
Constructing differential categories and
deconstructing categories of games

Jim Laird1, Giulio Manzonetto2, and Guy McCusker1

1 Department of Computer Science, University of Bath, Bath, BA2 7AY, UK
2 Radboud University, Intelligent Systems, Nijmegen, The Netherlands

Abstract. We present an abstract construction for building differential
categories useful to model resource sensitive calculi, and we apply it to
categories of games. In one instance, we recover a category previously
used to give a fully abstract model of a nondeterministic imperative lan-
guage. The construction exposes the differential structure already present
in this model. A second instance corresponds to a new Cartesian differ-
ential category of games. We give a model of a Resource PCF in this
category and show that it enjoys the finite definability property. Com-
parison with a relational semantics reveals that the latter also possesses
this property and is fully abstract.

1 Introduction

An important aim in studying higher-order computation is to understand and
control the way resources are used. One way to do this is by studying calculi
designed to capture resource usage, and their denotational models. Two such
calculi — the differential λ-calculus [7] of Ehrhard and Regnier and the resource
calculus introduced by Tranquilli [14], inspired by the work of Boudol [5], are
fundamentally related at the semantic level [15]: both may be interpreted using
the notion of differential category introduced by Blute, Cockett and Seely [3].
In this paper, we study these concepts on both abstract and concrete levels.
We give a construction of a differential category from any symmetric monoidal
category, and use it to investigate the structure of newly discovered differential
categories, relate them to existing examples, and to prove full abstraction results
for Resource PCF, a typed programming language based on the resource calculus.

A potential source of differential categories, although not investigated hith-
erto, is game semantics: resource usage is represented rather explicitly in games
and strategies. Indeed, we show that an existing games model of Idealized Algol
with non-determinism, introduced by Harmer and McCusker [9] contains a dif-
ferential Cartesian operator [4], and may therefore be used to interpret Resource
PCF, although this interpretation contains non-definable finitary elements.

We then present the construction which we shall use to analyze differential
categories. Its key step takes a symmetric monoidal category with countable
biproducts, embeds it in its Karoubi envelope (idempotent splitting) and then
constructs the cofree cocommutative comonoid on this category and a differ-
ential operator on the Kleisli category of the corresponding comonad. Since

biproducts may be added to any category by free constructions, we have a way
of embedding any symmetric monoidal (closed) category in a Cartesian (closed)
differential category.

Although this construction is somewhat elaborate, it provides a useful tool
for analyzing and relating more directly presented models. For example, apply-
ing it to the terminal (one object, one morphism) SMCC yields the key example
of a differential category (and model of resource calculus [6]) based on the finite-
multiset comonad on the category of sets and relations. We also show that our
differential category of games embeds in one constructed from a simple sym-
metric monoidal category of games. By refining the strategies in these games to
eliminate history sensitive behaviour, we obtain a constraint on strategies (∼-
closure) in our directly presented model of Resource PCF which corresponds to
finite definability. Another useful observation is that any functor of symmetric
monoidal categories lifts to one between the differential categories constructed
from them. In particular, from the terminal functor we derive a functor from
our category of games and ∼-closed strategies into the relational model which is
shown to be full. From this we may deduce that the relational model of Resource
PCF is fully abstract.

2 Differential categories

Differential categories were introduced by Blute, Cockett and Seely to formalize
derivatives categorically. The authors started from monoidal categories [3], then
extended the notion to Cartesian ones [4]; a further generalization to Cartesian
closed categories has been made in [6] to model differential and resource λ-calculi.

Throughout this paper we will be working with categories whose hom-sets
are endowed with the structure of a commutative monoid (+, 0). We write the
identity map on an object A as idA. Composition is written using infix ; in
diagram order. We use 〈f, g〉 to denote the pairing of maps f : A → B and
g : A→ C, and π0, π1 for the corresponding projections. We elide all associativity
and unit isomorphisms associated with monoidal categories.

Let C be a commutative-monoid-enriched symmetric monoidal category: this
means that it is a symmetric monoidal category, and that composition and tensor
preserve the commutative monoid structure on hom-sets, so that (f + g);h =
f ;h+ g;h, k; (f + g) = k; f + k; g, f ; 0 = 0; f = 0, (f + g)⊗ h = f ⊗ h+ g ⊗ h
and f ⊗ 0 = 0.

A coalgebra modality on C is a comonad (!, δ, ε) such that each object !A is
equipped with a comonoid structure ∆A : !A −→ !A ⊗ !A, eA : !A −→ I. In
addition to the associativity and unit equations for the comonoid, it should be
the case that δ is a morphism of comonoids, that is, δA; e!A = eA and δA;∆!A =
∆A; δA ⊗ δA.

