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Abstract. The differential λ-calculus is a paradigmatic functional programming language en-
dowed with a syntactical differentiation operator that allows to apply a program to an argument
in a linear way. One of the main features of this language is that it is resource conscious and
gives the programmer suitable primitives to handle explicitly the resources used by a program
during its execution. The differential operator also allows to write the full Taylor expansion
of a program. Through this expansion every program can be decomposed into an infinite sum
(representing non-deterministic choice) of ‘simpler’ programs that are strictly linear.

The aim of this paper is to develop an abstract ‘model theory’ for the untyped differential
λ-calculus. In particular, we investigate what should be a general categorical definition of
denotational model for this calculus. Starting from the work of Blute, Cockett and Seely on
differential categories we provide the notion of Cartesian closed differential category and we prove
that linear reflexive objects living in such categories constitute sound and complete models of the
untyped differential λ-calculus. We also give sufficient conditions for Cartesian closed differential
categories to model the Taylor expansion. This entails that every model living in such categories
equates all programs having the same full Taylor expansion.

We then provide a concrete example of a Cartesian closed differential category modeling the
Taylor expansion, namely the category MRel of sets and relations from finite multisets to sets.
We prove that the extensional model D of λ-calculus we have recently built in MRel is linear,
and therefore it is also an extensional model of the untyped differential λ-calculus. In the same
category we build a non-extensional model E and we prove that it is however extensional on its
differential part.

Finally, we study the relationship between the differential λ-calculus and the resource calculus,
a functional programming language combining the ideas behind the differential λ-calculus with
those behind Boudol’s λ-calculus with multiplicities. We define two translation maps between
these two calculi and we study the properties of these translations. In particular, from this
analysis it follows that the two calculi share the same notion of model. Therefore the resource
calculus can be interpreted by translation into every linear reflexive object living in a Cartesian
closed differential category.
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Introduction

Among the variety of computational formalisms that have been studied in the literature, the
λ-calculus [2] plays an important role as a bridge between logic and computer science. The
λ-calculus was originally introduced by Church [15,16] as a foundation for mathematics, where
functions – instead of sets – were primitive. This system turned out to be consistent and suc-
cessful as a tool for formalizing all computable functions. However, the λ-calculus is not resource
sensitive since a λ-term can erase its arguments or duplicate them an arbitrary large number of
times. This becomes problematic when one wants to deal with programs that are executed in
environments with bounded resources (like PDA’s) or in presence of depletable arguments (like
quantum data that cannot be duplicated for physical reasons). In these contexts we want to
be able to express the fact that a program actually consumes its arguments. Such an idea of
‘resource consumption’ is central in Girard’s quantitative semantics [26]. This semantics estab-
lishes an analogy between linearity in the sense of computer science (programs using arguments
exactly once) and algebraic linearity (commutation of sums and products with scalars), giving a
new mathematically very appealing interpretation of resource consumption. Drawing on these
insights, Ehrhard and Regnier [21] designed a resource sensitive paradigmatic programming
language called the differential λ-calculus.

The differential λ-calculus is a conservative (see [21, Prop. 19]) extension of the untyped
λ-calculus with differential and linear constructions. In this language, there are two different
operators that can be used to apply a program to its argument: the usual application and
a linear application. This last one defines a syntactic derivative operator Ds · t which is an
excellent candidate to increase control over programs executed in environments with bounded
resources. Indeed, the evaluation of Ds · t (the derivative of the program s on the argument t)
has a precise operational meaning: it captures the fact that t is available for s “exactly once”.
The corresponding meta-operation of substitution, that replaces exactly one (linear) occurrence
of x in s by t, is called “differential substitution” and is denoted by ∂s

∂x · t. It is worth noting
that when s contains several occurrences of x, one has to choose which occurrence should be
replaced and there are several possible choices. When s does not contain any occurrence of x
then the differential substitution cannot be performed and the result is 0 (corresponding to an
empty program). Thus, the differential substitution forces the presence of non-determinism in
the system, which is represented by a formal sum having 0 as neutral element. Therefore, the
differential λ-calculus constitutes a useful framework for studying the notions of linearity and
non-determinism, and the relation between them.

Taylor expansion. As expected, iterated differentiation yields a natural notion of linear
approximation of the ordinary application of a program to its argument. Indeed, the syntactic
derivative operator allows to write all the derivatives of a λ-term M , thus it also allows (in
presence of countable sums) to define its full Taylor expansion M∗. In general, M∗ will be
an infinite formal linear combination of simple terms (with coefficients in a field), and should
satisfy, when M is a usual application NQ:

(NQ)∗ =
∞∑
n=0

1

n!
(DnN · (Q, . . . , Q︸ ︷︷ ︸

n times

))0

where 1
n! is a numerical coefficient and DnN ·(Q, . . . , Q) stands for iterated linear application ofN

to n copies of Q. The precise operational meaning of the Taylor expansion has been extensively
studied in [21,22,24]. The crucial fact of such an expansion is that it gives a quantitative account
to the β-reduction of λ-calculus (in the sense of Böhm tree computation). Formal connections
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between Taylor expansions and Böhm trees of usual λ-terms have been presented in [22], using
a decorated version of Krivine’s machine.

The resource calculus, which is a revisitation of Boudol’s λ-calculus with multiplicities [6,7],
constitutes an alternative approach to the problem of modeling resource consumption within a
functional programming language. In this calculus there is only one operator of application,
while the arguments can be either linear or reusable and come in finite multisets called ‘bags’.
Linear arguments must be used exactly once, while reusable ones can be used ad libitum. Also
in this setting the evaluation of a function applied to a bag of arguments may give rise to dif-
ferent possible choices, corresponding to the different possibilities of distributing the arguments
between the occurrences of the formal parameter.

The main differences between Boudol’s calculus and the resource calculus are that the former
is affine, is equipped with explicit substitution and has a lazy operational semantics, while the
latter is linear and is a true extension of the classical λ-calculus. The current formalization of
resource calculus has been proposed by Tranquilli in [44] with the aim of defining a Curry-Howard
correspondence with differential nets [23].

The resource calculus has been recently studied from a syntactic point of view by Pagani and
Tranquilli [39] for confluence results, by Pagani and the author [34] for separability results and
by Pagani and Ronchi della Rocca [38] for results about may and must solvability. Algebraic
notions of models for the strictly linear fragment of resource calculus have been proposed by
Carraro, Ehrhard and Salibra in [14]. In the present paper we mainly focus on the study of the
differential λ-calculus, but we will also draw conclusions for the resource calculus.

Denotational semantics. Although the differential λ-calculus is born from semantical con-
siderations (i.e., the deep analysis of coherent spaces performed by Ehrhard and Regnier) the
investigations on its denotational semantics are at the very beginning. It is known that finite-
ness spaces [19] and the relational semantics of linear logic [26] are examples of models of the
simply typed differential λ-calculus, thus having a very limited expressive power. Concerning
the untyped differential λ-calculus, it is just known in the folklore that the relational model D
introduced in [10] in the relational semantics constitutes a concrete example of model2. This
picture is reminiscent of the beginning of denotational semantics of λ-calculus, when Scott’s D∞
was the unique concrete example of model of λ-calculus but no general definition of model was
known. Only when an abstract model theory for this calculus has been developed the researchers
have been able to provide rich semantics (like the continuous [43], stable [3] and strongly stable
semantics [9]) and general methods for building huge classes of models in these semantics.

Categorical notion of model. The aim of the present paper is to provide a general cat-
egorical notion of model of the untyped differential λ-calculus. Our starting point will be the
work of Blute, Cockett and Seely on (Cartesian) differential categories [4,5]. In these categories
a derivative operator D(−) on morphisms is equationally axiomatized; the derivative of a mor-
phism f : A → B will be a morphism D(f) : A × A → B, linear in its first component. The
authors have then proved that these categories are sound and complete to model suitable term
calculi. However, it turns out that the properties of differential categories are too weak for
modeling the full differential λ-calculus. For this reason, we will introduce the more powerful
notion of Cartesian closed differential category. In such categories it is possible to define an
operator

f : C ×A→ B g : C → A

f ? g : C ×A→ B
(?)

2This follows from [23] where it is shown that the differential λ-calculus can be translated into differential proofnets,
plus [46] where it is proved that D is a model of such proofnets.
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that can be seen as a categorical counterpart of the differential substitution. Intuitively, the
morphism f ? g is obtained by force-feeding the second argument A of f with one copy of the
result of g. The type is not modified because f ? g may still depend on A.

The operator ? allows us to interpret the differential λ-calculus in every linear reflexive object
U living in a Cartesian closed differential category C. For a reflexive object U = (U,A, λ) “to
be linear” amounts to ask that the morphisms A and λ performing the retraction (U⇒U) C U
are linear. We will prove that this categorical notion of model is sound ; this means that the
induced equational theory Th(U ) is actually a differential λ-theory. We will also investigate
what conditions the category C should satisfy in order to model the Taylor expansion. This
entails that all differential programs having the same Taylor expansion are equated in every
model living in C.

A question that arises naturally when a notion of model of a certain calculus is introduced
is whether it is equationally complete, that is whether all equational theories of that calculus
can be represented. For instance, in the case of the untyped λ-calculus, Scott and Koymans
proved that for every λ-theory T there is a reflexive object U in a Cartesian closed category C
such that Th(U ) = T . We will prove that the notion of linear reflexive object in a Cartesian
closed differential category is equationally complete for the differential λ-calculus, provided that
we only consider theories satisfying suitable properties. The first property is that in these
theories the sum is considered as idempotent, this amounts to say that we only know whether a
term appears in a result, not how many times it appears; the second is that these theories are
“extensional on linear applications”, which means that Ds · t must have a functional behaviour.
It turns out that these properties are quite natural in the sense that they are satisfied by all
models which have arisen so far.

Relational semantics. In [10] we have built, in collaboration with Bucciarelli and Ehrhard,
an extensional model D of λ-calculus living in the category MRel of sets and “relations from
finite multisets to sets”. This model can be seen as a relational analogue of Scott’s D∞ [20].
By virtue of its logical nature, D can be used to model several systems, beyond the untyped
λ-calculus. For instance, in [11] the authors have proved that it constitutes an adequate model
of a λ-calculus extended with non-deterministic choice and parallel composition, while in [46]
Vaux has shown that it is a model of differential proof-nets.

In the present paper we study D as a model of the untyped differential λ-calculus. Indeed (as
expected) the category MRel turns out to be an instance of the definition of Cartesian closed
differential category, and the relational model D is easily checked to be linear. We will then
study the equational theory induced by D and prove that it equates all terms having the same
Taylor expansion. This property follows from the fact that MRel models the Taylor expansion.
As a simple consequence we get that the relational semantics is hugely incomplete — there is a
continuum of equational theories that are not representable by models living in MRel.

In the same category, we will also build a model E which can be seen as a relational analogue
of Engeler’s graph model [25]. The model E provides an example of a non-extensional model,
which is however extensional on linear applications.

Translations. Finally, we study the inter-relationships existing between the differential λ-
calculus and the resource calculus. Actually there is a common belief in the scientific community
stating that the two calculi are morally the same, and the choice of studying one language rather
than the other one is more a matter of taste than a substantial difference. We will give a formal
meaning to this belief by defining a translation map (·)r from the differential λ-calculus to
the resource calculus, and another map (·)d in the other direction. We will prove that these
translations are ‘faithful’ in the sense that equivalent programs of differential λ-calculus are
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mapped into equivalent resource programs, and vice versa. This shows that the two calculi share
the same notion of denotational model; in particular the resource calculus can be interpreted by
translation in every linear reflexive object living in a Cartesian closed differential category.

Outline.

Section 1 contains the preliminary notions and notations needed in the rest of the paper. In
Section 2 we present the syntax and the axioms of the differential λ-calculus, and we define
the associated equational theories. In Section 3 we introduce the notion of Cartesian closed
differential category. Section 4 is devoted to show that linear reflexive objects in such categories
are sound and complete models of the differential λ-calculus. In Section 5 we build two relational
models D and E and provide a partial characterization of their equational theories. In Section 6
we define the resource calculus and we study its relationship with the differential λ-calculus.
Finally, in Section 7 we discuss the related works, we present our conclusions and we propose
some further lines of research.

1. Preliminaries

To keep this article self-contained we summarize some definitions and results that will be used
in the sequel. Our main reference for category theory is [1].

1.1. Sets and Multisets
We denote by N the set of natural numbers. Given n ∈ N we write Sn for the set of all

permutations (bijective maps) of the set {1, . . . , n}.
Let A be a set. We denote by P(A) the powerset of A. A multiset m over A can be defined

as an unordered list m = [a1, a2, . . .] with repetitions such that ai ∈ S for all indices i. A
multiset m is called finite if it is a finite list; we denote by [] the empty multiset. Given
two multisets m1 = [a1, a2, . . .] and m2 = [b1, b2, . . .] the multi-union of m1,m2 is defined by
m1 ]m2 = [a1, b1, a2, b2, . . .].

Finally, we write Mf (A) for the set of all finite multisets over A.

1.2. Cartesian (Closed) Categories
Let C be a Cartesian category and A,B,C be arbitrary objects of C. We write C(A,B) for

the homset of morphisms from A to B; when there is no chance of confusion we write f : A→ B
instead of f ∈ C(A,B). We usually denote by A × B the categorical product of A and B, by
π1 : A×B → A, π2 : A×B → B the associated projections and, given a pair of arrows f : C → A
and g : C → B, by 〈f, g〉 : C → A×B the unique arrow such that π1◦〈f, g〉 = f and π2◦〈f, g〉 = g.
We write f × g for the product map of f and g which is defined by f × g = 〈f ◦π1, g ◦π2〉.

If the category C is Cartesian closed we write A⇒B for the exponential object and evAB :
(A⇒B)×A→ B for the evaluation morphism. Moreover, for any object C and arrow f : C ×
A→ B, Λ(f) : C → (A⇒B) stands for the (unique) morphism such that evAB◦(Λ(f)×IdA) = f .
Finally, 1 denotes the terminal object and !A the only morphism in C(A,1).

We recall that in every Cartesian closed category the following equalities hold:

(pair) 〈f, g〉◦h = 〈f ◦h, g ◦h〉 Λ(f)◦g = Λ(f ◦ (g × Id)) (Curry)
(beta-cat) ev◦〈Λ(f), g〉 = f ◦〈Id, g〉 Λ(ev) = Id (Id-Curry)

Moreover, we can define the uncurry operator Λ−(−) = ev◦(−× Id). From (beta-cat), (Curry)
and (Id-Curry) it follows that Λ(Λ−(f)) = f and Λ−(Λ(g)) = g.
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2. The Differential Lambda Calculus

In this section we recall the definition of the differential λ-calculus [21], together with some
standard properties of the language. We also define the associated equational theories, namely,
the differential λ-theories. The syntax we use in the present paper is freely inspired by [45].

2.1. Differential Lambda Terms
The set Λd of differential λ-terms and the set Λs of simple terms are defined by mutual

induction as follows:

Λd : S, T, U, V ::= s | 0 | s+ T Λs : s, t, u, v ::= x | λx.s | sT | Ds · t

The differential λ-term Ds · t represents the linear application of s to t. Intuitively, this means
that s is provided with exactly one copy of t. Notice that sums may appear also in simple terms
as right components of ordinary applications. Although the rule s + t = s will not be valid in
our axiomatization, the sum should still be thought of as a version of non-deterministic choice
where all actual choice operations are postponed.

Convention 2.1 We consider differential λ-terms up to α-conversion, and up to associativity
and commutativity of the sum. The term 0 is the neutral element of the sum, thus we also add
the equation S + 0 = S.

As a matter of notation we write λx1 . . . xn.s for λx1.(· · · (λxn.s) · · · ) and sT1 · · ·Tk for
(· · · (sT1) · · · )Tk. Moreover, we set D1s · (t1) = Ds · t1 and Dn+1s · (t, t1, . . . , tn) = Dn (Ds ·
t) · (t1, . . . , tn). When writing Dns · (t1, . . . , tn) we suppose n > 0.

Definition 2.2 The permutative equality on differential λ-terms imposes that Dns·(t1, . . . , tn) =
Dns · (tσ(1), . . . , tσ(n)) for all permutations σ ∈ Sn.

Hereafter, we will consider differential λ-terms also up to permutative equality. This is needed,
for instance, for proving the Schwarz Theorem (see Subsection 2.2) and hence to speak of a
differential operator. Concerning specific λ-terms we set:

I ≡ λx.x 1 ≡ λxy.xy ∆ ≡ λx.xx Ω ≡ ∆∆ Y ≡ λf.(λx.f(xx))(λx.f(xx))
s ≡ λnxy.nx(xy) n ≡ λsx.sn(x), for every natural number n ∈ N

where ≡ stands for syntactical equality up to the above mentioned equivalences on differential λ-
terms. Note that I is the identity, Y is Curry’s fixpoint combinator, n the n-th Church numeral
and s implements the successor function on Church numerals. The term Ω denotes the usual
paradigmatic unsolvable λ-term.

Definition 2.3 Let S be a differential λ-term. The set FV(S) of free variables of S is defined
inductively as follows:

• FV(x) = {x},

• FV(λx.s) = FV(s)− {x},

• FV(sT ) = FV(s) ∪ FV(T ),

• FV(Ds · t) = FV(s) ∪ FV(t),

• FV(0) = ∅,
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• FV(s+ S) = FV(s) ∪ FV(S).

Given differential λ-terms S1, . . . , Sk we set FV(S1, . . . , Sk) = FV(S1) ∪ · · · ∪ FV(Sk).

We now introduce some notations on differential λ-terms that will be particularly useful to define
the substitution operators in the next subsection.

Notation 2.4 We will often use the following abbreviations (notice that these are just syntactic
sugar, not real terms):

• λx.(
∑k

i=1 si) =
∑k

i=1 λx.si,

• (
∑k

i=1 si)T =
∑k

i=1 siT ,

• D(
∑k

i=1 si) · (
∑n

j=1 tj) =
∑

i,j Dsi · tj.

Intuitively, these equalities make sense since the lambda abstraction is linear, the usual appli-
cation is linear in its left component, and the linear application is a bilinear operator. Notice
however that S(Σk

i=1ti) 6= Σk
i=1Sti.

Observe that in the particular case of empty sums, we get λx.0 = 0, 0T = 0, D0 · t = 0,
Ds · 0 = 0. Thus 0 annihilates any term, except when it occurs on the right component of an
ordinary application.

2.2. Two Kinds of Substitution
We introduce two kinds of meta-operations of substitution on differential λ-terms: the usual

capture-free substitution and the differential substitution. Both definitions strongly use the
abbreviations introduced in Notation 2.4.

