexive object of MRel.

3 A parallel and non-deterministic A-calculus

In this section we introduce the syntax and the operational semantics of a parallel
and non-deterministic extension of A-calculus that we call A -calculus.



3.1 Syntax of Ay -calculus

To begin with, we define the set A of A-terms enriched with two binary op-
erators + and ||, that is the set of terms generated by the following grammar
(where x ranges over a countable set Var of variables):

M,N == x| .M |MN|M+N | M|N .

The elements of A, are called A, -terms and will be denoted by M, N, P,...
Intuitively, M + N denotes the non-deterministic choice between M and N, and
M]||N stands for their parallel composition.

As usual, we suppose that application associates to the left and A-abstraction
to the right. Moreover, to lighten the notation, we assume that application and
A-abstraction take precedence over + and || . The notions of free and bound
variables of a term are defined in the obvious way.

A substitution is a finite set s = {(z1,N1),..., (zk, Ng)} such that z; # z;
forall 1 <i < j <k. Given a Ayj-term M and a substitution s as above, we
denote by Ms the term obtained by substituting simultaneously the term N
for all free occurrences of x; (for 1 < j < k) in M, subject to the usual proviso
about renaming bound variables in M to avoid capture of free variables in the
Ny’s. It s = {(z, N)} we will write M[N/z] for Ms.

Note that, in general, M{(z1,N1),..., (zk, Nk)} # M[N1/x1]--- [Ng/zk].
For instance, z{(x,y),(y,2)} = y, whereas z[y/z][z/y] = z. Actually, k-ary
substitutions will be only used in Section 5 in the proof of the adequation lemma.

As a matter of notation, we will write P for a (possibly empty) finite sequence
of A |-terms P ... Py and ¢(P) for the length of P. It is easy to check that every

Ay -term M has the form A\Z.N P where N, which is called the head subterm of
M, is either a variable, a non-deterministic choice, a parallel composition or a
A-abstraction. Notice that, in this last case, we must have £(P) > 0.

3.2 Operational semantics

The set A}}rH C Ay of head normal forms* (hnf’s, for short) is the set of
A4 -terms whose head subterm is a variable (called head variable).

The intuitive idea of the head reduction of A, |-calculus underlying the notion
of “value” (formalized below) is the following:

— when a term has the head subterm of the form Ny 4+ N, either of the alter-
natives may be chosen to pursue the head reduction, and the final value is
the union of the values obtained by each choice. In particular, if one of the
choices produces a non-empty value, then the global value is non-empty.

— when a term has the head subterm of the form Ni||Na, the head reduction
forks, and the final value is obtained by “mixing” the values eventually ob-
tained. In particular, if the value of one of the subprocesses is empty, then
also the global value is.

4 This terminology is coherent with the one usually adopted for A-calculus (see [2,
Def. 2.2.11]).



Instead of defining the operational semantics of A, -calculus via an explicit
(head) rewriting system, we associate with each M € A the value eventually
obtained by head reducing M. In particular, we use union (resp. multi-union)
to get the value of My + My (resp. Mi||Ma2) out of the values of My and Mo.

Definition 1. A multiple hnf is a finite multiset of hnf’s of A |-calculus.
A value is a set of multiple hnf’s.

To help the reader to get familiar with these notions, we first provide some
simple examples of values (where® I = A\z.z, A = Az.zx and 2 = AA):

— the value of T+ A is {[I], [4]}. In other words, the term I + A has two
different multiple hnf’s, which are singleton multisets;

— the value of I||A is {[I, 4]}, then I||A has just one multiple hnf;

— the values of I+ (2 and I||§2 are {[I]} and (), respectively. This is a consequence
of the fact that the value of {2 is the empty-set.

In general, the value H (M) of a A |-term M can be characterized as the limit
of an increasing sequence (H,,(M))nen of “partial” values, which are defined by
induction on n € N and by cases on the form of the head subterm of M.

Definition 2. Let M = AZ.NP be a Aq | -term.