Given such a structure, a differential combinator is a family of maps DA,B :
C(!A,B)→ C(A⊗ !A,B), natural in A and B and respecting the commutative
monoid structure of the hom-sets, satisfying the following four axioms.

– D(eA) = 0,

Λr: M,N ::= x | λx.M |MP | ifz(M,M,M) | Fix(M) | terms
| succ(M) | pred(M) | zero

Λb: P ::= [L1, . . . , L`, N
!
1, . . . , N

!
n] bags

(a) Grammar of terms, resources and bags

Evaluation contexts: EL−M ::= L−M | EP | λx.E | pred(E) | succ(E) | ifz(E,M,N)
Let contexts: F L−M ::= L−M | (λx.F)P
Linear head reduction:

ELF Lλx.E′LxMM(P] [N])M→ ELF Lλx.E′LNMMP M
ELF Lλx.E′LxMM(P] [N !])M→ ELF Lλx.E′LNMM(P] [N !])M
ELF Lλx.nM[N !

1, . . . , N
!
k]M→ ELF LnMM for some k ≥ 0,

ELifz(zero,M,N)M→ ELMM ELifz(succ(n),M,N)M→ ELNM
ELpred(succ(n))M→ ELnM ELFix(M)M→ ELM [Fix(M)!]M

(b) Operational semantics.

Fig. 1: Syntax and operational semantics of Resource PCF.

– D(∆; f⊗g) = (A⊗∆); (D(f)⊗g)+(A⊗∆);∼=; (f⊗D(g)) where f : !A→ B,
g : !A→ C and ∼= is the appropriate symmetry map,

– D(εA; f) = (A⊗ eA); f ,
– D(δA; !f ; g) = (A⊗∆A); (D(f)⊗(δA; !f));D(g) for f : !A→ B and g : !B → C.

A differential category is a commutative-monoid-enriched symmetric monoi-
dal category with a coalgebra modality and a differential combinator. When
the coalgebra modality is a linear exponential comonad, its Kleisli category is
a Cartesian differential category whose differential combinators are denoted by
D×A,B : C(A,B)→ C(A×A,B). We refer to [4] for the general definition.

A Cartesian-closed differential category is a Cartesian differential category
with closed structure, such that the operation of currying preserves the commu-
tative monoid structure on hom-sets and for all f : C × A → B, D×(Λ(f)) :
C×C → (A⇒ B) is equal to Λ(〈π0×0A, π1× idA〉;D×(f)). The leading exam-
ples of such categories, studied in [6], are Ehrhard’s category of finiteness spaces,
and the category MRel of “multiset relations”, which is the Kleisli category for
the finite-multiset comonad on the category Rel of sets and relations.

3 Resource PCF and its models

We now describe a simply typed resource calculus which incorporates the con-
stants of PCF, making it a prototypical resource-sensitive programming lan-
guage. Resource PCF has two syntactic categories: terms, that are in functional
position, and bags, that are in argument position and represent finite multisets of
resources. Figure 1(a) gives the grammar generating the set Λr of terms and the
set Λb of bags (whose union is denoted by]) together with their typical meta-
variables. A resource can be linear (it must be used exactly once) or reusable (it
can be used ad libitum) and in the latter case is decorated with a “!” superscript.

Terms of the form succn(zero) are denoted by n. Hereafter terms and bags
are considered up to α-equivalence, which is defined as usual in λ-calculus.

Types are generated by A,B ::= nat | A → A. Environments Γ are finite
lists x1 : A1; · · · ;xn : An assigning types to variables. Typing rules are straight-
forward to define; we say that M has type A in Γ when Γ `M : A is derivable.

The operational semantics is defined in Figure 1(b) via a linear head reduc-
tion. An equivalent presentation more in the style of [14] would also be possible.
We say that a closed term M of ground type converges, written M⇓, if M reduces
to k for some k ∈ ω. We denote by CL·M arbitrary contexts (e.g., in Theorem 13).

Resource PCF can be interpreted in any cpo-enriched Cartesian closed dif-
ferential category having a weak natural number object. The interpretations of
the constants and constructors of PCF are standard, leaving only the applica-
tion, which is treated as follows, as in [6]. In every Cartesian closed differential
category it is possible to define an operator ? on morphisms f : C × A → B,
g : C → A setting f ? g := 〈〈0C , g ◦ π0〉, id〉;D×(f) : C × A → B. Intuitively,
f ? g is obtained by force-feeding the 2nd argument A of f with one copy of the
result of g. The type is not modified because f ? g may still depend on A. The
weak natural number object is needed to interpret the natural numbers and the
if-then-else, and the cpo-enrichment for the fixpoint operator.