Definition 2.5 Let S, T be differential λ-terms and x be a variable. The capture-free substitu-
tion of T for x in S, denoted by S{T/x}, is defined by induction on S as follows:

• y{T/x} =

{
T if x = y,
y otherwise,

• (λy.s){T/x} = λy.s{T/x}, where we suppose by α-conversion that x 6= y and y /∈ FV(T ),

• (sU){T/x} = (s{T/x})(U{T/x}),

• (Dns · (u1, . . . , un)){T/x} = Dn (s{T/x}) · (u1{T/x}, . . . , un{T/x}),

• 0{T/x} = 0,

• (s+ S){T/x} = s{T/x}+ S{T/x}.

Thus, S{T/x} is the result of substituting T for all free occurrences of x in S, subject to
the usual proviso about renaming bound variables in S to avoid capture of free variables in
T . On the other hand, the differential substitution ∂S

∂x · T defined below denotes the result of
substituting T (still avoiding capture of variables) for exactly one – non-deterministically chosen
– linear occurrence of x in S. If such an occurrence is not present in S then the result will be 0.

Definition 2.6 Let S, T be differential λ-terms and x be a variable. The differential substitution
of T for x in S, denoted by ∂S

∂x · T , is defined by induction on S as follows:

• ∂y
∂x · T =

{
T if x = y,
0 otherwise,
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• ∂
∂x(sU) · T = ( ∂s∂x · T )U + (Ds · (∂U∂x · T ))U ,

• ∂
∂x(λy.s) · T = λy. ∂s∂x · T , where we suppose by α-conversion that x 6= y and y /∈ FV(T ),

• ∂
∂x(Dns · (u1, . . . , un)) · T = Dn ( ∂s∂x · T ) · (u1, . . . , un) +

∑n
i=1 D

ns · (u1, . . . ,
∂ui
∂x · T, . . . , un),

• ∂0
∂x · T = 0,

• ∂
∂x(s+ U) · T = ∂s

∂x · T + ∂U
∂x · T .

The definition states that the differential substitution distributes over linear constructions.
We now spend some words on the case of the usual application sU because it is the most complex
one. The result of ∂(sU)

∂x · T is the sum of two terms since the differential substitution can non-
deterministically be applied either to s or to U . In the first case, we can safely apply it to s
since the usual application is linear in its left argument, so we obtain ( ∂s∂x · T )U . In the other
case we cannot apply it directly to U because the standard application is not linear in its right
argument. We thus follow two steps: (i) we replace sU by (Ds·U)U ; (ii) we apply the differential
substitution to the linear copy of U .

Intuitively, this works because U is morally available infinitely many times in sU , so when the
differential substitution goes on U we ‘extract’ a linear copy of U , that receives the substitution,
and we keep the other infinitely many unchanged. This will be much more evident in the
definition of the analogous operation for the resource calculus (cf. Definition 6.3).

Example 2.7 Recall that the simple terms ∆ and I have been defined at page 7.

1. ∂∆
∂x · I = 0, since x does not occur free in ∆,

2. ∂x
∂x · I = I,

3. ∂(xx)
∂x · I = Ix+ (Dx · I)x,

4. ∂
∂x(∂(xx)

∂x · I) ·∆ = (DI ·∆)x+ (D∆ · I)x+ (D(Dx · I) ·∆)x,

5. ((Dx · x)x){I/x} = (DI · I)I.

The differential substitution ∂S
∂x · T can be thought of as the differential of S with respect to

the variable x, linearly applied to T . This may be inferred from the rule for linear application,
which relates to the rule for composition of the differential. Moreover, it is easy to check that if
x /∈ FV(S) (i.e., S is constant with respect to x) then ∂S

∂x ·T = 0. This intuition is also reinforced
by the validity of the Schwarz Theorem.

Theorem 2.8 (Schwarz Theorem) Let S, T, U be differential λ-terms. Let x and y be variables
such that x /∈ FV(U). Then we have:

∂
∂y

(
∂S
∂x · T

)
· U = ∂

∂x

(
∂S
∂y · U

)
· T + ∂S

∂x ·
(
∂T
∂y · U

)
.

In particular, when y /∈ FV(T ), then the second summand is 0 and the two differential substitu-
tions commute.
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Proof. The proof is by structural induction on S. Here we just check the case S ≡ vV .

∂
∂y (∂vV∂x · T ) · U = ∂

∂y (( ∂v∂x · T )V + (Dv · (∂V∂x · T ))V ) · U
= ( ∂

∂y ( ∂v∂x · T ) · U)V + (D( ∂v∂x · T ) · (∂V∂y · U))V

+ (D(∂v∂y · U) · (∂V∂x · T ))V + (Dv · ( ∂∂y (∂V∂x · T ) · U))V

+ (D(Dv · (∂V∂x · T ) · (∂V∂y · U)))V

By applying the induction hypothesis (and the permutative equality) we get:

∂
∂y (∂vV∂x · T ) · U = ( ∂

∂x(∂v∂y · U) · T )V + (D(∂v∂y · U) · (∂V∂x · T ))V + (D( ∂v∂x · T ) · (∂V∂y · U))V

+ (Dv · ( ∂
∂x(∂V∂y · U) · T ))V + (D(Dv · (∂V∂y · U)) · (∂V∂x · T ))V

+ ( ∂v∂x · (
∂T
∂y · U))V + (Dv · (∂V∂x · (

∂T
∂y · U)))V

= ∂
∂x((∂v∂y · U)V + (Dv · (∂V∂y · U))V ) · T

+ ( ∂v∂x · (
∂T
∂y · U))V + (Dv · (∂V∂x · (

∂T
∂y · U)))V

= ∂
∂x(∂vV∂y · U) · T + ∂vV

∂x · (
∂T
∂y · U).

For the sake of readability, it will be sometimes useful to adopt the following notation for
multiple differential substitutions.

Notation 2.9 We set

∂nS
∂x1,...,xn

· (t1, . . . , tn) = ∂
∂xn

(
· · · ∂S∂x1 · t1 · · ·

)
· tn

where xi /∈ FV(t1, . . . , tn) for all 1 ≤ i ≤ n.

Remark 2.10 From Theorem 2.8 we have:

∂nS
∂x1,...,xn

· (t1, . . . , tn) = ∂nS
∂xσ(1),...,xσ(n)

· (tσ(1), . . . , tσ(n)), for all σ ∈ Sn.

2.3. Differential Lambda Theories
In this subsection we introduce the axioms associated with the differential λ-calculus and we

define the equational theories of this calculus, namely, the differential λ-theories.
The axioms of the differential λ-calculus are the following (for all s, t ∈ Λs and T ∈ Λd):

(β) (λx.s)T = s{T/x}

(βD) D(λx.s) · t = λx. ∂s∂x · t.

Once oriented from left to right, the (β)-conversion expresses the way of calculating a function
λx.s classically applied to an argument T , while the (βD)-conversion the way of evaluating a
function λx.s linearly applied to a simple argument t.

Notice that in the result of a linear application the λx does not disappear. This is needed
since the simple term s may still contain free occurrences of x. The only way to get rid of the
outer lambda abstraction in the term λx.s is to apply it classically to a term T , and then use
the (β)-rule; when x /∈ FV(s) a standard choice for T is 0.

The differential λ-calculus is an intensional language — there are syntactically different pro-
grams having the same extensional behaviour. We will be sometimes interested in the extensional
version of this calculus which is obtained by adding the following axiom (for every s ∈ Λs):

(η) λx.sx = s, where x /∈ FV(s)
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In the differential λ-calculus we have another extensionality axiom, strictly weaker than (η),
that can be safely added to the system, namely (for every s, t ∈ Λs):

(η∂) λx.(Ds · t)x = Ds · t, where x /∈ FV(s, t)

The axiom (η∂) states that the calculus is extensional only in its differential part, that is in
presence of the linear application. Intuitively, this means that Ds · t must have a functional
behaviour, which is always true in a simply typed setting where s : A → B, t : A and Ds · t :
A → B. Interestingly enough there are very natural models of untyped differential λ-calculus
that satisfy (η∂) but do not satisfy (η). We refer to Subsection 5.3.1 for an example.

A λd-relation T is any set of equations between differential λ-terms (which can be thought of
as a relation on Λd × Λd).

A λd-relation T is called:

• an equivalence if it is closed under the following rules (for all S, T, U ∈ Λd):

S = S
reflexivity T = S

S = T
symmetry S = T T = U

S = U
transitivity

• compatible if it is closed under the following rules (for all S, T, U, V, Si, Ti ∈ Λd):

S = T
λx.S = λx.T

lambda
S = T U = V
ST = UV

app S = T U = V
DS · U = DT · V Lapp

Si = Ti for all 1 ≤ i ≤ n∑n
i=1 Si =

∑n
i=1 Ti

sum

As a matter of notation, we will write T ` S = T or S =T T for S = T ∈ T .

Definition 2.11 A differential λ-theory is any compatible λd-relation T which is an equivalence
relation and includes (β) and (βD). A differential λ-theory T is called differentially extensional if
it contains (η∂) and extensional if it also contains (η). We say that T satisfies sum idempotency
whenever T ` s+ s = s.

The differential λ-theories are naturally ordered by set-theoretical inclusion. We denote by λβd

the minimum differential λ-theory, by λβηd∂ the minimum differentially extensional differential
λ-theory, and by λβηd the minimum extensional differential λ-theory.

We present here some easy examples of equalities between differential λ-terms in λβd, λβηd∂
and λβηd in order to help the reader to get familiar with the operations in the calculus.

Example 2.12 Recall that ∆ ≡ λx.xx. Then we have:

1. λβd ` (D∆ · y)z = yz + (Dz · y)z,

2. λβd ` (D2 ∆ · (x, y))0 = (Dx · y)0 + (Dy · x)0,

3. λβd ` D3 ∆ · (x, y, z) = λr.(D2x · (y, z) + D2y · (x, z) + D2z · (x, y) + D3 r · (x, y, z))r,

4. λβηd∂ ` D(λz.xz) · y = λz.(Dx · y)z = Dx · y,

5. λβηd ` D∆ · z = λx.zx+ λx.(Dx · z)x = z + λx.(Dx · z)x.
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Note that in this calculus (as in the usual λ-calculus extended with non-deterministic choice
[18]) a single simple term can generate an infinite sum of terms, like in the example below.

Example 2.13 Recall (from page 7) that Y is Curry’s fixpoint combinator, n is the n-th Church
numeral and s denotes the successor.

1. λβd ` Y(x+ y) = x(Y(x+ y)) + y(Y(x+ y)) for all variables x, y,

2. λβd ` Y((λz.0) + s) = 0 + s(Y((λz.0) + s)) = 0 + 1 + s(s(Y((λz.0) + s))) = · · ·

2.4. A Theory of Taylor Expansion
One of the most interesting consequences of adding a syntactical differential operator to the

λ-calculus is that, in presence of infinite sums, this allows to define the Taylor expansion of a
program. Such an expansion is classically defined in the literature only for ordinary λ-terms
[21,22,24]. In this subsection we generalize this notion to differential λ-terms. To avoid the
annoying problem of handling coefficients we consider an idempotent sum.

Definition 2.14 Given a differential λ-term S we define its (full) Taylor expansion S∗ by
induction on S as follows:

• x∗ = x,

• (λx.s)∗ = λx.s∗,

• (Dk s · (t1, . . . , tk))∗ = Dk s∗ · (t∗1, . . . , t∗k),

• (sT )∗ = Σk∈N(Dk s∗ · (T ∗, . . . , T ∗))0,

• (s+ T )∗ = s∗ + T ∗.

Thus, the “target language” of the Taylor expansion is much simpler than the full differential
λ-calculus. For instance, the general application of the λ-calculus is not needed anymore, we
will only need iterated linear applications and ordinary applications to 0. We will however need
countable sums, that are not present in general in the differential λ-calculus. Hereafter, the
target calculus of the Taylor expansion will be denoted by Λd∞.

We will write ~S to denote sequences of differential λ-terms S1, . . . , Sk (with k ≥ 0).

Remark 2.15 Every term S ∈ Λd∞ can be written as a (possibly infinite) sum of terms of shape:

λ~y.(Dn1 (· · · (Dnk s · (~tk))~0) · · · · (~t1))~0

where ~ti is a sequence of simple terms of length ni ∈ N (for 1 ≤ i ≤ k) and the simple term s
is either a variable or a lambda abstraction.

We now try to clarify what does it mean that two differential λ-terms S and T “have the
same Taylor expansion”. Indeed we may have that S∗ = Σi∈Isi and T ∗ = Σj∈J tj where I, J are
countable sets. In this case one could be tempted to define S∗ = T ∗ by asking for the existence
of a bijective correspondence between I and J such that each si is λβd-equivalent to some tj .
However, in the general case, this definition does not capture the equivalence between infinite
sums that we have in mind. For instance, S∗ = T ∗ might hold because there are partitions
{Ik}k∈K and {Jk}k∈K of I and J , respectively, such that for every k ∈ K the sets Ik, Jk are
finite and Σi∈Iksi =λβd Σi∈Jksj . The näıf definition works well when all summands of the two

sums we are equating are ‘in normal form’. Since the Λd∞ calculus (morally) enjoys strongly
normalization, we can define the normal form of every S ∈ Λd∞ as follows.
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Definition 2.16 Given S ∈ Λd∞, we define the normal form of S as follows.

• If S ≡
∑

i∈I si we set NF(S) =
∑

i∈I NF(si).

• If S ≡ λ~y.(Dn1 (· · · (Dnk x · (~tk))~0) · · · · (~t1))~0 then:

NF(S) = λ~y.(Dn1 (· · · (Dnk x · (NF(~tk)))~0) · · · · (NF(~t1)))~0.

• If S ≡ λ~y.(Dn1 (· · · (Dnk (λx.s) · (~tk))~0) · · · · (~t1))~0 with nk > 0 then:

NF(S) = NF
(
λ~y.(Dn1 (· · · (Dnk−1 ((λx. ∂

nks
∂x,...,x · (~tk))~0) · (~tk−1))~0) · · · · (~t1))~0

)
.

• If S ≡ λ~y.(Dn1 (· · · (Dnk ((λx.s)0~0) · (~tk))~0) · · · · (~t1))~0 then:

NF(S) = NF
(
λ~y.(Dn1 (· · · (Dnk ((s{0/x})~0) · (~tk))~0) · · · · (~t1))~0

)
.

By Remark 2.15 the definition above covers all possible cases.
We are now able to define the differential λ-theory generated by equating all differential λ-

terms having the same Taylor expansion.

Definition 2.17 Given S, T ∈ Λd we say that NF(S∗) = NF(T ∗) whenever NF(S∗) =
∑

i∈I si,
NF(T ∗) =

∑
j∈J tj and there is an isomorphism ι : I → J such that λβd ` si = tι(i). We set

E = {(S, T ) ∈ Λd × Λd | NF(S∗) = NF(T ∗)}.

It is not difficult to check that E is actually a differential λ-theory.

Two usual λ-terms s, t have the same Böhm tree [2, Ch. 10] if, and only if, E ` s = t holds.
The ‘if’ part of this equivalence is fairly straightforward, whereas the ‘only if’ part is proved in
[22]. Thus, the theory E can be seen as an extension of the theory of Böhm trees in the context
of differential λ-calculus.

3. A Differential Model Theory

In this section we will provide the categorical framework in which the models of the differential
λ-calculus live, namely, the Cartesian closed differential categories3. The material presented in
Subsection 3.1 is mainly borrowed from [5].

3.1. Cartesian Differential Categories
Differential λ-terms will be interpreted as morphisms in a suitable category C. Since in the

syntax we have sums of terms, we need a sum on the morphisms of C satisfying the equa-
tions introduced in Notation 2.4. For this reason, we will focus our attention on left-additive
categories.

A category C is left-additive whenever each homset has a structure of commutative monoid
(C(A,B),+AB, 0AB) and (g + h)◦f = (g ◦f) + (h◦f) and 0◦f = 0.

Definition 3.1 A morphism f in C is said to be additive if, in addition, it satisfies f◦(g+h) =
(f ◦g) + (f ◦h) and f ◦0 = 0.

3These categories have been first introduced in [12] (where they were called differential λ-categories) and proposed
as models of the simply typed differential λ-calculus and simply typed resource calculus.
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A category is Cartesian left-additive if it is a left-additive category with products such that
all projections and pairings of additive maps are additive.

Definition 3.2 A Cartesian differential category is a Cartesian left-additive category having an
operator D(−) that maps every morphism f : A→ B into a morphism D(f) : A× A→ B and
satisfies the following axioms:

D1. D(f + g) = D(f) +D(g) and D(0) = 0,

D2. D(f)◦〈h+ k, v〉 = D(f)◦〈h, v〉+D(f)◦〈k, v〉 and D(f)◦〈0, v〉 = 0,

D3. D(Id) = π1, D(π1) = π1 ◦π1 and D(π2) = π2 ◦π1,

D4. D(〈f, g〉) = 〈D(f), D(g)〉,

D5. D(f ◦g) = D(f)◦〈D(g), g ◦π2〉,

D6. D(D(f))◦〈〈g, 0〉, 〈h, k〉〉 = D(f)◦〈g, k〉,

D7. D(D(f))◦〈〈0, h〉, 〈g, k〉〉 = D(D(f))◦〈〈0, g〉, 〈h, k〉〉.

We try to provide some intuitions on these axioms. (D1) says that the operator D(−) is linear;
(D2) says that D(−) is additive in its first coordinate; (D3) and (D4) ask that D(−) behaves
coherently with the product structure; (D5) is the usual chain rule; (D6) requires that D(f) is
linear in its first component. (D7) states the independence of the order of “partial differentia-
tion”.

Remark 3.3 In a Cartesian differential category we obtain partial derivatives from the full
ones by “zeroing out” the components on which the differentiation is not required. For example,
suppose that we want to define the partial derivative D1(f) of f : C × A → B on its first
component; then, it is sufficient to set D1(f) = D(f)◦ (〈IdC , 0A〉 × IdC×A) : C × (C ×A)→ B.

Similarly, we define D2(f) = D(f) ◦ (〈0C , IdA〉 × IdC×A) : A × (C × A) → B, the partial
derivative of f on its second component.

This remark follows since every differential D(f) can be reconstructed from its partial deriva-
tives as follows:

D(f) = D(f)◦〈〈π1 ◦π1, π2 ◦π1〉, π2〉
= D(f)◦〈〈π1 ◦π1, 0〉, π2〉+D(f)◦〈〈0, π2 ◦π1〉, π2〉
= D(f)◦ (〈Id, 0〉 × Id)◦ (π1 × Id) +D(f)◦ (〈0, Id〉 × Id)◦ (π2 × Id)
= D1(f)◦ (π1 × Id) +D2(f)◦ (π2 × Id).

3.2. Linear Morphisms
In Cartesian differential categories we are able to express the fact that a morphism is ‘linear’

by asking that its differential is constant.

