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Abstract. We generalize to universal algebra concepts originating from
λ-calculus and programming to prove a new result on the lattice λT of
λ-theories, and a general theorem of pure universal algebra which can be
seen as a meta version of the Stone Representation Theorem. In this pa-
per we introduce the class of Church algebras (which includes all Boolean
algebras, combinatory algebras, rings with unit and the term algebras of
all λ-theories) to model the “if-then-else” instruction of programming.
The interest of Church algebras is that each has a Boolean algebra of
central elements, which play the role of the idempotent elements in rings.
Central elements are the key tool to represent any Church algebra as a
weak Boolean product of indecomposable Church algebras and to prove
the meta representation theorem mentioned above. We generalize the
notion of easy λ-term of lambda calculus to prove that any Church al-
gebra with an “easy set” of cardinality n admits (at the top) a lattice
interval of congruences isomorphic to the free Boolean algebra with n
generators. This theorem has the following consequence for the lattice of
λ-theories: for every recursively enumerable λ-theory φ and each n, there
is a λ-theory φn ≥ φ such that {ψ : ψ ≥ φn} “is” the Boolean lattice
with 2n elements.
Keywords: Lambda calculus, Universal Algebra, Stone Representation
Theorem, Lambda Theories.

1 Introduction

Lambda theories are equational extensions of the untyped λ-calculus closed un-
der derivation. They arise by syntactical or semantic considerations. Indeed, a
λ-theory may correspond to some operational semantics of λ-calculus, as well
as it may be induced by a λ-model, which is a particular combinatory algebra
(CA, for short) [1, Sec. 5.2]. The set of λ-theories is naturally equipped with a
structure of complete lattice (see [1, Ch. 4]), whose bottom element is the least
λ-theory λβ, and whose top element is the inconsistent λ-theory. The lattice λT
of λ-theories is a very rich and complex structure of cardinality 2ℵ0 [1, 9].

The interest of a systematic study of the lattice λT of λ-theories grows out of
several open problems on λ-calculus. For example, Selinger’s order-incompleteness
problem can be proved equivalent to the existence of a recursively enumerable
(r.e., for short) λ-theory φ whose term algebra generates an n-permutable vari-
ety of algebras for some n ≥ 2 (see [14] and the remark after [15, Thm. 3.4]).



Lipparini [8] has found out interesting non-trivial lattice identitites that hold
in the congruence lattices of all algebras living in an n-permutable variety. The
failure of some Lipparini’s lattice identities in λT would imply that Selinger’s
problem has a negative answer.

Techniques of universal algebra were applied in [13, 9, 2] to study the struc-
ture of λT . In this paper we validate the inverse slogan: λ-calculus can be fruit-
fully applied to universal algebra. By generalizing to universal algebra concepts
originating from λ-calculus and programming, we create a zigzag path from
λ-calculus to universal algebra and back. All the algebraic properties we have
shown in [10] for CAs, hold for a wider class of algebras, that we call Church
algebras. Church algebras include, beside CAs, all BAs (Boolean algebras) and
rings with unit, and model the “if-then-else” instruction by two constants 0, 1
and a ternary term q(x, y, z) satisfying the following identities:

q(1, x, y) = x; q(0, x, y) = y.

The interest of Church algebras is that each has a BA of central elements,
which can be used to represent a Church algebra as a weak Boolean product
of directly indecomposable algebras (i.e., algebras which cannot be decomposed
as the Cartesian product of two other non-trivial algebras). We generalize the
notion of easy λ-term from λ-calculus and use central elements to prove that:
(i) any Church algebra with an “easy set” of cardinality κ admits a congruence
φ such that the lattice reduct of the free BA with κ generators embeds into
the lattice interval [φ); (ii) If κ is finite, this embedding is an isomorphism.
This theorem applies directly to all BAs and rings with units. For λT it has
the following consequence: for every r.e. λ-theory φ and each natural number
n, there is a λ-theory φn ≥ φ such that the lattice interval [φn) is the finite
Boolean lattice with 2n elements. It is the first time that it is found an interval
of λT whose cardinality is not 1, 2 or 2ℵ0 . We leave open the problem of whether
the existence of such Boolean lattice intervals is inconsistent with the existence
of an r.e. λ-theory φ whose term algebra generates an n-permutable variety of
algebras for some n ≥ 2. If yes, this would negatively solve Selinger’s problem.

We also prove a meta version of Stone Representation Theorem that applies
to all varieties of algebras and not only to the classic ones. Indeed, we show that
any variety of algebras can be decomposed as a weak Boolean product of directly
indecomposable subvarieties. This means that, given a variety V, there exists a
family of “directly indecomposable” subvarieties Vi (i ∈ I) of V for which every
algebra of V is isomorphic to a weak Boolean product of algebras of Vi (i ∈ I).

2 Preliminaries

We will use the notation of Barendregt’s classic work [1] for λ-calculus and
combinatory logic, and the notation of McKenzie et al. [11] for universal algebra.

A lattice L is bounded if it has a top element 1 and a bottom element 0. a ∈ L
is an atom (coatom) if it is a minimal element in L − {0} (maximal element in
L − {1}). For a ∈ L, we set La = {b ∈ L − {0} : a ∧ b = 0}. L is called: lower



semicomplemented if La 6= ∅ for all a 6= 1; pseudocomplemented if each La has a
greatest element (called the pseudocomplement of a).

We write [a) for {b : a ≤ b ≤ 1} and P(X) for the powerset of a set X.
An algebraic similarity type Σ is constituted by a non-empty set of operator

symbols together with a function assigning to each operator f ∈ Σ a finite arity.
A Σ-algebra A is determined by a non-empty set A together with an opera-

tion fA : An → A for every f ∈ Σ of arity n. A is trivial if |A| = 1.
A compatible equivalence relation φ on a Σ-algebra A is called a congruence.