[ ) Ho(M) = @,’
{[M]} if N =y,
I M) — Hn(/\f-Q[Pl/y]PQ"'Pe(ﬁ)) if N = Xy.Q,
¢ Hnia(M) = H, (\Z.N,P) U H, (\Z.N,P) if N = Ny + Na,

{miwmy | m; € Hy(AE.N;P) fori=1,2} if N = Np|Ny.

Notice that, for all M € Ay and n € N, the value H, (M) C Mf(/l’}r”) is

a finite set of multiple hnf’s. Since the sequence (H,,(M))nen is increasing, we
can define the (final) value of M as its limit.

Definition 3. The value of a Ay -term M is defined by H(M) = U, ¢y Hn(M).

Of course, H(M) may be infinite as shown in the example below.

Ezample 1. Consider the Ay -term M = An.0 + sn, where 0 = Azy.y is the
0-th Church numeral and s = Anzy.nz(xy) implements the successor function.
Let now C = YM where Y is some fixpoint combinator. To have simpler cal-
culations, we suppose that YM reduces to M(YM) in just one step of head
[B-reduction. Then, we get:

— Ho(C) =0,

— H\(C) = Hy(MC) =),

— Hy(C) = Hi(MC) = Ho(0+sC) =0,

— H3(C) = Ho(MC) = Hi(0+sC) = {[0]} U Hy(sC) = {[0]}.
Pursuing the calculation a little further, one gets Ho(C') = {[0], [1]} and, even-
tually, H(C) ={[n] | n € N}.

5 The symbol = denotes syntactical equality.



3.3 Solvability
We now present the natural notion of solvability for the A -calculus.

Definition 4. A A, -term M is solvable if H(M) # 0. The set of solvable
terms will be denoted by N .

Among solvable terms, we single out the set Ny of hnf’s starting with a
variable, and the set N7 of solvable terms having a multiple hnf whose head
variables are free.

Definition 5. We set:

— No={zP |z € Var and P € Ay}, and
- M = {M € AJrH | H[Afl.ylpl, .. -a)\fk-ykpk] € H(M)/\(Vj = 1k) Y; ¢ fj}

We end this section stating a technical proposition, which will be useful in
Section 5. The proof is quite long and it is omitted.

Proposition 2. Let M € A, and x € Var, then we have that:

(i) if Mx € N then M € N,
(ZZ) ifMQEN1 then M € N7,
(i) if M € Ny then MN € Ny for all N € Ay.

Notice that in the case of the pure A-calculus the analogous properties are
trivial.

4 A relational model of A -calculus

Exploiting the existence of countable products in MRel we have shown in [6]
that the reflexive object D = (D, .A, \) built in Section 2.3 can be turned into
a A-model [2, Def. 5.2.1] (this was not clear before, since the category MRel
does not have enough points [1, Def. 2.1.4]). The underlying set of the A-model
associated with D by our construction is the set of “finitary” morphisms in
MRel(DV?*, D), where DV#" is the Var-indexed categorical product of countably
many copies of D.

4.1 Finitary morphisms in MRel

The morphisms in MRel(DV#", D) are sets of pairs whose first projection is a
finite multiset of elements in DV?", and whose second projection is an element
of D. Since categorical products in IMRel are disjoint unions, a typical such pair
is of the form:

([(zl,oi),...,(xl,o?l),...,(zk,oi),...,(zk,azk)],a)

where k,ni,...,n, € N, z1,...,2 € Var and o1,...,0.%,0 € D.



Notation 1. Given m € My(DV*) and x € Var, we set m, = [0 | (z,0) €
m] S Mf(D) and m_, = [(y,o') cEm | y ;é ZC] c Mf(DVar)'

In general, given an object U of a ccc C, we say that a morphism f €
C(UVa U) is “finitary” if it can be decomposed as f = fr omr for some finite
set I of variables (see [6, Sec. 3.1]). Working in MRel it is more convenient to
take the following equivalent definition.

Definition 6. A morphism r € MRel(DV¥, D) is finitary if there exists a finite
set I of variables such that for all (m,o) € r and x € Var we have that my # []
entails x € I.

We denote by MRel;(DV?", D) the set of all finitary morphisms.