Definition 3.4 In a Cartesian differential category, a morphism f : A → B is called linear if
D(f) = f ◦π1.

Lemma 3.5 Every linear morphism f : A→ B is additive.
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Proof. By definition of linear morphism we have D(f) = f ◦π1. For all g, h : C → A we have

f ◦ (g + h) = f ◦π1 ◦〈g + h, g〉 = D(f)◦〈g + h, g〉 =
D(f)◦〈g, g〉+D(f)◦〈h, g〉 = f ◦π1 ◦〈g, g〉+ f ◦π1 ◦〈h, g〉 = f ◦g + f ◦h

Moreover f ◦0 = f ◦π1 ◦〈0, 0〉 = D(f)◦〈0, 0〉 = 0. We conclude that f is additive.

Lemma 3.6 The composition of two linear morphisms is linear.

Proof. Let f, g be two linear maps. We have to prove that D(f ◦ g) = f ◦ g ◦ π1. By (D5)
we have D(f ◦ g) = D(f) ◦ 〈D(g), g ◦π2〉. Since f, g are linear we have D(f) ◦ 〈D(g), g ◦π2〉 =
f ◦π1 ◦〈g ◦π1, g ◦π2〉 = f ◦g ◦π1.

Thus, in fact, every Cartesian differential category has a subcategory of linear maps.

3.3. Cartesian Closed Differential Categories
Cartesian differential categories are not enough to interpret the differential λ-calculus, since

the differential operator does not behave automatically well with respect to the Cartesian closed
structure. For this reason we now introduce the notion of Cartesian closed differential category.

Definition 3.7 A category is Cartesian closed left-additive if it is a Cartesian left-additive
category which is Cartesian closed and satisfies:

(+-curry) Λ(f + g) = Λ(f) + Λ(g) Λ(0) = 0 (0-curry)

From these properties of Λ(−) we can easily prove that the evaluation morphism is additive in
its left component.

Lemma 3.8 In every Cartesian closed left-additive category the following axioms hold (for all
f, g : C → (A⇒B) and h : C → A):

(+-eval) ev◦〈f + g, h〉 = ev◦〈f, h〉+ ev◦〈g, h〉 ev◦〈0, h〉 = 0 (0-eval)

Proof. Let f ′ = Λ−(f) and g′ = Λ−(g). Then we have:

ev◦〈f + g, h〉 = ev◦ ((Λ(f ′) + Λ(g′))× Id)◦〈Id, h〉 by def. of f ′, g′

= Λ−((Λ(f ′) + Λ(g′))◦〈Id, h〉 by def. of Λ−

= Λ−(Λ(f ′ + g′))◦〈Id, h〉 by (+-curry)
= (f ′ + g′)◦〈Id, h〉 by def. of Λ−

= f ′ ◦〈Id, h〉+ g′ ◦〈Id, h〉 by left-additivity
= Λ−(f)◦〈Id, h〉+ Λ−(g)◦〈Id, h〉 by def. of f ′, g′

= ev◦ (f × Id)◦〈Id, h〉+ ev◦ (g × Id)◦〈Id, h〉 by def. of Λ−

= ev◦〈f, h〉+ ev◦〈g, h〉

Moreover ev◦〈0, g〉 = ev◦〈Λ(0), g〉 = 0◦〈Id, g〉 = 0.

Definition 3.9 A Cartesian closed differential category is a Cartesian differential category
which is Cartesian closed left-additive and such that, for all f : C ×A→ B:

(D-curry) D(Λ(f)) = Λ(D(f)◦〈π1 × 0A, π2 × IdA〉).
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Indeed, in a Cartesian closed differential category we have two ways to derivate f : C×A→ B
in its first component: we can use the trick of Remark 3.3, or we can ‘hide’ the component A
by currying f and then derive Λ(f). Intuitively, (D-curry) requires that these two methods are
equivalent.

Lemma 3.10 In every Cartesian closed differential category the following axiom holds (for all
h : C → (A⇒B) and g : C → A):

(D-eval) D(ev◦〈h, g〉) = ev◦〈D(h), g ◦π2〉+D(Λ−(h))◦〈〈0C , D(g)〉, 〈π2, g ◦π2〉〉

Proof. Let h′ = Λ−(h) : C ×A→ B. Then we have:

D(ev◦〈h, g〉) = by def. of h′

D(ev◦〈Λ(h′), g〉) = by (beta-cat)
D(h′ ◦〈IdC , g〉) = by (D5)
D(h′)◦〈D(〈IdC , g〉), 〈IdC , g〉◦π2〉 = by (D4) and (D3)
D(h′)◦〈〈π1, D(g)〉, 〈π2, g ◦π2〉〉 = since pairing is additive
D(h′)◦〈〈π1, 0A〉+ 〈0C , D(g)〉, 〈π2, g ◦π2〉〉 = by (D2)
D(h′)◦〈〈π1, 0A〉, 〈π2, g ◦π2〉〉+D(h′)◦〈〈0C , D(g)〉, 〈π2, g ◦π2〉〉 =
D(h′)◦〈π1 × 0A, π2 × IdA〉◦ 〈IdC×C , g ◦π2〉

+ D(h′)◦〈〈0C , D(g)〉, 〈π2, g ◦π2〉〉 = by (beta-cat)
ev◦〈Λ(D(h′)◦〈π1 × 0A, π2 × IdA〉), g ◦π2〉

+ D(h′)◦〈〈0C , D(g)〉, 〈π2, g ◦π2〉〉 = by (D-curry)
ev◦〈D(Λ(h′)), g ◦π2〉+D(Λ−(Λ(h′)))◦〈〈0C , D(g)〉, 〈π2, g ◦π2〉〉 = by def. of h′

ev◦〈D(h), g ◦π2〉+D(Λ−(h))◦〈〈0C , D(g)〉, 〈π2, g ◦π2〉〉

The axiom (D-eval) can be seen as a chain rule for denotations of differential λ-terms (cf.
Lemma 3.18(i), below).

In Cartesian closed differential categories we are able to define a binary operator ? on mor-
phisms, that can be seen as the semantic counterpart of differential substitution. The idea
behind f ? g is to derive the map f : A → B and then apply the argument g : A in its linear
component. However differential λ-terms are interpreted in a certain context, thus we need to
handle the context C and consider maps f : C ×A→ A and g : C → A.

Definition 3.11 The operator

f : C ×A→ B g : C → A

f ? g : C ×A→ B
(?)

is defined by f ? g = D(f)◦〈〈0C×AC , g ◦π1〉, IdC×A〉.

The morphism f ? g is obtained by differentiating f in its second component (partial differ-
entiation), and applying g in that component. The precise correspondence between ? and the
differential substitution is given in Theorem 4.10.

Remark 3.12 Actually the operators D(−) and ? are mutually definable. To define D(−) in
terms of ? just set D(f) = (f ◦ π2) ? Id. To check that this definition is meaningful we show
that it holds in every Cartesian differential category: indeed, by Definition 3.11, (f ◦π2) ? Id =
D(f ◦π2)◦〈〈0, π1〉, Id〉 = D(f)◦〈π2 ◦π1, π2 ◦π2〉◦ 〈〈0, π1〉, Id〉 = D(f). Thus it would be possible
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to formulate the whole theory of Cartesian closed differential categories by axiomatizing the
behaviour of ? instead of that of D(−). In this work we prefer to use D(−) because it is a more
basic operation, already studied in the literature, and the complexities of the two approaches are
comparable.

It is possible to characterize linear morphisms in terms of the operator ? as follows.

Lemma 3.13 A morphism f : A→ B is linear iff for all g : C → A:

(f ◦π2) ? g = (f ◦g)◦π1 : C ×A→ B

Proof. (⇒) Suppose that f is linear. By definition of ? we have that (f ◦ π2) ? g = D(f ◦
π2)◦ 〈〈0C , g ◦π1〉, IdC×A〉. By applying (D5) and (D3), this is equal to D(f)◦ 〈π2 ◦π1, π2 ◦π2〉 ◦
〈〈0C , g ◦π1〉, IdC×A〉 = D(f) ◦ 〈g ◦π1, π2〉. Since f is linear we have D(f) = f ◦π1, thus D(f) ◦
〈g ◦π1, π2〉 = f ◦g ◦π1.

(⇐) Suppose (f ◦π2) ? g = (f ◦g)◦π1 for all g : C → A. In particular, this is true for C = A
and g = IdA. Thus we have (f ◦π2) ? IdA = f ◦π1. We conclude since:

(f ◦π2) ? IdA = D(f ◦π2)◦〈〈0A, π1〉, IdA×A〉 by def. of ?
= D(f)◦〈π2 ◦π1, π2 ◦π2〉◦ 〈〈0A, π1〉, IdA×A〉 by (D5)+(D3)
= D(f)◦〈π1, π2〉 = D(f)

The operator ? enjoys the following commutation property.

Lemma 3.14 Let f : C ×A→ B and g, h : C → A. Then (f ? g) ? h = (f ? h) ? g.

Proof. We set ϕg = 〈〈0C , g ◦π1〉, IdC×A〉 and ϕh = 〈〈0C , h◦π1〉, IdC×A〉. We have:

(f ? g) ? h = D(D(f)◦〈〈0C , g ◦π1〉, IdC×A〉)◦ϕh = by (D5)
D(D(f))◦〈D(〈〈0C , g ◦π1〉, Id〉), 〈〈0C , g ◦π1〉, Id〉◦π2〉◦ϕh = by (D4)
D(D(f))◦〈〈〈0C , D(g ◦π1)〉, π1〉, 〈〈0C , g ◦π1〉, Id〉◦π2〉◦ϕh = by (D5)
D(D(f))◦〈〈〈0C , D(g)◦〈π1 ◦π1, π1 ◦π2〉〉, π1〉, 〈〈0C , g ◦π1〉, Id〉◦π2〉◦ϕh =
D(D(f))◦〈〈〈0C , D(g)◦〈0C , π1〉〉, 〈0C , h◦π1〉〉, 〈〈0C , g ◦π1〉, Id〉〉 = by (D2)
D(D(f))◦〈〈0C×A, 〈0C , h◦π1〉〉, 〈〈0C , g ◦π1〉, Id〉〉 = by (D7)
D(D(f))◦〈〈0C×A, 〈0C , g ◦π1〉〉, 〈〈0C , h◦π1〉, Id〉〉 = by (D2)
D(D(f))◦〈〈〈0C , D(h)◦〈0C , π1〉〉, 〈0C , g ◦π1〉〉, 〈〈0C , h◦π1〉, Id〉〉 =
D(D(f))◦〈〈〈0C , D(h)◦〈π1 ◦π1, π1 ◦π2〉〉, π1〉, 〈〈0C , h◦π1〉, Id〉◦π2〉◦ϕg = by (D5)
D(D(f))◦〈〈〈0C , D(h◦π1)〉, π1〉, 〈〈0C , h◦π1〉, Id〉◦π2〉◦ϕg = by (D4)
D(D(f))◦〈D(〈〈0C , h◦π1〉, IdCA〉), 〈〈0C , h◦π1〉, Id〉◦π2〉◦ϕg = by (D5)
D(D(f)◦〈〈0C , h◦π1〉, Id〉)◦ϕg = (f ? h) ? g

Definition 3.15 Let swABC = 〈〈π1 ◦π1, π2〉, π2 ◦π1〉 : (A×B)× C → (A× C)×B.

Remark 3.16 sw◦ sw = Id(A×B)×C , sw◦〈〈f, g〉, h〉 = 〈〈f, h〉, g〉 and D(sw) = sw◦π1.

The following two technical lemmas will be used in Subsection 4.3 to show the soundness of
the categorical models of the differential λ-calculus. The interested reader can find the whole
proofs in the technical Appendix A.
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Lemma 3.17 Let f : (C ×A)×D → B and g : C → A, h : C → B′. Then:

(i) π2 ? g = g ◦π1,

(ii) (h◦π1) ? g = 0,

(iii) Λ(f) ? g = Λ(((f ◦ sw) ? (g ◦π1))◦ sw).

Proof. (Outline) (i) follows by applying (D3). (ii) follows by applying (D2), (D3) and (D5).
(iii) follows by (Curry), (D-curry) and (D2), (D3), (D5).

Lemma 3.18 Let f : C ×A→ (D⇒B) and g : C → A, h : C ×A→ D. Then:

(i) (ev◦〈f, h〉) ? g = ev◦〈f ? g + Λ(Λ−(f) ? (h ? g)), h〉,

(ii) Λ(Λ−(f) ? h) ? g = Λ(Λ−(f ? g) ? h) + Λ(Λ−(f) ? (h ? g)),

(iii) Λ(Λ−(f) ? h)◦〈IdC , g〉 = Λ(Λ−(f ◦〈IdC , g〉) ? (h◦〈IdC , g〉)).

Proof. (Outline) (i) follows by applying (D-eval) and (beta-cat).
(ii) This equation can be simplified by using the axioms of Cartesian closed left-additive

categories. Indeed, the right side can be written as Λ((Λ−(f ? g) ? h) + Λ−(f) ? (h ? g)). By
taking a morphism f ′ such that f = Λ(f ′) and by applying Lemma 3.17(iii) the item (ii)
becomes equivalent to ((f ′ ? h)◦ sw) ? (g ◦π1)◦ sw = (((f ′ ◦ sw) ? (g ◦π1))◦ sw) ? h+ f ′ ? (h ? g).
This follows by (Curry) and (D2-7).

(iii) follows by (Curry) and (D2-5).

4. Categorical Models of the Differential Lambda Calculus

In [12] we have proved that Cartesian closed differential categories constitute sound models
of the simply typed differential λ-calculus. In this section we will show that all reflexive objects
living in these categories and satisfying a linearity condition are sound models of the untyped
version of this calculus.

4.1. Linear Reflexive Objects in Cartesian Closed Differential Categories
In a category C, an object A is a retract of an object B, written A C B, if there are morphisms

f : A → B and g : B → A such that g ◦ f = IdA. When also f ◦ g = IdB holds we say that A
and B are isomorphic, written A ∼= B, and that f, g are isomorphisms.

In a Cartesian closed category C a reflexive object U ought to mean a triple (U,A, λ) where
U is an object of C and A : U → (U⇒U) and λ : (U⇒U)→ U are two morphisms performing
the retraction (U⇒U) C U . When (U⇒U) ∼= U we say that U is extensional.

Definition 4.1 A reflexive object U = (U,A, λ) in a Cartesian closed differential category is
linear if both A and λ are linear morphisms.

We are now able to provide our definition of model of the untyped differential λ-calculus.

Definition 4.2 A categorical model U of the differential λ-calculus is a linear reflexive object
in a Cartesian closed differential category. The model U is called differentially extensional (resp.
extensional) if its equational theory is.
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It is routine to check that U is an extensional model (i.e., Th(U ) ⊇ λβηd) if and only if it is
extensional as a reflexive object (i.e., (U⇒U) ∼= U).

The following lemma is useful for proving that a reflexive object in a Cartesian closed differ-
ential category is linear.

Lemma 4.3 Let U be a reflexive object.

(i) If A and λ◦A are linear then U is linear.

(ii) If U is extensional and either A or λ is linear then U is linear.

Proof. (i) Suppose A and λ◦A are linear morphisms. We now show that also λ is linear. Indeed
we have:

D(λ) = D(λ)◦ (A×A)◦ (λ× λ) = D(λ)◦〈A◦π1,A◦π2〉◦ (λ× λ) = by A linear
= D(λ)◦〈D(A),A◦π2〉◦ (λ× λ) = D(λ◦A)◦ (λ× λ) = by λ◦A linear
= λ◦A◦π1 ◦〈λ◦π1, λ◦π2〉 = λ◦A◦λ◦π1 = λ◦π1.

(ii) If A is linear then it follows directly from (i) since λ◦A = IdU and the identity is linear.
If λ is linear, calculations analogous to those made in (i) show that also A is.

Notice that, in general, there may be extensional reflexive objects that are not linear. However,
in the concrete example of Cartesian closed differential category we will provide in Section 5
every extensional reflexive object will be linear (see Corollary 5.6).

Lemma 4.4 Let U be a linear reflexive object and let f : Un+1 → (U ⇒ U), h : Un+1 → U
g : Un → U . Then:

(i) λ◦ (f ? g) = (λ◦f) ? g,

(ii) A◦ (h ? g) = (A◦h) ? g.

Proof. (i) By definition of ? we have (λ ◦ f) ? g = D(λ ◦ f) ◦ 〈〈0Un , g ◦π1〉, IdUn+1〉. By (D5)
we have D(λ ◦ f) = D(λ) ◦ 〈D(f), f ◦π2〉. Since λ is linear we have D(λ) = λ ◦π1, thus D(λ) ◦
〈D(f), f ◦π2〉 = λ ◦ π1 ◦ 〈D(f), f ◦π2〉 = λ ◦D(f). Hence, D(λ ◦ f) ◦ 〈〈0Un , g ◦π1〉, IdUn+1〉 =
λ◦D(f)◦〈〈0Un , g ◦π1〉, IdUn+1〉 = λ◦ (f ? g).

(ii) Analogous to (i).

4.2. Defining the Interpretation
Let ~x = x1, . . . , xn be an ordered sequence of variables without repetitions. We say that ~x

is adequate for S1, . . . , Sk ∈ Λd if FV(S1, . . . , Sk) ⊆ {x1, . . . , xn}. Given an object U we write
U~x for the {x1, . . . , xn}-indexed categorical product of n copies of U (when n = 0 we consider
U~x = 1). Moreover, we define the i-th projection π~xi : U~x → U by

π~xi =

{
π2 if i = n,
π
x1,...,xn−1

i ◦π1 otherwise.

Definition 4.5 Let U be a categorical model, S be a differential λ-term and ~x = x1, . . . , xn be
adequate for S. The interpretation of S in U (with respect to ~x) will be a morphism [S]~x :
U~x → U defined by induction as follows:

• [xi]~x = π~xi ,



20 Giulio Manzonetto

• [sT ]~x = ev◦〈A◦ [s]~x, [T ]~x〉,

• [λz.s]~x = λ◦Λ([s]~x,z), where by α-conversion we suppose that z does not occur in ~x,

• [D1s · (t)]~x = λ◦Λ(Λ−(A◦ [s]~x) ? [t]~x),

• [Dn+1s · (t1, . . . , tn, tn+1)]~x = λ◦Λ(Λ−(A◦ [Dns · (t1, . . . , tn)]~x) ? [tn+1]~x),

• [0]~x = 0U
~x

U ,

• [s+ S]~x = [s]~x + [S]~x.

Remark 4.6 Easy calculations give

[Dns · (t1, . . . , tn)]~x = λ◦Λ((· · · (Λ−(A◦ [s]~x) ? [t1]~x) · · · ) ? [tn]~x).