We often write aφb or a =φ b for (a, b) ∈ φ. The set {b : aφb} is denoted by [a]φ.
If φ ≤ ψ are congruences on A, then ψ/φ = {([a]φ, [b]φ) : aψb} is a congruence

on the quotient A/φ. If X ⊆ A×A, then we write θ(X) for the least congruence
including X. We write θ(a, b) for θ({(a, b)}). If a ∈ A and Y ⊆ A, then we write
θ(a, Y ) for θ({(a, b) : b ∈ Y }).

We denote by Con(A) the algebraic complete lattice of all congruences of A,
and by ∇ and ∆ the top and the bottom element of Con(A). A congruence φ
on A is called: trivial if it is equal to ∇ or ∆; consistent if φ 6= ∇; compact if
φ = θ(X) for some finite set X ⊆ A×A.

An algebra A is directly decomposable if there exist two non-trivial algebras
B,C such that A ∼= B×C, otherwise it is called directly indecomposable.

An algebra A is a subdirect product of the algebras (Bi)i∈I , written A ≤
Πi∈IBi, if there exists an embedding f of A into the direct product Πi∈IBi

such that the projection πi ◦ f : A→ Bi is onto for every i ∈ I.
A non-empty class V of algebras is a variety if it is closed under subalgebras,

homomorphic images and direct products or, equivalently, if it is axiomatizable
by a set of equations. A variety V ′ is a subvariety of the variety V if V ′ ⊆ V. We
will denote by V(A) the variety generated by an algebra A, i.e., B ∈ V(A) if
every equation satisfied by A is also satisfied by B.

Let V be a variety. We say that A is the free V-algebra over the set X of
generators iff A ∈ V, A is generated by X and for every g : X → B ∈ V, there is
a unique homomorphism f : A → B that extends g (i.e., f(x) = g(x) for every
x ∈ X). A free algebra in the class of all Σ-algebras is called absolutely free.

Given two congruences σ and τ on A, we can form their relative product:
τ ◦ σ = {(a, c) : ∃b ∈ A aσbτc}.

Definition 1. A congruence φ on an algebra A is a factor congruence if there
exists another congruence ψ such that φ∧ψ = ∆ and φ ◦ψ = ∇. In this case we
call (φ, ψ) a pair of complementary factor congruences or cfc-pair, for short.

Under the hypotheses of the above definition the homomorphism f : A →
A/φ×A/ψ defined by f(x) = ([x]φ, [x]ψ) is an isomorphism. So, the existence of
factor congruences is just another way of saying “this algebra is a direct product
of simpler algebras”.

The set of factor congruences of A is not, in general, a sublattice of Con(A).
∆ and ∇ are the trivial factor congruences, corresponding to A ∼= A×B, where
B is a trivial algebra. An algebra A is directly indecomposable if, and only if,
A has no non-trivial factor congruences.



Factor congruences can be characterized in terms of certain algebra homo-
morphisms called decomposition operators (see [11, Def. 4.32] for more details).
Definition 2. A decomposition operation for an algebra A is an algebra homo-
morphism f : A ×A → A such that f(x, x) = x and f(f(x, y), z) = f(x, z) =
f(x, f(y, z)).

There exists a bijection between cfc-pairs and decomposition operations, and
thus, between decomposition operations and factorizations like A ∼= B×C.
Proposition 1. [11, Thm. 4.33] Given a decomposition operator f , the rela-
tions φ, ψ defined by x φ y iff f(x, y) = y; and x ψ y iff f(x, y) = x, form
a cfc-pair. Conversely, given a cfc-pair (φ, ψ), the map f defined by f(x, y) =
u iff x φ u ψ y, is a decomposition operation (note that, for all x and y, there
is just one element u satisfying x φ u ψ y).

The Boolean product construction allows us to transfer numerous fascinating
properties of BAs into other varieties of algebras (see [4, Ch. IV]). We recall that
a Boolean space is a compact, Hausdorff and totally disconnected topological
space, and that clopen means “open and closed”.
Definition 3. A weak Boolean product of a family (A)i∈I of algebras is a subdi-
rect product A ≤ Πi∈IAi, where I can be endowed with a Boolean space topology
such that: (i) the set {i ∈ I : ai = bi} is open for all a, b ∈ A, and (ii) if a, b ∈ A
and N is a clopen subset of I, then the element c, defined by ci = ai for every
i ∈ N and ci = bi for every i ∈ I − N , belongs to A. A Boolean product is a
weak Boolean product such that the set {i ∈ I : ai = bi} is clopen for all a, b ∈ A.

A λ-theory is any congruence (w.r.t. the binary operator of application and
the lambda abstraction) on the set of λ-terms including (α)- and (β)-conversion
(see [1, Ch. 2]). We use for λ-theories the same notational convention as for
congruences. The set of all λ-theories is naturally equipped with a structure of
complete lattice, hereafter denoted by λT , with meet defined as set theoretical
intersection. The least element of λT is denoted by λβ, while the top element of
λT is the inconsistent λ-theory ∇. The term algebra of a λ-theory φ, hereafter
denoted by Λφ, has the equivalence classes of λ-terms modulo φ as elements,
and the operations of application and of λ-abstractions as operations on these
elements. The lattice λT of λ-theories is isomorphic to the congruence lattice of
the term algebra Λλβ of the least λ-theory λβ, while the lattice interval [φ) is
isomorphic to the congruence lattice of the term algebra Λφ.

The variety CA of combinatory algebras [1, Sec. 5.1] consists of algebras
C = (C, ·,k, s), where · is a binary operation and k, s are constants, satisfying
kxy = x and sxyz = xz(yz) (as usual, the symbol “·” is omitted and association
is made on the left).

3 Church algebras

Many algebraic structures, such as CAs, BAs etc., have in common the fact that
all are Church algebras. In this section we study the algebraic properties of this
class of algebras. Applications are given in Section 5 and in Section 6.



Definition 4. An algebra A is called a Church algebra if there are two constants
0, 1 ∈ A and a ternary term q(e, x, y) such that q(1, x, y) = x and q(0, x, y) = y.
A variety V is called a Church variety if every algebra in V is a Church algebra
with respect to the same term q(e, x, y) and constants 0, 1.