4.2 The model

From [6, Thm. 1] we know that (MRel;(DV?T, D), o), where e is defined as usual
by 71 e ro = eval o (A ory,r3), can be endowed with a structure of A-model.

In order to interpret A, -terms as finitary morphisms of MRel we are going
to define on MRel(DV®, D) two binary operations of sum and aggregation for
modelling non-deterministic choice and parallel composition, respectively, and
to prove that MRels(DV2* D) is closed under these operations.

Definition 7. Let 1,75 € MRel(DV¥ D), then:

— the sum of 1 and ro is defined by r1 ®ro =11 Urs.
— the aggregation of r1 and ro is defined by r1 Ory = {(m1Wma, o1Wos) | (M, 0;) €
ry, fori=1,2}.
Proposition 3. The set MRely (DVar| D) is closed under sum and aggregation.

Proof. Straightforward. In both cases, the union of the finite sets of variables Iy
and I given by the finiteness of the arguments of the operation, is a witness of
the finiteness of the result. [J

Composition is right-distributive over sum and aggregation.
Proposition 4. Let r,s € MRel(DV®, D) and t € MRel(DV®, DVa%) | then:
— (r@s)ot = (rot)® (sot),
— (r©s)ot=(rot)®(sot).
Proof. Straightforward. [
The units of the operations @ and ® are 0 = ) and 1 = {([],*)}, re-
spectively; (MRel; (DY, D), ®,0) and (MRels(DVar, D), ®,1) are commuta-
tive monoids. Moreover, 0 annihilates ® and aggregation distributes over sum.

Summing up, the following proposition gives an overview of the algebraic prop-
erties of MRels(DV2" D) equipped with application, sum and aggregation.

Proposition 5. — (MRel;(DV®, D), ®,®,0,1) is a commutative semiring.
— o is right-distributive over ® and ©.
— @ is idempotent (whereas ® is not).

Proof. Straightforward.



4.3 The absolute interpretation

Before going through the formal definition of the interpretation of A -terms,
we present a short digression on the nature of such an interpretation.

In our framework, the A, -terms will be interpreted as morphisms in
MRel;(DVar, D), i.e., as subsets of M¢(DV2") x D. The occurrence of a parti-

cular pair ([(z1,01),...,(z1,00%),..., (zk,0L), ..., (g, 01*)],0) in the interpre-
tation of a term M may be read as “in an environment p such that p(z;) =
[0},...,07"] (for all i = 1,..., k) the interpretation [M], contains o”.

Hence, here there is no need of providing explicitly an environment to the
interpretation function as classically done for A-models [2, Def. 5.2.1(ii)] because
the whole information is coded inside the elements of the A-model itself.

On the other hand, the categorical interpretation of a term M is usually
defined with respect to a finite list of variables, containing the free variables of
M [2, Def. 5.5.3(vii)]. Intuitively, our interpretation is defined with respect to
the list of all variables, encompassing then all categorical interpretations.

These considerations lead us to the definition of [-] : Ay — MRels(DV?", D)
below, that we call the absolute interpretationS of A4 |-terms:

— [z] = 7z, for « € Var,

— [M1Ms] = eval o (A o[ M1], [Ma]),
~ P M] = AoA(M] on),

= [My + Ma] = [Mi] & [Mz],

= [My[[Ms] = [ML] © [M2],

where 7, € MRel(DV* &D, DV¥) is defined componentwise, for y € Var, by:

oom. = 4T if x =y,
y Ol = myom if x #y.

In what follows, we will use the inductive characterization of the interpreta-
tion of (some) A;|-terms provided by the proposition below:

Proposition 6. (i) [z] = {([(z,0)],0) | o € D},

(i) [MN] = {(moWmi W...0dmyg,o) | Ik > 0, (mo,[m1,...,7%] = o) € [M],
(mg, ;) € [N] for 1 <i <k},

(1) [z M| = {(m_z,my 2 0) | (m,0) € [M]}.

Proof. Simple calculations based on the definitions of Section 2. (]

We show now the soundness of the interpretation with respect to S-conversion,
which relies on the following lemma.

Lemma 1. If M, N € Ay and x € Var, then [M[N/z]] = [M] on, o (id,[N]).