Lemma 3.14 entails that this interpretation does not depend on the chosen representative of
the permutative equivalence class. In other words, we have [Dns · (t1, . . . , tn)]~x = [Dns ·
(tσ(1), . . . , tσ(n))]~x for every permutation σ ∈ Sn.

4.3. Soundness
Given a categorical model U we can define the equational theory of U as follows:

Th(U ) = {S = T | [S]~x = [T ]~x for some ~x adequate for S, T}.

The aim of this section is to prove that the interpretation we have defined is sound, i.e., that
Th(U ) is a differential λ-theory for every model U .

The following convention allows us to lighten the statements of our theorems.

Convention 4.7 Hereafter, and until the end of the section, we consider a fixed (but arbitrary)
linear reflexive object U living in a Cartesian closed differential category C. Moreover, whenever
we write [S]~x, we suppose that ~x is an adequate sequence for S.

The proof of the next lemma is easy, and it is left to the reader. Recall that the morphism
sw has been introduced in Definition 3.15.

Lemma 4.8 Let S ∈ Λd.

(i) If z /∈ FV(S) then [S]~x;z = [S]~x ◦π1, where z does not occur in ~x,

(ii) [S]~x;y;z = [S]~x;z;y ◦ sw, where z and y do not occur in ~x.

Theorem 4.9 (Classic Substitution Theorem) Let S, T ∈ Λd, ~x = x1, . . . , xn and y not occur-
ring in ~x. Then:

[S{T/y}]~x = [S]~x;y ◦〈Id, [T ]~x〉.

Proof. By induction on S. The only interesting case is S ≡ Dns · (u1, . . . , un): we treat it by
cases on n.

Case n = 1. By definition of substitution we have [(Ds ·u1){T/y}]~x = [Ds{T/y} ·u1{T/y}]~x.
By definition of [−] this is equal to λ◦Λ(Λ−(A◦[s{T/y}]~x)?[u1{T/y}]~x). By induction hypoth-
esis we get λ◦Λ(Λ−(A◦ [s]~x;y ◦〈Id, [T ]~x〉) ? ([u1]~x;y ◦〈Id, [T ]~x〉)). By applying Lemma 3.18(iii)

this is equal to λ◦Λ(Λ−(A◦ [s]~x;y) ? [u1]~x;y)◦〈Id, [T ]~x〉 = [Ds · u1]~x;y ◦〈Id, [T ]~x〉.
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Case n > 1. By definition of substitution we have [(Dns ·(u1, . . . , un)){T/y}]~x = [(Dns{T/y}·
(u1{T/y}, . . . , un{T/y}))]~x. By applying the definition of [ − ] this is equal to λ ◦Λ(Λ−(A◦
[Dn−1s{T/y} · (u1{T/y}, . . . , un−1{T/y})]~x) ? [un{T/y}]~x). By definition of substitution this
is λ ◦Λ(Λ−(A ◦ [(Dn−1s · (u1, . . . , un−1)){T/y}]~x) ? [un{T/y}]~x). By applying the induction
hypothesis twice we get λ◦Λ(Λ−(A◦[(Dn−1s·(u1, . . . , un−1)]~x,y◦〈Id, [T ]~x〉)?([un]~x,y◦〈Id, [T ]~x〉)).
By Lemma 3.18(iii) this is equal to λ◦Λ(Λ−(A◦[Dn−1s·(u1, . . . , un−1)]~x,y)?[un]~x,y)◦〈Id, [T ]~x〉 =
[(Dns · (u1, . . . , un))]~x;y ◦〈Id, [T ]~x〉.

Theorem 4.10 (Differential Substitution Theorem) Let S, T ∈ Λd, ~x = x1, . . . , xn and y not
occurring in ~x. Then:

[∂S∂y · T ]~x;y = [S]~x;y ? [T ]~x.

Proof. By structural induction on S.

• case S ≡ y. Then [∂y∂y · T ]~x,y = [T ]~x,y = [T ]~x ◦ π1 = π2 ? [T ]~x = [y]~x,y ? [T ]~x by
Lemma 3.17(i).

• case S ≡ xi 6= y. Then [∂xi∂y · T ]~x,y = [0]~x,y = 0. By Lemma 3.17(ii) we have 0 =
([xi]~x ◦π1) ? [T ]~x = [xi]~x,y ? [T ]~x.

• case S ≡ λz.v. By definition of differential substitution we have that [∂λz.v∂y ·T ]~x,y = [λz.∂v∂y ·
T ]~x,y = λ◦Λ([∂v∂y ·T ]~x,y,z). Applying Lemma 4.8(ii), this is equal to λ◦Λ([∂v∂y ·T ]~x,z,y◦sw).
By induction hypothesis we obtain λ◦Λ(([v]~x,z,y ? [T ]~x,z)◦sw). Supposing without loss of
generality that z /∈ FV(T ) we have, by Lemma 4.8(i), [T ]~x,z = [T ]~x ◦π1. Thus, applying
Lemma 3.17(iii), we have that

λ◦Λ(([v]~x,z,y ? ([T ]~x ◦π1))◦ sw) = λ◦ (Λ([v]~x,z,y ◦ sw) ? [T ]~x)

which is equal to λ◦(Λ([v]~x,y,z) ? [T ]~x) by Lemma 4.8(ii). Since U is linear, we can apply
Lemma 4.4(i) and get λ◦ (Λ([v]~x,y,z) ? [T ]~x) = (λ◦Λ([v]~x,y,z)) ? [T ]~x = [λz.v]~x,y ? [T ]~x.

• case S ≡ sU . By definition of differential substitution we have that [∂sU∂y · T ]~x,y = [( ∂s∂y ·
T )U ]~x,y+ [(Ds ·(∂U∂y ·T ))U ]~x,y. Let us consider the two summands componentwise. On the

one side we have [( ∂s∂y · T )U ]~x,y = ev◦ 〈A◦ [ ∂s∂y · T ]~x,y, [U ]~x,y〉 which is equal, by induction
hypothesis, to ev ◦ 〈A◦ ([s]~x,y ? [T ]~x), [U ]~x,y〉. By Lemma 4.4(ii) this is equal to ev ◦
〈(A◦ [s]~x,y) ? [T ]~x, [U ]~x,y〉.
On the other side we have (using A◦λ = IdU⇒U ):

[(Ds · (∂U∂y · T ))U ]~x,y = ev◦〈Λ(Λ−(A◦ [s]~x,y) ? [∂U∂y · T ]~x,y), [U ]~x,y〉,

by induction hypothesis this is equal to

ev◦〈Λ(Λ−(A◦ [s]~x,y) ? ([U ]~x,y ? [T ]~x)), [T ]~x,y〉.

By applying Lemma 3.8 we can rewrite the sum of this two summands as follows:

ev◦〈(A◦ [s]~x,y) ? [T ]~x + Λ(Λ−(A◦ [s]~x,y) ? ([U ]~x,y ? [T ]~x)), [U ]~x,y〉.

By Lemma 3.18(i) this is (ev◦〈A◦ [s]~x,y, [U ]~x,y〉) ? [T ]~x = [sU ]~x,y ? [T ]~x.
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• case S ≡ Dnv · (u1, . . . , un). By cases on n.

Subcase n = 1. By definition of differential substitution, we have

[ ∂∂y (Dv · u1) · T ]~x,y = [D(∂v∂y · T ) · u1]~x,y + [Dv · (∂u1∂y · T )]~x,y.

Consider the two summands separately. On the one side we have [D(∂v∂y · T ) · u1]~x,y =

λ◦Λ(Λ−(A◦[∂v∂y ·T ]~x,y)? [u1]~x,y). By the inductive hypothesis this is equal to λ◦Λ(Λ−(A◦
([v]~x,y ? [T ]~x)) ? [u1]~x,y), which is equal to λ ◦ Λ(Λ−((A ◦ [v]~x,y) ? [T ]~x) ? [u1]~x,y) by
Lemma 4.4(ii).

On the other side, we have that [Dv · (∂u1∂y ·T )]~x,y = λ◦Λ(Λ−(A◦[v]~x,y) ? [∂u1∂y ·T ]~x,y). By

induction hypothesis this is λ◦Λ(Λ−(A◦ [v]~x,y) ? ([u1]~x,y ? [T ]~x)).

Since λ is linear, we can apply Lemma 3.13 and write the sum of the two morphisms as:

λ◦
(
Λ(Λ−((A◦ [v]~x,y) ? [T ]~x) ? [u1]~x,y) + Λ(Λ−(A◦ [v]~x,y) ? ([u1]~x,y ? [T ]~x))

)
.

By applying Lemma 3.18(ii), we obtain λ ◦ (Λ(Λ−(A◦ [v]~x,y) ? [u1]~x,y) ? [T ]~x) which is
equal to [Dv · u1]~x,y ? [T ]~x.

Subcase n > 1. Performing easy calculations we get [ ∂∂y (Dnv · (u1, . . . , un)) · T ]~x;y =

[D( ∂∂y (Dn−1v · (u1, . . . , un−1)) · T ) · un]~x;y + [D(Dn−1v · (u1, . . . , un−1)) · (∂un∂y · T )]~x;y. We
consider the two summands separately:

(1) λ◦Λ(Λ−(A◦ [ ∂∂y (Dn−1v · (u1, . . . , un−1)) · T ]~x,y) ? [un]~x,y) = by IH

λ◦Λ(Λ−(A◦ ([Dn−1v · (u1, . . . , un−1)]~x,y ? [T ]~x)) ? [un]~x,y) = by Lemma 4.4(ii)

λ◦Λ(Λ−((A◦ [Dn−1v · (u1, . . . , un−1)]~x,y) ? [T ]~x) ? [un]~x,y).

(2) λ◦Λ(Λ−(A◦ [Dn−1v · (u1, . . . , un−1)]~x,y) ? [∂un∂y · T ]~x,y) = by IH

λ◦Λ(Λ−(A◦ [Dn−1v · (u1, . . . , un−1)]~x,y) ? ([un]~x,y ? [T ]~x)).

Since λ is linear, we have that (1) + (2) is equal to

λ ◦
(
Λ(Λ−((A◦ [Dn−1v · (u1, . . . , un−1)]~x,y) ? [T ]~x) ? [un]~x,y) +

Λ(Λ−(A◦ [Dn−1v · (u1, . . . , un−1)]~x,y) ? ([un]~x,y ? [T ]~x))
)

By Lemma 3.18(ii) we get λ◦ (Λ(Λ−(A◦ [Dn−1v · (u1, . . . , un−1)]~x,y) ? [un]~x) ? [T ]~x). By

Lemma 4.4(i) this is equal to λ◦Λ(Λ−(A◦[Dn−1v · (u1, . . . , un−1)]~x,y) ? [un]~x) ? [T ]~x, i.e.,
to [Dnv · (u1, . . . , un)]~x;y ? [T ]~x.

• all other cases (i.e., S ≡ 0 and S ≡ s+ U) are straightforward.

We are now able to provide the main result of this section.

Theorem 4.11 (Soundness) Every linear reflexive object U in a Cartesian closed differential
category C is a sound model of the differential λ-calculus.

Proof. It is easy to check that the categorical interpretation is contextual. We now prove that
Th(U ) is closed under the rules (β) and (βD):
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• (β) Let [(λy.s)T ]~x = ev ◦ 〈A◦λ◦Λ([s]~x,y), [T ]~x〉. Since A ◦ λ = Id this is equal to
ev ◦ 〈Λ([s]~x,y), [T ]~x〉. On the other side we have [s{T/y}]~x = [s]~x,y ◦ 〈Id, [T ]~x〉 by the
Theorem 4.9 and, by (beta-cat), [s]~x,y ◦〈Id, [T ]~x〉 = ev◦〈Λ([s]~x,y), [T ]~x〉.

• (βD) Let [D(λy.s) · t]~x = λ◦Λ(Λ−(A◦λ◦Λ([s]~x,y)) ? [t]~x). Since A◦λ = Id this is equal to

λ◦Λ(Λ−(Λ([s]~x,y)) ? [t]~x) = λ◦Λ([s]~x,y ? [t]~x). By applying Theorem 4.10, this is equal

to λ◦Λ([ ∂s∂y · t]~x,y) = [λy. ∂s∂y · t]~x.

We conclude that Th(U ) is a differential λ-theory.

The above theorem shows that linear reflexive objects in Cartesian closed differential categories
are sound models of the untyped differential λ-calculus.

Proposition 4.12 If U is extensional, then Th(U ) is extensional.

Proof. Like in the case of usual λ-calculus, easy calculations show that [λx.sx]~x = λ◦Λ(ev)◦
A◦ [s]~x which is equal to [s]~x since Λ(ev) = Id and λ◦A = Id.

4.4. Equational Completeness
An important result in the regular λ-calculus is the equational completeness theorem proved

by Scott in [42] and subsequently refined by Koymans [30]. This theorem states that every λ-
theory is the theory of a reflexive object in a Cartesian closed category. In this section we discuss
whether the categorical notion of model of the differential λ-calculus presented in Section 4 is
complete too. In other words we investigate the question whether for every differential λ-theory
T there is a linear reflexive object UT living in a suitable Cartesian closed differential category
CT such that Th(UT ) = T . We will be able to answer positively this question, provided that T is
differentially extensional and satisfies sum idempotency. This restriction is quite reasonable since
all known models which have arisen so far do satisfy these properties (see Subsections 5.1.1, 5.3.1,
below). However, such conditions arise from some technical choices we have to make — it is at
the moment unknown whether different choices might lead to a more general theorem.

Before going further, we outline the proof of the classic Scott-Koymans’ result which is
achieved in two steps:

(i) given a λ-theory T one proves that the set of λ-terms modulo T together with the appli-
cation operator defined between equivalence classes constitutes a λ-model4 MT (called the
term model of T ) having as theory exactly T ;

(ii) by applying to MT a construction called Karoubi envelope [29] one builds a (very syntactic)
Cartesian closed category CT in which the identity I is a reflexive object such that Th(I) =
T .

Summing up, the idea of the proof is to find suitable λ-terms to encode the structure of the
category (pairing, currying, evaluation, and the like) and prove that they actually define a
category with such a structure.

In our context the categorical operator D(−) can be easily defined in terms of the linear
application. Intuitively the term representing D(f) takes in input a pair and applies the first
component linearly and the second in the usual way, in accordance with the categorical axioma-
tization of D(−). The main problem we need to solve is that the encoding of categorical pairing

4A ‘λ-model’ is a combinatory algebra satisfying the five axioms of Curry and the Meyer-Scott axiom. We refer
to [2, Ch. 5] for more details.
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〈f, g〉 used by Scott is not additive. Indeed, such pairing is defined starting from Church’s en-
coding of the pair in λ-calculus given by 〈〈f, g〉〉 ≡ λx.xfg with projections p1 = λz.z(λxy.x),
p2 = λz.z(λxy.y). Obviously with this definition we have 〈〈f1 +f2, g1 +g2〉〉 6= 〈〈f1, g1〉〉+〈〈f2, g2〉〉
since the sums do not occur in linear position. We will see that the encoding of an additive
pairing can be obtained using the linear application and the sum of the differential λ-calculus.

Notation 4.13 Given a differential λ-theory T we write ΛdT for Λd/T .

From now on, and until the end of the section, we set A◦B ≡ λx.A(Bx). We say that A ∈ ΛdT
is idempotent if A◦A = A and additive if A(x+ y) = Ax+Ay.

Definition 4.14 Let T be a differential λ-theory. The category CT associated with T is defined
as follows:

Objects {A ∈ ΛdT | A is idempotent and additive }
Arrows CT (A,B) = {f ∈ ΛdT | B ◦f ◦A = f }
Identities IdA = A
Composition f ◦g

It is easy to verify that CT is indeed a category.
We now encode the ordered pair 〈〈S, T 〉〉 in the differential λ-calculus as follows. We will use

this notion in the definition of categorical pairing.

Definition 4.15 The encoding of the pair into the differential λ-calculus is given by:

〈〈S, T 〉〉 ≡ λy.(S + Dy · T ), for some y /∈ FV(S, T )

with projections p1 ≡ λx.x0 and p2 ≡ λx.(Dx · I)00.

It is immediate to verify that pi〈〈S1, S2〉〉 = Si (for i = 1, 2) and that 〈〈S1 + S2, T1 + T2〉〉 =
〈〈S1, T1〉〉 + 〈〈S2, T2〉〉. This encoding is inspired by the set-theoretical definition of the ordered
pair: the pair of S, T is morally the set containing S, T (the sum being the union) slightly
modified to be able to distinguish them. Such a distinction consists in the number of linear
resources they can receive (zero for the first component and one for the second).

With this encoding we are able to endow CT with a structure of differential Cartesian closed
category, under the assumption that the sum is idempotent (like set-theoretical union).

Theorem 4.16 For all differential λ-theories T satisfying sum idempotency we have:

(i) CT is differential Cartesian closed,

(ii) the triple (I,1,1) is a linear reflexive object.

Proof. (i) Terminal object. This is 1 ≡ λxy.y; note that f : A→ 1 if and only if f ≡ !A ≡ λxy.y.
Products. Given two objects A1, A2, the object A1 × A2 ≡ λz.〈〈A1(p1z), A2(p2z)〉〉 is the

Cartesian product of A1, A2.

Projections π1 : A1 ×A2 → A1, πA1,A2
1 ≡ A1 ◦p1

π2 : A1 ×A2 → A2, πA1,A2
2 ≡ A2 ◦p2

Pairing Let f : A→ B and g : A→ C
then 〈f, g〉 ≡ λz.〈〈fz, gz〉〉
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Exponents. Given two objects A,B the object A⇒B ≡ λz.B ◦z ◦A is the exponential object
internalizing CT (A,B). The evaluation morphism ev : (A⇒B)×A→ B is defined by

ev ≡ λz.B((p1z)(A(p2z)))

while the curry of a morphism f : A×B → C is given by

Λ(f) ≡ λxy.f〈〈x, y〉〉

Differential operator. Given a morphism f : A→ B we define

D(f) ≡ λz.B
(
(Df · (A(p1z)))(A(p2z))

)
Left-additive structure. We interpret the sum in the category as the sum on ΛdT .
The calculations that show that everything works are very lengthy but straightforward. As a

simple example we prove that categorical pairing is actually additive:

〈f1 + f2, g1 + g2〉 = λz.〈〈f1z + f2z, g1z + g2z〉〉
= λy.(f1z + f2z) + λy.Dy · (g1z + g2z)
= λy.f1z + λy.f2z + λy.Dy · (g1z) + λy.Dy · (g2z)
= 〈f1, g1〉+ 〈f2, g2〉

(ii) Note that (I⇒ I) = 1. Then I is a reflexive object since 1 : 1 → I, 1 : I → 1 and
1◦1 = Id1. Moreover I is linear as a reflexive object:

D(1) = λz.(D1 · (p1z))(p2z) = λz.(λxy.p1zy)(p2z) = λzy.p1zy = 1◦π1.

