
Weighted relational models of typed lambda-calculi
Jim Laird∗, Giulio Manzonetto†, Guy McCusker∗ and Michele Pagani†,‡
∗Department of Computer Science, University of Bath, Bath, BA2 7AY, UK
†Université Paris 13, Sorbonne Paris Cité, LIPN, F-93430, Villetaneuse, France

‡CNRS, UMR 7030, F-93430, Villetaneuse, France

Abstract—The category Rel of sets and relations yields one
of the simplest denotational semantics of Linear Logic (LL). It
is known that Rel is the biproduct completion of the Boolean
ring. We consider the generalization of this construction to
an arbitrary continuous semiring R, producing a cpo-enriched
category which is a semantics of LL, and its (co)Kleisli category
is an adequate model of an extension of PCF, parametrized
by R. Specific instances of R allow us to compare programs not
only with respect to “what they can do”, but also “in how many
steps” or “in how many different ways” (for non-deterministic
PCF) or even “with what probability” (for probabilistic PCF).

I. INTRODUCTION

Since the pioneering work of Scott, Strachey, Milner,
Plotkin and others in the 1970s [1], [2], [3], a rich theory
of programming languages has been developed in which
programs have both a denotational semantics, with programs
denoting values of some mathematical structure, and an oper-
ational semantics, an abstract description of their execution.
Typically, there is some notion of correctness connecting the
two, the strongest being Milner’s notion of full abstraction
which places the two characterizations of program behaviour
in precise agreement.

Both the operational and denotational approaches have been
undeniably successful at developing our understanding of how
programs behave and how to reason about them, and it has
become standard to regard programs as equivalent when they
are contextually equivalent: program phrases M and N are
considered equivalent if every program of the form C[M] (a
program containing M as a subphrase) computes the same
answer as C[N] (the same program, with N replacing M).
However, this notion of equivalence, and all the attendant
operational and denotational theory, usually overlooks quanti-
tative notions such as the time, space, or energy consumed by
a computation, or the probability of successful computation.
This simplification was made with good reason and to great
results: the theory has exposed powerful logical techniques,
such as relational reasoning [4], [5], and uncovered some
of the essential mathematical structure of programs, such as
continuity and monads [6]. Nevertheless, the lack of attention
paid to quantitative notions in the semantics literature is
perhaps surprising, and stands in some contrast to the field
of program verification [7], [8], [9].

There are, of course, examples of quantitative operational
and denotational semantics. Sands’s theory of improvements
is an operational account of costs with a refined notion of
program equivalence, and Ghica has shown how to refine game

semantics to bring its theory of program equivalence in line
with that of Sands [10], [11]. The use of game semantics,
rather than a Scott-Strachey denotational model, is revealing:
in order to capture intensional notions such as the cost of a
computation, a model must of course record more detail than
simply the input-output behaviour of a program, as is typical
of denotational models. Perhaps the most significant step in
exposing such detail was the introduction by Girard of linear
logic [12]: using linear logic, rather than intuitionistic logic,
to structure a type system or denotational model immediately
reveals information about resource usage. It should come as no
surprise that models of linear logic often contain quantitative
information. Indeed, even the simple relational model of
linear logic uses multisets to keep track of how many times
a resource is used. The path to discovery of linear logic
took in another quantitative model, the normal functors [13],
and coherence spaces; subsequently, Girard showed how to
refine coherence spaces to give an account of probabilistic
computation, analysed more deeply in [14], [15].

Our purpose in this paper is to give a uniform denotational
account of a range of quantitative notions, using a simple
refinement of the relational model. Relations between sets A
and B can be seen as matrices indexed by A and B, populated
by Boolean values. Replacing the Booleans by elements of
an arbitrary continuous semiring, we arrive at a new weighted
relations model embodying some quantitative information; but
what does that information tell us? We consider PCFor, the
extension of Plotkin’s PCF with a nondeterministic choice
operator which can naturally be interpreted in our models by
addition of matrices. The interpretation of a closed term of
ground type is then a vector of scalars from R. To under-
stand their meaning, we consider a further extended language
PCFR, in which terms can be instrumented with elements
of R. We demonstrate that our weighted relations correctly
model execution in this language, and go on to use PCFR as
a metalanguage for quantitative modelling of the execution of
programs in PCFor: by varying our choice of R, and of how
terms are instrumented, we show in Section VI that our models
can capture, e.g., may- and must- convergence for nondeter-
ministic programs; probability of convergence; and minimum
and maximum number of reduction steps to convergence.

Related and future work

The models we describe in this paper are in some sense
the simple cousins of a range of models studied by Ehrhard
and co-authors: finiteness spaces, Köthe spaces, as well as

probabilistic coherence spaces [16], [17], [14]. In all cases,
the coherence structure serves to constrain morphisms so that
the quantities in the model can remain finite. Our models
sacrifice this property in return for simplicity and generality.
Nevertheless, it would be instructive to study the extent to
which such coherence-like structures can be deployed when
working with arbitrary semirings.

Though our focus in this paper is on weighted models
generalising relations, we believe that the key step — replacing
matrices over Booleans with matrices over arbitrary R — is
more widely applicable. Indeed, we discovered these models
while considering a quantitative version of the constructions
described in [18], which allow us to build not only relational
models but also games models. We believe that, for instance,
Danos and Harmer’s probabilistic games model [19] can be
recovered by an analogous construction. We also think that
Ghica’s notion of slot might be generalized to more abstract
algebraic structures, like semirings. The advantage of these
game semantics is that they can model Erratic Idealized Algol,
which is significantly richer than probabilistic PCF.

II. PRELIMINARIES

Let us fix some notation. We denote by N the set of natural
numbers and by R+ the set of positive real numbers. Given
two sets A,B, we write A ⊆f B if A is a finite subset of B.

A. Category Theory

Given a category C and objects A,B we denote by C(A,B)
the corresponding hom-set and by ϕ,ψ, ϑ, . . . its elements.
We write the identity morphism on A as idA, or simply A.
Composition is written using infix ; in diagram order.

In a symmetric monoidal category (smc) C, we denote by
⊗ the tensor product and by 1 its unit. When C is monoidal
closed (smcc), the monoidal exponential object is denoted as
A (B. We use evalA,B ∈ C((A (B) ⊗ A,B) for the
monoidal evaluation morphism and λ(ϕ) ∈ C(A,B (C)
for the monoidal currying of a morphism ϕ ∈ C(A⊗ B,C).
When C is moreover ?-autonomous with respect to a dualizing
object ⊥, we indicate by A⊥ the dual object A(⊥.

We will elide all associativity and unit isomorphisms asso-
ciated with monoidal categories.

In a cartesian closed category (ccc) C, we write T for the
terminal object and TA for the unique morphism in C(A,T).
We use 〈ϕ,ψ〉 to denote the pairing of maps ϕ ∈ C(A,B) and
ψ ∈ C(A,C), and π1, π2 for the corresponding projections. In
presence of biproducts, we denote by ι1, ι2 the corresponding
injections. The exponential object is denoted by A ⇒B, the
evaluation map by EvalA,B ∈ C((A ⇒B) × A,B) and the
currying of ϕ ∈ C(A×B,C) by Λ(ϕ) ∈ C(A,B ⇒C).

An object of numerals N is an object N equipped with
maps z ∈ C(T, N), succ, pred ∈ C(N,N), and zero? ∈
C(N×(N×N), N) such that (∀n ∈ N,∀ϕ,ψ ∈ C(A,N)):

0̃ ; pred = 0̃, ñ+ 1 ; pred = ñ,

(0̃× 〈ϕ,ψ〉) ; zero? = ϕ, ((ñ+ 1)× 〈ϕ,ψ〉) ; zero? = ψ,

where ñ ∈ C(T, N) is defined by 0̃ = z and ñ+ 1 = ñ ; succ.

B. Lafont Categories
We now describe in a nutshell the categorical semantics of

linear logic (LL) as formulated in Lafont’s thesis [20]. This is
not the most general definition of a LL model, but it has the
advantage of being simple and general enough to encompass
the class of models that will be defined in Section III. Our
main reference for categorical models of LL is the paper [21].

Recall that an object A of an smcc C is a (commutative)
comonoid if it is equipped with a multiplication c ∈ C(A,A⊗
A) and a unit w ∈ C(A, 1) satisfying the usual associativity
(commutativity) and unit equations. A comonoid morphism
ϕ from (A1, c1,w1) to (A2, c2,w2) is defined as a morphism
ϕ ∈ C(A1, A2) such that ϕ ; c2 = c1 ;(ϕ⊗ϕ) and ϕ ; w2 = w1.

Definition II.1. An smcc C is a Lafont category if:
(i) it has finite products and,

(ii) for every object A, there exists an object !A being the
free commutative comonoid generated by A.

Condition (ii) asks that for every A, there is an object !A
endowed with a commutative comonoid structure:

contrA ∈ C(!A, !A⊗ !A), weakA ∈ C(!A, 1),

and a morphism derA ∈ C(!A,A) satisfying the following
universality property: for every commutative comonoid B and
for every morphism ϕ ∈ C(B,A) there exists a unique
comonoid morphism ϕ† ∈ C(B, !A) satisfying ϕ† ; derA = ϕ.
The multiplication and the unit of !A are called respectively
contraction and weakening, while der is called dereliction.

Every Lafont category C is equipped with a comonad
(!,der,dig) defined as follows:
• the endofunctor ! sends every object A into the free com-

mutative comonoid !A and every morphism ϕ ∈ C(A,B)
into (derA ;ϕ)† ∈ C(!A, !B),

• the multiplication is called digging and defined as
digA : = (id!A)† ∈ C(!A, !!A),

• the unit is the morphism derA ∈ C(!A,A) given above.
The functor ! is equipped with a monoidal structure turning

it into a strong symmetric monoidal functor from the smc
(C,⊗) to the smc (C,×): the corresponding two isomor-
phisms are given by mT : =(T1)† ∈ C(1, !T) and mA,B : =
〈(derA⊗weakB), (weakA⊗derB)〉† ∈ C(!A⊗!B, !(A×B)).

As usual, the (co)Kleisli category C! over the comonad
(!,dig,der) is defined to have the same objects as C and
C!(A,B) : = C(!A,B). Composition in C! is denoted by ;!
and defined as ϕ;!ψ : = dig ; !ϕ ;ψ and identities A : = derA.

Theorem II.2. The Kleisli category C! of a Lafont category
C is cartesian closed.

Indeed, the structure of cartesian smcc of C is lifted to
a cartesian closed structure in C! by the isomorphisms m.
The exponential object A⇒B is defined as !A (B and
the morphism EvalA,B ∈ C!((A ⇒ B) × A,B) is given
by (m!A(B,A)−1 ;(der!A(B ⊗!A) ; eval!A,B . This defines an
exponentiation since for every ϕ ∈ C!(C × A,B) there is
a unique morphism Λ(ϕ) : = λ(mC,A ;ϕ) ∈ C!(C,A ⇒ B)
satisfying Λ(ϕ)×A;!Eval = ϕ.

C. Constructing Lafont Categories
It is known in the folklore, and not difficult to check, that an

smcc is endowed with the free commutative comonoids gen-
erated by its objects, as soon as the following conditions hold.
First, the category has countable biproducts, so the monoidal
structure distributes over them. Second, for every object A and
n ∈ N the symmetric tensor power An exists, the intuition
being that An provides the n-th layer of !A.