Example 1. The following are easily checked to be Church algebras:
1. Combinatory algebras: q(e, x, y) ≡ (e · x) · y; 1 ≡ k; 0 ≡ sk
2. Boolean algebras: q(e, x, y) ≡ (e ∨ y) ∧ (e− ∨ x)
3. Heyting algebras: q(e, x, y) ≡ (e ∨ y) ∧ ((e→ 0) ∨ x)
4. Rings with unit: q(e, x, y) ≡ (y + e− ey)(1− e+ ex)

Let A = (A,+, ·, 0, 1) be a commutative ring with unit. Every idempotent
element a ∈ A (i.e., satisfying a · a = a) induces a cfc-pair (θ(1, a), θ(a, 0)).
In other words, the ring A can be decomposed as A ∼= A/θ(1, a) ×A/θ(a, 0).
A is directly indecomposable if 0 and 1 are the unique idempotent elements.
Vaggione [17] generalized idempotent elements to any universal algebra whose
top congruence∇ is compact, and called them central elements. Central elements
were used, among the other things, to investigate the closure of varieties of
algebras under Boolean products. Here we give a new characterization based
on decomposition operators (see Def. 2). Hereafter, we set θe ≡ θ(1, e) and
θe ≡ θ(e, 0).

Definition 5. We say that an element e of a Church algebra A is central, and
we write e ∈ Ce(A), if θe and θe are a cfc-pair. A central element e is called
non-trivial if e 6= 0, 1.

We now show how to internally represent in a Church algebra factor congru-
ences as central elements. We start with a lemma.

Lemma 1. Let A be a Church algebra and e ∈ A. Then we have, for all x, y ∈ A:
(a) x θe q(e, x, y) θe y.
(b) xθey iff q(e, x, y) (θe ∧ θe) y.
(c) xθey iff q(e, x, y) (θe ∧ θe) x.
(d) θe ◦ θe = θe ◦ θe = ∇.

Proposition 2. Let A be a Church Σ-algebra and e ∈ A. The following condi-
tions are equivalent:

(i) e is central;
(ii) θe ∧ θe = ∆;
(iii) For all x and y, q(e, x, y) is the unique element such that xθe q(e, x, y) θey;
(iv) e satisfies the following identities:

1. q(e, x, x) = x.
2. q(e, q(e, x, y), z) = q(e, x, z) = q(e, x, q(e, y, z)).
3. q(e, f(x), f(y)) = f(q(e, x1, y1), . . . , q(e, xn, yn)), for every f ∈ Σ.
4. e = q(e, 1, 0).

(v) The function fe defined by fe(x, y) = q(e, x, y) is a decomposition oper-
ator such that fe(1, 0) = e.



Corollary 1. Let A be a Church algebra and e ∈ A such that θe 6= ∇, ∆. Then
the equivalence class of e is a non-trivial central element in the algebra A/θe∧θe.

Thus a Church algebra A is directly indecomposable iff Ce(A) = {0, 1} iff
θe ∧ θe 6= ∆ for all e 6= 0, 1.

Example 2. – All elements of a BA are central by Prop. 2(iv) and Example 1.
– An element is central in a commutative ring with unit iff it is idempotent.

This characterization does not hold for non-commutative rings with unit.
– Let Ω ≡ (λa.aa)(λa.aa) be the usual looping term of λ-calculus. It is well-

known that the λ-theories θΩ = θ(Ω, λab.a) and θΩ = θ(Ω, λab.b) are con-
sistent (see [1]). Then by Corollary 1 the term Ω is a non-trivial central
element in the term algebra of θΩ ∧ θΩ .

We now show that the partial ordering on the central elements, defined by:

e ≤ d if, and only if, θe ⊆ θd (1)

is a Boolean ordering and that the meet, join and complementation operations
are internally representable. 0 and 1 are respectively the bottom and top element
of this ordering.
Theorem 1. Let A be a Church algebra. The algebra (Ce(A),∧,∨,− , 0, 1) of
central elements of A, defined by e ∧ d = q(e, d, 0), e ∨ d = q(e, 1, d), e− =
q(e, 0, 1), is a BA isomorphic to the BA of factor congruences of A.

The Stone representation theorem for Church algebras is an easy corollary
of Thm. 1 and of theorems by Comer [5] and by Vaggione [17].

Let A be a Church algebra. If I is a maximal ideal of the Boolean algebra
Ce(A), then φI denotes the congruence on A defined by: φI = ∪e∈Iθe. Moreover,
X denotes the Boolean space of maximal ideals of Ce(A).
Theorem 2. (The Stone Representation Theorem) Let A be a Church algebra.
Then, for all I ∈ X the quotient algebra A/φI is directly indecomposable and
the map f : A → ΠI∈X(A/φI), defined by f(x) = ([x]φI : I ∈ X), gives a weak
Boolean product representation of A.

Note that, in general, Thm. 2 does not give a (non-weak) Boolean product
representation. This was shown in [10] for combinatory algebras.

4 The main theorem

In λ-calculus there are easy λ-terms, i.e., terms that can be consistently equated
with any other closed λ-term. In this section we generalize the notion of easiness
to Church algebras to show that any Church algebra with an easy set of cardi-
nality n admits a congruence φ such that the lattice interval of all congruences
greater than φ is isomorphic to the free BA with n generators.
Definition 6. Let A be a Church algebra. We say that a subset X of A is
an easy set if, for every Y ⊆ X, θ(1, Y ) ∨ θ(0, X − Y ) 6= ∇ (by definition
θ(1, ∅) = θ(0, ∅) = ∆).



We say that an element a is easy if {a} is an easy set. Thus, a is easy if the
congruences θa and θa are both different from ∇.

Example 3. – A finite subset X of a BA is an easy set if it holds: (i)
∨
X 6= 1;

(ii)
∧
X 6= 0; (iii) for all Y ⊂ X,

∨
Y 6≥

∧
(X − Y ). Thus, for example,

{{1, 2}, {2, 3}} is an easy set in the powerset of {1, 2, 3, 4}.
– The term algebra of every r.e. λ-theory has a countable infinite easy set.