In the above proof the idempotency of the sum is needed, for instance, to prove the axiom
(D-curry). It is left for future works to find an encoding of the additive pairing that does not
require the idempotency of the sum.

In order to provide a characterization of the interpretation of a differential λ-term S we need
the following definition.

Definition 4.17 The full η∂-expansion Ŝ of a differential λ-term S ∈ Λd is defined by induction
(where y is a fresh variable):

x̂ ≡ x, λ̂x.s ≡ λx.ŝ, ŝT ≡ ŝT̂ , D̂s · t ≡ λy.(D ŝ · t̂)y,
∑̂

i si ≡
∑

i ŝi.

Roughly speaking, the term Ŝ is obtained from S performing one η∂-expansion in all its subterms
of shape Ds · t. The adjective full refers to the fact that the η∂-expansion is done inductively on
the structure of S.

Remark 4.18 Obviously, if T is differentially extensional then T ` S = Ŝ for all S ∈ Λd.

Proposition 4.19 In the model I living in CT the following holds (for some z /∈ FV(S)):

[S]~x = λz.Ŝ{π~xx1z/x1} · · · {π~xxnz/xn} : I~x → I.
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Proof. By induction on the structure of S. The only two non-trivial cases are the following.
case S ≡ λy.T . Then we have:

[λxn+1.T ]~x = 1◦Λ([T ]~x,xn+1
) by definition of [ · ]~x

= 1◦ (λy1y2.[T ]~x,xn+1
〈〈y1, y2〉〉) by definition of Λ(·)

= λy1y2.(λz.T̂{π~x,xn+1
x1 z/x1} · · · {π~x,xn+1

xn+1 z/xn+1})〈〈y1, y2〉〉 by induction hypothesis

= λy1y2.T̂{π~xx1y1/x1} · · · {π~xxny1/xn}{y2/xn+1} by β-reduction

= λz.(λxn+1.T̂ ){π~xx1z/x1} · · · {π~xxnz/xn} by α-conversion

case S ≡ DT · U . Then easy (but very lengthy) calculations give:

[DT · U ]~x = λzy.(D([T ]~xz) · ([U ]~xz))y
= λzy.(D((λz.T{π~xx1z/x1} · · · {π~xxnz/xn})z) · ((λz.S{π

~x
x1z/x1} · · · {π~xxnz/xn})z))y

= λzy.(D(T{π~xx1z/x1} · · · {π~xxnz/xn}) · (S{π
~x
x1/x1} · · · {π~xxnz/xn}))y

Therefore, in the theory of the model I, equations of the form Ds · t = λy.(Ds · t)y might be
added. No equation can be added when the theory T is already differentially extensional.

Theorem 4.20 [Equational Completeness] Every differentially extensional differential λ-theory
T satisfying sum idempotency is the theory of a linear reflexive object in a differential Cartesian
closed category.

Proof. For all closed terms S, T ∈ Λd we have, by Proposition 4.19, [S]~x = [T ]~x entails

T ` λz.Ŝ = λz.T̂ and, by Remark 4.18, T ` λz.S = λz.T . Since T is a differential λ-theory
we also have T ` (λz.S)0 = (λz.T )0. Since z /∈ FV(S, T ) and λβd ⊆ T we get T ` S = T ,
therefore Th(I) = T .

In Subsection 6.3.1 we will show that an analogous theorem holds for the resource calculus,
without the restriction to theories that are differentially extensional.

Remark 4.21 Theorem 4.20 does not entail that the theory of every model in a differential
Cartesian closed category must satisfy sum-idempotency and the differential extensional axiom.
Those are just technical conditions arising from that specific proof of the completeness theorem.
However, at the moment, no more general proof is known.

The completeness theorem constitutes an important result and suggests that the notion of
model we chose for the differential λ-calculus is actually correct.

On the other hand, denotational models are usually introduced because they allow to study a
calculus by means of more abstract mathematical structures on which a broader range of tools
and proof techniques are available. In this respect, the categorical models living in CT are not
satisfactory because they are very syntactical and proving operational properties of differential
λ-terms via these models does not make it any easier than working directly with the syntax.

For this reason it would be interesting to find meaningful classes of models (semantics) that
are complete in the sense that they allow to represent all differential λ-theories. Already for the
usual λ-calculus it is well known that the main semantics, i.e. the continuous, the stable and the
strongly stable semantics, are all hugely incomplete — there is a continuum of λ-theories that
cannot be representable by models living in such semantics [41]. In Section 5.3 we will see that
a similar result holds for the relational semantics of the differential λ-calculus (Corollary 5.11).

The problem of finding a complete semantics of the (differential) λ-calculus is open and quite
difficult.
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4.5. Comparison with the Categorical Models of the Untyped Lambda Calculus
The definition of categorical model of the differential λ-calculus proposed in this paper seems

to be a generalization without surprises of the classical definition of model of the λ-calculus, i.e.,
the notion of reflexive object in a Cartesian closed category. However, while this notion is – by
far – the most famous categorical definition of model of λ-calculus, it is not the most general
one. Indeed, as pointed out by Martini in [36], in the proof of soundness [2, Prop. 5.5.5] for
categorical models there is one axiom of Cartesian closed categories that is never used, namely
the axiom (Id-Curry) which is equivalent to ask for the unicity of the operator Λ(−) in the
category (and this entails Λ(Λ−(f)) = f).

For this reason Martini proposed reflexive objects living in weak Cartesian closed categories
as a more general notion of model of λ-calculus. In these categories we have just a retraction
(not an isomorphism) between the homsets C(C × A,B) C C(C,A⇒B). Thus A⇒B is no
longer an object representing exactly C(A,B) — there are different objects that can equally well
accomplish the job. Recently, De Carvalho [17] successfully used this notion to build concrete
models living in very natural weak Cartesian closed categories inspired from the semantics of
linear logic.

In our differential framework this generalization cannot be applied since the proof of soundness
relies on the fact that Λ(Λ−(f)) = f . This is actually needed to give a meaningful interpretation
of the linear application Ds · t. Hence the definition of categorical model of the differential λ-
calculus we presented differs from the corresponding one for the usual λ-calculus more than one
could imagine at a first look.

4.6. Modeling the Taylor Expansion
In this subsection we provide sufficient conditions for models living in Cartesian closed dif-

ferential categories to equate all differential λ-terms having the same Taylor expansion. As an
interesting fact, this happens to be a property of the category rather than of the reflexive objects.
Therefore, all models living in a category “modeling the Taylor expansion” have an equational
theory including E .

Since the definition of the Taylor expansion asks for infinite sums, we need to consider Carte-
sian closed differential categories C where it is possible to sum infinitely many morphisms.
Formally, we require that for every countable set I and every family {fi}i∈I of morphisms
fi : A → B we have

∑
i∈I fi ∈ C(A,B). In this case we say that C has countable sums. To

avoid the tedious problem of handling coefficients we suppose that the sum on the morphisms
is idempotent.

Definition 4.22 A Cartesian closed differential category models the Taylor Expansion if it has
countable sums and the following axiom holds (for every f : C ×A→ B and g : C → A):

(Taylor) ev◦〈f, g〉 =
∑
k∈N

((· · · (Λ−(f) ?g) · · · ) ? g︸ ︷︷ ︸
k times

)◦〈Id, 0〉.

Recall that the Taylor expansion S∗ of a differential λ-term S has been defined in Subsec-
tion 2.4. Given a model U of the differential λ-calculus living in a Cartesian closed differential
category having countable sums we can extend the interpretation given in Definition 4.5 to terms
in Λd∞ by setting [Σi∈Isi]~x =

∑
i∈I [si]~x, for every countable set I.

Theorem 4.23 Let S be a differential λ-term and U be a model living in a Cartesian closed
differential category having countable sums and modeling the Taylor Expansion. Then:

[S]~x = [S∗]~x.
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Proof. By structural induction on S. The only interesting case is S ≡ sT .

[sT ]~x = ev◦〈A◦ [s]~x, [T ]~x〉 by def. of [− ]~x
=

∑
k∈N((· · · (Λ−(A◦ [s]~x) ?[T ]~x) · · · ) ? [T ]~x︸ ︷︷ ︸

k times

)◦〈Id, 0〉 by (Taylor)

=
∑

k∈N ev◦〈Λ((· · · (Λ−([s]~x ?[T ]~x) · · · ) ? [T ]~x︸ ︷︷ ︸
k times

), 0〉 by (beta-cat)

=
∑

k∈N ev◦〈A◦λ◦Λ((· · · (Λ−([s]~x ?[T ]~x) · · · ) ? [T ]~x︸ ︷︷ ︸
k times

), 0〉 by A◦λ = Id

=
∑

k∈N ev◦〈A◦ [Dk s · (T, . . . , T )]~x, 0〉 by def. of [− ]~x
= [Σk∈N(Dk s · (T, . . . , T ))0]~x by def. of [− ]~x
= [(sT )∗]~x by def. of (·)∗

By adapting the proof of Theorem 4.11 one can prove that [S∗]~x = [NF(S∗)]~x for every
differential λ-term S. From this fact and Theorem 4.23 we get the following result.

Corollary 4.24 Every model U living in a Cartesian closed differential category that models
the Taylor expansion satisfies E ⊆ Th(U ).

5. A Relational Model of the Differential Lambda Calculus

In this section we provide the main example of Cartesian closed differential category known
in the literature. What we have in mind is the category MRel [26,10], which is the co-Kleisli
category of the functor Mf (−) over the ?-autonomous category Rel of sets and relations. We
will also show that the reflexive object D living in MRel built in [10] to model the usual λ-
calculus is linear, and then it constitutes a model of the untyped differential λ-calculus. We will
then provide a partial characterization of its equational theory showing that it contains λβηd

and E (this follows from the fact that MRel models the Taylor expansion).

Remark 5.1 In [12] we have provided another example of Cartesian closed differential category:
the category MFin, which is the co-Kleisli of the functorMf (−) over the ?-autonomous category
of finiteness spaces and finitary relations [19]. In this paper we do not present the category
MFin since it does not contain any reflexive object (see [19,47]) and hence it cannot be used
as a semantics of the untyped differential λ-calculus. Other examples of semantics useful for
modeling the untyped differential λ-calculus (including semantics that do not model the Taylor
expansion) will be discussed in Subsection 7.2.

5.1. Relational Semantics
We recall that the definitions and notations concerning multisets have been introduced in

Subsection 1.1. We now provide a direct definition of the category MRel:

• The objects of MRel are all the sets.

• A morphism from A to B is a relation from Mf (A) to B; in other words, MRel(A,B) =
P(Mf (A)×B).

• The identity of A is the relation IdA = {([α], α) | α ∈ A} ∈MRel(A,A).

• The composition of s ∈MRel(A,B) and t ∈MRel(B,C) is defined by:

t◦s = {(m, γ) | ∃k ∈ N, ∃(m1, β1), . . . , (mk, βk) ∈ s such that
m = m1 ] . . . ]mk and ([β1, . . . , βk], γ) ∈ t }.
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Given two sets A1, A2, we denote by A1 &A2 their disjoint union ({1} × A1) ∪ ({2} × A2).
Hereafter we adopt the following convention.

Convention 5.2 We consider the canonical bijection betweenMf (A1)×Mf (A2) andMf (A1 &
A2) as an equality. Therefore, we will still denote by (m1,m2) the corresponding element of
Mf (A1 &A2).

Theorem 5.3 The category MRel is a Cartesian closed category.

Proof. The terminal object 1 is the empty set ∅, and the unique element of MRel(A, ∅) is the
empty relation.

Given two sets A1 and A2, their categorical product in MRel is their disjoint union A1 &A2

and the projections π1, π2 are given by:

πi = {([(i, a)], a) | a ∈ Ai} ∈MRel(A1 &A2, Ai), for i = 1, 2.

It is easy to check that this is actually the categorical product of A1 and A2 in MRel; given
s ∈MRel(B,A1) and t ∈MRel(B,A2), the corresponding morphism 〈s, t〉 ∈MRel(B,A1 &A2)
is given by:

〈s, t〉 = {(m, (1, a)) | (m, a) ∈ s} ∪ {(m, (2, b)) | (m, b) ∈ t} .

Given two objects A and B, the exponential object A⇒B is Mf (A) × B and the evaluation
morphism is given by:

evAB = {(([(m, b)],m), b) | m ∈Mf (A) and b ∈ B} ∈MRel((A⇒B)&A,B) .

Again, it is easy to check that in this way we defined an exponentiation. Indeed, given any set C
and any morphism s ∈MRel(C&A,B), there is exactly one morphism Λ(s) ∈MRel(C,A⇒B)
such that:

evAB ◦ (Λ(s)× IdS) = s.

which is Λ(s) = {(p, (m, b)) | ((p,m), b) ∈ s}.

Theorem 5.4 The category MRel is a Cartesian closed differential category.

Proof. By Theorem 5.3 MRel is Cartesian closed. It is Cartesian closed left-additive since every
homset MRel(A,B) can be endowed with the following additive structure (MRel(A,B),∪, ∅).

Finally, given f ∈MRel(A,B) we can define its derivative as follows:

D(f) = {(([α],m), β) | (m ] [α], β) ∈ f} ∈MRel(A&A,B).

It is not difficult to check that D(−) satisfies (D1-7). We now show that also (D-curry) holds.
Let f ⊆ (Mf (C)×Mf (A))×B. On the one side we have:

D(Λ(f)) = {(([γ],m1), (m2, β)) | ((m1 ] [γ],m2), β) ∈ f}.

On the other side we have D(f) = f1 ∪ f2, where:

f1 = {((([γ], []), (m1,m2)), β) | ((m1 ] [γ],m2), β) ∈ f},
f2 = {((([], [α]), (m1,m2)), β) | ((m1,m2 ] [α]), β) ∈ f}.
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Since MRel is left-additive we have that

(f1 ∪ f2)◦〈π1 × 0, π2 × Id〉 = (f1 ◦〈π1 × 0, π2 × Id〉) ∪ (f2 ◦〈π1 × 0, π2 × Id〉)

Easy calculations give:

f1 ◦〈π1 × 0, π2 × Id〉 = {((([γ],m1),m2), β)) | ((m1 ] [γ],m2), β) ∈ f}
f2 ◦〈π1 × 0, π2 × Id〉 = ∅.

We then get Λ(D(f)◦〈π1 × 0, π2 × Id〉) = Λ(f1 ◦〈π1 × 0, π2 × Id〉) = D(Λ(f)).

The operator ? can be directly defined in MRel as follows:

f ? g = {((m1 ]m2,m), β) | (m1, α) ∈ g, ((m2,m ] [α]), β) ∈ f} ∈MRel(C&A,B).

We now provide a characterization of the linear morphisms of MRel.

Lemma 5.5 A morphism f ∈MRel(A,B) is linear iff for all (m,β) ∈ f we have that m is a
singleton.

Proof. Easy calculations give f ◦π1 = {((m, []), β) | (m,β) ∈ f}. This is equal to D(f) if and
only if m is a singleton.

Corollary 5.6 In MRel every isomorphism is linear.

Proof. Let f ∈MRel(B,A) and g ∈MRel(A,B) such that f ◦g = IdA and g◦f = IdB. Notice
that f does not contain any pair ([], α) because otherwise such a pair would also appear in f ◦g,
and this is impossible since f ◦g = Id. Similarly, g cannot contain any pair ([], β). Thus:

f ◦g = {([α], α) | ∃β ∈ B ([α], β) ∈ g and ([β], α) ∈ f}.

Since by hypothesis f ◦g = {([α], α) | α ∈ A} we have that for all α ∈ A there is a β ∈ B such
that ([β], α) ∈ f . Suppose now, by the way of contradiction, that there is a ([α1, . . . , αk], β) ∈ g
such that k > 1. From the property above there are β1, . . . , βk ∈ B such that ([βi], αi) ∈ f for
1 ≤ i ≤ k, thus we would have ([β1, . . . , βk], β) ∈ f◦g = IdB, which is impossible. By Lemma 5.5
we conclude that g is linear. Analogous considerations show that also f is linear.

5.1.1. An Extensional Relational Model
In this section we build a reflexive object D in MRel which is extensional by construction,

and hence linear by Corollary 5.6. We first give some preliminary definitions.
Recall that N denotes the set of natural numbers. An N-indexed sequence σ = (m1,m2, . . .)

of multisets is quasi-finite if mi = [] holds for all but a finite number of indices i. If A is a set,
we denote by Mf (A)(ω) the set of all quasi-finite N-indexed sequences of finite multisets over
A. Notice that the only inhabitant of Mf (∅)(ω) is the sequence ([], [], [], . . .).

We now define a family of sets {Dn}n∈N as follows:

• D0 = ∅,

• Dn+1 =Mf (Dn)(ω).



What is a categorical model of the differential and the resource λ-calculi? 31

Since the operation A 7→ Mf (A)(ω) is monotonic on sets, and since D0 ⊆ D1, we have
Dn ⊆ Dn+1 for all n ∈ N. Finally, we set D = ∪n∈NDn.

So we have D0 = ∅ and D1 = {([], [], . . . )}. The elements of D2 are quasi-finite sequences of
multisets over a singleton, i.e., quasi-finite sequences of natural numbers. More generally, an
element of D can be represented as a finite tree which alternates two kinds of layers:

• ordered nodes (the quasi-finite sequences), where immediate subtrees are indexed by dis-
tinct natural numbers,

• unordered nodes where subtrees are organized in a non-empty multiset.

In order to define an isomorphism in MRel between D and (D⇒D) =Mf (D)×D it is enough
to remark that every element σ ∈ D is canonically associated with the pair (σ0, (σ1, σ2, . . .)) and
vice versa. Given σ ∈ D and m ∈ Mf (D), we write m :: σ for the element τ = (τ1, τ2, . . .) ∈ D
such that τ1 = m and τi+1 = σi. This defines a bijection betweenMf (D)×D and D, and hence
an isomorphism in MRel as follows:

Proposition 5.7 The triple D = (D,A, λ) where:

• λ = {([(m,σ)],m :: σ) | m ∈Mf (D), σ ∈ D} ∈MRel(D⇒D,D),

• A = {([m :: σ], (m,σ)) | m ∈Mf (D), σ ∈ D} ∈MRel(D,D⇒D),

is an extensional categorical model of differential λ-calculus.

Proof. It is trivial that λ◦A = IdD and A◦λ = IdD⇒D. We conclude by Corollary 5.6.

5.2. Interpreting the Differential Lambda Calculus in D
In Section 4, we have defined the interpretation of a differential λ-term in any linear reflexive

object of a Cartesian closed differential category. We provide the result of the corresponding
computation, when it is performed in D .