Proposition II.3 (Folklore, cf. [22]). An smcc C with count-
able biproducts is a Lafont category whenever:
(a) there is the equalizer (An, eqA

n

) of the n! symmetries of
the n-fold tensor A⊗n, for every n ∈ N and object A;

(b) such an equalizer is preserved by the tensor product, i.e.,
for every B, (An ⊗ B, eqA

n⊗ idB) is the equalizer of
the diagram made of all morphisms σ ⊗ idB , where σ a
symmetry of A⊗n.

Indeed, following the recipe in [22], one constructs the free
commutative comonoid as !A : =

∏
n∈NA

n, with multiplica-
tion and unit given by:

contrA : = 〈〈πn+m ; cn,m〉m∈N ;∼=〉n∈N ;∼=, weakA : = π0,

where ∼= is the distributivity of the tensor over countable
(bi)products and cn,m is the unique morphism such that
cn,m ; (eqA

n ⊗ eqA
m

) = eqA
n+m

. The dereliction is given by
derA : =π1. The following lemma describes more concretely
the action of ! on morphisms.

Lemma II.4. For every ϕ ∈ C(A,B), we have that !ϕ =
〈πn ;ϕn〉n∈N, where ϕn is the unique morphism such that
ϕn ; eqB

n

= eqA
n

;ϕ⊗n, which exists by applying the uni-
versal property of the equalizer (Bn, eqB

n

) to eqA
n

;ϕ⊗n.

D. Continuous R-Categories
Continuous semirings have been introduced in [23] and are

instances of continuous algebras (see e.g. [24]). In this section
we consider categories whose hom-sets have the structure of
continuous modules over continuous semirings.

Recall that a complete partial order (cpo) is a partially
ordered set (X,�) having a bottom element and such that
any directed subset D ⊆ X has a supremum

∨
D.

A (unary) operator F on cpo’s is continuous if it is
monotone and preserves directed suprema, i.e. F (

∨
i∈I xi) =∨

i∈I F (xi). Similarly, we say that an n-ary operator F is
continuous if it is continuous in each component.

Definition II.5. A continuous semiring R is a semiring
(|R|,+, · ,0,1) equipped with a partial order � such that:
• (|R|,�) is a cpo having 0 as bottom element,
• the operators + and · are continuous.

When p � q if and only if there is r ∈ |R| such that p+r = q,
we say that � is natural and that R is naturally ordered.

We will often confuse R with its underlying set |R|.

Lemma II.6. Given a continuous semiring R and a (possibly
infinite) subset S ⊆ R, the set {

∑
p∈F p | F ⊆f S} is directed,

hence its supremum is defined.

Therefore, we can define the I-indexed sum over R as∑
p∈I

p : =
∨
F⊆fI

(∑
p∈F

p

)
.

Note that every continuous semiring R has a top element
∞ : =

∑
p∈R p. In particular, p+ ∞ = ∞ for every p ∈ R.

Given a set X we write X for X ∪ {∞} and X⊥ for X ∪
{−∞}, where ∞, −∞ are fresh elements.

Example II.7. The following semirings, endowed with the
natural ordering, are continuous.

1) Boolean semiring: B : = ({t, f},∨,∧, f , t) where f < t.
2) N completed: N : = (N,+, · , 0, 1,≤) where +, · are de-

fined in the obvious way (in particular 0·∞ = 0 =∞·0).
Note that for every infinite S ⊆ N we have

∨
S =∞.

3) Tropical semiring: T : = (N,min,+,∞, 0,≥). Note that
the order is reversed so that 0 is the top element.

4) Arctic semiring: A : = (N⊥,max,+,−∞, 0,≤) where
max,+ are extended as usual (e.g. (−∞) +∞ = −∞).

5) R+ completed: P : = (R+,+, · , 0, 1,≤).

A continuous module (M,+, 0) over a continuous semiring
R is a module over R having a cpo structure such that 0 is the
bottom and addition and scalar multiplication are continuous.

Definition II.8. We call a category C a continuous R-
category if every hom-set is endowed with a structure of
continuous module over R and the composition is continuous.
So C is a cpo-enriched category, and moreover each hom-cpo
is a continuous module over R.

Let C be a continuousR-category. A (unary) operator F (−)
on hom-sets of C is linear if it preserves the structure of
continuous module over R, that is:

F (0) = 0, F (pϕ) = pF (ϕ), F (ϕ+ ψ) = F (ϕ) + F (ψ).

An n-ary operator F is multilinear, if it is linear in each
component. A morphism ϕ ∈ C(A,B) is called: pre-linear
when the operator− ;ϕ is linear; post-linear when the operator
ϕ ;− is linear; linear when it is both pre- and post-linear.

If C is moreover cartesian and has an object of numerals N,
we say that N is linear if pred and succ are linear, and zero?
is linear in its first component (i.e. (−× ϕ) ; zero? is linear).

Definition II.9. A continuous R-category C is called pre-
linear (resp. post-linear, linear) whenever all its morphisms
are pre-linear (resp. post-linear, linear).

For ccc’s, Definition II.8 is extended as follows.

Definition II.10. A post-linear continuous R-ccc is a ccc C
that satisfies the conditions of Definition II.8, is post-linear
and moreover is such that the pairing is continuous and the
currying is continuous and linear.

Therefore, a post-linear continuous R-ccc is not just a post-
linear R-category that happens to be cartesian closed.

Remark II.11. Since 〈ϕ,ψ〉 ; Eval = 〈id, ψ〉 ;Λ−1(ϕ) in
every post-linear continuous R-ccc Eval is linear in its first
component (i.e. 〈−, ψ〉 ; Eval is linear).

III. THE CATEGORY RΠ

Let us consider fixed an (arbitrary) continuous semiring
R = (|R|,0,1,+, · ,�), whose product · is commutative (as
in Example II.7). Note that R can be seen as a one-object
category whose morphisms are the elements ofR, composition
is the product · , and the identity is given by 1.

Given a set A and a, a′ ∈ A, define the Kronecker symbol
δa,a′ ∈ R which takes value 1 if a = a′ and 0 if a 6= a′.

The free biproduct completion of the category R, denoted
by RΠ, is defined as follows (cf. [25, §VIII.2 Exercise 6]).

Definition III.1. The objects of RΠ are sets and the mor-
phisms from A to B are the matrices inRA×B . Identity over A
is the diagonal matrix defined as idAa,a′ : = δa,a′ for all a, a′ ∈
A. The composition of ϕ ∈ RΠ(A,B) and ψ ∈ RΠ(B,C)
is the morphism ϕ ;ψ given by the usual matrix composition
(ϕ ;ψ)a,c : =

∑
b∈B ϕa,b · ψb,c for all a ∈ A, c ∈ C.

Note that, despite the fact that (ϕ ;ψ)a,c can be an infinite
sum, it is always well-defined by Lemma II.6.

By construction, the category RΠ has (countable) biprod-
ucts, represented by disjoint union and indicated as &. Indeed,
given a (possibly infinite) set I of indices we have:
˘
i∈I Ai : =

⋃
i∈I{i}×Ai, πj(i,a),a′ : = ιja,(i,a′) : = δ(i,a),(j,a′)

where πj (resp. ιj) stands for the canonical projection on Aj
(resp. injection from Aj). Moreover, given ϕj ∈ RΠ(B,Aj)
and ψj ∈ RΠ(Aj , B) we have that

(〈ϕi〉i∈I)b,(j,a) : =(ϕj)b,a, ([ψi]i∈I)(j,a),b : =(ψj)a,b,

are the unique morphisms satisfying 〈ϕi〉i∈I ;πj = ϕj and
ιj ; [ψi]i∈I = ψj . The terminal (actually null) object T is ∅.

We now show that the hom-sets of RΠ inherit from R the
structure of continuous module.

Definition III.2. Given two sets A,B, define for all matrices
ϕ,ψ ∈ RA×B and scalars p ∈ R the following operations:

0a,b : =0, (ϕ+ ψ)a,b : =ϕa,b + ψa,b, (pϕ)a,b : = p · ϕa,b.

Moreover, we set ϕ � ψ iff ϕa,b � ψa,b for all a ∈ A, b ∈ B.

Proposition III.3. RΠ, endowed with the operations and the
ordering of Definition III.2, is a linear continuous R-category.

A. The Linear Structure

We briefly present the monoidal structure of RΠ, showing
that it is a ?-autonomous category (actually, compact closed).

The bifunctor ⊗ : RΠ × RΠ → RΠ acts on objects like
the cartesian product and on morphisms like the Kronecker
product, that is (for every ϕ ∈ RΠ(A,B), ψ ∈ RΠ(C,D)):

A⊗B : =A×B, (ϕ⊗ ψ)(a,c),(b,d) : =ϕa,b · ψc,d

Bifunctoriality of this operation follows from commuta-
tivity of the R-product · . The unit of the tensor is
the singleton set 1 : ={∗}. Usual calculations show that
αA,B,C((a,b),c),(a′,(b′,c′)) : = δ(a,b,c),(a′,b′,c′) is a natural isomorphism
giving the associativity of ⊗, while ρA(∗,a),a′ : = δa,a′ and
λA(a,∗),a′ : = δa,a′ give the neutrality of 1. The tensor product
is moreover continuous, bilinear and symmetric, thanks to the
symmetries σA,B(a,b),(b′,a′) : = δ(a,b),(a′,b′).

The category RΠ is monoidal closed. The monoidal expo-
nential object and the monoidal evaluation are defined as:

A(B : =A×B, evalA,B((a,b),a′),b′ : = δ(a,b),(a′,b′),

λ(ϕ)c,(a,b) : =ϕ(c,a),b.

It is easy to check that λ(−) is continuous and linear.
Notice that the object ⊥ : = {∗} is dualizing since, for

every object A, the morphism ∂A,⊥ ∈ RΠ(A,A⊥⊥) defined
as ∂A,⊥a,((a′,∗),∗) : = δa,a′ is an isomorphism whose inverse is
∂−((a,∗),∗),a′ : = δa,a′ , therefore RΠ is ?-autonomous.

Proposition III.4. The linear continuous R-category RΠ is
?-autonomous and has countable biproducts. The tensor prod-
uct and monoidal currying are both continuous and (bi)linear.

B. Constructing Lafont Exponentials in RΠ

In this section we show that RΠ has all symmetric tensor
powers An. In order to describe them concretely, we need to
introduce some notions and notations concerning multisets.

Let A be a set. We represent a finite multiset m over A as
an unordered list [a1, . . . , an] with repetitions and say that n
is its cardinality. The union of two multisets m1,m2 is written
as m1 +m2. For every n ∈ N, we denote by Mn(A) the set
of all multisets over A of cardinality n. The set of all finite
multisets over A is then defined asMf(A) : =

⋃
n∈NMn(A).

Lemma III.5. For every n ∈ N and object A, the equalizer
(An, eqA

n

) of the symmetries of A⊗n exists and is defined by

An : =Mn(A), eqA
n

m,(a1,...,an) : = δm,[a1,...,an].

These equalizers are preserved by the tensor products.

From the above lemma and Proposition III.4, we get the
following corollary of Proposition II.3.

Corollary III.6. RΠ is a Lafont category.