The interpretation [[M]]Γ : [[Γ]] → [[A]] of Γ ` M : A is defined as usual,
except for the case of application where we set:

[[M [~L, ~N !]]]Γ = 〈id,
∑n
i=1[[Ni]]Γ 〉; ((· · · (Λ−([[M]]Γ) ? [[L1]]Γ) · · ·) ? [[L`]]Γ).

This definition is independent from the enumeration of the resources in the bag.

4 A differential category of games

Our first example of a differential category of games is the category introduced
in [8, 9]. In this section we recall its definition, and show that it is a Cartesian
closed differential category.

An arena A is a finite bipartite forest over two sets of moves, MP
A and MO

A

with edge relation `. We say that a move is enabled by its parent in the forest,
and that root moves are initial. A QA-arena is an arena equipped with a labelling
function that labels each move as a question (Q) or answer (A), such that every
answer is the child of a question. We assume the standard notions of justified
sequence, views, P- and O-visibility from the game semantics literature; see [11]
for example. Given a justified sequence s, we say that an answer-move occurrence
a answers the question occurrence q that justifies it. A justified sequence s
satisfies P-well-bracketing if, for every prefix s′a with a an answer move by P ,
the question that a answers is the rightmost O-question in the view ps′q; call
this the pending question at s′. A justified sequence is complete if every question
is answered exactly once; we write comp(A) for the set of complete justified
sequences of A.

Lemma 1. If s is a complete justified sequence that satisfies P-visibility (resp.
O-visibility), then s satisfies P-well-bracketing (resp. O-well-bracketing).

Proof. A simple analysis of views shows that, if q is an O-question that is an-
swered when some later O-question q′ is pending, then when q′ is answered,
again a later O-question is pending. There can therefore be no O-question that
is answered when it is not pending, because s is finite. ut

A sequence is well-opened if it contains exactly one initial O-move. A strategy
for an arena A is a set of complete sequences in which O plays first, satisfying
P-visibility (and, by Lemma 1, P-bracketing). Given a strategy σ, wv(σ) is the
set of sequences in σ that are well-opened and satisfy O-visibility.

Given arenas A and B, we write A] B for the arena arising as the disjoint
union of A and B, and A⊥ for the arena A with O and P-moves interchanged.
We can define a category G in which objects are arenas whose roots are all O-
moves, and morphisms A→ B are strategies on the arena A⊥]B. Composition
of strategies is the usual “parallel composition plus hiding” construction, and
identities are copycat strategies. As proved in [8, 9], this category is monoidal
closed: disjoint union of arenas gives a tensor product, and exponentials are given
by the arena A(B, which consists of the arena B with a copy of A⊥ attached
below each initial move; duplication of A⊥ is required to maintain the forest
structure. Every object of G possesses a canonical comonoid structure, and the
subcategory of comonoid homomorphisms is a Cartesian closed category G⊗.
These maps are those whose choice of move at any stage depends only on the
current thread, that is, the subsequence of moves hereditarily justified by the
initial O-move currently in view; it follows that such strategies are completely
determined by the well-opened plays they contain.

The programming language Erratic Idealized Algol (EIA) is an applied typed
λ-calculus with an appropriate stock of constants making it a higher-order im-
perative programming language with local state, consisting of variables in which
natural numbers can be stored. The constants include an erratic choice operator
or which encodes nondeterministic choice. As shown in [8], this programming
language can be given denotational semantics in the category G⊗. The inter-
pretation of the imperative programming constants is as in the standard games
model of Idealized Algol from [1], and the erratic choice operator is interpreted
by union of strategies.

Theorem 2 (Full abstraction [8]). The model of EIA in G⊗ is sound, and
moreover, for any type A:

– if s is a complete well-opened play of [[A]] satisfying visibility, there is a closed
term M of type A such that wv([[M]]) = {s};

– terms M,N : A are contextually equivalent if and only if wv([[M]]) = wv([[N]]).

We now exhibit the differential structure that G⊗ possesses. Let s be a
complete, well-opened play in A⊥]B which contains at least one initial A-move.
Say that a complete play s′ in A⊥]A⊥]B is a derivative of s if ∆; {s′} = {s}
and s′ contains one initial move in the left occurrence of A⊥. We then define
D×(σ) as the strategy whose well-opened plays are

{s′ ∈ comp(A⊥]A⊥]B) | s′ is a derivative of some well-opened s ∈ σ}.

We can verify directly that this makes G⊗ a Cartesian closed differential cate-
gory; later we will see that this follows from a general construction. Because of
the definability property of the model of EIA, it is reasonable to expect that the
differential operator is programmable in EIA, and indeed it is. For terms of type
A → comm (comm is the base type of commands) we can define the differential
operator as follows (using appropriate syntactic sugar).