Given a differential λ-term S and a sequence ~x = x1, . . . , xn adequate for S, the interpretation
[S]~x is an element of MRel(D~x, D), i.e., [S]~x ⊆Mf (D)n×D. The interpretation [S]~x is defined
by structural induction on S as follows:

• [xi]~x = {(([], . . . , [], [σ], [], . . . , []), σ) | σ ∈ D}, where the only non-empty multiset occurs
in the i-th position.

• [sT ]~x = {((m1, . . . ,mn), σ) | ∃k ∈ N

∃(mj
1, . . . ,m

j
n) ∈Mf (D)n for j = 0, . . . , k

∃σ1, . . . , σk ∈ D such that
mi = m0

i ] . . . ]mk
i for i = 1, . . . , n

((m0
1, . . . ,m

0
n), [σ1, . . . , σk] :: σ) ∈ [s]~x

((mj
1, . . . ,m

j
n), σj) ∈ [T ]~x for j = 1, . . . , k},

• [λz.s]~x = {((m1, . . . ,mn),m :: σ) | ((m1, . . . ,mn,m), σ) ∈ [s]~x,z}, where we assume that
z does not occur in ~x,

• [D1s · (t)]~x = {((m1 ]m′1, . . . ,mn ]m′n),m :: β) | ∃α ∈ D ((m1, . . . ,mn), α) ∈ [t]~x and
((m′1, . . . ,m

′
n),m ] [α] :: β) ∈ [s]~x},

• [Dn+1s · (t1, . . . , tn+1)]~x = {((m1]m′1, . . . ,mn]m′n),m :: β) | ∃α ∈ D ((m1, . . . ,mn), α) ∈
[tn+1]~x and ((m′1, . . . ,m

′
n),m ] [α] :: β) ∈ [Dns · (t1, . . . , tn)]~x},
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• [0]~x = ∅,

• [s+ S]~x = [s]~x ∪ [S]~x.

Note that if S is a closed differential λ-term then [S] ⊆ D. Moreover, it is easy to check that
[Ω] = ∅ (actually from [33] we know that the interpretation of all unsolvable ordinary λ-terms
is empty). In the next subsection we will prove some general properties of Th(D).

5.3. An Extensional Model of Taylor Expansion
In [33] we characterized the equational theory of D , seen as a model of the untyped λ-calculus.

More precisely we proved that Th(D) = H?, the theory equating two λ-terms M,N whenever
they behave in the same way in every context. This is not surprising since Ehrhard proved in
[20] that the continuous semantics [43] can be seen as the extensional collapse of the category
MRel and that D corresponds to Scott’s D∞ under this collapse.

In this subsection we give a partial characterization of the theory of D seen as a model of the
differential λ-calculus.

Remark 5.8 Given an arbitrary set I and an I-indexed family of relations {fi}i∈I fromMf (A)
to B we have that ∪i∈Ifi ⊆Mf (A)×B. In particular, MRel has countable sums.

Proposition 5.9 MRel models the Taylor expansion.

Proof. Let f ⊆Mf (C)× (Mf (A)×B) and g ⊆Mf (C)×A. Easy calculations give:

ev◦〈f, g〉 = {(m, γ) | ∃k ∈ N
∃mj ∈Mf (C) for j = 0, . . . , k
∃α1, . . . , αk ∈ A such that
m = m0 ] . . . ]mk for i = 1, . . . , n
(m0, ([α1, . . . , αk], γ)) ∈ f
(mj , αj) ∈ g for j = 1, . . . , k}

=
⋃
k∈N{(m, γ) | ∃mj ∈Mf (C) for j = 0, . . . , k

∃α1, . . . , αk ∈ A such that
m = m0 ] . . . ]mk for i = 1, . . . , n
(m0, ([α1, . . . , αk], γ)) ∈ f
(mj , αj) ∈ g for j = 1, . . . , k}

=
∑

k∈N((· · · (Λ−(f) ?g) · · · ) ? g︸ ︷︷ ︸
k times

)◦〈IdA, ∅〉

Corollary 5.10 Every categorical model U of the differential λ-calculus living in MRel satisfies
E ⊆ Th(U ).

Another easy corollary is that the relational semantics is incomplete. We recall that a se-
mantics C is called complete if for all differential λ-theories T there is a model U living in C
such that Th(U ) = T . As we know that in MRel only theories including E are representable,
it follows that no non-trivial recursively enumerable5 differential λ-theory is representable in
MRel, and since there exists a continuum of recursively enumerable differential λ-theories we
get the following result.

5A differential λ-theory T is recursively enumerable if the T -equivalence class of every differential λ-term is; it is
called trivial if it equates all differential λ-terms.
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Corollary 5.11 The relational semantics is hugely incomplete: there are 2ℵ0 differential λ-
theories that are not representable in MRel.

From Corollary 5.10 we get the following (partial) characterization of Th(D).

Corollary 5.12 The theory of D includes both λβηd and E.

These preliminary results and the work in [8] lead us to the following conjecture.

Conjecture 1 We conjecture that

Th(D) = {(S, T ) ∈ Λd × Λd | for all contexts C(·), C(S) is solvable iff C(T ) is solvable },

where a context is a differential λ-term with a hole denoted by (·), and C(S) denotes the result
of substituting S (possibly with capture of variables) for the hole in C. ‘Solvable’ here has to
be intended as may-solvable6 (i.e., a sum of terms converges if at least one of its components
converges).

A complete syntactical characterization of the theory of D is difficult to provide, and it is kept
for future works.

5.3.1. A Differentially Extensional but Non-Extensional Relational Model
In this subsection we briefly present an example of a model E in the category MRel satisfying

the axiom (η∂) but not the axiom (η). This model, whose construction is similar to that of D ,
was first introduced by Hyland et al. in [28] and has been studied by de Carvalho in his PhD
thesis (presented as a type system called System R, see [17, §6.3.3]).

Let us fix a non-empty set A of “atoms” such that A does not contain any pair. Define a
family of sets {En}n∈N as follows:

• E0 = ∅,

• En+1 = (Mf (En)× En) ∪A.

Finally, we set E = ∪n∈NEn and E = (E,A, λ) whereA, λ are the obvious morphisms performing
the retraction (E⇒E) C E.

Remark 5.13 It is easily verified that E is linear, therefore it is a model of the differential
λ-calculus, and non-extensional because the atoms in A ⊆ E cannot be sent injectively into
Mf (E)× E.

As remarked in [28], the model E is a relational analogue of Engeler’s graph-model [25] in the
same spirit as D is the analogue of Scott’s D∞. The interpretation of a differential λ-term S in
E is defined as usual and gives, up to isomorphism, a subset [S]~x ⊆Mf (E)n × E.

Lemma 5.14 The model E is differentially extensional.

Proof. In E the interpretation of the linear application does not contain any atom, in the sense
that (~m,α) ∈ [DS · T ]~x entails α = (m′, β). Presenting the model as a type system (m′, β)
would be an arrow type m′ → β. This guarantees that the η∂-expansion does not modify the
interpretation.

6May and must solvability have been studied in [38] in the context of the resource calculus.
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6. The Resource Calculus

In this section we present the resource calculus [6,7] (using the formalization à la Tranquilli
given in [39]) and we show that every model of the differential λ-calculus is also a model of
the resource calculus. We then discuss the (tight) relationship existing between the differential
λ-calculus and the resource calculus.

6.1. Its Syntax
The resource calculus has three syntactical categories: resource λ-terms (Λr) that are in

functional position; bags (Λb) that are in argument position and represent multisets of resources,
and sums that represent the possible results of a computation. A resource (Λ(!)) can be linear
or reusable, in the latter case it is written with a ! superscript. An expression (Λe) is either a
term or a bag.

Formally, we have the following grammar:

Λr : M,N,L ::= x | λx.M | MP resource λ-terms

Λ(!) : M (!), N (!) ::= M | M ! resources

Λb : P,Q,R ::= [M
(!)
1 , . . . ,M

(!)
n ] bags

Λe : A,B ::= M | P expressions

Hereafter, resource λ-terms are considered up to α-conversion and permutation of resources
in the bags. Intuitively, linear resources are available exactly once, while reusable resources can
be used zero or many times.

Definition 6.1 Given an expression A ∈ Λe the set FV(A) of free variables of A is defined by
induction on A as follows:

• FV(x) = {x},

• FV(λx.M) = FV(M)− {x},

• FV(MP ) = FV(M) ∪ FV(P ),

• FV([]) = ∅,

• FV([M (!)] ] P ) = FV(M) ∪ FV(P ).

Given expressions A1, . . . , Ak we set FV(A1, . . . , Ak) = FV(A1) ∪ · · · ∪ FV(Ak).

Concerning sums, N〈Λr〉 (resp. N〈Λb〉) denotes the set of finite formal sums of terms (resp.
bags). As usual, we suppose that the sum is commutative and associative, and that 0 is its
neutral element.

M,N ∈ N〈Λr〉 P,Q ∈ N〈Λb〉 A,B,C ∈ N〈Λe〉 = N〈Λr〉 ∪N〈Λb〉 sums

Note that in writing N〈Λe〉 we are abusing the notation, as it does not denote the N-module
generated over Λe = Λr ∪ Λb but rather the union of the two N-modules. In other words, sums
must be taken only in the same sort.

The definition of FV(·) is extended to elements of N〈Λe〉 in the obvious way.
In the grammar for resource λ-terms, bags and expressions sums do not appear, indeed in

this calculus they may arise only on the “surface” (while in the differential λ-calculus sums may
appear in the right argument of an application). Nevertheless, as a syntactic sugar and not as
actual syntax, we extend all the constructors to sums as follows.
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Notation 6.2 We set the following abbreviations on N〈Λe〉.

• λx.
∑k

i=1Mi =
∑k

i=1 λx.Mi,

• (
∑k

i=1Mi)(
∑n

j=1 Pj) = (
∑

i,jMiPj),

• [(
∑k

i=1Mi)] ] P =
∑k

i=1[Mi] ] P ,

• [(
∑k

i=1Mi)
!] ] P = [M !

1, . . . ,M
!
k] ] P .

These equalities make sense since all constructors, but the (·)!, are linear. Notice the dif-
ference between these rules and the analogous ones for the differential λ-calculus introduced
in Notation 2.4. In the differential λ-calculus the application operator is only linear in its left
component while here it is bilinear.

The 0-ary version of the above equalities give us λx.0 = 0, M0 = 0, 0P = 0, [0] ] P = 0,
[0!] ] P = P and 0 ] P = 0. Therefore 0 annihilates everything except when it lies under a (·)!.

Definition 6.3 Let A be an expression and N be a resource λ-term.

• A{N/x} is the usual substitution of N for x in A. It is extended to sums as in A{N/x}
by linearity7 in A, and using Notation 6.2 for N.

• A〈N/x〉 is the linear substitution defined inductively as follows:

y〈N/x〉 =

{
N if x = y
0 otherwise

(λy.M)〈N/x〉 = λy.M〈N/x〉
(MP )〈N/x〉 = M〈N/x〉P +M(P 〈N/x〉)

[M ]〈N/x〉 = [M〈N/x〉] []〈N/x〉 = 0
[M !]〈N/x〉 = [M〈N/x〉,M !] (P ]R)〈N/x〉 = P 〈N/x〉 ]R+ P ]R〈N/x〉

It is extended to A〈N/x〉 by bilinearity8 in both A and N.

The operation M〈N/x〉 on resource λ-terms is roughly equivalent to the operation ∂S
∂x ·T on dif-

ferential λ-terms (cf. Lemma 6.11 below). Notice that in defining [M !]〈N/x〉 we morally extract
a linear copy of M from the infinitely many represented by M !, that receives the substitution,
and we keep the other ones unchanged.

Example 6.4

1. x〈M/x〉 = M and y〈M/x〉 = 0,

2. (x[x])〈M +N/x〉 = (M +N)[x] + x[M +N ] = M [x] +N [x] + x[M ] + x[N ],

3. (x[x!])〈M +N/x〉 = (M +N)[x!] + x[(M +N), x!] = M [x!] +N [x!] + x[M,x!] + x[N, x!],

4. (x[x!]){M +N/x} = (M +N)[(M +N)!] = M [M !, N !] +N [M !, N !].

As a matter of notation, we will write ~L for L1, . . . , Lk and ~N ! for N !
1, . . . , N

!
n. We will

also abbreviate M〈L1/x〉 · · · 〈Lk/x〉 in M〈~L/x〉. Moreover, given a sequence ~L and an index
1 ≤ i ≤ k we will write ~L−i for L1, . . . , Li−1, Li+1, . . . , Lk.

Remark 6.5 Every applicative resource λ-term MP can be written in a unique way as M [~L, ~N !].

7A unary operator F (·) is extended by linearity by setting F (ΣiAi) = ΣiF (Ai).
8A binary operator F (·, ·) is extended by bilinearity by setting F (ΣiAi,ΣjBj) = Σi,jF (Ai, Bj).
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6.2. Resource Lambda Theories
We now define the equational theories of the resource calculus, namely the resource λ-theories.

To begin with, we present the main axiom associated with this calculus (for ~L = L1, . . . , Lk and
~N = N1, . . . , Nn):

(βr) (λx.M)[~L, ~N !] = M〈~L/x〉{Σn
i=1Ni/x}

Notice that, when n = 0, this rule becomes (λx.M)[~L] = M〈~L/x〉{0/x}. Once oriented from
left to right, the (βr)-conversion expresses the way of calculating a function λx.M applied to a
bag containing linear resources ~L and reusable resources ~N .

Remark 6.6 The left-to-right oriented version of (βr) corresponds to the giant-step reduction,
in the terminology of [39]. In the same paper the authors also consider a baby-step reduction
rule. They prove that both reductions are confluent and that every giant-step can be emulated
by several baby-steps. For our purposes we can consider the rule (βr) without loss of generality,
because both reductions generate the same equational theory.

In the resource calculus the axiom equating all resource λ-terms having the same extensional
behaviour has the shape:

(ηr) λx.M [x!] = M, where x /∈ FV(M).

In this context the axiom (η∂) of the differential λ-calculus has no analogue since the application
of a resource λ-term to a bag morally corresponds to a sequence of linear applications always
followed by a classic application (see Definition 6.10, below). Therefore the linear application
where (η∂) should act is hidden.

The resource calculus can be seen as a proper extension of the classic λ-calculus.

Remark 6.7 The classic λ-calculus can be easily injected within the resource calculus. Indeed,
given an ordinary λ-term M , it is sufficient to translate every subterm of M of shape PQ into
P [Q!]. In this restricted system, the rules (βr) and (ηr) are completely equivalent to the classic
(β) and (η)-conversions, respectively.

We now define the equational theories associated with this calculus, namely the resource
λ-theories.

A λr-relation R is any set of equations between sums of resource λ-terms (resp. bags). Thus
R can be thought of as a binary relation on N〈Λe〉.

A λr-relation R is called:

• an equivalence if it is closed under the following rules (for all A,B,C ∈ N〈Λe〉):

A = A
reflexivity B = A

A = B
symmetry A = B B = C

A = C
transitivity

• compatible if it is closed under the following structural rules (for all M,N,Mi,Ni ∈ N〈Λr〉
and P,Q ∈ N〈Λb〉):

M = N
λx.M = λx.N lambda

M = N Q = P
MP = NQ

app

M = N P = Q

[M(!)] ] P = [N(!)] ] Q
bag Mi = Ni for all 1 ≤ i ≤ n∑n

i=1 Mi =
∑n

i=1 Ni
sum
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As a matter of notation, we will write R ` M = N or M =R N for M = N ∈ R.

Definition 6.8 A resource λ-theory is any compatible λr-relation R which is an equivalence
relation and includes (βr). R is called extensional if it also contains (ηr). We say that R
satisfies sum idempotency whenever R `M +M = M .

We denote by λβr (resp. λβηr) the minimum resource λ-theory (resp. the minimum extensional
resource λ-theory).

Example 6.9

1. λβr ` (λx.x[x])[I] = 0, λβr ` (λx.x[x])[I, I] = I and λβr ` (λx.x[x])[I, I, I] = 0,

2. λβr ` (λx.x[x])[M,N ] = M [N ] +N [M ],

3. λβr ` (λx.x[x, x])[(λy.y[y!])!] = (λx.x[x!])[λy.y[y!], λz.z[z!]] = 2(λy.y[y!])[(λz.z[z!])!],

4. λβηr ` (λxz.y[y][z!])[] = λz.y[y][z!] = y[y].

6.3. From the Resource to the Differential Lambda Calculus. . .
In this subsection we show that every linear reflexive object living in a Cartesian closed

differential category is also a sound model of the untyped resource calculus. This result is
achieved by first translating the resource calculus in the differential λ-calculus, and then applying
the machinery of Section 4.

Definition 6.10 The resource calculus can be easily translated into the differential λ-calculus
as follows:

• xd = x,

• (λx.M)d = λx.Md,

• (M [L1, . . . , Lk, N
!
1, . . . , N

!
n])d = (DkMd · (Ld1, . . . , Ldk))(Σn

i=1N
d
i ).

The translation is then extended to elements in N〈Λr〉 by setting (Σn
i=1Mi)

d = Σn
i=1M

d
i .

The next lemma shows that this translation behaves well with respect to the differential and
the usual substitution.

Lemma 6.11 Let M,N ∈ Λr and x be a variable. Then:

(i) (M〈N/x〉)d = ∂Md

∂x ·N
d,

(ii) (M{N/x})d = Md{Nd/x}.

Proof. (i) By structural induction on M . The only difficult case is M ≡ M ′[~L, ~N !]. By
definition of (−)d and of linear substitution we have:

((M ′[~L, ~N !])〈N/x〉)d = (M ′〈N/x〉[~L, ~N !])d + (M ′([~L, ~N !]〈N/x〉))d =

(M ′〈N/x〉[~L, ~N !])d︸ ︷︷ ︸
(1)

+ (Σk
j=1M

′[Lj〈N/x〉, ~L−j , ~N !])d︸ ︷︷ ︸
(2)

+ (Σn
i=1M

′[Ni〈N/x〉, ~L, ~N !])d︸ ︷︷ ︸
(3)

.

Let us consider the three summands separately.
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(1) By definition of (−)d we have that (M ′〈N/x〉[~L, ~N !])d = (Dk (M ′〈N/x〉)d · (~Ld))(Σn
i=1N

d
i ).

By applying the induction hypothesis, this is equal to (Dk (∂(M ′)d

∂x ·Nd) · (~Ld))(Σn
i=1N

d
i ).

(2) By definition of the translation map (−)d we have that (Σk
j=1M

′[Lj〈N/x〉, ~L−j , ~N !])d =

Σk
j=1(Dk−1 (D(M ′)d · (Lj〈N/x〉)d) · (~Ld−j))(Σn

i=1N
d
i ). By applying the induction hypothesis, this

is equal to Σk
j=1(Dk−1 (D(M ′)d · (∂L

d
j

∂x ·N
d)) · (~Ld−j))(Σn

i=1N
d
i ).