6 See [15, Sec. 2.3.2] for more details on the relations among the absolute, algebraic
and categorical interpretations, and on how the former allows to recover the others.



Proof. By structural induction on M. The cases M = M1+ My and M = M; || M;
are settled by using Proposition 4. For the other cases, one can use Proposition 6
and the following characterization: 7, o (id, [N]) = {([(y,0)],(y,0)) | ¢ € D,
yZ 2y U{(m,(z,0)) | (m,o) € [N]} € MRel(DV>*, DVar), [

Lemma 2. (Soundness) For all M, N € Ay and x € Var, we have [(Az.M)N] =
[MIN/z]].

Proof. [(Ax.M)N] = evalo{AoXoA([M]on.), [N]) = evalo(A([M] on.), [N]) =
[M] on, o{(id,[N]) = by Lemma 1 = [M[N/z]]. O

We aim to prove that our model is sensible w.r.t. the operational semantics:
a Ay |-term M has a non-empty interpretation if, and only if, M is solvable.

We start showing that the interpretation of every solvable term is non-empty
(for the converse we will adapt Krivine’s realizability method [13], see Section 5).
This is an immediate corollary of the following propositions stating that the
interpretation of a Ajj-term includes the union of the interpretations of its
multiple hnf’s and that the interpretation of any hnf is non-empty.

Proposition 7. For all M € Ay, we have (D¢ r(nr) (Onem [IN]) € [M].

Proof. 1t is enough to show that (B,,cx, () (Onen [V])) € [M] holds for all
n € N; we prove it by induction on n. The case n = 0 is trivial. The proof of the
inductive step goes by case analysis on the head subterm M’ of M = \Z.M'P.

— The case M' = x is trivial, and the case M’ = \y.Q is settled by Lemma 2.

— If M’ = Q1]|Q2, we start by observing that [M] = [AZ.Q1 P|O[AZ.Q2P]. This
is an easy consequence of the right distributivity of e over ® (Proposition 5)
and of the fact that, by Proposition 6(ii7), we have [AZ.(R1||R2)] = [AZ.R1]©®
[AZ.Ry], for all & € Var and Ry, Ry € Ay). Then, we can conclude by the
inductive hypothesis.

— The case M’ = Q1 + Q2 is similar, and simpler, once noted that [M] =
[X\2.Q1 P] & [A2.Q2P] (again, by Proposition 5 and Proposition 6(iii)). O

We now show that every hnf has a non-empty interpretation.
Proposition 8. For all z,7 € Var and Q € Ay we have [[Agj'z@]] # 0.

Proof. By Proposition 6(iii), it is sufficient to prove that, for all 2 € Var and
Q € Ay, we have [2Q] # 0. To conclude, it is easy to show by induction on k
that ([(x,*)],*) € [Q1 ... Q). O

Theorem 2. For all M € Ay, if H(M) # 0 then [M] # 0.
Proof. Let [Ny,...,Ny] € H(M). By Proposition 7, (O, <, [/Vi] € [M], and by

Proposition 8 [N;] # 0 for 1 < i < k. We conclude that § # O, ;. [V:] € [M].
o <i<



5 Saturated sets and the realizability argument

In this section, we generalize Krivine’s realizability technique [13] to A4 -calculus
and we use it for proving that A -terms having a non-empty interpretation are
all solvable. For notations and terminology, we mainly follow [3].

The saturation of a set S of terms expresses the fact that S is closed un-
der weak head expansions. For the pure A-calculus, this amounts to the well
known condition of being closed under weak head [-expansion. For the exten-
sion of the A-calculus we are dealing with, three cases of weak head expansions,
corresponding to the possible shapes of the head term, must be considered.

Definition 8. A set S C A is saturated if the following conditions hold:

— if M[N/z]P € S then (\e.M)NP € S,
— if (MQ|INQ)P € S then (M|N)QP € S,
—if MP €S and N € Ay then (M + N)P € S.

We recall that the sets My, N1 and N have been defined in Section 3.3. It is
easy to check that N is saturated, whilst N is not. In the realizability argument,
only saturated sets included within Ny and N will be considered.