λf : A→ comm.λa : A.λa′ : A.new b := false

new y := f((if b then (b := true; a) else a′) or a′) in
if ¬b then y else diverge

In any converging execution of this code, the argument a is supplied to f exactly
once, though which call to f ’s argument receives a is chosen nondeterministically;
all other calls to f ’s argument receive a′.

5 Constructing differential categories

We now describe a construction of models of intuitionistic linear logic that are
also differential categories. The main ingredient is the construction of a cate-
gory which possesses a comonad delivering cofree cocommutative comonoids; we
begin with this step, before describing some preliminary steps that can readily
construct appropriate categories.

Let C be a symmetric monoidal category enriched over sup-lattices, that is,
over idempotent commutative monoids with all sums (we continue to use (+, 0)
for this monoid structure). Any product A×B in C is necessarily a biproduct, that
is, it is also a coproduct and the canonical map [〈idA, 0〉, 〈0, idB〉] : A⊕B → A×B
is an isomorphism. Similarly, every coproduct is a biproduct. Suppose that C has
all countable biproducts, and that the monoidal structure distributes over them.
We construct a differential structure on the Karoubi envelope K(C) (idempotent
splitting) of C. Recall that this category has as its objects pairs (A, f) where A is
an object of C and f : A→ A is an idempotent, and as its maps (A, f)→ (B, g),
those maps h : A→ B from C such that h = f ;h; g. This category inherits the
monoidal structure, sup-lattice enrichment and biproducts from C.

First, for any object A of C, write A⊗n to denote the n-fold tensor power
of A. The symmetric tensor power An, if it exists, is the equaliser of the diagram

(A⊗n, f⊗n) (A⊗n, f⊗n)
...n! permutations

consisting of all n! permutations from A⊗n to itself.
In K(C) we can readily construct symmetric tensor powers, as follows. Given

an object A of C, define ΘA,n : A⊗n → A⊗n to be the sum of the n! permutation
maps. Straightforward calculation establishes the following.

Lemma 3. For any object (A, f) of K(C), the following diagram is an equalizer.

(A⊗n, f⊗n) (A⊗n, f⊗n)
...n! permutations(A⊗n, f⊗n;ΘA,n)

f⊗n;ΘA,n

Moreover, these equalizer diagrams are preserved by tensor products.

One consequence of this is that there are maps (A, f)m+n → (A, f)m ⊗ (A, f)n

whose underlying maps are given by f⊗m+n;ΘA,m+n, as one might expect.
These symmetric tensor powers will allow us to construct a coalgebra modal-

ity on K(C) as the free commutative comonoid. Recall that a commutative
comonoid in a symmetric monoidal category is an object A together with maps
∆ : A→ A⊗A and e : A→ I satisfying the obvious commutativity, associativity
and unit diagrams; morphisms of comonoids are morphisms between the under-
lying objects that preserve the comonoid structure. Let K⊗(C) be the category
of commutative comonoids and comonoid morphisms in K(C).

Lemma 4. The forgetful functor U :K⊗(C)→ K(C) has a right adjoint, whose
action on objects takes (A, f) to the biproduct

⊕
n∈ω(A, f)n, which we call !(A, f).

Proof. For any m and n, we have the map

πm+n; f⊗m+n;ΘA,m+n : !(A, f) −→ (A, f)m ⊗ (A, f)n.

Tupling all these gives us a map !(A, f) →
⊕

m,n(A, f)m ⊗ (A, f)n, and by
distributivity of tensor over product, this gives a map ∆ : !(A, f) → !(A, f) ⊗
!(A, f). We also have the map π0 : !(A, f) → I. It can readily be verified that
these maps give !(A, f) the structure of a comonoid. Moreover, it is the free
comonoid on (A, f): if (B, g) is any commutative comonoid and α : (B, g) →
(A, f) any morphism, we construct a comonoid morphism α† : (B, g)→ !(A, f) as
follows. The comultiplication ∆n : (B, g)→ (B, g)⊗n equalizes all permutations,
so the composition ∆n;α⊗n does too, yielding a map (B, g)→ (A, f)n. Tupling
all these maps gives us the required comonoid map α†, and it is easily checked
that this is the unique map such that α†;π1 = α. ut

Composing these two adjoint functors yields a comonad (!, δ, ε) on K(C).

Lemma 5. The comonad (!, δ, ε) is a coalgebra modality. In fact, it is a linear
exponential comonad (also known as a storage modality).

Proof. Showing that we have a coalgebra modality amounts to demonstrating
that δ is a morphism of comonoids. In fact much more is true: it is routine to
check that the forgetful functor U : K⊗(C) → K(C) satisfies the conditions
of Beck’s monadicity theorem, which implies that the category of coalgebras is
isomorphic to K⊗(C). Therefore (!, δ, ε) is a linear exponential comonad. ut

The fact that the cofree commutative comonoid provides a linear exponential
comonad may be considered folklore. The construction of this comonad along the
lines given above follows the recipe in [13], though the use of Karoubi envelope
to generate a category possessing the required equalizers seems to be new.