This will be shown in Section 5.

The following three lemmas are used in the proof of the main theorem. Recall
that a semicongruence on an algebra A is a reflexive compatible binary relation.
Lemma 2. The semicongruences of a Church algebra permute with its factor
congruences, i.e., φ◦ψ = ψ◦φ for every semicongruence φ and factor congruence
ψ.

Lemma 3. Let A be a Church algebra. Then the congruence lattice of A sat-
isfies the Zipper condition, i.e., for all I and for all δi, ψ, φ ∈ Con(A) (i ∈ I):
if

∨
i∈I δi = ∇ and δi ∧ ψ = φ (i ∈ I), then ψ = φ.

Lemma 4. Let B be a Church algebra and φ ∈ Con(B). Then, B/φ is also a
Church algebra and the map cφ : Ce(B) → Ce(B/φ), defined by cφ(x) = [x]φ is
a homomorphism of BAs.

Theorem 3. Let A be a Church algebra and X be an easy subset of A. Then
there exists a congruence φX satisfying the following conditions:

1. The lattice reduct of the free BA with a set X of generators can be embedded
into the lattice interval [φX);

2. If X has finite cardinality n, then the above embedding is an isomorphism
and [φX) has 22n elements.

Proof. We start by defining φX . If we let δY ≡ θ(1, Y ) ∨ θ(0, X − Y ), for Y ⊆
X, then by the hypothesis of easiness we have that δY 6= ∇. We consider an
enumeration (eγ)γ<κ of A × A, where κ is the cardinal of A × A. Define by
transfinite induction an increasing sequence ψγ (γ ≤ κ) of congruences on A:
- ψ0 = ∩Y⊆X δY .
- ψγ+1 = ψγ if ψγ ∨ θ(eγ) ∨ δY = ∇ for some Y ⊆ X.
- ψγ+1 = ψγ ∨ θ(eγ) otherwise.
- ψγ = ∪β<γψβ for every limit ordinal γ ≤ κ.

We define φX ≡ ψκ. We now prove that the free BA with a set X of generators
can be embedded into the interval [ψκ).

Claim. ψγ ∨ δY 6= ∇ for all γ ≤ κ and Y ⊆ X.

Proof. By transfinite induction on γ. It is true for γ = 0 by definition of an
easy set. If ψγ = ∪β<γψβ , then it follows from inductive hypothesis, because
(∪β<γψβ) ∨ δY = ∪β<γ(ψβ ∨ δY ). Finally, if ψγ = ψγ−1 ∨ θ(eγ−1) then by
definition of ψγ we have ψγ−1 ∨ θ(eγ−1) ∨ δY = ψγ ∨ δY 6= ∇ for all Y ⊆ X.



Let Aγ ≡ A/ψγ and [x]γ ≡ [x]ψγ (x ∈ A).

Claim. [x]γ ∈ Ce(Aγ) for every x ∈ X and γ ≤ κ.

Proof. If we prove that [x]0 is central in A0, then by ψ0 ≤ ψγ and by Lemma 4
we get the same conclusion for γ. Since the element x ∈ X is equivalent either
to 1 or to 0 in each congruence δY , then [x]δY is a trivial central element in
the algebra A/δY . Then 〈[x]δY : Y ⊆ X〉 is central in the Cartesian product
ΠY⊆XA/δY . Since ψ0 = ∩Y⊆X δY then by [4, Lemma II.8.2] A0 ≡ A/ψ0 is
a subdirect product of the algebras A/δY , so that A0 can be embedded into
ΠY⊆XA/δY . It follows that [x]0 is central in A0.

Let B(X) be the free BA over the set X of generators and fγ : B(X) →
Ce(Aγ) be the unique Boolean homomorphism satisfying fγ(x) = [x]γ .

Claim. fγ : B(X)→ Ce(Aγ) is an embedding.

Proof. Let Y ⊆ X. By Claim 4 the algebra A/ψγ ∨ δY is non-trivial, while by
Lemma 4 there exists a Boolean homomorphism (denoted by hY in this proof)
from Ce(Aγ) into Ce(A/ψγ ∨ δY ). Since (x, 1) ∈ ψγ ∨ δY for every x ∈ Y and
(y, 0) ∈ ψγ ∨ δY for every y ∈ X − Y , then the kernel of hY ◦ fγ is an ultrafilter
of B(X). By the arbitrariness of Y ⊆ X, every ultrafilter of B(X) can be the
kernel of a suitable hY ◦ fγ . This is possible only if fγ is an embedding.

This concludes the proof of (1). Recall that the lattice interval [ψκ) of Con(A)
is isomorphic to the congruence lattice Con(Aκ). If Y ⊆ X, we denote by δκY
the congruence (ψκ ∨ δY )/ψκ ∈ Con(Aκ).

Claim. Let σ ∈ Con(Aκ). If σ ∨ δκY 6= ∇ for all Y ⊆ X, then σ = ∆.

Proof. Let x, y ∈ A such that (x, y) /∈ ψκ and ([x]κ, [y]κ) ∈ σ. From the hypoth-
esis it follows that ψκ ∨ δY ∨ θ(x, y) ∈ Con(A) is non-trivial for all Y ⊆ X. By
definition of ψκ this last condition implies (x, y) ∈ ψκ. Contradiction.

Hereafter, we assume that X is a finite easy set of cardinality n.
We show that the set Atκ of atoms of Con(Aκ) is not empty and has ∇ as join.

Claim.
∨
{β ∈ Atκ : β is a factor congruence} = ∇.