Therefore we can build the exponential as in Subsection II-C:

!A : =
¯
n∈N

An ∼=Mf(A), derAm,a : = δm,[a],

contrAm,(m1,m2) : = δm,m1+m2
, weakAm,∗ : = δm,[].

Let ϕ ∈ RΠ(A,B). From Lemma II.4 we get the following
description of the matrix !ϕ (∀m ∈ !A, ∀[b1, . . . , bn] ∈ !B):

!ϕm,[b1,...,bn] =
∑

(a1,...,an) s.t.
m=[a1,...,an]

n∏
i=1

ϕai,bi .

The concrete presentation of the digging is given by (∀m ∈ !A,
∀[m1, . . . ,mn] ∈ !!A):

digAm,[m1,...,mn] = δm,m1+···+mn .

This matrix is actually the digging, since it is the unique
comonoid morphism satisfying digA ; der!A = id!A.

The canonical isomorphism mA,B between !A ⊗ !B and
!(A&B) maps the pair ([a1, . . . , an], [b1, . . . , bk]) to the multi-
set [(1, a1), . . . , (1, an), (2, b1), . . . , (2, bk)]. Analogously, the
isomorphism mT between 1 and !T sends ∗ to the multiset [].
We treat these bijections as equalities, for instance we still
denote by (m1,m2) the corresponding element of !(A&B).

C. The Kleisli Category RΠ
!

The Kleisli category of RΠ over the comonad ! can be
directly described as follows. The objects of RΠ

! are all the
sets, a morphism from A to B is a matrix in RMf (A)×B ,
that is RΠ

! (A,B) : =RΠ(Mf(A), B). The composition of
morphisms ϕ ∈ RΠ

! (A,B) and ψ ∈ RΠ
! (B,C) is given by:

(ϕ;!ψ)m,c : =
∑

[b1,...,bn]∈!B

∑
(m1,...,mn) s.t.
m=m1+···+mn

ψ[b1,...,bn],c·
n∏
i=1

ϕmi,bi .

The identity on A is given by Am,a : = δm,[a].
For the sake of simplicity the points of A, which are the

maps in RΠ
! (T, A), will be represented as vectors in RA.

From Proposition III.3 and the Kleisli construction, it fol-
lows that RΠ

! , endowed with the operations and the ordering
of Definition III.2, is a post-linear continuous R-category in
the sense of Definition II.8. In particular, every ϕ ∈ RΠ

! (A,B)
can be seen as a continuous map from RA to RB by setting
ϕ(ϑ) : =ϑ;!ϕ for all vectors ϑ ∈ RA.

The cartesian structure of RΠ is preserved in RΠ
! , therefore

the product of an indexed family (Ai)i∈I is still
˘
i∈I Ai,

while the j-th projection is πjm,a = δm,[(j,a)]. The exponential
object A⇒B isMf(A)×B, the evaluation morphism Eval ∈
RΠ

! ((A⇒B)&A,B) is defined as Eval(m,m′),b = δm,[(m′,b)]
and the currying Λ(ϕ) ∈ RΠ

! (C,A ⇒ B) of a morphism
ϕ ∈ RΠ

! (C &A,B) is given by Λ(ϕ)m,(m′,b) = ϕ(m,m′),b.
The tuple N = (N, z, succ,pred, zero?) defined as:

zn : = δn,0,
predm,n : = δn,0 · δm,[0] + δm,[n+1],
succm,n : =

∑
k∈N δm,[k] · δn,k+1,

zero?(m,m1,m2),n : =

1 if (m,m1,m2) = ([0], [n], []),
or (m,m1,m2) = ([k + 1], [], [n]),

0 otherwise.

is an object of numerals living in RΠ
! .

Theorem III.7. The category RΠ
! is a post-linear continuous

R-ccc. Moreover N is linear.

Clearly PCF can be interpreted in RΠ
! since it is a cpo-

enriched ccc having an object of numerals. In the interpretation
of a PCF term in RΠ

! several scalars in R appear. The next
section is devoted to investigating the meaning of such scalars.

Typing Rules of PCFR

Γ, x : A ` x : A
Γ `M : A
Γ ` pM : A

Γ `M : A Γ ` P : A
Γ `M or P : A

Γ, x : A `M : B

Γ ` λxA.M : A→ B
Γ `M : A→ B Γ ` P : A

Γ `MP : B

Γ ` 0 : int
Γ `M : int

Γ ` pred M : int
Γ `M : int

Γ ` succ M : int

Γ `M : int Γ ` P : int Γ ` L : int
Γ ` ifz(M,P,L) : int

Γ `M : A→ A
Γ ` YM : A

(a) The typing rules of PCFR. The type annotation on the lambda-abstraction
ensures that the derivation is unique, given a context Γ and term M .

Reduction Rules

β : (λx.M)P
1−→M [P/x]

fix : YM
1−→M(YM)

scal : pM
p−→M

orl : M or P
1−→M

orr : M or P
1−→ P

pred : pred n
1−→ n− 1

if0 : ifz(0, P, L)
1−→ P

ifs : ifz(n+ 1, P, L)
1−→L

(b) Redex-to-contractum rules. In the rule pred we suppose that 0 − 1 = 0.
We write M

p−→` P to mean that M reduces to P using the rule (`).

Contextual Rules

MP
p−→` M

′P pred M
p−→` pred M

′

ifz(M,P,L)
p−→` ifz(M ′, P, L) succ M

p−→` succ M
′

(c) Contextual rules. Supposing M
p−→M ′ using the rule (`).

Fig. 1. Typing rules and operational semantics of PCFR.

IV. THE LANGUAGE PCFR

We now define PCFR, a prototypical programming lan-
guage extending PCF [2] with a nondeterministic choice
operator “or” and scalars from R. This opens the way for
modeling quantitative effects.

Definition IV.1. (The language PCFR) The set of types
contains all arrow types built from the ground type int.

The set of terms is generated by (for p ∈ R):

L,M,P ::= x | λxA.M |MP | YM | 0 | pred M | succ M
| ifz(M,P,L) | pM |M or P

For all n ∈ N we write Mn(P) for M(M(· · · (MP) · · ·))
(n times) and n for succn(0).

The notions of α-conversion, free and bound variable, and
substitution M [P/x] are defined as usual in λ-calculus [26,
§2]. Hereafter, terms are considered up to α-conversion.

Example IV.2. Concerning specific PCFR terms, we set:

ΦP ifz(P, succP, 0) ifz(p0, succP, 0) ifz(0, succP, 0) succP succ (p0) succ 0 : = 1

succ (q1) succ 1 : = 2ifz(q1, succP, 0) ifz(1, succP, 0) 0

1

β

1
orl

p

scal

1
if0

1
orl

p

scal

q

scal

1
orr

1
orr

q

scal

1
ifs

Fig. 2. Example of reduction sequences starting from ΦP , where P is the weighted nondeterministic numeral p0 or q1.

• Φ : =λxint.ifz(x, succx, 0),
• Ω : =Y(λxint.x),
• Ψ : =Y(λxint.(x or 0)).

These terms will be used as examples throughout the paper.

A context Q is a PCFR term having a single occurrence
of a “hole”, denoted by [−], inside. Given a context Q[−] and
a term M we write Q[M] for the result of substituting M for
the hole [−] in Q, possibly with capture of free variables.

(Type) environments are finite maps from variables to types.
We write x1 : A1, . . . , xn : An to denote the environment Γ
such that dom(Γ) = {x1, . . . , xn} and Γ(xi) = Ai for all i.

(Type) judgements are denoted by Γ ` M : A and can be
inferred using the typing rules of Figure 1(a).

Remark IV.3. The terms of Example IV.2 are well-typed: Ω
and Ψ are of type int, while Φ is of type int→ int.

Hereafter, we only consider well-typed terms.

Definition IV.4. The operational semantics of PCFRis de-
fined in Figures 1(b),1(c).
• The reduction rules defined in Figure 1(b) are treated as

relations between terms, decorated with a weight p ∈ R
and a label ` ∈ {β, fix, scal, orl, orr, pred, if0, ifs}.
In each rule (`), the term at the left-hand side is a redex,
while the term at the right-hand side is its contractum.

• The elementary reduction step (ers) M
p−→` P is the least

(quaternary) relation closed under the above reduction
rules and the contextual rules of Figure 1(c).

• A term M is a normal form whenever there are no weight
p, term P and label ` such that M

p−→` P .

The operational semantics implements the leftmost-
outermost reduction strategy. The label ` is needed in the ers
relation to ensure that there are two distinct reductions from
M or M to M .

We write M
p−→ P to mean that M

p−→` P for some label `.

Example IV.5. Consider the terms of Example IV.2.

1. The behaviour of Φ on numerals is easy to determine,
indeed Φ0

1→β ifz(0, 1, 0)
1→if0 1 and, for all n > 0,

Φn
1→β ifz(n, n+ 1, 0)

1→ifs 0.
2. The reduction of Φ is more interesting on weighted nonde-

terministic numerals, like P : = p0 or q1 (see Figure 2).
3. Clearly, we have Ω

1→fix (λxint.x)Ω
1→β Ω

1→ · · · .
4. Ψ

1→fix (λxint.(x or 0))Ψ
1→β Ψ or 0 which reduces

with weight 1 using the or-rules either to Ψ itself or to 0.

Remark that every term has at most one redex that reduces,

moreover the reduction is deterministic except for the or-
constructor. By induction one proves the following lemma.

Lemma IV.6 (Subject reduction). If M
p−→ P and Γ `M : A,

then Γ ` P : A.

Definition IV.7. Let M,P be two terms.
• A reduction sequence π from M to P is a finite sequence

(Mi
pi→Mi+1)i<k of elementary reduction steps such that

M0 = M and Mk = P . In particular, for all M , there
is an empty reduction sequence ε from M to itself.

• The set of all reduction sequences from M to P of length
at most k is denoted by M ⇒≤k P .

• The set M⇒P of all reduction sequences from M to P
is defined as

⋃
k∈N(M ⇒≤k P).

As elementary reduction steps are weighted, it makes sense
to define the weight of a (set of) reduction sequence(s).

Definition IV.8. Let M,P be two terms.
• The weight of a reduction sequence π ∈ M⇒P where
π : =(Mi

pi→Mi+1)i<k is defined as w(π) : =
∏
i<k pi ∈

R. Note that w(ε) = 1.
• The above operation is extended to a subset A ⊆M⇒P

by setting w(A) : =
∑
π∈A w(π).

Remark that w(M⇒P) is always defined by Lemma II.6.

Example IV.9. Consider the terms of Example IV.2.
1. From Example IV.5.1 we have that w(Φn ⇒ k) is equal

to 1 if either n = 0 and k = 1, or n > 0 and k = 0;
otherwise it is equal to 0.

2. Weights can be used to carry information on resource con-
sumption. For instance, Figure 2 gives (for P : = p0 or q1):
w(ΦP ⇒ 1) = p2, w(ΦP ⇒ 0) = q and w(ΦP ⇒ 2) =
p · q. The degree of the parameter p (resp. q) corresponds
to the number of times the term ΦP uses the resource p0
(resp. q1) during the reduction to a numeral.