We are now in a position to construct a differential operator on K(C), making
it into a differential category. The differential operator is given by precomposition
with the deriving transformation d : (A, f)⊗ !(A, f)→ !(A, f) defined as follows.
For each n, the map f⊗n+1;ΘA,n+1 in C gives us a morphism

f⊗n+1;ΘA,n+1 : (A, f)⊗ (A, f)n → (A, f)n+1

and hence we obtain maps ∼=;πn; f⊗n+1;ΘA,n+1 : (A, f) ⊗ !(A, f) → (A, f)n+1

where ∼= is the distributivity map. Tupling all these gives us a morphism (A, f)⊗
!(A, f) →

⊕
n(A, f)n+1, and finally pairing this with 0 : (A, f) ⊗ !(A, f) → I

gives the required map.

Theorem 6. With the structure described above, K(C) is a sup-lattice-enriched
differential category, and the Kleisli category K!(C) a cpo-enriched Cartesian
differential category. If C is monoidal closed (in the sup-lattice-enriched sense)
then K!(C) is a cpo-enriched Cartesian-closed differential category.

Proof. That K(C) is a differential category is lengthy but straightforward to
check. Sup-lattice enrichment follows directly from that of C. The fact that
K!(C) is Cartesian differential follows from Proposition 3.2.1 of [4]. The Carte-
sian closure of K!(C) is a well-known fact about linear exponential comon-
ads. For the cpo-enrichment, it is enough to observe that the passage from
α : !(A, f)→ (B, g) to α† : !(A, f)→ !(B, g) preserves directed suprema. ut

Even when C is not monoidal closed, it is still possible to arrive at a Cartesian
closed differential category when there are enough exponentials: if C has all
exponentials A(R for some fixed object R, then the full subcategory of K!(C)
consisting of such R-exponentials is Cartesian closed, and also possesses a weak
distributive coproduct structure given by the “lifted sum” (

⊕
i∈I(!Ai(R))(

R. In particular,
⊕

n∈ω R(R is a weak natural numbers object.
To apply the construction above, we need a sup-lattice enriched symmetric

monoidal category with countable distributive biproducts. Such categories can
readily be manufactured via a series of free constructions.

Beginning with a symmetric monoidal category, one can construct its sup-
lattice-completion as the category with the same objects, but whose maps A→ B
are sets of maps in the original category (cf. [10] VIII.2 exercise 5). This is a
sup-lattice enriched category, with joins of maps given by unions, and monoidal
structure inherited from the original category; closed structure is also inherited,
if it exists. We denote the sup-lattice completion of a category C by C+.

Given a sup-lattice-enriched symmetric monoidal category, its biproduct com-
pletion (cf. [10] VIII.2 exercise 6) has as objects indexed sets {Ai | i ∈ I} of
objects in the original category, and as morphisms {Ai | i ∈ I} → {Bj | j ∈ J}
matrices of morphisms, that is, for each i, j, a morphism Ai → Bj . Composi-
tion is (potentially infinite) matrix multiplication; the infinite sums required for
composition are the reason we require sup-lattice enrichment. The biproduct of
a set of objects is given by the disjoint union of families. We write BP(C) for
the biproduct completion of a category C.

We will be interested in some categories which arise by performing these two
constructions in sequence. Given a category C, we denote by FamRel(C) the
category whose objects are families {Ai | i ∈ I} of objects of C, and whose
morphisms {Ai | i ∈ I} → {Bj | j ∈ J} are given by sets of triples (i, j, f) where
i ∈ I, j ∈ J and f : Ai → Bj in C. Note that for a given i and j there may be no
such triples in a morphism, or one, or many. It is easy to check that FamRel(C)
is isomorphic to the category BP(C+).

A simple but central example begins with the terminal category 1. FamRel(1)
is the category Rel of sets and relations. On the image of Rel in K(Rel), ! is
the finite-multiset comonad, and we therefore find MRel embedded in K!(Rel)
as a sub-Cartesian-differential-category.

6 Analysis of G⊗

In this section we apply some of the constructions developed above to recon-
struct G⊗ and discover its differential structure as an instance of our construc-
tion. We begin by defining a new category EG of exhausting games.