Proof. Since X has cardinality n, then the free Boolean algebra B(X) is finite,
atomic and has n generators. Let a be an atom of B(X) and let fκ(a) ∈ Aκ

be the central element determined by the embedding fκ of Claim 4. Consider
the factor congruence τ = θ(fκ(a), 0) ∈ Con(Aκ) associated with fκ(a). We
claim that τ is an atom in Con(Aκ). By the way of contradiction, assume that
σ ∈ Con(Aκ) is a non-trivial congruence which is strictly under τ . By Claim 4
and Lemma 4 we have a chain of Boolean homomorphisms:

B(X)
fκ−→ Ce(Aκ) cσ−→ Ce(Aκ/σ)

cτ/σ−−−→ Ce(Aκ/τ)



such that cτ = cτ/σ ◦ cσ. Since a is an atom of B(X) and τ = θ(fκ(a), 0),
then the set {0, a} is the Boolean ideal associated with the kernel of cτ ◦ fκ. If
cσ(fκ(a)) = 0, then σ contains the pair (fκ(a), 0), i.e., σ = τ . Then cσ(fκ(a)) 6= 0
and the map cσ ◦ fκ : B(X)→ Ce(Aκ/σ) is an embedding. Then the images of
the elements ofX into Ce(Aκ/σ) are distinct central elements, so that σ∨δκY 6= ∇
for all Y . By Claim 4 we get σ = ∆, that contradicts the non-triviality of σ.
Then τ is an atom. Finally,

∨
{β ∈ Atκ : β is a factor congruence} = ∇ follows

because the join of all atoms of B(X) is the top element.

Claim. The congruence lattice Con(Aκ) is pseudocomplemented, complemented,
atomic, and the coatoms form a finite irredundant decomposition of ∆.

Proof. The coatomic and complete lattice Con(Aκ) satisfies the Zipper condition
(by Lemma 3) and

∨
Atκ = ∇ (by Claim 4). Then by [6, Prop. 2] Con(Aκ) is

complemented, atomic and every coatom has a complement which is an atom. It
is also pseudocomplemented by [6, Prop. 1]. Since the top element ∇ is compact,
by [6, Prop. 3] we get that the coatoms form a finite irredundant decomposition
of the least element.

Claim. Let ξ ∈ Con(Aκ) be a non-trivial congruence and γ =
∨
{δ ∈ Atκ : δ ≤

ξ}. If β ∈ Atκ is a factor congruence which is not under ξ, then ξ ∧ (β ∨ γ) = γ.

Proof. We always have γ ≤ ξ ∧ (β ∨ γ). We show the opposite direction. Let
(x, y) ∈ ξ ∧ (β ∨ γ), i.e., x ξ y and x(β ∨ γ)y. We have to show that xγy. Since
β is a factor congruence, by Lemma 2 we have β ∨ γ = β ◦ γ. Then x β z γ y
for some z. Since γ ≤ ξ then z ξ y, that together with x ξ y implies x ξ z. Then
x(ξ ∧ β)z. Since β is an atom and β 6≤ ξ, we get x = z. This last equality and
zγy imply xγy. In other words, ξ ∧ (β ∨ γ) = γ.

Claim. The congruence lattice Con(Aκ) is a finite BA.

Proof. By Claim 4 Con(Aκ) is complemented, atomic and pseudocomplemented.
If we can show that each element ξ 6= ∇ is a join of atoms, then Con(Aκ) is
isomorphic to the power set of Atκ. Let Atξ be the set of atoms under ξ and
γ =

∨
Atξ. We will show that γ = ξ by applying the Zipper condition of Lemma

3. By Claim 4 and by the definition of γ we have:
∨
{ν : ξ∧ν = γ} ≥

∨
{β∨γ : β ∈

Atκ, β 6≤ ξ, β is a factor congruence} ≥
∨
{β : β ∈ Atκ is a factor congruence}.

By Claim 4 this last element is equal to ∇, so that
∨
{ν : ξ ∧ ν = γ} = ∇. By

the Zipper condition this entails ξ = γ.

Since [ψκ) ∼= Con(Aκ), then [ψκ) is Boolean.

Claim. The Boolean lattice [ψκ) has exactly 2n atoms and 2n coatoms.

Proof. Since ψκ ∨ δY 6= ∇ for every Y ⊆ X, [ψκ) has at least 2n coatoms.
For every Y ⊆ X, let cY be a coatom including ψκ ∨ δY . Assume now that
there is a coatom ξ distinct from cY for every Y ⊆ X. Consider the intersection
∩(Coκ − {ξ}), where Coκ denotes the set of coatoms of [ψκ). By Claim 4 and



by [ψκ) ∼= Con(Aκ) we have that ∩(Coκ − {ξ}) 6= ψκ, so that there is a pair
(a, b) ∈ ∩(Coκ−{ξ})−ψκ. Since ψκ∨ δY ∨θ(a, b) ≤ cY 6= ∇ for all Y ⊆ X, then
(a, b) ∈ ψκ by the inductive definition of ψκ. Contradiction. In conclusion, we
have 2n coatoms. A Boolean lattice has the same number of atoms and coatoms.

This concludes the proof of the main theorem.

The next proposition explains why the main theorem cannot be improved.

Proposition 3. Let A be a Church algebra. Then there exists no congruence φ
such that the interval sublattice [φ) is isomorphic to an infinite Boolean lattice.

5 The lattice of λ-theories

The fact that the term algebra of every λ-theory φ is a Church algebra has the
interesting consequence that the lattice λT admits (at the top) Boolean lattice
intervals of cardinality 2n for every n.

Berline and Salibra have noticed in [2] that there exists a countable infinite
sequence of λ-terms that can be consistently equated to any other arbitrary
infinite sequence of closed λ-terms. In the following lemma we generalize this
result to any r.e. λ-theory.

Let ω be the set of natural numbers and Λo be the set of closed λ-terms. As
a matter of notation, if M = 〈Mk ∈ Λo : k ∈ ω〉 and N = 〈Nk ∈ Λo : k ∈ ω〉 are
infinite sequences, we write (M,N ) for {(Mk, Nk) : k ∈ ω}.
Lemma 5. For every r.e. λ-theory φ, there exists an infinite sequence M =
〈Mk ∈ Λo : k ∈ ω〉, called φ-easy sequence, satisfying the following conditions:

– Mn 6=φ Mk for every n 6= k;
– For all sequences N = 〈Nk ∈ Λo : k ∈ ω〉 the λ-theory generated by φ ∪

(M,N ) is consistent.