3. From Example IV.5.3 it follows that, for all n ∈ N, we have
Ω⇒n = ∅ and therefore w(Ω⇒n) = 0.

A. Abstract Denotational Semantics

Let us fix a post-linear continuous R-ccc C with a linear
object of numerals N. We interpret PCFR in C by extending
the standard interpretation of PCF [27, §6].

As usual, types are interpreted by:

JintK : = N, JA→ BK : = JAK⇒ JBK.

Given an environment Γ = x1 : A1, . . . , xn : An, its interp-
retation is JΓK : =

∏n
i=1JAiK. To lighten the notations we will

confuse types and environments with their interpretations.

Definition IV.10. The interpretation of a term M having type
B in an environment Γ, is the morphism JMKΓ ∈ C(Γ, B)
defined by induction as follows:
• JxiKΓ : = πi,
• JλxA.MKΓ : = Λ(JMKΓ,x:A) where x /∈ dom(Γ),
• JMP KΓ : = 〈JMKΓ, JP KΓ〉; Eval,
• JYMKΓ : =

∨
n∈N fixn(JMKΓ),

• J0KΓ : = T
Γ; z,

• JpredMKΓ : = JMKΓ; pred,
• JsuccMKΓ : = JMKΓ; succ,
• Jifz(M,P,L)K : = 〈JMKΓ, 〈JP KΓ, JLKΓ〉〉 ; zero?,
• JpMKΓ : = pJMKΓ,
• JM or P KΓ : = JMKΓ + JP KΓ.

where fixn(ϕ) is defined by induction on n ∈ N as

fix0(ϕ) : = 0, fixn+1(ϕ) : =〈ϕ,fixn(ϕ)〉 ; Eval.

Remark that B : =N in the rules for pred, succ and ifz.

The fact that the family (fixn(JMKΓ))n∈N is increasing
follows from the assumptions of continuity in Definition II.10.
By induction one proves that the substitution lemma holds.

Lemma IV.11 (Substitution). Γ, x : A ` M : B and Γ ` P :
A entail JM [P/x]KΓ = 〈Γ, JP KΓ〉 ; JMKΓ,x:A.

Proposition IV.12 (Soundness). For every term M which is
not a normal form, we have:

JMKΓ =
∑

M
p→`L

pJLKΓ.

B. Denotational Semantics in RΠ
!

We now describe the interpretation of terms in RΠ
! . From

Theorem III.7 and Proposition IV.12 it follows that RΠ
! is a

sound model of PCFR.
Notice that, up to isomorphism, the interpretation JMKΓ ∈

RΠ
! (Γ, B), where Γ = x1 : A1, . . . , xn : An, is a matrix

JMKΓ ∈ RMf (A1)×···×Mf (An)×B .

When the underlying category is not clear from the context
we write JMKR,Γ to emphasize that JMKΓ lives in RΠ

! .
Some interpretations in Definition IV.10 admit a more

concrete description which is given in Figure 3. For every
closed term M of type A, JYMK is the least fixed point of
JMK, seen as a continuous map from RA to itself. Using these
characterizations we can compute the following examples.

Example IV.13. Consider the terms of Example IV.2.

• JΦKm,n =

 1 if either m = [0, k] and n = k + 1
or m = [k + 1] and n = 0,

0 otherwise.
• From the definition of Ω and the fact that the least fixed

point of the identity is 0 we obtain JΩK = 0.
• Hence JM or ΩK = JMK, for every term M .
• Jλxint.(x or 0)Km,n = δm,[n] + δ(m,n),([],0).
• To compute JΨK it is enough to take the supremum for
n ∈ N of fixn(Jλxint.(x or 0)K) = z + · · ·+ z (n times).

Corollary IV.14. For every closed term M of type int we
have w(M⇒n) � JMKn, for all n ∈ N.

Proof: We prove by induction on k that w(M ⇒≤k n) �
JMKn, which implies w(M⇒n) � JMKn since w(M⇒n) =∨
k∈N w(M ⇒≤k n). In the base case, either M = n and

w(M ⇒≤0 n) = 1 = JMKn, or M 6= n and w(M ⇒≤0 n) =
0 � JMKn. The induction step follows by Proposition IV.12
and w(M ⇒≤k+1 n) =

∑
M

p→L p · w(L⇒≤k n).

V. ADEQUACY OF RΠ
! FOR PCFR

We prove the adequacy of the model RΠ
! , a result relating

denotational and operational semantics on closed terms of type
int. More precisely, we prove that not only Corollary IV.14
holds but actually, for all n ∈ N, we have JMKn = w(M⇒n)
(Theorem V.6, below). The new inequality is achieved follow-
ing the lines of the adequacy proof in [14], i.e. by using logical
relations (Definition V.1 and Proposition V.5, below).

Definition V.1 (Logical relations). For every type A, let CA

be the relation between vectors in RA and closed terms of
type A, defined by induction on A as follows:

ϕCint M ⇐⇒ ∀n ∈ N, ϕn � w(M⇒n),

ϕCB→C M ⇐⇒ ∀ψ, P, ψ CB P entails 〈ϕ,ψ〉;!EvalCC MP.

Lemmas V.2, V.3 and V.4 state standard closure properties
of the logical relations.

Lemma V.2. For every closed term M of type A, we have:
(i) 0CAM ,

(ii) if ψ � ϕCAM , then ψ CAM ,
(iii) if ϕi CAM for all i ∈ I , then

∨
i∈I ϕi C

AM .

Lemma V.3. Let M,Mi, P, Pi for i = 1, 2 be closed terms.
(i) If M

p→ P and ϕCA P then pϕCAM .
(ii) If M 1→orl P1 and M

1→orr P2, and ϕ1 CA P1 and
ϕ2 CA P2, then ϕ1 + ϕ2 CAM .

Lemma V.4. Let M,P,L be closed terms such that ϕCint M ,
ψ Cint P and ϑCint L. Then we have:

(i) 〈ϕ, 〈ψ, ϑ〉〉;!zero?Cint ifz(M,P,L),
(ii) ϕ;!predCint predM ,

(iii) ϕ;!succCint succM .

Proposition V.5. Let M be a term such that Γ `M : B where
Γ = x1 : A1, . . . , xk : Ak. For all maps ϕi and closed terms
Pi such that ϕi CAi Pi (for 1 ≤ i ≤ k), we have

〈ϕ1, . . . , ϕk〉 ;! JMKΓ CB M [P1/x1, . . . , Pk/xk].

Proof: To shorten the notation, we write ~ϕ for 〈ϕi〉i≤k
and M for M [P1/x1, . . . , Pk/xk].

We proceed by structural induction on M . In case M is a
variable xi or the constant 0 the result follows trivially.

In case M = λx.M ′, we have B = C → D. Let us
take ψCC L and prove that 〈~ϕ ;!JMKΓ, ψ〉;!EvalCDML. By
induction hypothesis, we have 〈~ϕ, ψ〉;!JM ′KΓ,x:CCDM ′[L/x].

JxiKΓ
~m,b = δmi,[b]·

∏
j 6=i

δmj ,[], JλxA.MKΓ
~m,(m′,b) = JMKΓ,x:A

(~m,m′),b, JMP KΓ
~m,b =

∑
m′=

[a1,...,ak]

∑
(~m0,...,~mk)∑k
i=0 ~mi=~m

JMKΓ
~m0,(m′,b)

·
k∏
i=1

JP KΓ
~mi,ai

,

J0KΓ
~m,n = δ0,n ·

∏
i

δ[],mi , JpredMKΓ
~m,n = δn,0 · JMKΓ

~m,0 + JMKΓ
~m,n+1, JsuccMKΓ

~m,0 = 0, JsuccMKΓ
~m,n+1 = JMKΓ

~m,n,

Jifz(M,P,L)KΓ
~m,n =

∑
(~m0,~m1) s.t.
~m0+~m1=~m

(
JMKΓ

~m0,0
· JP KΓ

~m1,n
+

(∞∑
k=1

JMKΓ
~m0,k

)
· JLKΓ

~m1,n

)
.

Fig. 3. Explicit characterizations of the interpretation of some terms. We suppose ~m ∈ !Γ, m′ ∈ !A, b ∈ B, n ∈ N.

Notice that 〈~ϕ, ψ〉;!JM ′KΓ,x:C = 〈~ϕ ;!JMKΓ, ψ〉;!Eval, hence
we conclude by Lemma V.3 and the fact that ML

1→M ′[L/x].
In case M = LP then there exists a type C such that

Γ ` L : C → B and Γ ` P : C. By induction hypoth-
esis we have ~ϕ ;!JLKΓ CC→B L, and ~ϕ ;!JP KΓ CC P . Hence
〈~ϕ ;!JLKΓ, ~ϕ ;!JP KΓ〉;!EvalCBLP and we conclude remarking
that 〈~ϕ ;!JLKΓ, ~ϕ ;!JP KΓ〉;!Eval = ~ϕ ;!JMKΓ and LP = M .

In case M = YL, then the induction hypothesis gives
~ϕ ;!JLKΓ CB→B L. By induction on n one establishes that
~ϕ ;!fixn(JLKΓ) CB L(YL), where the base of induction fol-
lows from Lemma V.2(i). From Lemma V.2(iii) we then get∨
n∈N ~ϕ ;!fixn(JLKΓ) CB L(YL) and since M

1→ L(YL)
we get

∨
n∈N ~ϕ ;!fixn(JLKΓ) CB M , by Lemma V.3(i). We

conclude by remarking that
∨
n∈N ~ϕ ;!fixn(JLKΓ) = ~ϕ ;!JMKΓ.

The cases M = ifz(M ′, L, P), M = predL and M =
succL follow straightforwardly using Lemma V.4.

If M = L or P , then by induction hypothesis ~ϕ ;!JLKΓCAL
and ~ϕ ;!JP KΓ CA P . Since M

1→ L and M
1→ P , we use

Lemma V.3(ii) to get ~ϕ ;!JMKΓ = ~ϕ ;!JLKΓ + ~ϕ ;!JP KΓCAM .
The case M = pL is similar.

Theorem V.6 (Adequacy). For every closed term M of type
int and n ∈ N we have JMKn = w(M⇒n)

Proof: From Corollary IV.14 and Proposition V.5.

A. Failure of Full Abstraction

We now show that, for every choice of R, the model RΠ
!

is not fully abstract for PCFR — it does not capture exactly
the observational pre-order on terms induced by R.

Let C Γ,A
B be the set of contexts Q mapping terms M of type

A in Γ, into terms Q[M] of type B in the empty environment.

Definition V.7 (Observational pre-order). Given Γ ` M : A
and Γ ` P : A, define

M vΓ P ⇐⇒ ∀Q ∈ C Γ,A
int ,w(Q[M]⇒0) � w(Q[P]⇒0).

Let ≡Γ be the equivalence induced by vΓ.

Remark that the numeral 0 chosen for testing the equality
is not significant. Indeed, from a context Q semi-separating
M and P , i.e. such that w(Q[M] ⇒ 0) 6� w(Q[P] ⇒ 0),
one can define the context Q′[−] : = succn(Q[−]) satisfying
w(Q′[M]⇒n) 6� w(Q′[P]⇒n).

Remark V.8. By structural induction it is possible to show that
JMKΓ � JP KΓ entails JQ[M]K � JQ[P]K, for all Q ∈ C Γ,A

int .