Given a finite arena A, a path is a non-repeating enumeration of all moves,
respecting the order given by the edge relation in the arena — that is, a traversal
of the forest — such that the first move is by O and moves alternate polarity
thereafter. Note that every move in a path has a unique justifier earlier in the
path. An exhausting strategy on A is a set of even-length paths that satisfy P-
visibility; if A has an odd number of moves, the only strategy is the empty set.
The category EG has finite O-rooted arenas as objects and exhausting strategies
on A⊥]B as maps from A to B, with composition and identities as usual. Again,
disjoint union of arenas gives a monoidal structure; and if B has a single root,
then the arena A(B is an exponential, so EG has all R-exponentials, where
R is the arena with a single move belonging to O.

It is clear that EG is sup-lattice enriched: unions of strategies are strategies,
and composition preserves unions. We may therefore form its biproduct comple-
tion, to obtain the structure we require to construct a differential category as
in Section 5. We write K(BP(EG)) for the differential category so constructed,
and K!(BP(EG)) for its Kleisli category, which is a Cartesian differential cate-
gory. The full subcategory of R-exponentials is Cartesian closed and has a weak
natural numbers object. We shall now show how to recover G⊗ as a subcategory
of this.

Let A be any QA-arena, and consider a non-repeating (justified) sequence s
of pairs (a, n) where a is a move of A and n is a natural number. Taking left
projection on such a sequence gives a justified sequence in A, which we call ŝ;
we say that s is a tagging of ŝ, and write tcomp(A) for the set of all taggings of
complete well-opened plays in A.

Let s ∈ tcomp(A) be a tagging of the complete play ŝ. We can define an
arena ‖s‖ whose moves are the elements of s and whose edge relation is precisely
the justification structure of s. Thus s becomes a path of ‖s‖. If t is a tagged
sequence such that t̂ = ŝ, there is an isomorphism between the moves of ‖s‖
and ‖t‖ which maps the n-th move of s to the n-th move of t. The free monoid
extension induces an isomorphism φ between paths in ‖s‖ and those in ‖t‖, and
in turn an isomorphism in EG, given by the strategy

φ‖s‖,‖t‖ = {u ∈ ‖s‖⊥] ‖t‖ | û ∈ idA, φ(u � ‖s‖) = u � ‖t‖}.

Let A∗ be the family of arenas {‖s‖ | s ∈ tcomp(A)}. We define a morphism
φA : A∗ → A∗ in the biproduct completion of EG as the “matrix” with entries

given by

(φA)s,t =

{
φ‖s‖,‖t‖, if ŝ = t̂
∅, otherwise.

Our embedding of G⊗ in K!(BP(EG)) maps an arena A to (A∗, φA). The
action on morphisms is slightly trickier to describe; we begin by analysing com-
plete, well-opened plays in A⊥] B. Such a play consists of an interleaving of a
complete, well-opened play in B with a number of complete, well-opened plays in
A. Suppose the play s is an interleaving of plays s1, . . . , sn in A and s′ in B. Let
u be any tagging of s, yielding taggings u1, . . . , un and u′ of the projections s1,
. . . , sn and s′. This tagging induces a morphism (A∗)⊗n → B∗ in the biproduct
completion of EG, as follows.

The family (A∗)⊗n consists of arenas ‖s′1‖ ⊗ · · · ⊗ ‖s′n‖ for s′i ∈ tcomp(A). If
‖s′i‖ = ‖ui‖ for each i and ‖s′‖ = ‖u′‖, then the singleton u is a morphism

{u} : ‖s′1‖ ⊗ · · · ⊗ ‖s′n‖ → ‖s′‖

and hence, taking all such taggings and inserting empty strategies everywhere
else in the matrix, we have a morphism (A∗)⊗n → B∗.

Given a map σ : A → B in G⊗, let σn be the set of well-opened plays in σ
with n initial A-moves. Each s ∈ σn induces a morphism (A∗)⊗n → B∗ in EG
as above, so we can define Φ(σn) : (A∗)⊗n → B∗ to be the sum of all these
morphisms. The copairing of the Φ(σn) gives us a map

[Φ(σn) | n ∈ ω] :
⊕
n∈ω

(A∗)⊗n → B∗.

By construction, for each Φ(σn) we have Φ(σn) = φ⊗nA ;ΘA∗,n;Φ(σn);φB , so
[Φ(σn) | n ∈ ω] is a morphism from !(A∗, φA) to (B∗, φB) in K(BP(EG)).

Proposition 7. The construction defined above gives a full and faithful product-
preserving functor from G⊗ to K!(BP(EG)).

7 Some refined categories of games

The category G⊗ is clearly rich enough to interpret Resource PCF. Indeed, it
is richer, as the model of EIA demonstrates, and the model of Resource PCF in
G⊗ is far from being fully abstract. In this section we develop a new Cartesian
closed differential category of games, by applying our general construction to a
refined games model, and arrive at a model of Resource PCF which possesses
the finite definability property.