Theorem 4. For every r.e. λ-theory φ and each natural number n, there is a
λ-theory φn ≥ φ such that the lattice interval [φn) is isomorphic to the finite
Boolean lattice with 2n elements.

6 Lattices of equational theories

We say that L is a lattice of equational theories iff L is isomorphic to the lattice
L(T ) of all equational theories containing some equational theory T (or dually,
the lattices of all subvarieties of some variety of algebras). Such lattices are
algebraic and coatomic, possessing a compact top element; but stronger proper-
ties were not known before Lampe’s discovery [7] that any lattice of equational
theories obeys the Zipper condition (see Lemma 3).

In this section we show the existence of Boolean lattice intervals in the lattices
of equational theories, and a meta version of the Stone representation theorem
that holds for all varieties of algebras.



It is well known that a lattice of equational theories is isomorphic to a congru-
ence lattice (see [4, 11]). Indeed, the lattice L(T ) of all equational theories con-
taining T is isomorphic to the congruence lattice of the algebra (FT , f)f∈End(FT ),
where FT is the free algebra over a countable set of generators in the variety
axiomatized by T , and End(FT ) is the set of its endomorphisms.

We expand the algebra (FT , f)f∈End(FT ) (without changing the congruence
lattice) by the operation q defined as follows (x1, x2 are two fixed variables)
q(t, s1, s2) = t[s1/x1, s2/x2], where t[s1/x1, s2/x2] is the term obtained by substi-
tuting term si for variable xi (i = 0, 1) within t. The algebra (FT , f, q)f∈End(FT )

was defined, but not directly used, by Lampe in the proof of McKenzie Lemma
in [7]. If we define 1 ≡ x1 and 0 ≡ x2, from the identities q(x1, s1, s2) = s1 and
q(x2, s1, s2) = s2 we get that (FT , f, q)f∈End(FT ) is a Church algebra. It will be
denoted by CT and called hereafter the Church algebra of T .

In the following lemma we characterize the central elements of the Church
algebra of an equational theory.

Lemma 6. Let T be an equational theory and V be the variety of Σ-algebras
axiomatized by T . Then the following conditions are equivalent, for every element
e ∈ CT and term t(x1, x2) ∈ e:

(i) e is a central element of the Church algebra of T .
(ii) T contains the identities t(x, x) = x; t(x, t(y, z)) = t(x, z) = t(t(x, y), z)

and t(f(x), f(y)) = f(t(x1, y1), . . . , t(xn, yn)), for f ∈ Σ.
(iii) For every A ∈ V, the function tA : A×A→ A is a decomposition operator.
(iv) T = T1 ∩ T2, where Ti is the theory axiomatized (over T ) by t(x1, x2) = xi

(i = 1, 2).

If the equivalence class of t(x1, x2) is a central element of CT , then by Lemma
6(iii)-(iv) every algebra A ∈ V can be decomposed as A ∼= A/φ ×A/φ, where
(φ, φ) is the cfc-pair associated with the decomposition operator tA, and the
algebras A/φ and A/φ satisfy respectively the equational theories T1 and T2. In
such a case, we say that V is decomposable as a product of the two subvarieties
axiomatized respectively by T1 and T2 (see [16]).

We say that a variety is directly indecomposable if the Church algebra of its
equational theory is a directly indecomposable algebra.

Theorem 5. Let T be an equational theory. Assume there exist n binary terms
t0, . . . , tn−1 such that, for every function k : n→ {1, 2}, the theory axiomatized
(over T ) by ti(x1, x2) = xk(i) (i = 0, . . . , n − 1) is consistent. Then there exists
a theory T ′ ≥ T such that the lattice L(T ′) of all equational theories extending
T ′ is isomorphic to the free Boolean lattice with 22n elements.

The set of all factor congruences of an algebra does not constitute in general
a sublattice of the congruence lattice. We now show that in every algebra there
is a subset of factor congruences which always constitutes a Boolean sublattice
of the congruence lattice.

We denote by tAe the decomposition operator associated with the central
element e by Lemma 6(iii).



Lemma 7. Let T be an equational theory and V be the variety axiomatized by
T . For every algebra A ∈ V, the function h : Ce(CT ) → Con(A), defined by
h(e) = {(x, y) : tAe (x, y) = x}, is a lattice homomorphism from the BA of central
elements of CT into the set of factor congruences of A such that (h(e), h(e−))
is a cfc-pair for all e ∈ Ce(CT ). The range of h constitutes a Boolean sublattice
of Con(A).

We say that a variety V is decomposable as a weak Boolean product of directly
indecomposable subvarieties if there exists a family 〈Vi : i ∈ X〉 of directly
indecomposable subvarieties Vi of V such that every algebra A ∈ V is isomorphic
to a weak Boolean product Πi∈XBi of algebras Bi ∈ Vi.
Theorem 6. (Meta-Representation Theorem) Every variety V of algebras is
decomposable as a weak Boolean product of directly indecomposable subvarieties.

References

1. H.P. Barendregt. The λ-calculus: Its syntax and semantics. North-Holland Publish-
ing Co., Amsterdam, 1984.

2. C. Berline, A. Salibra. Easiness in graph models. Theo. Comp. Sci. 354:4–23, 2006.
3. D. Bigelow, S. Burris. Boolean algebras of factor congruences. Acta Sci. Math. 54:11–

20, 1990.
4. S. Burris, H.P. Sankappanavar. A course in universal algebra. Springer-Verlag,

Berlin, 1981.
5. S. Comer. Representations by algebras of sections over boolean spaces. Pacific J.

Math. 38:29–38, 1971.
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A Technical Appendix

This technical appendix is devoted to provide the proofs which are omitted in
the paper.

Lemma 1. Let A be a Church algebra and e ∈ A. Then we have, for all x, y ∈ A:

(a) x θe q(e, x, y) θe y.
(b) xθey iff q(e, x, y) (θe ∧ θe) y.
(c) xθey iff q(e, x, y) (θe ∧ θe) x.
(d) θe ◦ θe = θe ◦ θe = ∇.