Definition 9. The set Saty, of “small” saturated subsets of Ay is defined by:
Saty, ={S C Ay | S is saturated and Ny C S C N'}.
Given A,B C Ay, we define A — B={M € Ay | (YN € A) MN € B}.

The operator — is contravariant in its first argument and covariant in its second
one, in other words, A - B C A’ — B’ forall A’ C A and BC B’.

Lemma 3. Ny C Ay =Ny SNy - N CN.

Proof. The first inclusion follows by definition, the second one is a consequence
of the contravariance/covariance of the arrow. For the third one, it is enough to
prove that, for all M € Ay and 2 € Var, H(Mz) # () entails H(M) # (; this
holds by Proposition 2(z). O

The set Saty, enjoys the following closure properties.

Lemma 4. The set Saty is closed under the arrow operator, finite unions, finite
intersections, and under the map F : S+ (A — S).

Proof. Given two sets S1, 52 € Saty, it is straightforward to check that Sy N Sy,
S1USy € Saty, and that S; — Sy and A+|| — S5 are saturated. The inclusions
No C© 81— S2 SN and Ny € Ay — So C N follow easily from Lemma 3 and
contravariance/covariance of the arrow. O

We are going to define a function (—)® : D — Satp, satisfying (m :: 0)® =
m® — o°, where, for a multiset m of elements of D, m* = (_.,, a® and, in
particular, [|* = Ay . Since x = [] :: x, the set +* must be a fixpoint of the
function F : S+ (A4 — S). We now show that N is one of such fixpoints.



Proposition 9. N € Sat, and Ny = Ay — Ni.

Proof. The saturation of A7 and the fact that Ny C N7 C N are both trivial.
We now prove that N1 = A — Ni. Let M € A — Ni. Since M2 € N7, we
get by Proposition 2(i7) that M € N;. Conversely, let M € Ny and N € Ay.
We conclude since, by Proposition 2(ii4), we get MN € N;. O

Observe that any element ¢ € D may be written in a unique way as o =
010 X, with n > 0 and 0, # [] (and of course o1,...,0, have ranks
strictly smaller than that of o). This is called the standard decomposition of o.

Definition 10. Given o € D, we define (0)® € Saty, by induction on the rank
kofo. If k=0, then o®* =**=N,. If k > 0 then c®* =0} — -+ — a8 — N,
where o1 i -+ 1 oy 1 x 08 the standard decomposition of o.

Note that if m # [] or o # %, then the standard decomposition of m :: ¢ is

m:0q e Op %, where o1 i1 -+ it 0y ik is the standard decomposition of
o. Hence, (m :: 0)* = m® — o° holds in general, since ([] :: x)®* = ** = N7 =
/Lr” — Nl.

We show now that the definition of (—)* fits well with parallel composition.

Lemma 5. Let M,N € Ay, 0 = (01,09,...),7 = (T1,72,...) € D and p =
oWr. If M € 0® and N € 7°, then M||N € p°.

Proof. Let p, :: --- 2 p1 :: % be the standard decomposition of p. We have to
show that M||N € pf — --- — p} — Ni. We prove it by induction on n.

If n =0, then ¢ = 7 = p = %. Hence, we conclude since x* = N7 and N is
closed under parallel composition.

If n > 0, then we have to show that, for all @ € p?, (M||N)Q € (p’)® where
Pl = pp_1 - pp ik Since M € o} and N € 77, we have that MQ € (¢o/)®
and NQ € (7')*, where o/ = (02,03,...) and 7/ = (12, 73,...)*. Moreover, p' =
o'®7’ and the standard decomposition of p’ is strictly shorter than that of p. By
the inductive hypothesis, we get MQ|NQ € (p')®. By saturation of (p’)®, we
conclude that (M||N)Q € (p’)®, and hence M||N € p*. O

We are now able to prove the promised adequation lemma, which constitutes
the key tool in the realizability argument.

Definition 11. A substitution s = {(x1,N1),...,(zr, Ng)} is adequate for a
multiset m € Mg(DVr) if:

— my # ] implies x € {x1,..., 2k}, for all x € Var,
— NiEm;i for all 1 <i <k.