Let A be any arena. We define an equivalence relation ∼ on the paths of A
as the smallest equivalence relation such that s · o · p · o′ · p′ · t ∼ s · o′ · p′ · o · p · t
where o, o′ are O-moves and p, p′ are P-moves. We call a path safe if, whenever
s = s′ · o · p · o′ · p′ · t and o justifies p′, p′ justifies o′. The ∼ relation captures
a notion of causal independence similar to that of Melliès [12], and allows us to
refine our games model to obtain definability for Resource PCF.

A ∼-strategy σ on an arena A is a set of safe paths that is ∼-closed, that is,
if s ∈ σ and s ∼ t then t ∈ σ. A ∼-strategy σ is deterministic if it is non-empty,
and the longest common prefix of any s, t ∈ σ has even length.

Lemma 8. If σ is a ∼-strategy and s ∈ σ then s satisfies P-visibility.

Proof. Let s = s1 · p · s2, for some P-move p. By permuting moves we can find
s′1 ·p ·s′2 ∼ s such that s′1 = ps1q. The justifier of p must appear in s′1 = ps1q. ut

Given a path s in an arena A, write s̃ for the equivalence class of s under ∼.

Lemma 9. For any safe path s of A, s̃ is a deterministic ∼-strategy, and any
deterministic ∼-strategy is of the form s̃ for some safe path s.

We can now build two categories: EG∼ has O-rooted arenas as objects and
deterministic ∼-strategies on A⊥] B as maps A → B; EG+

∼ has the same
objects, but its maps A → B are arbitrary ∼-strategies on A⊥] B. EG+

∼ is
therefore the subcategory of EG consisting of ∼-closed strategies.

We are ready to construct a Cartesian differential category, starting with
EG∼. The first step is to take its sup-lattice completion; a consequence of
Lemma 9 is that this is exactly EG+

∼, justifying our choice of nomenclature.

Lemma 10. EG+
∼ is the sup-lattice completion of EG∼.

Nevertheless, it is convenient to take the first two steps of the construction
together, working with FamRel(EG∼). Our construction gives us a comonad !
on K(FamRel(EG∼)), such that the Kleisli category K!(FamRel(EG∼)) is a
Cartesian differential category. Though EG∼ is not monoidal closed, it has all
R-exponentials, so the full subcategory of K!(FamRel(EG∼)) comprising the
arenas with a single root is a Cartesian closed differential category.

As before, we may give a direct definition of a category of games which
is a sub-Cartesian-closed-differential-category of this one. Let G∼ be the sub-
category of G consisting of ∼-closed strategies. Again taking the subcategory
of comonoid homomorphisms, we arrive at a Cartesian closed differential cat-
egory G⊗∼. Just as in Section 6, we can define a full and faithful functor from
G⊗∼ into K!(FamRel(EG∼)) which preserves the Cartesian closed differential
structure.

8 Analysing models of Resource PCF

Our constructions show that each of K!(FamRel(EG∼)), K!(BP(EG)) and
K!(FamRel(1)) is a cpo-enriched differential Cartesian category with enough
exponentials to interpret Resource PCF; and indeed we have identified full sub-
categories G⊗, G⊗∼ and MRel which are cpo-enriched Cartesian closed differ-
ential categories containing all the objects needed to interpret Resource PCF
soundly. However, for G⊗∼ and MRel, there is more to be said.

Consider those arenas for which there exists a Q/A-labelling such that ev-
ery question enables a unique answer — this is a constraint on the shapes

of the trees, rather than additional structure. We write EGQA
∼ for the full

subcategory of EG∼ consisting of such arenas, and note that G⊗∼ embeds in
K!(FamRel(EGQA

∼)) by construction.

Lemma 11. For every such arena, the set of safe paths is non-empty.

Proof. We construct a safe path by induction on partial paths. Begin with any
root node. Having constructed a partial path s, consider the pending question
in s. If it enables any questions that do not appear in s, extend s with one of
them. Otherwise, extend s with the unique answer of the pending question. If
there is no pending question, extend s with any question enabled by one of the
answers in the P-view of s, if one exists, or an unplayed root node, if one exists.
If no such moves exist, s is a safe path. ut

Corollary 12. The unique functor > : EGQA
∼ → 1 is full. (This amounts to

the fact that the set of safe paths of A⊥]B is non-empty.)

This full functor extends through our constructions to a full functor from
K!(FamRel(EGQA

∼)) to K!(FamRel(1)). Moreover, the only idempotents we
make use of in the Karoubi envelope have the form

∑
f∈G f where G is some

group of automorphisms. In the case of Rel, these idempotents are equivalence
relations, and an object (A,') in K(Rel) is isomorphic to (A/ ', idA). The part
of the Karoubi envelope that is used in our constructions is therefore equivalent
to Rel itself, with the comonad being the usual finite-multiset comonad, and
the Kleisli category being MRel. We therefore obtain a full functor from G⊗∼ to
MRel which preserves all the relevant structure.