Proof. (a) From 1 θe e θe 0.
(b) By (a) we have x θe q(e, x, y). Then xθey iff q(e, x, y) θe y.
(c) Analogous to (b).
(d) By (a).

Proposition 2. Let A be a Church Σ-algebra and e ∈ A. The following condi-
tions are equivalent:

(i) e is central;
(ii) θe ∧ θe = ∆;

(iii) For all x and y, q(e, x, y) is the unique element such that xθe q(e, x, y) θey;
(iv) e satisfies the following identities:

1. q(e, x, x) = x.
2. q(e, q(e, x, y), z) = q(e, x, z) = q(e, x, q(e, y, z)).
3. q(e, f(x), f(y)) = f(q(e, x1, y1), . . . , q(e, xn, yn)), for every n-ary function
symbol f ∈ Σ.
4. e = q(e, 1, 0).

(v) The function fe defined by fe(x, y) = q(e, x, y) is a decomposition operator
such that fe(1, 0) = e.

Proof. (i)⇔ (ii) From Lemma 1(d).
(ii) ⇒ (iii) By Lemma 1(d) θe and θe are a cfc-pair. Then the conclusion

follows from Lemma 1(a).
(iii)⇒ (ii) First note that q(e, x, x) = x. If x (θe ∧ θe) y then xθeyθex, that

is y = q(e, x, x) = x.
(iv)⇔ (v) By Prop. 1.
(i) ⇒ (v) First we recall that (i) is equivalent to (iii). fe is a decomposi-

tion operator because (θe, θe) is a cfc-pair and q(e, x, y) is the unique element
satisfying x θe q(e, x, y) θe y. Moreover, fe(1, 0) = q(e, 1, 0) = e follows from
1 θe e θe 0.

(v) ⇒ (i) Let (φ, φ) be the cfc-pair associated with fe. From Prop. 1 and
from fe(1, 0) = q(e, 1, 0) = e it follows that 1φeφ0, so that θe, θe ⊆ φ. For the
opposite direction, let xφy, which is equivalent to q(e, x, y) = y by Prop. 1. Then
by 1θee we derive x = q(1, x, y) θe q(e, x, y) = y. Similarly, for φ.



Theorem 1. Let A be a Church algebra. The algebra (Ce(A),∧,∨,− , 0, 1) of
central elements of A, defined by

e ∧ d = q(e, d, 0); e ∨ d = q(e, 1, d); e− = q(e, 0, 1),

is a Boolean algebra isomorphic to the Boolean algebra of factor congruences of
A.

Proof. If A ∼= B×C, then it is easy to check, by using the definition of a central
element, that Ce(A) = Ce(B)× Ce(C). In the terminology of universal algebra
one says that A has no “skew factor congruences”. From this and [3, Prop. 1.3]
the factor congruences of A form a Boolean sublattice of the congruence lattice
Con(A). It follows that the partial ordering on central elements, defined in (1)
of Sec. 3, is a Boolean ordering. Then it is possible to show that, for all central
elements e and d, the elements e−, e∧d and e∨d are central and are respectively
associated with the cfc-pairs (θe, θe), (θe ∨ θd, θe ∧ θd) and (θe ∧ θd, θe ∨ θd).

We now check the details for e−. Since e is central then (θe, θe) is a cfc-pair.
The complement of (θe, θe) is the pair (θe, θe). We have that e− is the unique
element such that 0 θe e

− θe 1. Then 1 θe e
− θe 0 for the pair (θe, θe). This

means that e− is the central element associated with (θe, θe).
We now consider e ∨ d = q(e, 1, d). A similar reasoning work for e ∧ d.

First of all, we show that q(e, 1, d) = q(d, 1, e). By Lemma 1(a) we have that
1 θe q(e, 1, d) θe d, while 1 θe q(d, 1, e) θe d can be obtained as follows:

1 = q(d, 1, 1) by Prop. 2(iv-1),
q(d, 1, 1) θe q(d, 1, e) by 1 θe e,
q(d, 1, e) θe q(d, 1, 0) by e θe 0,
q(d, 1, 0) = d by Prop. 2(iv-4).

Since there is a unique element c such that 1 θe c θe d , then we have the con-
clusion q(e, 1, d) = q(d, 1, e). We now show that q(e, 1, d) is the central element
associated with the factor congruence θe ∧ θd, i.e.,

1 (θe ∧ θd) q(e, 1, d) (θe ∨ θd) 0.

From q(d, 1, e) = q(e, 1, d) we easily get that 1 θe q(e, 1, d) and 1 θd q(e, 1, d),
that is, 1 (θe ∧ θd) q(e, 1, d). Finally, Prop. 2(iv-4), we have: q(e, 1, d) θe d =
q(d, 1, 0) θd 0, i.e., q(e, 1, d) (θe ∨ θd) 0.

Theorem 2. (The Stone Representation Theorem) Let A be a Church algebra.
Then, for all I ∈ X the quotient algebra A/φI is directly indecomposable and
the map

f : A→ ΠI∈X(A/φI),

defined by
f(x) = ([x]φI : I ∈ X),

gives a weak Boolean product representation of A.



Proof. By the proof of Thm. 1 the factor congruences of A constitute a Boolean
sublattice of Con(A). Then by Comer’s generalization [5] of Stone representation
theorem f gives a weak Boolean product representation of A. The quotient
algebras A/φI are directly indecomposable by [17, Thm. 8].

Lemma 2. The semicongruences of a Church algebra permute with its factor
congruences, i.e., φ◦ψ = ψ◦φ for every semicongruence φ and factor congruence
ψ.

Proof. Let ψ = θe for a central element e and let a φ b θe c for some b. We
get the conclusion of the lemma if we show that a θe q(e, a, c) φ c. Notice that
a θe q(e, a, c) is a consequence of Lemma 1(a). We now prove that q(e, a, c) φ c.
First we remark that by b θe c and by Prop. 2(iii) we have q(e, b, c) = c. From
this last equality and from a φ b it follows the conclusion q(e, a, c) φ q(e, b, c) = c.