The model RΠ
! would be (inequationally) fully abstract if,

for all terms M,P : JMKΓ � JP KΓ if and only if M vΓ P .
As a corollary of the adequacy, we get the ‘only if’ direction.

Corollary V.9. If JMKΓ � JP KΓ, then M vΓ P .

We now show that the other implication does not hold. Let

Ξ : =λyint.∞0, Υ : =λyint.(∞0 or ifz(y, 0,Ω)). (1)

where Ω is defined in Example IV.2 and ∞ in Section II-D.
Both terms have type int → int. By using the rules of

Figure 3 one can easily compute their interpretations:
• JΞK[],0 = ∞ and JΞKm,n = 0 otherwise,
• JΥK[],0 = ∞, JΥK[0],0 = 1 and JΥKm,n = 0 otherwise.

Note that JΞK ≺ JΥK, indeed JΞK[0],0 = 0 ≺ 1 = JΥK[0],0.
However, the two terms are observationally equivalent, as
proven in Proposition V.11. The reasoning is standard and uses
the logical relation CA (Definition V.1) to shrink the set of the
contexts observing the operational behaviour of Ξ and Υ.

Lemma V.10. We have JΥKCint→int Ξ.

Proof: Let ϕ ∈ RN and P be a closed term of type int.
Since ΞP

1→ ∞0
∞→ 0 and ∞ is the top element, we have

w(ΞP⇒0) = ∞ � (〈JΥK, ϕ〉;!Eval)0.
For n > 0 we have JΥKm,n = 0, hence (〈JΥK, ϕ〉;!Eval)n =∑
m=[n1,...,nk]JΥKm,n ·

∏k
i=1 ϕni = 0 � w(ΞP⇒n).

So we obtain 〈JΥK, ϕ〉;!Eval Cint ΞP and since ϕ and P
are arbitrary, we conclude JΥKCint→int Ξ.

Proposition V.11. Υ and Ξ are observationally equivalent.

Proof: For any context Q ∈ C int→int
int and closed term M

of type int → int, we have (λxint→int.Q[x])M
1→ Q[M].

Therefore M v M ′ if and only if w(LM⇒0) � w(LM ′⇒
0), for every closed term L : (int→ int)→ int.

From Proposition V.5 we get JLKC(int→int)→int L, hence
by Lemma V.10 and Theorem V.6, we obtain w(LΥ⇒ 0) =
JLΥK0 = (〈JLK, JΥK〉;!Eval)0 � w(LΞ⇒0). This gives Υ v
Ξ, the converse follows by Corollary V.9 and JΞK � JΥK.

This is even a counterexample to equational full abstraction
as we found two terms Ξ,Υ such that JΞK 6= JΥK but Ξ ≡ Υ.

Remark V.12. Counterexample (1) can be rephrased without
using scalar multiplication as soon as R is such that ∞ =∑
n∈N 1+ · · ·+1 (n times). (This is the case for all semirings

in Example II.7.) Indeed, under this hypothesis, the term Ψ has
the same observational and denotational semantics of ∞0.

VI. APPLICATIONS

In this section we show how, choosing appropriate continu-
ous semirings R, it is possible to capture semantically several
quantitative operational properties of programs.

We analyse PCFor, the restriction of PCFR obtained by
forbidding the rule pM in the grammar of Definition IV.1, so
that the weight of any reduction sequence is 1. This has a
natural translation into PCFR, of course, since it is merely
a restriction of that language. Here we shall see that other
translations, obtained by instrumenting PCFor terms with
elements of R using the pM rule, allow us to refine the
semantics to various quantitative purposes. Thus PCFR is
used as a semantic metalanguage, capable of describing a
range of different quantitative models of PCFor.

A. May/Must Non-Deterministic Convergence

The most basic behaviour to observe is whether a PCFor

program (closed term of type int) M may-converges to a
numeral n, that is whether there exists a reduction sequence
from M to n. (For instance Ψ may-converges to 0, while Ω
does not.) To observe such a behaviour it is enough to consider
the simplest (non-trivial) continuous semiring, that is the
Boolean semiring B (Example II.7.1). Theorem V.6 specializes
to the following characterization of may-convergence.

Corollary VI.1. For every program M of PCFor, JMKBn = t
if and only if M may-converges to n.

Note that BΠ
! is isomorphic to the category MRel, known

as the relational semantics. Therefore, this first result is not
very surprising as MRel has been proved to characterize may-
convergence for a resource sensitive extension of PCFor [18].

Starting from the standard semiring N (Example II.7.1)
we already get a much finer observation on programs. Indeed
w(M⇒n) becomes equal to the number of paths in M⇒n.
This means that NΠ

! is able to compare programs depending
on how many reduction sequences lead to a certain numeral.

Corollary VI.2. For every program M of PCFor, JMKNn is
the number of reduction sequences from M to n.

For instance, we have JΨKN0 =∞ and JΦ(1 or 1)KN0 = 2,
so NΠ

! separates the two terms, while BΠ
! gives the same

interpretation to both.
The characterization of must-convergence (i.e. the conver-

gence to a numeral n regardless of the erratic choices taken
during the evaluation) requires a more complex translation of
PCFor into PCFN , allowing detection of potentially infinite
reductions. For instance, the programs Φ1 or Ω and Φ1 have
the same interpretation for any choice of R (Example IV.13),
but the first term is not must-convergent while the second is.

Let us consider the translation (−)◦Γ mapping judgments
Γ `PCFor − : A into judgments Γ `PCFN − : A which is
generated by (assuming M of type B → B and L of type B,
with B = B1 → · · · → Bk → int):

(YM)◦Γ : =Y(λxB .((M)◦Γx or λyB1
1 . . . λyBkk .0)),

(λxC .L)◦Γ : =λxC .((L)◦Γ;x:C or λyB1
1 . . . λyBkk .0),

where generated by means that (−)◦Γ commutes with all
other constructors of PCFor. From now on we will consider
PCFor programs, so the environment will be omitted.

Lemma VI.3. For all programs M,P of PCFor, we have
M →` P if and only if one of the following conditions holds:

• ` = fix and M◦ 1→fix
1→β

1→orl P
◦,

• ` = β and M◦ 1→β
1→orl P

◦,
• ` /∈ {fix, β} and M◦ 1→` P

◦.

Lemma VI.4. For every PCFor program M , there exists a
reduction sequence from M◦ to n, for some n ∈ N.

As a first corollary we obtain a characterization of strong
convergence — a PCFor program M is strongly converging
if there is no infinite reduction sequence starting from M .

Corollary VI.5. A PCFor program M is strongly converging
if and only if

∑
n∈NJM◦KNn <∞.

For instance, Ω◦ = Y(λxint.((λxint.(x or 0))x or 0)),
and

∑
n∈NJΩ◦KNn =∞ as JΩ◦KN0 =∞.

Finally, from Corollaries VI.1 and VI.5, we obtain the
following characterization of must-convergence.

Corollary VI.6. A PCFor program M must-converges to a
numeral n if and only if

∑
k∈NJM◦KNk <∞, JMKNn > 0 and

JMKNk = 0 for all k 6= n.

B. Probabilistic Convergence

Let us now determine the probability that a PCFor program
reduces to a numeral n, supposing that the probability of
applying orl or orr when firing an or-redex is uniformly
distributed. In the spirit of [14], this amounts to define its
operational semantics through a Markov system having the
terms as states, and the normal forms as absorbing states.

The Markov matrix describing such a process is given by:

RedM,P : =

1 if P = M is a normal form,
1 if M →` P with ` /∈ {orl, orr},
1 if M →orl P and M →orr P ,
0.5 if M →orl P but M 6→orr P or viceversa,
0 otherwise.

Note that Red is a stochastic matrix (i.e.
∑
P RedM,P = 1),

and that RedM,P describes the probability of evolving from M
to P in one ers. Similarly, the k-th fold matrix product Redk,
which is still a stochastic matrix, gives the evolution of the
system after k steps. Since n is absorbing, RedkM,n is mono-
tone in k and bounded by 1, so Red∞M,n : = supk∈N RedkM,n

is well-defined and gives the probability that M reduces to n
in finitely many elementary reduction steps.

To capture this probabilistic feature in our semantic frame-
work, consider the semiring P (Example II.7.5) and the
translation (−)◦ : PCFor → PCFP generated by:

(M or P)◦ : = (0.5 M◦) or (0.5 P ◦).

Note that a reduction step M →` P can be simulated by
M◦

1→` P
◦ when ` is not an or-rule, otherwise we need two

steps M◦ 1→`
0.5−−→scal P

◦.

Lemma VI.7. For every program M of PCFor and n ∈ N,
we have w(M◦⇒n) = Red∞M,n.

As a corollary we get the following result, restating for PΠ
!

the adequacy theorem proved in [14] for the category PCoh!

of probabilistic coherence spaces and entire functions.

Corollary VI.8. For every program M of PCFor, JM◦KPn =
Red∞M,n which is the probability that M reduces to n.

For example, J(Φ1)◦KP = JΨ◦KP , both giving 1 on the web
element 0. Notice also that, omitting the translation, JΦ1KP0 =
1 while JΨKP0 =∞.

The two models PΠ
! and PCoh! share the same interpre-

tations on probabilistic programs (i.e. on the image of the
translation), since there is a faithful forgetful functor from
PCoh! to PΠ

! which acts like the identity on morphisms.
These categories however differ in a crucial property, namely
the fact that PCoh! is well-pointed, while PΠ

! is not (the
counterexample being given by the maps JΞK and JΥK).

C. Resource Analysis.

We wish now to determine the minimum number of times
that a β- or a fix-redex is contracted during an evaluation of
a PCFor program M (best case analysis), or the maximum
number (worst case analysis). These are indeed the two
most critical redexes from the point of view of resource
consumption, as their contraction may increase the size of M .

The model built from the tropical semiring T (Exam-
ple II.7.3) computes the best case analysis, through the trans-
lation (−)◦ : PCFor → PCFT generated by:

(λxA.M)◦ : =λxA.1M◦, (YM)◦ : =Y(1M◦).

Recall that in T the product is + and 1 : = 0, so 1 6= 1.

Lemma VI.9. For all PCFor terms M,P we have M →` P

if and only if either ` ∈ {β, fix} and M◦
0−→`

1→scal P
◦ or

` /∈ {β, fix} and in that case M◦ 0→` P
◦.

Therefore, given a reduction sequence π ∈ M◦ ⇒ n,
its weight w(π) gives the number of β- and fix-redexes
contracted in π. Since the addition of T is min (with respect
to the standard order on N), we have the following corollary.

Corollary VI.10. For every program M of PCFor, JM◦KTn
is the minimum number of β- and fix- redexes reduced in a
reduction sequence from M to n.

For the worst case analysis, consider the model built from
the arctic semiring A (Example II.7.4), where the addition is
max, and the translation (−)◦ : PCFor → PCFA is defined
as before. An analogous reasoning gives the next corollary.

Corollary VI.11. For every program M of PCFor, JM◦KAn
is the maximum number of β- and fix- redexes reduced in a
reduction sequence from M to n.

For instance, we have J(Φ((λxint.x)0))◦KT > J(succΨ)◦KT ,
namely J(Φ((λxint.x)0))◦KT1 = 3 and J(succΨ)◦KT1 = 2,
while J(Φ((λxint.x)0))◦KA < J(succΨ)◦KA, in fact
J(Φ((λxint.x)0))◦KA1 = 3 and J(succΨ)◦KA1 =∞.