(3) By definition of (−)d we have (Σn
j=1M

′[Nj〈N/x〉, ~L, ~N !])d = Σn
j=1(M ′[Nj〈N/x〉, ~L, ~N !])d =

Σn
j=1(Dk (D(M ′)d · (Nj〈N/x〉)d) · (~Ld))(Σn

i=1N
d
i ). By applying the induction hypothesis, this is

equal to Σn
j=1(Dk (D(M ′)d · (∂N

d
j

∂x ·N
d)) · (~Ld))(Σn

i=1N
d
i ). By permutative equality this is equal

to Σn
j=1(D(Dk (M ′)d · (~Ld)) · (∂N

d
j

∂x ·N
d))(Σn

i=1N
d
i ).

To conclude the proof it is sufficient to verify that ∂
∂x((Dk (M ′)d · (~Ld))(Σn

i=1N
d
i )) ·Nd is equal

to the sum of (1), (2) and (3).
(ii) By straightforward induction on M .

The translation (·)d is ‘faithful’ in the sense expressed by the next proposition.

Proposition 6.12 For all M ∈ Λr we have that λβr `M = N implies λβd `Md = Nd.

Proof. It is easy to check that the proposition holds for the contextual rules.
Suppose then that λβr `M = N because M ≡ (λx.M ′)[~L, ~N !] and N ≡M ′〈~L/x〉{Σn

i=1Ni/x}.
By definition of the map (−)d we have ((λx.M ′)[~L, ~N !])d = (Dk (λx.(M ′)d) · (~Ld))(Σn

i=1N
d
i ) =λβd

(λx.∂
k(M ′)d

∂x,...,x ·(~L
d))(Σn

i=1N
d
i ) =λβd (∂

k(M ′)d

∂x,...,x ·(~L
d)){Σn

i=1N
d
i /x} which is equal toNd by Lemma 6.11.

Remark 6.13 The two results above generalize straightforwardly to sums of resource λ-terms
( i.e., to elements M ∈ N〈Λr〉).

6.3.1. Interpreting the Resource Calculus by Translation
Given a linear reflexive object U living in a Cartesian closed differential category C it is

possible to interpret resource λ-terms trough their translation (−)d. Indeed, it is sufficient to
set

[M ]~x = [Md]~x : Un → U.

From this fact, Proposition 6.12 and Remark 6.13 it follows that U is a sound model of the
untyped resource calculus.

Remark 6.14 If U is an extensional model of the differential λ-calculus, then it is also an
extensional model of the resource calculus. Indeed [(λx.M [x!])d]~x = [λx.Mdx]~x = [Md]~x.

For the resource calculus we are able to prove a completeness result stronger than the one
for the differential λ-calculus. More precisely we can get rid of the hypothesis that the theory
is differentially extensional. Indeed for every resource λ-theory R the differential λ-theory T
generated9 by

{S = T | ∃M,N ∈ N〈Λr〉 S = Md, T = Nd,R `M = N}

is such that R ` M = N if and only if T ` Md = Nd. When R satisfies sum idempotency also
T does, thus we can apply the construction described in Subsection 4.4, and get a Cartesian

9The differential λ-theory generated by a set E of equations is the smallest differential λ-theory including E.
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closed differential category CT where I is a linear reflexive object. Then one can prove the
following lemma, which is similar to Proposition 4.19 except that the axiom η∂ does not play a
role anymore. This is due to the fact that in the translation of the resource calculus the linear
application is always followed by a regular application, therefore the η∂-expansion disappears
by (βr)-conversion.

Lemma 6.15 For every M ∈ N〈Λr〉 we have (for some z /∈ FV(M)):

[M]~x = λz.Md{π~xx1z/x1} · · · {π~xxnz/xn} : I~x → I.

Proof. The only interesting case is M = M [~L, ~N !]. In the following we denote by σr the sequence
of substitutions {π~xx1r/x1} · · · {π~xxnr/xn}. We have:

[M [~L, ~N !]]~x = [(DkMd · (~Ld))(ΣiN
d
i )]~x by definition of (·)d

= ev◦〈1◦ [(DkMd · (~Ld)]~x), [ΣiN
d
i ]~x〉 by definition of [ · ]~x

= ev◦〈λry.(Dk ([Md]~xr) · ([~L]~xr))y,Σi[Nd
i ]~x〉 by calculations

= ev◦〈λry.(Dk (Mdσr) · (~Ldσr))y,Σiλr.N
d
i σr〉 by induction hypothesis

= λz.((λry.(Dk (Mdσr) · (~Ldσr))y)z)(Σi(λr.N
d
i σr)z) by calculations

= λz.(λy.(Dk (Mdσz) · (~Ldσz))y)(ΣiN
d
i σz) by (βr)-conversion

= λz.(Dk (Mdσz) · (~Ldσz))(ΣiN
d
i σz) by (βr)-conversion

= λz.(M [~L, ~N !])d{π~xx1z/x1} · · · {π~xxnz/xn} by definition of (·)d

As a corollary we get the equational completeness for the resource calculus.

Corollary 6.16 (Equational Completeness) Every resource λ-theory R satisfying sum idem-
potency is the theory of a linear reflexive object in a differential Cartesian closed category.

6.4. And Back. . .
In this subsection we define a translation from the differential to the resource calculus. This

translation is more tricky because in the differential λ-calculus the result of the linear applica-
tion D(λx.s) · t mantains the lambda abstraction (since it waits for other arguments that may
substitute the remaining occurrences of x in s), while the näıvely corresponding resource λ-term
(λx.M)[N ] does erase it (since all other free occurrences of x in M are substituted by 0).

Definition 6.17 The differential λ-calculus can be translated into the resource calculus as fol-
lows:

xr = x,
(λx.s)r = λx.sr,
(sT )r = sr[(T r)!],
(Dk s · (t1, . . . , tk))r = λy.sr[tr1, . . . , t

r
k, y

!], where y is a fresh variable,
(s+ S)r = sr + Sr.

Notice that while the shape of the term λy.sr[tr1, . . . , t
r
k, y

!] looks similar to an (ηr)-expansion
of sr[tr1, . . . , t

r
k], it is not10! Indeed, in the (ηr)-axiom, y! is supposed to be in a singleton bag.

Lemma 6.18 Let S, T ∈ Λd and x be a variable. Then:

(i) (∂S∂x · T )r = Sr〈T r/x〉,
10However, a connection with (η∂)-conversion can be found in Proposition 6.20(iii).
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(ii) (S{T/x})r = Sr{T r/x}.

Proof. (i) By structural induction on S. If S is a variable, a lambda abstraction or a sum, the
lemma follows straight from the induction hypothesis.

• case S ≡ Dk s · (t1, . . . , tk). We have:

( ∂
∂x(Dk s · (t1, . . . , tk)) · T )r =

= Σk
i=1((Dk s · (t1, . . . , ∂ti∂x · T, . . . , tk)))

r

+ ((Dk ( ∂s∂x · T ) · (t1, . . . , tk)))r by def. of ∂(·)
∂x · T

= Σk
i=1λy.s

r[tr1, . . . , (
∂ti
∂x · T )r, . . . , trk, y

!]

+ λy.( ∂s∂x · T )r[tr1, . . . , t
r
k, y

!] by def. of (·)r
= Σk

i=1λy.s
r[tr1, . . . , t

r
i 〈T r/x〉, . . . , trk, y!]

+ λy.(sr〈T r/x〉)[tr1, . . . , trk, y!] by induction hypothesis
= (λy.sr[tr1, . . . , t

r
k, y

!])〈T r/x〉 by def. of 〈T r/x〉
= (Dk s · (t1, . . . , tk))r〈T r/x〉 by def. of (·)r

• case S ≡ sU . By definition, we have (∂(sU)
∂x · T )r = (( ∂s∂x · T )U + (Ds · (∂U∂x · T ))U)r =

(( ∂s∂x · T )U)r + ((Ds · (∂U∂x · T ))U)r = ( ∂s∂x · T )r[(U r)!] + (λy.sr[(∂U∂x · T )r, y!])[(U r)!]. By
induction hypothesis this is equal to (sr〈T r/x〉)[(U r)!] + (λy.sr[U r〈T r/x〉, y!])[(U r)!]. By
β-conversion this is equal to (sr〈T r/x〉)[(U r)!]+sr[U r〈T r/x〉, (U r)!]. By definition of linear
substitution this is (sr[(U r)!])〈T r/x〉 = (sU)r〈T r/x〉.

(ii) By straightforward induction on S.

The next proposition shows that also the translation (·)r is faithful.

Proposition 6.19 For all S, T ∈ Λd we have that λβd ` S = T implies λβr ` Sr = T r.

Proof. It is easy to check that the proposition holds for the contextual rules.
Suppose that λβd ` S = T holds because S ≡ Dk (λx.s) · (u1, . . . , uk) and T ≡ λx. ∂ks

∂x,...,x ·
(u1, . . . , uk). Then we have

Sr = λy.(λx.sr)[ur1, . . . , u
r
k, y

!] by def. of (·)r
=λβr λy.sr〈ur1/x〉 · · · 〈urk/x〉{y/x} by βr-conversion
≡ λx.sr〈ur1/x〉 · · · 〈urk/x〉 by α-conversion

= λx.
(

∂ks
∂x,...,x · (u1, . . . , uk)

)r
by Lemma 6.18(i)

= T r by def. of (·)r

The two translations (·)d and (·)r are not exactly one the inverse of the other one. The next
proposition presents the properties that they do satisfy, which are summarized in Figure 1 in
terms of retractions and isomorphisms between the two calculi.

Proposition 6.20 The translations (·)d and (·)r enjoy the following properties:

(i) (sr)d ≡ s, for all usual λ-terms s,

(ii) (Sr)d 6≡ S and (Md)r 6≡ M, for some S ∈ Λd and M ∈ N〈Λr〉,

(iii) λβηd∂ ` (Sr)d = S, for all S ∈ Λd,
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The differential λ-calculus The resource calculus

with =λβηd∂
C with =λβr

with =λβd B with =λβr

with =λβηd
∼= with =λβηr

Figure 1: Relationships between the differential and resource calculus.

(iv) λβr ` (Md)r = M, for all M ∈ N〈Λr〉.

Proof. (i) By straightforward induction on the structure of s.
(ii) For instance ((Dx · x)r)d = (λy.x[x, y!])d = λy.(Dx · x)y 6≡ Dx · x. On the other hand we

have ((x[L])d)r = ((Dx · y)0)r = (λz.x[y, z!])0 6≡ x[L].
(iii) By induction on the structure of S.

• case S ≡ Dk s · (t1, . . . , tk). By definition of (·)r we have that ((Dk s · (t1, . . . , tk))r)d is equal
to (λy.sr[tr1, · · · , trk, y!])d = λy.(Dk (sr)d · ((tr1)d, · · · , (trk)d))y. By induction hypothesis we
have (sr)d =λβηd∂

s and (tri )
d =λβηd∂

ti for all 1 ≤ i ≤ k. Therefore we get λy.(Dk (sr)d ·
((tr1)d, · · · , (trk)d))y =λβηd∂

λy.(Dk s · (t1, . . . , tk))y =λβηd∂
Dk s · (t1, . . . , tk).

• case S ≡ sT . We have ((sT )r)d = (sr[(T r)!])d = (sr)d(T r)d. By induction hypothesis, we
know that (sr)d =λβηd∂

s and (T r)d =λβηd∂
T , thus we conclude (sr)d(T r)d =λβηd∂

sT .

• All other cases are trivial.

(iv) By induction on the structure of M. The only interesting case is M ≡ M [~L, ~N !]. We
have ((M [~L, ~N !])d)r = ((DkMd · (~Ld))(Σn

i=1N
d
i ))r = (λy.(Md)r[(~Ld)r, y!])[(( ~Nd)r)!]. By in-

duction hypothesis we know that (Md)r =λβr M , (Ldj )
r =λβr Lj and (Nd

i )r =λβr Ni, thus

(λy.(Md)r[(~Ld)r, y!])[(( ~Nd)r)!] =λβr (λy.M [~L, y!])[( ~N)!]. Since y /∈ FV(M, ~L) we have that

(λy.M [~L, y!])[( ~N)!] =λβr M [~L, ~N !].

7. Discussion, Further Works and Related Works

In this paper we proposed a general categorical definition of model of the untyped differential
λ-calculus, namely the notion of linear reflexive object living in a Cartesian closed differential
category. We have proved that this notion of model is: (i) sound, i.e. the equational theory
induced by a model is actually a differential λ-theory; (ii) inhabited, indeed we gave concrete
examples of such a definition namely the models D and E living in MRel and all the syntac-
tic models built trough the revised Scott-Koymans’ construction; (iii) equationally complete,
provided that we restrict to differentially extensional differential λ-theories satisfying sum idem-
potency.

Finally, we have shown that the equational theories of the differential λ-calculus and of the
resource calculus are tightly connected. Formally, we have provided faithful translations between
the two calculi, thus showing that they share the same notion of model. In particular, this shows
that linear reflexive objects in Cartesian closed differential categories are also sound models of
the untyped resource calculus. For the resource calculus we were able to prove an even stronger
equational completeness theorem, in the sense that it holds for all resource λ-theories satisfying
sum idempotency.
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7.1. Related Works
This paper is morally a continuation of the work on (Cartesian) differential categories done

in [4,5] and can be considered as a long version of [12]. Note however that all the calculi
under consideration in those papers were simply typed. Moreover, our aim here was to find a
suitable notion of semantics for Ehrhard and Regnier’s differential λ-calculus (thus supposing
the calculus as given), while in [4,5] the goal was to provide a categorical axiomatization of a
differential operator and then find a calculus (namely, the term logic) that suits the categories
under consideration. In particular, the differential calculus presented in [5] by Blute, Cockett
and Seely was slightly different from Ehrhard and Regnier’s differential λ-calculus in some key
points.

On the one side, the calculus defined in [5] has no λ-abstraction, then it is not an extension
of λ-calculus, on the other side it has explicit substitutions and constructors for the pairing, the
projections and every n-ary function. Also the treatment of differentiation is different — in the
Leibniz-style approach of [5] the notation for differentiation becomes

Γ, x : A ` t : B Γ ` s : A Γ ` u : A

Γ ` dt
dx(s) · u : B

(∂)

where the variable x is bound in t. Hence differential terms are built using the binder d(·)
dx .

Intuitively dt
dx(s) denotes the derivative of t at s11 and determines a linear transformation, so

that it could be typed as dt
dx(s) : A( B, while u is the point where the derivative is calculated.

The lack of λ-abstraction in this system is not a true difference because λ-terms could be added
without problems. Besides the usual equations from λ-calculus, one should just add

λx.(s+ t) = λx.s+ λx.t
d(λy.s)

dx
(t) · u = λy.

ds

dx
(t) · u

and the resulting system is conjectured to have linear reflexive objects living in Cartesian closed
differential categories as sound and complete models. To better understand it, we sketch the
translation from the differential λ-calculus into this system:

(Ds · t)◦ = λx0.
(d(s◦x)

dx
(x0) · t◦

)
,

(
∂s
∂x · t

)◦
=

ds◦

dx
(x) · t◦.

where x0 is some fresh variable. This calculus is certainly more standard from a mathematical
point of view, while we think the differential and resource calculi are more standard from a
computer scientist point of view. We believe that to obtain a completeness result in the simply
typed setting the choice of the language in [5] would be more promising; on the other hand in
the untyped case the language would suffer the same problems we encountered in Theorem 4.20,
namely the completeness only for differentially extensional theories satisfying sum idempotency.
Finally, once stripped the calculus of types and constructors (since in this paper we are interested
in the pure untyped setting) it becomes quite similar to the differential λ-calculus. For all these
reasons we decided not to analyze the calculus of [5] further.

7.2. Other Examples of Cartesian Closed Differential Categories
In Section 5 we have presented MRel (and cited MFin in Remark 5.1) as an instance of the

definition of Cartesian closed differential category. We briefly discuss here other examples of
such categories that have been recently defined in the literature.

11I.e., the Jacobian matrix.
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Actually game semantics is an inexhaustible source of differential categories, indeed resource
usage is represented rather explicitly in games and strategies. In collaboration with Laird
and McCusker we have shown in [31] that the games model G⊗ of Idealized Algol with non-
determinism introduced in [27] contains a (definable) differential operator giving it a structure
of Cartesian closed differential category. The category G⊗ is cpo-enriched, has arenas as objects
and suitable non-deterministic strategies as morphisms. Intuitively, this category is additive
since non-deterministic strategies are closed under union and the linearity of a strategy on a
certain component is captured by the fact that the strategy plays exactly once in that component.

Moreover in [31] we provided a general categorical construction for building differential cat-
egories. Its key step takes a symmetric monoidal category with countable biproducts, embeds
it in its Karoubi envelope and then constructs the cofree cocommutative comonoid on this cat-
egory (following the recipe in [37]) and a differential operator on the Kleisli category of the
corresponding comonad. Since biproducts may be added to any category by free constructions,
this gives a way of embedding any symmetric monoidal (closed) category in a Cartesian (closed)
differential category. This construction allows to recover both the category MRel, starting from
the terminal symmetric monoidal closed category (one object, one morphism), and G⊗ starting
from a symmetric monoidal category of exhausting games.

The category G⊗, just like MRel, models the Taylor expansion. Natural examples of differ-
ential Cartesian closed categories that do not model the Taylor expansion have been recently
defined in [13] by introducing new exponential operations on Rel. The intuition behind this
construction is rather simple: the authors replace the set of natural numbers (that are used
for counting multiplicities of elements in multisets) with more general semi-rings containing el-
ements ω such that ω + 1 = ω (i.e., elements that are morally infinite). In these models with
infinite multiplicities all differential constructions are available, but the Taylor formula does not
hold. Indeed, in these categories it is possible to find a morphism f 6= 0 such that, for all n ∈ N,
the n-th derivative of f evaluated on 0 is equal to 0: the Taylor expansion of such an f is the 0
map, and hence the morphism is different from its Taylor expansion. In particular, the authors
exhibit models where the interpretation of Ω is different from 0.

7.3. Algebraic Approach
Another interesting line of research would be to provide an algebraic definition of model of the

differential λ-calculus. In other words we would like to introduce a class of algebras modeling
the differential λ-calculus in the same way combinatory algebras model the regular one. This
would open the way to generalize the powerful techniques developed in [32,35,40] for analyzing
combinatory algebras. For instance, in collaboration with Salibra, we proved that combina-
tory algebras satisfy good algebraic properties, like a Stone representation theorem stating that
every combinatory algebra is decomposable in a weak Boolean product of indecomposable alge-
bras [35]. This allowed, among other things, to give a uniform proof of incompleteness for the
main semantics of λ-calculus (i.e. the continuous, stable and strongly stable semantics).