Observe that, if a substitution is adequate for some multiset m € M ¢(DV2r),
then it is adequate for all submultisets of m.

Lemma 6. (Adequation lemma) Let M € Ay, (m,0) € [M] and s be a sub-
stitution. If s is adequate for m, then Ms € o°.



Proof. By structural induction on M.

— If M = z, then m = [(x, 0)] by Proposition 6(4). If s is adequate for m, then
(z,N) € s for some N € [o]*. Hence, we have that Ms = N € [0]® = o°.

— If M = PQ), then by Proposition 6(ii), we have m = moWm, W...Wmy for
some k > 0, and 71,...,7 € D such that (mg, [1,...,7%] :: 0) € [P] and
(myi, ;) € [Q] for 1 <i < k. Observe now that, if s is adequate for m then

it is also adequate for mg, m1,..., mg, since they are all multisubsets of m.
By the inductive hypothesis we have that:
- Pse([r,...,7] o) =[m,...,7%]* — 0°,

- QseT,...,Qs €7y, which implies that Qs € [r1,. .., T%]°.
Hence, we can conclude that (PQ)s € o°.

— If M = Az.P, then by Proposition 6(iii), we have that m = m’ , and
o =m) o for some (m',0’) € [P]. Let s be an adequate substitution

for m’_, and Q € (ml)®. Since M is considered up to a-conversion, we can
suppose without loss of generality that = does not occur in s. It is clear that
' =sU{(z,Q)} is adequate for m’ and hence, by the inductive hypothesis,
we get Ps’ € (¢/)®. Now we have that Ps’ = (Ps)[Q/z] € (¢')® because
x does not appear in s. Since (¢’)® is saturated and (Azx.Ps) = (Az.P)s
we have that (Az.P)s@ € (o’)*. From the arbitrariness of @ € (m.)® we
conclude that (Az.P)s € (m.)* — (o/)® = (ml, : o’)°.

— If M = P+ Q, then (m, o) belongs to, say, [P]. Now, if s is adequate for m,
then we get by the inductive hypothesis that Ps € ¢® and we conclude, by
saturation of o®, that (P + Q)s € o°.

—If M = P||Q, then m = my; Wmy and 0 = 01802 with (my,01) € [P]
and (me,02) € [Q]. If s is adequate for m then it is also adequate for
m1,ms and, from the inductive hypothesis and Lemma 5, we conclude that

(P|1Q)s € (018032)*. O
Theorem 3. For all M € Ay, if [M] # 0 then M € N.

Proof. Let (m, o) € [M]. The substitution s;q = {(z,x) | mys # [|} is adequate
for m (note that Var C Np), and Ms;q = M. Hence, by the adequation lemma,
we conclude that M € ¢®* CN. O

By Theorem 2 and Theorem 3 we finally get our main result.

Theorem 4. For all M € Ay, H(M) # 0 < [M] # 0.

6 Conclusions and Further works

We have defined a (relational) model D of a fairly standard parallel and non-
deterministic extension of the pure A-calculus, equipped with a notion of obser-
vation given by an operator H. In this framework, full abstraction spells out as
follows: (YM,N € Ay ))[(VC[-]) H(C[M]) # 0 = H(C[N]) # 0] iff [M] € [N].
The “if” part of the previous statement (adequacy) is an easy consequence of
Theorem 4. Nevertheless, the “only if” part fails. Indeed, given I = Az.x, we have



that [I] = {([}, [0] :: o) | o € D)} and [T|I] = {([], [0, 0] :: (¢W0)) | o € D)}.

He

nce, [I] € [I)|I] whilst it is not difficult to check that I and I||I are not sepa-

rable using contexts. As suggested by the counterexemple, the next step towards
full abstraction should be to enrich the syntax of the language by some “resource
sensitive” operator, to increase the discriminating power of contexts.

Finally, we already know from [15, Sec. 3.3] that the theory induced on the

pure untyped A-calculus by our model D is H* (just as the theory induced by
Scott’s Doy ); it would be interesting to generalize such a result to the extended

set

ting, as a step in the study and classification of Ay -theories, and models.
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