Acknowledgements. Work partly supported by ANR Coquas
12JS0200601 and CNRS chaire “Logique linéaire et calcul”.

REFERENCES

[1] R. Milner and C. Strachey, A Theory of Programming Language Seman-
tics. Chapman and Hall, London, 1976.

[2] G. D. Plotkin, “LCF considered as a programming language,” Theor.
Comput. Sci., vol. 5, no. 3, pp. 223–255, 1977.

[3] R. Milner, “Fully abstract models of typed lambda-calculi,” Theoretical
Computer Science, vol. 4, pp. 1–22, 1977.

[4] A. M. Pitts, “Operationally-based theories of program equivalence,” in
Semantics and Logics of Computation, P. Dybjer and A. M. Pitts, Eds.
Cambridge University Press, 1997, pp. 241–298.

[5] A. Ahmed, “Step-indexed syntactic logical relations for recursive and
quantified types,” in Proceedings of the 15th European conference
on Programming Languages and Systems, ser. ESOP’06. Berlin,
Heidelberg: Springer-Verlag, 2006, pp. 69–83. [Online]. Available:
http://dx.doi.org/10.1007/11693024 6

[6] E. Moggi, “Notions of computation and monads,” Information and
Computation, vol. 93, pp. 55–92, 1991.

[7] M. Kwiatkowska, “On quantitative software verification,” in Proc. 16th
International SPIN Workshop, ser. LNCS, C. Pasareanu, Ed., vol. 5578.
Springer, 2009, pp. 2–3.

[8] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in Proc. 23rd International Confer-
ence on Computer Aided Verification (CAV’11), ser. LNCS, G. Gopalakr-
ishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 585–591.

[9] K. Chatterjee, L. Doyen, and T. A. Henzinger, “Quantitative languages,”
ACM Trans. Comput. Logic, vol. 11, no. 4, pp. 23:1–23:38, Jul. 2010.
[Online]. Available: http://doi.acm.org/10.1145/1805950.1805953

[10] D. Sands, “Operational theories of improvement in functional languages
(extended abstract),” in Functional Programming, ser. Workshops in
Computing, R. Heldal, C. K. Holst, and P. Wadler, Eds. Springer,
1991, pp. 298–311.

[11] D. R. Ghica, “Slot games: a quantitative model of computation,” in
Proc. of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’05), J. Palsberg and M. Abadi, Eds.
ACM, 2005, pp. 85–97.

[12] J.-Y. Girard, “Linear logic,” Th. Comp. Sc., vol. 50, pp. 1–102, 1987.
[13] ——, “Normal functors, power series and lambda-calculus,” Ann. Pure

Appl. Logic, vol. 37, no. 2, pp. 129–177, 1988.
[14] V. Danos and T. Ehrhard, “Probabilistic coherence spaces as a model of

higher-order probabilistic computation,” Inf. Comput., vol. 209, no. 6,
pp. 966–991, 2011.

[15] T. Ehrhard, M. Pagani, and C. Tasson, “The Computational Meaning
of Probabilistic Coherence Spaces,” in Proceedings of the 26th Annual
IEEE Symposium on Logic in Computer Science (LICS 2011), ser. IEEE
Computer Society Press, M. Grohe, Ed., 2011, pp. 87–96.

[16] T. Ehrhard, “Finiteness spaces,” Math. Structures Comput. Sci., vol. 15,
no. 4, pp. 615–646, 2005.

[17] ——, “On Köthe sequence spaces and linear logic,” MSCS, vol. 12, pp.
579–623, 2002.

[18] J. Laird, G. Manzonetto, and G. McCusker, “Constructing differential
categories and deconstructing categories of games,” Information and
Computation, vol. 222, no. C, pp. 247–264, 2013.

http://dx.doi.org/10.1007/11693024_6
http://doi.acm.org/10.1145/1805950.1805953

[19] V. Danos and R. Harmer, “Probabilistic game semantics,” ACM Trans-
actions on Computational Logic, vol. 3, no. 3, pp. 359–382, Jul. 2002.

[20] Y. Lafont, “Logiques, catégories et machines,” Ph.D. dissertation, Uni-
versité Paris 7, 1988.

[21] P.-A. Melliès, “Categorical semantics of linear logic,” Panoramas et
Synthèses, vol. 27, 2009.

[22] P.-A. Melliès, N. Tabareau, and C. Tasson, “An explicit formula for the
free exponential modality of linear logic,” in Int. Coll. Aut., Lang. and
Prog. (ICALP’09), ser. LNCS, vol. 5556. Springer, 2009, pp. 247–260.

[23] M. Droste and W. Kuich, “Semirings and formal power series,” in
Handbook of Weighted Automata, M. Droste, W. Kuich, and H. Vogler,
Eds. Springer-Verlag, 2009, ch. 1.

[24] I. Guessarian, Algebraic Semantics, ser. Lecture Notes in Computer
Science. Springer, 1981, vol. 99.

[25] S. Mac Lane, Categories for the Working Mathematician. Berlin:
Springer-Verlag, 1971.

[26] H. Barendregt, The Lambda-Calculus, its Syntax and Semantics, ser.
Stud. Log. F. Math., vol. 103. North-Holland, 1984.

[27] R. Amadio and P.-L. Curien, Domains and Lambda Calculi, ser. Cam-
bridge tracts in theoretical computer science. Cambridge University
Press, Jul. 1998.

TECHNICAL APPENDIX

This technical appendix is devoted to provide some proofs
omitted in the paper.

SECTION II
We start by discussing the requirement of an smcc C with

countable biproducts in Proposition II.3. Indeed, the recipe
in [22] works under the hypotheses that C has countable
products, and the tensor product distributes over them.

We remark that this is always the case in presence of
countable biproducts.

Remark VII.1. In every smcc C, tensor has a right adjoint
and hence preserves all colimits. In the case of countable
coproducts, for instance, we have the following chain of
natural isomorphisms:

C(B ⊗
∐
i∈I Ai, C) ∼= C(

∐
i∈I Ai, B(C)

∼=
∏
i∈I C(Ai, B(C)

∼=
∏
i∈I C(B ⊗Ai, C)

∼= C(
∐
i∈I B ⊗Ai, C)

By taking C =
∐
i∈I B⊗Ai we obtain a natural isomorphism

B ⊗
∐
i∈I

Ai ∼=
∐
i∈I

B ⊗Ai.

Moreover the tensor preserves the initial object and the injec-
tions, so we conclude that tensor distributes over countable
coproducts.

In presence of countable biproducts, the reasoning above
gives B⊗

∏
i∈I Ai

∼=
∏
i∈I B⊗Ai. Hence, to prove that tensor

distributes over products, it is left to check that the tensor does
indeed preserve the terminal object and the projections.

As every terminal object is also initial, it is preserved as
well as zero morphisms. The projection from A×B = A⊕B
to, say, A is given by the copairing [id, 0], and then taking
tensor with an object C gives you

idC ⊗ [id, 0] : C ⊗ (A⊕B)→ C ⊗A

Precomposing this morphism with the isomorphism gives

[idC ⊗ idA, idC ⊗ 0] : C ⊗A+ C ⊗B → C ⊗A

because ⊗ preserves coproducts, and this map is [id, 0], i.e.
the projection we were looking for.

The following proposition is folklore, we give here some
details of the proof.

Proposition II.3 (Folklore, cf. [22]). An smcc C with count-
able biproducts is a Lafont category whenever:
(a) there is the equalizer (An, eqA

n

) of the n! symmetries of
the n-fold tensor A⊗n, for every n ∈ N and object A;

(b) such an equalizer is preserved by the tensor product, i.e.,
for every B, (An ⊗ B, eqAn ⊗ idB) is the equalizer of
the diagram made of all morphisms σ ⊗ idB , where σ a
symmetry of A⊗n.

In particular the free commutative comonoid is
!A : =

∏
n∈NA

n, with multiplication and unit given by:

contrA : = 〈〈πn+m ; cn,m〉m∈N ;∼=〉n∈N ;∼=, weakA : = π0,

where ∼= is the distributivity map and cn,m is the unique
morphism making this diagram commute:

A⊗(n+m) A⊗n ⊗A⊗m

An+m cn,m //

eqA
n+m

OO

An ⊗Am
eqA

n
⊗eqA

m

OO (2)

The dereliction is given by derA : =π1.

Proof: By easy calculations exploiting the axioms of
the distributivity isomorphism, one can check the follow-
ing equations giving that (!A,weak, contr) is a commutative
comonoid:

contr ; contr⊗ id = contr ; id⊗ contr,

contr = contr ;σ,

contr ; id⊗weak = ρ,

contr ; weak⊗ id = λ,

where λ and ρ are, respectively, the left identity and the right
identity of the monoidal category and σ is a tensor symmetry.
To prove the freeness, we take a commutative comonoid
(B, ν, µ) and prove that for every map ϕ ∈ C(B,A), there is
a unique comonoid morphism ϕ† satisfying ϕ†; derA = ϕ.

Define the n-ary multiplication µn ∈ C(B,B⊗n) by induc-
tion on n ∈ N as follows: µ0 : = ν and µn+1 : =µ ;(µn ⊗ id).
By induction on n one can prove that this diagram commutes

B

µn+m
**

µ // B ⊗B
µn⊗µm// B⊗n ⊗B⊗m

B⊗(n+m)

(3)

Namely, in the case n = n′ + 1, the induction hypothesis ap-
plied to µn

′+m gives µn+m = µ ;((µ ;(µn
′⊗µm))⊗id). Then,

by the functoriality of ⊗ and the associativity we transform
the morphism into µ ;((µ ;(µn

′ ⊗ id))⊗ µm) = µ ;(µn⊗ µm).
Now, let us define ϕ†. By the commutativity of µ, the mor-

phism µn ;ϕ⊗n ∈ C(B,A⊗n) equalizes the n! symmetries of

!A weak

''
1

B

ϕ†

OO

ν 77

(a)

!A
contr // !A⊗ !A

B

ϕ†

OO

µ // B ⊗B

ϕ†⊗ϕ†

OO

(b)

!A
der // A

B

unique ϕ†

OO

ϕ

>>

(c)

Fig. 4. Diagrams to be satisfied by the morphism ϕ† in the proof of Proposition II.3

A⊗n, hence there exists a unique morphism ϕ∼n such that the
following diagram commutes:

An
eqA

n

// A⊗n

B⊗n ϕ⊗n

44

B

unique ϕ∼n
OO

µn
44

(4)

We set ϕ† : =〈ϕ∼n〉n∈N. Checking the diagrams in Fig-
ures 4(a) and 4(c) is trivial, since ϕ† ; weak = ϕ0 and
ϕ† ; der = ϕ1. Figure 4(b) requires more effort.