This functor may be described concretely as follows. Given a complete justi-
fied sequence s on a QA-arena, write |s| for the underlying multiset of moves of
s, partially ordered by the justification relation. The functor sends an arena A to
the set of all such pomsets, which we call the positions of A. If s is a well-opened
complete justified sequence on A⊥] B, |s| is a pair consisting of a multiset of
positions of A and a position of B. The functor sends a map A→ B to the set
of positions of its sequences. This is essentially the “time-forgetting” map of [2],
which here is functorial because of ∼-closure.

Theorem 13. The models of Resource PCF in G⊗∼ and MRel have the finite
definability property, and the model in MRel is fully abstract.

Proof. For G⊗∼, a straightforward induction on the size of strategies, following
the steps in the definability proof for the innocent strategy model of PCF. ∼-
closure ensures that strategies are insensitive to the order in which O-moves are
made. Definability for MRel follows from the fullness of the positional collapse
of G⊗∼ onto MRel. For full abstraction of MRel, let M and N be closed terms
of type A. If [[M]] 6= [[N]], wlog there is some a ∈ [[M]]\ [[N]]. By finite definability,
the relation {(a, 0)} : A→ nat is the denotation of some term x : A ` CLxM : nat.
Therefore [[CLMM]] = [[zero]] while [[CLNM]] = ∅, so CLMM ⇓ but CLNM 6⇓. ut

Acknowledgements. Research supported in part by NWO Project 612.000.936
CALMOC and by UK EPSRC grant EP/HO23097.

References

1. S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract game
semantics for Idealized Algol with active expressions. In P. W. O’Hearn and R. D.
Tennent, editors, Algol-like Languages, pages 297–329 of volume 2. Birkhaüser,
1997.

2. P. Baillot, V. Danos, T. Ehrhard, and L. Regnier. Timeless games. In M. Nielsen
and W. Thomas, editors, Computer Science Logic: 11th International Workshop
Proceedings, Lecture Notes in Computer Science, pages 56–77. Springer-Verlag,
1998.

3. R. F. Blute, J. R. B. Cockett, and R. A. G. Seely. Differential categories. Mathe-
matical. Structures in Comp. Sci., 16:1049–1083, December 2006.

4. R. F. Blute, J. R. B. Cockett, and R. A. G. Seely. Cartesian differential categories.
Theory and Applications of Categories, 22(23):622–672, 2009.

5. G. Boudol. The lambda-calculus with multiplicities (abstract). In E. Best, editor,
CONCUR, volume 715 of Lecture Notes in Computer Science, pages 1–6. Springer,
1993.

6. A. Bucciarelli, T. Ehrhard, and G. Manzonetto. Categorical models for simply
typed resource calculi. Electronic Notes in Theoretical Computer Science, 265:213
– 230, 2010. Proceedings of the 26th Conference on the Mathematical Foundations
of Programming Semantics (MFPS 2010).

7. T. Ehrhard and L. Regnier. The differential lambda-calculus. Theor. Comput.
Sci., 309:1–41, December 2003.

8. R. Harmer. Games and full abstraction for nondeterministic languages. PhD thesis,
University of London, 1999.

9. R. Harmer and G. McCusker. A fully abstract game semantics for finite non-
determinism. In Proceedings, Fourteenth Annual IEEE Symposium on Logic in
Computer Science, pages 422–430, 1999.

10. S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, Berlin,
1971.

11. G. McCusker. Games and Full Abstraction for a Functional Metalanguage with Re-
cursive Types. Distinguished Dissertations in Computer Science. Springer-Verlag,
1998.

12. P.-A. Melliès. Asynchronous games 2: the true concurrency of innocence. Theor.
Comput. Sci., 358:200–228, August 2006.

13. P.-A. Melliès, N. Tabareau, and C. Tasson. An explicit formula for the free expo-
nential modality of linear logic. In S. Albers, A. Marchetti-Spaccamela, Y. Matias,
S. Nikoletseas, and W. Thomas, editors, Automata, Languages and Programming,
volume 5556 of Lecture Notes in Computer Science, pages 247–260. Springer Berlin
/ Heidelberg, 2009.

14. M. Pagani and P. Tranquilli. Parallel reduction in resource lambda-calculus. In
Z. Hu, editor, APLAS, volume 5904 of LNCS, pages 226–242, 2009.

15. P. Tranquilli. Intuitionistic differential nets and lambda-calculus. Theoretical Com-
puter Science, In Press, Corrected Proof:–, 2010.