A first attempt to provide algebraic models of the resource calculus has been recently done
by Carraro, Ehrhard and Salibra in [14]. In that paper the authors introduce the notion of
“resource λ-models” and show that they are suitable to model the finite resource calculus (i.e.,
the promotion-free fragment). At the moment, a generalization allowing to model the full
fragment of resource calculus (or, equivalently, the differential λ-calculus) does not seem easy,
and is kept for future work.

Acknowledgements. We are grateful to Antonio Bucciarelli, Thomas Ehrhard and Guy
McCusker for interesting discussions. Many thanks to Michele Pagani, Paolo Tranquilli and the
anonymous reviewers for helpful comments and suggestions.
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A. Technical Appendix

This technical appendix is devoted to provide the full proofs of the two main lemmas in Subsection 3.3. These
proofs are not particularly difficult, but quite long and require some preliminary notations.

Notation A.1 We will adopt the following notations:

• Given a sequence of indices ~i = i1, . . . , ik with ij ∈ {1, 2} we write π~i for πi1 ◦ · · · ◦πik . Thus π1,2 = π1 ◦π2.

• For brevity, when writing a Cartesian product of objects as subscript of 0 or Id, we will replace the operator ×
by simple juxtaposition. For instance, the morphism Id(A×B)×(C×D) will be written Id(AB)(CD).

Hereafter “(proj)” will refer to the rules π1 ◦ 〈f, g〉 = f and π2 ◦ 〈f, g〉 = g that hold in every Cartesian category.
We recall that swABC = 〈〈π1,1, π2〉, π2,1〉 : (A×B)× C → (A× C)×B.

Lemma A.2 (Lemma 3.17) Let f : (C ×A)×D → B, g : C → A, h : C → B′.

(i) π2 ? g = g ◦π1,

(ii) (h◦π1) ? g = 0,

(iii) Λ(f) ? g = Λ(((f ◦ sw) ? (g ◦π1))◦ sw).

Proof. (i)
π2 ? g = D(π2)◦〈〈0C , g ◦π1〉, IdCA〉 by def. of ?

= π2 ◦π1 ◦〈〈0C , g ◦π1〉, IdCA〉 by D3
= π2 ◦〈0C , g ◦π1〉 by (proj)
= g ◦π1 by (proj)

(ii)
(h◦π1) ? g = D(h◦π1)◦〈〈0C , g ◦π1〉, IdCA〉 by def. of ?

= D(h)◦〈D(π1), π1,2〉〈〈0C , g ◦π1〉, IdCA〉 by D5
= D(h)◦〈π1 ◦π1, π1,2〉◦〈〈0C , g ◦π1〉, IdC×A〉 by D3
= D(h)◦〈0C , π1〉 by (proj)
= 0 by D2

(iii) We first prove the following claim.

Claim A.3 Let g : C → A, then the following diagram commutes:

(C×A)×D

〈π1×IdD,sw〉

��

〈π1,IdC×A〉×IdD // (C×(C×A))×D
(〈0C ,g〉×IdC×A)×IdD // ((C×A)×(C×A))×D

〈π1×0D,π2×IdD〉

��
(C×D)×((C×D)×A)

〈0C×D,g◦π1〉×Id(C×D)×A // ((C×D)×A)×((C×D)×A)
〈D(sw),sw◦π2〉 // ((C×A)×D)×((C×A))×D)

Sub-proof.

〈π1 × 0D, π2 × IdD〉◦ ((〈0C , g〉 × IdCA)× IdD)◦ (〈π1, IdCA〉 × IdD) =
〈〈〈0C , g ◦π1,1〉, 0D〉, 〈π2,1, π2〉〉◦〈〈π1, 〈π1, π2〉〉◦π1, π2〉 =
〈〈〈0C , g ◦π1,1〉, 0D〉, 〈π2,1, π2〉〉◦〈〈π1,1, 〈π1,1, π2,1〉〉, π2〉 =
〈〈〈0C , g ◦π1,1〉, 0D〉, 〈〈π1,1, π2,1〉, π2〉〉 =
〈〈〈0C , g ◦π1,1〉, 0D〉, 〈〈π1,1,2, π2,2〉, π2,1,2〉〉◦〈π1×IdD, sw〉 =
〈〈〈π1,1,1, π2,1〉, π2,1,1〉, 〈〈π1,1,2, π2,2〉, π2,1,2〉〉◦〈〈0CD, g ◦π1,1〉, π2〉◦〈π1 × IdD, sw〉 =
〈D(sw), sw◦π2〉◦ (〈0CD, g ◦π1〉 × Id(CD)A)◦〈π1 × IdD, sw〉

We can now conclude the proof as follows:

Λ(f) ? g = D(Λ(f))◦〈〈0C , g ◦π1〉, IdCA〉 by def. of ?
= Λ(D(f)◦〈π1 × 0D, π2 × IdD〉)◦〈〈0C , g ◦π1〉, IdCA〉 by (D-curry)
= Λ(D(f)◦〈π1 × 0D, π2 × IdD〉◦ ((〈〈0C , g ◦π1〉, IdCA〉)× IdD)) by (Curry)
= Λ(D(f)◦〈D(sw), sw◦π2〉◦ (〈0CD, g ◦π1〉 × Id(CD)A)◦〈π1 × IdD, sw〉) by Claim A.3
= Λ(D(f ◦ sw)◦ (〈0CD, g ◦π1〉 × Id(CD)A)◦〈π1, Id〉◦ sw) by D5
= Λ(((f ◦ sw) ? (g ◦π1))◦ sw) by def. of ?



48 Giulio Manzonetto

Lemma A.4 (Lemma 3.18) Let f : C ×A→ (D⇒B), g : C → A, h : C ×A→ D

(i) (ev◦〈f, h〉) ? g = ev◦〈f ? g + Λ(Λ−(f) ? (h ? g)), h〉

(ii) Λ(Λ−(f) ? h) ? g = Λ(Λ−(f ? g) ? h) + Λ(Λ−(f) ? (h ? g))

(iii) Λ(Λ−(f) ? h)◦〈IdC , g〉 = Λ(Λ−(f ◦〈IdC , g〉) ? (h◦〈IdC , g〉))

Proof.

(i) Let us set ϕ ≡ 〈〈0C , g ◦π1〉, IdCA〉. Then we have:

(ev◦〈f, h〉) ? g = by def. of ?
D(ev◦〈f, h〉)◦ϕ = by (D-eval)
(ev◦〈D(f), h◦π2〉+D(Λ−(f))◦〈〈0CA, D(h)〉, 〈π2, h◦π2〉〉)◦ϕ = by Def. 3.2
ev◦〈D(f), h◦π2〉◦ϕ+D(Λ−(f))◦〈〈0CA, D(h)◦ϕ〉, 〈IdCA, h〉〉 = by def. of ?
ev◦〈D(f)◦ϕ, h〉+D(Λ−(f))◦〈〈0CA, (h ? g)◦π1〉, Id(CA)D〉◦〈IdCA, h〉 = by def. of ?
ev◦〈f ? g, h〉+ (Λ−(f) ? (h ? g))◦〈Id, h〉 = by (beta-cat)
ev◦〈f ? g, h〉+ ev◦〈Λ(Λ−(f) ? (h ? g)), h〉 = by Lemma 3.8
ev◦〈f ? g + Λ(Λ−(f) ? (h ? g)), h〉

(ii) We first simplify the equation Λ(Λ−(f)?h)?g = Λ(Λ−(f ?g)?h)+Λ(Λ−(f)? (h?g)) to get rid of the Cartesian
closed structure. The right side can be rewritten as Λ((Λ−(f ? g) ? h) +Λ−(f) ? (h ? g)). By taking a morphism
f ′ : (C × A) ×D → B such that f = Λ(f ′) and by applying Lemma 3.17(iii) we discover that it is equivalent
to show that:

((f ′ ? h)◦ sw) ? (g ◦π1)◦ sw = (((f ′ ◦ sw) ? (g ◦π1))◦ sw) ? h+ f ′ ? (h ? g).

By definition of ? we have:

((f ′ ? h)◦ sw) ? (g ◦π1)◦ sw = D(D(f ′)◦〈〈0CA, h◦〈π1,1, π2〉〉, sw〉)◦〈〈0CD, g ◦π1,1〉, sw〉

Let us call now ϕ ≡ 〈〈0CD, g ◦π1,1〉, sw〉 and write D2(f) for D(D(f)). Then we have:

D2(f ′)◦〈〈0CA, h◦〈π1,1, π2〉〉, sw〉)◦ϕ = by D5
D2(f ′)◦〈D(〈〈0CA, h◦〈π1,1, π2〉〉, sw〉), 〈〈0CA, h◦〈π1,1, π2〉〉, sw〉◦π2〉◦ϕ = by (pair)
D2(f ′)◦〈D(〈〈0CA, h◦〈π1,1, π2〉〉, sw〉)◦ϕ, 〈〈0CA, h◦〈π1,1, π2〉〉, sw〉◦π2 ◦ϕ〉 = by D4
D2(f ′)◦〈〈D(〈0CA, h◦〈π1,1, π2〉〉)◦ϕ,D(sw)◦ϕ〉, 〈〈0CA, h◦〈π1,1, π2〉〉, sw〉◦ sw〉 = by Rem. 3.16
D2(f ′)◦〈〈D(〈0CA, h◦〈π1,1, π2〉〉)◦ϕ,D(sw)◦ϕ〉, 〈〈0CA, h◦π1〉, Id(CA)D〉〉

Since 〈D(〈0CA, h◦〈π1,1, π2〉〉)◦ϕ,D(sw)◦ϕ〉 = 〈0, D(sw)◦ϕ〉 + 〈D(〈0CA, h◦〈π1,1, π2〉〉)◦ϕ, 0〉 we can apply D2
and rewrite the expression above as a sum of two morphisms:

(1) D2(f ′)◦〈〈0(CA)D, D(sw)◦ϕ〉, 〈〈0CA, h◦π1〉, Id(CA)D〉〉 +
(2) D2(f ′)◦〈〈D(〈0CA, h◦〈π1,1, π2〉〉)◦ϕ, 0(CA)D〉, 〈〈0CA, h◦π1〉, Id(CA)D〉〉

We now show that (1) = (((f ′ ◦ sw) ? (g ◦π1))◦ sw) ? h. Indeed, we have:
D2(f ′)◦〈〈0(CA)D, D(sw)◦ϕ〉, 〈〈0CA, h◦π1〉, Id(CA)D〉〉 = by Rem. 3.16
D2(f ′)◦〈〈0(CA)D, sw◦π1 ◦ϕ〉, 〈〈0CA, h◦π1〉, Id(CA)D〉〉 = by (proj)
D2(f ′)◦〈〈0(CA)D, sw◦〈0CD, g ◦π1,1〉〉, 〈〈0CA, h◦π1〉, Id(CA)D〉〉 = by Rem. 3.16
D2(f ′)◦〈〈0(CA)D, 〈〈0C , g ◦π1,1〉, 0D〉〉, 〈〈0CA, h◦π1〉, Id(CA)D〉〉 = by D7
D2(f ′)◦〈〈〈〈0C , 0A〉, 0D〉, 〈0CA, h◦π1〉〉, 〈〈〈0C , g ◦π1,1〉, 0D〉, Id(CA)D〉〉 = by D2
D2(f ′)◦〈〈〈〈0C , D(g)◦〈0C , π1,1〉〉, 0D〉, 〈0CA, h◦π1〉〉, 〈〈〈0C , g ◦π1,1〉, 0D〉, Id(CA)D〉〉.

Let us set ψ ≡ 〈〈0CA, h◦π1〉, Id(CA)D〉. Then we have:
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D(D(f))◦〈〈〈〈0C , D(g)◦〈0C , π1,1〉〉, 0D〉, 〈0CA, h◦π1〉〉, 〈〈〈0C , g ◦π1,1〉, 0D〉, Id(CA)D〉〉 = by (proj)
D(D(f))◦〈〈〈〈0C , D(g)◦〈π1,1,1, π1,1,2〉〉, 0D〉, π1〉, 〈〈〈0C , g ◦π1,1,2〉, 0D〉, π2〉〉◦ψ = by D3
D(D(f))◦〈〈〈〈0C , D(g)◦〈D(π1,1), π1,1,2〉〉, 0D〉, π1〉, 〈〈〈0C , g ◦π1,1,2〉, 0D〉, π2〉〉◦ψ = by D5
D(D(f))◦〈〈〈〈0C , D(g ◦π1,1)〉, 0D〉, π1〉, 〈〈〈0C , g ◦π1,1,2〉, 0D〉, π2〉〉◦ψ = by D1
D(D(f))◦〈〈〈〈D(0C), D(g ◦π1,1)〉, D(0D)〉, D(Id(CA)D)〉, 〈〈〈0C , g ◦π1,1,2〉, 0D〉, π2〉〉◦ψ = by D4
D(D(f))◦〈D(〈〈〈0C , g ◦π1,1〉, 0D〉, Id(CA)D〉), 〈〈〈0C , g ◦π1,1〉, 0D〉, Id(CA)D〉◦π2〉◦ψ = by D5
D(D(f)◦〈〈〈0C , g ◦π1,1〉, 0D〉, Id(CA)D〉)◦ψ = by Rem. 3.16
D(D(f)◦〈sw◦〈0CD, g ◦π1,1〉, sw◦ sw〉)◦ψ = by (proj)
D(D(f)◦〈sw◦π1, sw◦π2〉◦〈〈0CD, g ◦π1,1〉, sw〉)◦ψ = by Rem. 3.16
D(D(f)◦〈D(sw), sw◦π2〉◦〈〈0CD, g ◦π1,1〉, sw〉)◦ψ = by D5
D(D(f ◦ sw)◦〈〈0CD, g ◦π1,1〉, Id(CD)A〉◦ sw)◦〈〈0CA, h◦π1〉, Id(CA)D〉 = by def. of ?
(((f ◦ sw) ? (g ◦π1))◦ sw) ? h

We will now show that (2) = f ? (h ? g), and this will conclude the proof.

D2(f)◦〈〈D(〈0CA, h◦〈π1,1, π2〉〉)◦ϕ, 0(CA)D〉, 〈〈0CA, h◦π1〉, Id(CA)D〉〉 = by D1+4
D2(f)◦〈〈〈0CA, D(h◦〈π1,1, π2〉)〉◦ϕ, 0(CA)D〉, 〈〈0CA, h◦π1〉, Id(CA)D〉〉 = by D5
D2(f)◦〈〈〈0CA, D(h)◦〈D(〈π1,1, π2〉), 〈π1,1,2, π2,2〉〉〉◦ϕ, 0(CA)D〉, 〈〈0CA, h◦π1〉, Id(CA)D〉〉 = by D4+D3
D2(f)◦〈〈〈0CA, D(h)◦〈〈D(π1,1), D(π2)〉, 〈π1,1,2, π2,2〉〉〉◦ϕ, 0(CA)D〉, 〈〈0CA, h◦π1〉, Id(CA)D〉〉 = by D5+D3
D2(f)◦〈〈〈0CA, D(h)◦〈〈π1,1,1, π2,1〉, 〈π1,1,2, π2,2〉〉〉◦ϕ, 0(CA)D〉, 〈〈0CA, h◦π1〉, Id(CA)D〉〉 = by (proj)
D2(f)◦〈〈〈0CA, D(h)◦〈〈0C , g ◦π1,1〉, π1〉〉, 0(CA)D〉, 〈〈0CA, h◦π1〉, Id(CA)D〉〉 = by D6
D(f)◦〈〈0CA, D(h)◦〈〈0C , g ◦π1,1〉, π1〉〉, Id(CA)D〉 = by (proj)
D(f)◦〈〈0CA, D(h)◦〈〈0C , g ◦π1〉, IdCA〉◦π1〉, Id(CA)D〉 = by def. of ?
f ? (h ? g)

(iii) By (Curry) we have Λ(Λ−(f) ? h)◦〈IdC , g〉 = Λ((Λ−(f) ? h)◦ (〈IdC , g〉 × IdD)), thus if we show that (Λ−(f) ?
h)◦ (〈IdC , g〉 × IdD) = Λ−(f ◦〈IdC , g〉) ? (h◦〈IdC , g〉) we have finished.

We proceed then as follows:

(Λ−(f) ? h)◦ (〈IdC , g〉 × IdD) = by def. of ?
D(Λ−(f))◦〈〈0CA, h◦π1〉, Id(CA)D〉◦ (〈IdC , g〉 × IdD) = by def. of Λ−

D(ev◦〈f ◦π1, π2〉)◦〈〈0CA, h◦π1〉, Id(CA)D〉◦ (〈IdC , g〉 × IdD) = by D5+D4
D(ev)◦〈〈D(f ◦π1), D(π2)〉, 〈f ◦π1,2, π2,2〉〉◦〈〈0CA, h〉◦〈π1, g ◦π1〉, 〈IdC , g〉 × IdD〉 = by D5+D3
D(ev)◦〈〈D(f)◦〈π1,1, π1,2〉, π2,1〉, 〈f ◦π1,2, π2,2〉〉◦〈〈0CA, h◦〈π1, g ◦π1〉〉, 〈IdC , g〉 × IdD〉 = by (proj)
D(ev)◦〈〈D(f)◦〈0CA, 〈π1, g ◦π1〉〉, h◦〈π1, g ◦π1〉〉, 〈f ◦〈π1, g ◦π1〉, π2〉〉 = by D2
D(ev)◦〈〈D(f)◦〈〈0C , D(g)◦〈0C , IdC〉〉, 〈IdC , g〉〉, h◦〈π1, g ◦π1〉〉, 〈f ◦〈IdC , g〉, IdD〉〉 =
by setting ϕ = 〈〈0C , h◦〈π1, g ◦π1〉〉, IdCD〉
D(ev)◦〈〈D(f)◦〈〈π1,1, D(g)◦〈π1,1, π1,2〉〉, 〈π1,2, g ◦π1,2〉〉, π2,1〉, 〈f ◦〈π1,2, g ◦π1,2〉, π2,2〉〉◦ϕ = by D5
D(ev)◦〈〈D(f ◦〈π1, g ◦π1〉), D(π2)〉, 〈f ◦〈π1,2, g ◦π1,2〉, π2,2〉〉◦ϕ = by D4
D(ev)◦〈D(〈f ◦〈π1, g ◦π1〉, π2〉), 〈f ◦〈π1,2, g ◦π1,2〉, π2,2〉〉◦ϕ = by D5
D(ev◦〈f ◦〈π1, g ◦π1〉, π2〉)◦ϕ = by def. of Λ−

D(Λ−(f ◦〈IdC , g〉))◦ϕ = by def. of ?
Λ−(f ◦〈IdC , g〉) ? (h◦〈IdC , g〉)