First, notice that proving the diagram in Figure 4(b) is
equivalent to prove the commutation of the following one:

!A⊗ !A
〈πn ; eqA

n
〉n⊗〈πm ; eqA

m
〉m // ∏

nA
⊗n ⊗

∏
mA

⊗m

!A

contr
>>

B ⊗B

ϕ†⊗ϕ†cc

B
ϕ†

aa

µ

::

In fact, the right-hand side (as well as the left-hand side) of
the diamond equalizes the group of the endomorphisms of∏
nA
⊗n ⊗

∏
mA

⊗m of the shape 〈πn ;σn〉n ⊗ 〈πm ;σm〉m,
with σn a symmetry of A⊗n. So by the universal property
of 〈πn ; eqA

n〉n ⊗ 〈πm ; eqA
m〉m (which are the equalizers

of such morphisms, since tensor symmetry equalizers are
preserved by tensors and cartesian products) we have that
there is a unique morphism that composed with 〈πn ; eqA

n〉n⊗
〈πm ; eqA

m〉m gives such a side of the diagram. If then the
diagram commutes, we conclude ϕ† ; contr = µ ;ϕ† ⊗ ϕ†.

On one side we have:

ϕ† ; contr ;〈πn ; eqA
n

〉n ⊗ 〈πm ; eqA
m

〉m
= ϕ† ;〈〈πn+m ; cn,m ;(eqA

n

⊗ eqA
m

)〉m ;∼=〉n ;∼=
= ϕ† ;〈〈πn+m ; eqA

n+m

〉m ;∼=〉n ;∼= by (2)

= 〈〈ϕ∼(n+m) ; eqA
n+m

〉m ;∼=〉n ;∼=
= 〈〈µn+m ;ϕ⊗(n+m)〉m ;∼=〉n ;∼= by (4)

On the other side we have:

µ ;(ϕ† ⊗ ϕ†) ;〈πn ; eqA
n

〉n ⊗ 〈πm ; eqA
m

〉m
= µ ;〈ϕ∼n ; eqA

n

〉n ⊗ 〈ϕ∼m ; eqA
m

〉m
= µ ;〈µn ;ϕ⊗n〉n ⊗ 〈µm ;ϕ⊗m〉m by (4)

= 〈〈µ ;(µn ⊗ µm) ;ϕ⊗(n+m)〉m ;∼=〉n ;∼=
= 〈〈µn+m ;ϕ⊗(n+m)〉m ;∼=〉n ;∼= by (3)

We conclude that the diagram commutes.
Concerning the unicity, let ξ be a comonoid morphism

C(B, !A) such that ξ ; derA = ϕ, and let us prove that ξ = ϕ†.
Being !A =

∏
nA

n it is enough to prove ξn : = ξ ;πn = ϕ∼n

for any n ∈ N. We do induction on n. The cases n = 0, 1
follow immediately from diagrams 4(a), 4(c), which should
hold replacing ϕ† with ξ (recall weak = π0 and der = π1).
Let n > 1, we prove ξn = ϕ∼n by using the universality of
ϕ∼n with respect to diagram (4).

Let n = n1 + n2, for n1, n2 > 0. We have

µn1+n2 ;(ϕ⊗n1 ⊗ ϕ⊗n2)

= µ ;((µn1 ;ϕ⊗n1)⊗ (µn2 ;ϕ⊗n2)) by (3)

= µ ;((ϕ∼n1 ; eqA
n1

)⊗ (ϕ∼n2 ; eqA
n2

)) by (4)

= µ ;((ξn1
; eqA

n1
)⊗ (ξn2

; eqA
n2

)) by IH

= µ ;(ξ ⊗ ξ) ;((πn1 ; eqA
n1

)⊗ (πn2 ; eqA
n2

)) by def. ξni
= ξ ; contr ;((πn1 ; eqA

n1
)⊗ (πn2 ; eqA

n2
)) by Fig. 4(b)

= ξ ;πn1+n2 ; cn1,n2 ;(eqA
n1 ⊗ eqA

n2
) by def. contr

= ξn1+n2
; eqA

n1+n2 by (2).

Hence, diagram 4 commutes replacing ϕ∼n with ξn and we
conclude the equality of the two morphisms.

Lemma II.4. For every ϕ ∈ C(A,B), we have that !ϕ =
〈πn ;ϕn〉n∈N, where ϕn is the unique morphism commuting

A⊗n
ϕ⊗n // B⊗n

An

eqA
n

OO

ϕn // Bn

eqB
n

OO

which exists by applying the universal property of the equalizer
(Bn, eqB

n

) to the morphism eqA
n

;ϕ⊗n.

Proof: By definition !ϕ : =(derA ;ϕ)†. Clearly derA ;ϕ =
〈πn ;ϕn〉n ; derB . To conclude, we need to show that
〈πn ;ϕn〉n is a comonoid morphism. To do that it is enough
to check that πn ;ϕn commutes the diagram (4) (taking
ϕ∼n = πn ;ϕn). Such a diagram is proved as follows:

Bn
eqB

n

// B⊗n

An

ϕn

OO

eqA
n

// A⊗n

ϕ⊗n
88

(!A)⊗n
(π1)⊗noo

(der ;ϕ)⊗n

OO

!A

πn

OO

contrn

44

Where the topmost trapezium is given by the definition of ϕn,
the triangle at its right is just the functoriality of the n-ary ⊗
and the definition der = π1. Finally, the triangle at bottom is
proven by induction on n. The induction step (n = n′ + 1) is
as follows: contrn ;(π1)⊗n is equal to

contr ;π1 ⊗ (contrn
′
;(π1)⊗n

′
)

= contr ;π1 ⊗ (πn
′
; eqA

n′

)

= 〈〈πk+h ; ck,h〉k ; '〉h ; ' ;π1 ⊗ (πn
′
; eqA

n′

)

= 〈〈πk+h ; ck,h〉k ; '〉h ; ' ;(π1 ⊗ πn
′
) ;(eqA ⊗ eqA

n′

)

= π1+n′ ; c1,n
′
; eqA ⊗ eqA

n′

= πn ; eqA
n

.

SECTION III

Proposition III.3. RΠ, endowed with the operations and the
ordering of Definition III.2, is a linear continuous R-category.

Proof: It is straightforward to check that RΠ(A,B) is
a continuous module over R, that all morphisms are (pre-
and post-) linear. The only delicate part is to prove that the
composition is continuous.

Indeed, given two sets I, J of indices and two families ϕi ∈
RΠ(A,B), ψj ∈ RΠ(B,C) of morphisms we have:

(
∨
i∈I

ϕi ;
∨
j∈J

ψj)a,c =
∑
b∈B

(∨
i∈I

(ϕi)a,b ·
∨
j∈J

(ψj)b,c

)
=
∑
b∈B

∨
i∈I

∨
j∈J

(
(ϕi)a,b · (ψj)b,c

)
=
∨
i∈I

∨
j∈J

(∑
b∈B

(ϕi)a,b · (ψj)b,c
)

=
(∨
i∈I

∨
j∈J

(ϕi ;ψj)
)
a,c
.

where the first equality follows from the definition of compo-
sition, the second from the continuity of the product, the third
from continuity of indexed sum and the last by definition.

Lemma III.5. For every n ∈ N and object A, the equalizer
(An, eqA

n

) of the symmetries of A⊗n exists and is defined by

An : =Mn(A), eqA
n

m,(a1,...,an) : = δm,[a1,...,an].

These equalizers are preserved by the tensor products.

Proof: Clearly eqA
n

is an equalizer of the tensor symme-
tries that is, for every symmetry σ, we have eqA

n

;σ = eqA
n

.
Now, take any set B and matrix ϕ ∈ RΠ(B,A⊗n) equalizing
the tensor symmetries. We should prove that there exists a
unique map ϕ† such that the following diagram commutes

An
eqA

n

// A⊗n
σ1 //

σn!

// A⊗n

B

unique ϕ†

OO

ϕ

<<

This means that for every b ∈ B, and (a1, . . . , an) ∈ A⊗n, we
have to show that (ϕ† ; eqA

n

)b,(a1,...,an) = ϕb,(a1,...,an). By
the definition of eqA

n

, the equation reduces to ϕ†b,[a1,...,an] =

ϕb,(a1,...,an) and this defines univocally ϕ†. In particular,
notice that, since by hypothesis ϕ equalizes the tensor sym-
metries, the definition of ϕ†b,[a1,...,an] is independent from
the chosen enumeration of the multiset [a1, . . . , an], i.e.
ϕb,(a1,...,an) = ϕb,(aσ(1),...,aσ(n)) for every permutation σ.

The following lemma is useful to prove that a morphism in
RΠ

! is linear.

Lemma VII.2. Let ϕ ∈ RΠ
! (A,B), such that for all m ∈ !A,

and b ∈ B we have:

ϕm,b 6= 0 entails that m is a singleton.

Then ϕ is linear.

Proof: AsRΠ
! is post-linear, it is sufficient to check that ϕ

is pre-linear. Let ψ ∈ RΠ
! (C,A) and p ∈ R. Since ϕ[a1,...,an],b

is different from 0 only when n = 1, we have

(pψ ;ϕ)m,b =
∑
a∈A ϕ[a],b · pψm,a

= p
∑
a∈A ϕ[a],b · ψm,a (by distributivity)

= (p(ψ ;ϕ))m,b.

Similarly, for all ψ1, ψ2 ∈ RΠ
! (C,A) we have:

((ψ1 + ψ2) ;ϕ)m,b =
∑
a∈A ϕ[a],b · ((ψ1)m,a + (ψ2)m,a)

=
∑
i=1,2

∑
a∈A ϕ[a],b · (ψi)m,a

= ((ψ1 ;ϕ) + (ψ2 ;ϕ))m,b

The fact that 0 ;ϕ = 0 is straightforward to verify.

Theorem III.7. The category RΠ
! is a post-linear continuous

R-ccc. Moreover N is linear.

Proof: It is left to check that pairing and currying are con-
tinuous, and this is done like in the proof of Proposition III.3,
while the linearity of currying follows immediately from its
definition. For the linearity of N just use Lemma VII.2.

SECTION IV

An easy property of PCFR, briefly mentioned in Fig-
ure 1(a), is the unicity of the type derivation.

Lemma VII.3. Given an environment Γ and a term M , there
exists at most one type A such that Γ ` M : A, and the
corresponding derivation is unique.

Proof (sketch): By induction on the length of a derivation
Π of Γ ` M : A, splitting into cases according to the last
typing rule. In case the last rule of Π is a→-introduction rule,
one notices that the type annotation of the bound variable is
crucial to univocally define the context of the premise.

Lemma IV.11 (Substitution). Γ, x : A ` M : B and Γ ` P :
A entail JM [P/x]KΓ = 〈Γ, JP KΓ〉 ; JMKΓ,x:A.

Proof: By structural induction on M . We use the continu-
ity of composition in the case M = YL, and its post-linearity
in the cases M = pL and M = L1 or L2.

Proposition IV.12 (Soundness). For every term M which is
not a normal form, we have:

JMKΓ =
∑

M
p→`L

pJLKΓ.

Proof: Note that the sum at the right-hand side has two
summands when M is an or-redex, and just one in the other
cases. The proof is by structural induction on the derivations
of M

p→ L.
The base cases are the rules in Figure 1(b). These cases

are treated like in regular PCF. For instance, when M =
(λx.M ′)P , its only contractum is L = M ′[P/x] and the
weight p of the reduction step is 1. Therefore J(λx.M ′)P KΓ =
JM ′[P/x]KΓ follows as usual from Lemma IV.11:

J(λx.M ′)P KΓ = 〈Λ(JM ′KΓ,x:A), JP KΓ〉 ; Eval
= 〈Γ, JP KΓ〉 ; (Λ(JM ′KΓ,x:A)×A) ; Eval
= 〈Γ, JP KΓ〉 ; JM ′KΓ,x:A = JM ′[P/x]KΓ.

In case M = YP it only reduces to L =
P (YP) with weight 1. We then have JP (YP)KΓ =
〈JP KΓ, JYP KΓ〉 ; Eval = 〈JP KΓ,

∨
n∈N fixn(JP KΓ)〉 ; Eval. By

the continuity of pairing and composition this is equal to∨
n∈N

(〈JP KΓ,fixn(JP KΓ)〉 ; Eval) =
∨
n∈N

fixn+1(JP KΓ) = JYP KΓ.

The cases M = M1 orM2 and M = pP follow immediately.
Concerning the contextual rules of Figure 1(c), the claim

follows from the induction hypothesis by using the fact that
that N is linear and Eval is linear in its first component (Re-
mark II.11). For example, suppose M = M ′P and M ′ 1→ L1

and M ′ 1→ L2, so that M has exactly two contracta L1P and
L2P , each reached with weight 1. Then we have JM ′P KΓ =
〈JM ′KΓ, JP KΓ〉 ; Eval which is equal, by induction hypothesis,
to 〈JL1KΓ + JL2KΓ, JP KΓ〉 ; Eval = 〈JL1KΓ, JP KΓ〉 ; Eval +
〈JL2KΓ, JP KΓ〉 ; Eval = JL1P KΓ + JL2P KΓ.

SECTION V

Lemma V.2. For every closed term M of type A, we have:
(i) 0CAM ,

(ii) if ψ � ϕCAM , then ψ CAM ,
(iii) if ϕi CAM for all i ∈ I , then

∨
i∈I ϕi C

AM .

Proof: By induction on the type A. The induction steps
use the linearity and the continuity of 〈−, ψ〉;!Eval. In partic-
ular, notice that continuity implies monotonicity.

Lemma V.3. Let M,Mi, P, Pi for i = 1, 2 be closed terms.
(i) If M

p→ P and ϕCA P then pϕCAM .
(ii) If M 1→orl P1 and M

1→orr P2, and ϕ1 CA P1 and
ϕ2 CA P2, then ϕ1 + ϕ2 CAM .

Proof: (i) Let A = A1 → · · · → Ak → int for some
k ∈ N and suppose, for every i ≤ k, that ψi CAi Li. Now, let

ϑ : =〈. . . 〈ϕ,ψ1〉;!Eval . . . , ψk〉;!Eval.

We have to prove that if ∀n ∈ N, ϑn � w(PL1 · · ·Lk⇒n),
then ∀n ∈ N, p · ϑn � w(ML1 · · ·Lk⇒ n). The hypothesis

M
p→ P implies ML1 · · ·Lk

p→ PL1 · · ·Lk, hence p · ϑn �
p · w(PL1 · · ·Lk⇒n) � w(ML1 · · ·Lk⇒n).

The reasoning for (ii) is analogous.

Lemma V.4. Let M,P,L be closed terms such that ϕCint M ,
ψ Cint P and ϑCint L. Then we have:

(i) 〈ϕ, 〈ψ, ϑ〉〉;!zero?Cint ifz(M,P,L),
(ii) ϕ;!predCint predM ,

(iii) ϕ;!succCint succM .

Proof: (i) We have to prove that, for all n ∈ N,
(〈ϕ, 〈ψ, ϑ〉〉;!zero?)n � w(ifz(M,P,L)⇒n). Note that

(〈ϕ, 〈ψ, ϑ〉〉;!zero?)n = ϕ0 · ψn +

∞∑
k=1

ϕk · ϑn,

so it is enough to check that w(M ⇒ 0) · w(P ⇒ n) +∑∞
k=1 w(M⇒k) · w(L⇒n) � w(ifz(M,P,L)⇒n), which

gives the statement since by hypothesis for every k > 0, n ≥ 0,
ϕk � w(M⇒k), ψn � w(P⇒n) and ϑn � w(L⇒n).

We are going to prove that, for all i ∈ N, we have

w(ifz(M,P,L)⇒n) � w(M ⇒≤i 0) · w(P⇒n) +∑∞
k=1 w(M ⇒≤i k) · w(L⇒n).

In case M is normal, then either M = 0 and both sides of the
inequality are equal to w(P⇒n), or M = j (for some j > 0)
and they are equal to w(L⇒n).

Otherwise, we proceed by induction on i.
If i = 0, then it is trivial since the right-hand side of the

inequality is equal to 0.
If i > 0, then we have

w(ifz(M,P,L)⇒n) =
∑

M
p→M ′

p ·w(ifz(M ′, P, L)⇒n) �

∑
M

p→M ′ p ·
(

w(M ′ ⇒≤i−1 0) · w(P⇒n)

+
∑∞
k=1 w(M ′ ⇒≤i−1 k) · w(L⇒n)

)
=

w(M ⇒≤i 0) ·w(P⇒n)+
∑∞
k=1 w(M ⇒≤i k) ·w(L⇒n)

where the passage from the first to the second line uses the
induction hypothesis. Such an inequality allows to conclude
using the fact that

∨
i∈N w(M ⇒≤i n) = w(M⇒n).

The proofs of (i) and (ii) are easier variants.

Corollary V.9. If JMKΓ � JP KΓ, then M vΓ P .

Proof: Consider a context Q ∈ C Γ,A
int . From Remark V.8

and JMKΓ � JP KΓ, we get JQ[M]K � JQ[P]K. By Theo-
rem V.6 we conclude w(Q[M]⇒0) � w(Q[P]⇒0).

SECTION VI
Lemma VI.3. For all programs M,P of PCFor, we have
M →` P if and only if one of the following conditions holds:

• ` = fix and M◦ 1→fix
1→β

1→orl P
◦,

• ` = β and M◦ 1→β
1→orl P

◦,
• ` /∈ {fix, β} and M◦ 1→` P

◦.

Proof: By induction on M . In the case M = (λxA.P)L,
just remark that whenever Γ, x : A ` P : B and Γ ` L : A
we have (P [L/x])◦Γ = (P)◦Γ,x:A[(L)◦Γ/x].

Lemma VI.4. For every PCFor program M , there exists a
reduction sequence from M◦ to n, for some n ∈ N.

Proof: By induction on the size of M .
If M is a numeral n, then n◦ = n and we are done.
Otherwise, there is an evaluation context E[−] (i.e. a context

capturing the rules of Figure 1(c)) such that M = E[L], for
some closed term L, and E[L]→` E[L′] is an ers where L→`

L′ follows directly from a rule of Figure 1(b). Notice that
M◦ = E◦[L◦] reduces to E◦[L′◦] by Lemma VI.3, and that
the translation preserves the property of being an evaluating
context, so E◦[−] is an evaluation context too.

The only cases where the size of E[L′] may have increased
are ` = β and ` = fix. However in these cases there exists
another reduction sequence leading to a smaller term.

For example, consider L = YP , then we have M◦ =
E◦[Y(λxB .((N)◦x:Bx or λyB1

1 . . . λyBkk .0))], which reduces
to E◦[λyB1

1 . . . λyBkk .0]. Now, since E◦[λyB1
1 . . . λyBkk .0] is

closed of type int, it must reduce to E′◦[0] for a suitable eval-
uation context E′[−]. It is easy to check that the size of E′[0]
is strictly less than the size of M and that (E′[0])◦ = E′◦[0],
so the case follows from the induction hypothesis.

The case ` = β is analogous, all other cases follow directly
from the induction hypothesis.

Corollary VI.5. A PCFor program M is strongly converging
if and only if

∑
n∈NJM◦KNn <∞.

Proof: (⇒) By Lemma VI.3 and Corollary VI.2.
(⇐) Assume M is not strongly converging, i.e. there exists

a family (Mi)i∈N such that M = M0 and Mi → Mi+1.
By Lemma VI.3 we have that M◦i reduces to M◦i+1 and by
Lemma VI.4 for every Mi there is a finite reduction to a
numeral. So, we have that

⋃
n∈N(M ⇒ n) is an infinite set

and by Corollary VI.2 we conclude
∑
nJM

◦KNn∈N =∞.

Lemma VI.7. For every program M of PCFor and n ∈ N,
we have w(M◦⇒n) = Red∞M,n.

Proof: In order to work with a bisimulation, we let
p
 `

be the reduction defined like
p→`, but merging 1→`

0.5−−→scal into
one step 0.5

 `. For every k ∈ N, we write M◦ Z⇒≤k P ◦ for
the set of -reduction sequences from M◦ to P ◦ of length
at most k. Clearly,

w(M◦⇒P ◦) = w(M◦ Z⇒ P ◦) =
∨
k∈N

w(M◦ Z⇒≤k P ◦). (5)

By induction on k, one proves the following claim.

Claim. For all k ∈ N, we have w(M◦ Z⇒≤kn) = RedkM,n.

Base of induction. By definition, Red0
M,n is the diagonal

matrix. Moreover, we have that w(M◦ Z⇒≤0 n) = δM◦,n,
which is equal to 1 if and only if M◦ = M = n. It follows
that w(M◦ Z⇒≤0n) = Red0

M,n.
Induction step. By definition, we have w(M◦ Z⇒≤k+1 n) =∑
M◦

p
 `M ′

p · w(M ′ Z⇒≤k n). Since we have a bisimulation,

for every M◦
p
 ` M

′ there is an L such that M →` L and

M ′ = L◦, so we get

w(M◦ Z⇒≤k+1 n) =
∑

M◦
p
 `L◦

p · w(L◦ Z⇒≤k n). (6)

Now, if ` is an or-rule, then we have p = 0.5 = RedM,L,
if it is not, then p = 1 = RedM,L. Note that RedM,L = 0
otherwise. From these considerations, and the induction hy-
pothesis we obtain that (6) is equal to

∑
L RedM,L ·RedkL,n

which gives the claim.
From the claim and (5), we conclude w(M◦ ⇒ n) =∨
k∈N w(M◦ Z⇒≤k n) = supk∈N RedkM,n = Red∞M,n.

Lemma VI.9. For all PCFor terms M,P we have M →` P

if and only if either ` ∈ {β, fix} and M◦
0−→`

1→scal P
◦ or

` /∈ {β, fix} and in that case M◦ 0→` P
◦.

Proof: By structural induction on M .
If M = (λx.M ′)L, then we have M◦ = (λx.1M ′◦)L◦

0→β

1M ′◦[L◦/x]
1−→scal M

′◦[L◦/x] = P ◦.
If M = YL, then we have (YL)◦ = Y(1L◦)

0→fix

1L◦(Y(1L◦))
1−→scal L

◦(Y(1L◦)) = P ◦.
All other cases are easier, in particular the contextual

cases follow straightforwardly from the induction hypothesis
splitting into cases according to `.

	Introduction
	Preliminaries
	Category Theory
	Lafont Categories
	Constructing Lafont Categories
	Continuous R-Categories

	The category
	The Linear Structure
	Constructing Lafont Exponentials in
	The Kleisli Category

	The language [R]
	Abstract Denotational Semantics
	Denotational Semantics in

	Adequacy of for
	Failure of Full Abstraction

	Applications
	May/Must Non-Deterministic Convergence
	Probabilistic Convergence
	Resource Analysis.

	References