Lemma 3. Let A be a Church algebra. Then the congruence lattice of A satisfies
the Zipper condition, i.e., for all I and for all δi, ψ, φ ∈ Con(A) (i ∈ I):

If
∨
i∈I

δi = ∇ and δi ∧ ψ = φ (i ∈ I), then ψ = φ.

Proof. By [7], where it is shown that the congruence lattice of every 0, 1-algebra
(i.e., an algebra having a binary term with a right unit and a right zero) satisfies
the Zipper condition.

Lemma 4. Let B be a Church algebra and φ ∈ Con(B). Then, B/φ is also a
Church algebra and the map cφ : Ce(B)→ Ce(B/φ), defined by

cφ(x) = [x]φ

is a homomorphism of Boolean algebras.

Proof. It is not difficult to show that cφ is a homomorphism with respect to the
Boolean operations defined in Thm. 1.

Proposition 3. Let A be a Church algebra. Then there exists no congruence φ
such that the interval sublattice [φ) is isomorphic to an infinite Boolean lattice.

Proof. From [6, Prop. 4], where it is shown that a complete coatomic Boolean
lattice satisfying the Zipper condition, and whose top element is compact, is
finite.

Lemma 5. For every r.e. λ-theory φ, there exists an infinite sequence M =
〈Mk ∈ Λo : k ∈ ω〉, called φ-easy sequence, satisfying the following conditions:

– Mn 6=φ Mk for every n 6= k;
– For all sequences N = 〈Nk ∈ Λo : k ∈ ω〉 the λ-theory generated by φ ∪

(M,N ) is consistent.



Proof. By [1, Prop. 17.1.9] there is a φ-easy λ-term, i.e., a term P such that the
λ-theory generated by φ ∪ {P = Q} is consistent for every closed term Q. We
define Mn ≡ Pn, where n is the Church numeral of n (see [1, Def. 6.4.4]). Let
N = 〈Nk ∈ Λo : k ∈ ω〉 be an arbitrary sequence. By compactness we get the
conclusion of the lemma if the λ-theory generated by φ ∪ {(Mi, Ni) : i ≤ n} is
consistent for every natural number n. Fix n. It is routine to find a λ-term R
such that Ri =λβ Ni for all i ≤ n. Since P is a φ-easy λ-term, then the λ-theory
ψ generated by φ∪ {P = R} is consistent and Pi =ψ Ni (i.e., Mi =ψ Ni) for all
i ≤ n.

Theorem 4. For every r.e. λ-theory φ and each natural number n, there is a
λ-theory φn ≥ φ such that the lattice interval [φn) is isomorphic to the finite
Boolean lattice with 2n elements.

Proof. The term algebra of φ is a Church algebra by Example 1. LetM = 〈Mk ∈
Λo : k ∈ ω〉 be the φ-easy sequence of Lemma 5. Then the set {[Mk]φ : k ∈ ω}
is a countable infinite easy subset of the term algebra of φ. From Thm. 3 there
exists a congruence ψn such that ψn ≥ φ and [ψn) is isomorphic to the free
Boolean algebra with 22n elements. The congruence φn of the theorem can be
defined by using ψn and the following facts: (a) Every filter of a finite Boolean
algebra is a Boolean lattice; (b) The free Boolean algebra with 22n elements has
filters of arbitrary cardinality 2k (k ≤ 2n).

Lemma 6. Let T be an equational theory and V be the variety of Σ-algebras
axiomatized by T . Then the following conditions are equivalent, for every element
e ∈ CT and term t(x1, x2) ∈ e:

(i) e is a central element of the Church algebra of T .
(ii) T contains the identities t(x, x) = x; t(x, t(y, z)) = t(x, z) = t(t(x, y), z)

and t(f(x), f(y)) = f(t(x1, y1), . . . , t(xn, yn)), for f ∈ Σ.
(iii) For every A ∈ V, the function tA : A×A→ A is a decomposition operator.
(iv) T = T1 ∩ T2, where Ti is the theory axiomatized (over T ) by t(x1, x2) = xi

(i = 1, 2).

Proof. (i) ⇔ (ii) By the identities in Prop. 2(iv) characterizing the central ele-
ments and by the definition of the term q(e, x, y) in the Church algebra CT of
T . For example, the identity x = q(e, x, x) becomes t[x/x1, x/x2] = t(x, x) = x
for the term t(x1, x2) ∈ e.

(i) ⇔ (iii) By the equivalence of Prop. 2(i) and Prop. 2(v).
(i) ⇔ (iv) By Prop. 2 we have that e is central iff θe ∧ θe = ∆, where the

congruence θe is generated by the pair (e, 1) and the congruence θe is generated
by the pair (e, 0). Since 1 ≡ x1 and 0 ≡ x2 in the Church algebra of T and
t(x1, x2) ∈ e, then the pair (e, 1) represents the identity t(x1, x2) = x1 and the
pair (e, 0) the identity t(x1, x2) = x2.

Theorem 5. Let T be an equational theory. Assume there exist n binary terms
t0, . . . , tn−1 such that, for every function k : n→ {1, 2}, the theory axiomatized
(over T ) by ti(x1, x2) = xk(i) (i = 0, . . . , n − 1) is consistent. Then there exists



a theory T ′ ≥ T such that the lattice L(T ′) of all equational theories extending
T ′ is isomorphic to the free Boolean lattice with 22n elements.

Proof. The equivalence classes of the terms t0, . . . , tn−1 constitute a finite easy
set in the Church algebra of T . The conclusion follows from Thm. 3.

Lemma 7. Let T be an equational theory and V be the variety axiomatized by
T . For every algebra A ∈ V, the function h : Ce(CT ) → Con(A), defined by
h(e) = {(x, y) : tAe (x, y) = x}, is a lattice homomorphism from the BA of central
elements of CT into the set of factor congruences of A such that (h(e), h(e−))
is a cfc-pair for all e ∈ Ce(CT ). The range of h constitutes a Boolean sublattice
of Con(A).

Proof. We only show that h is a homomorphism with respect to the join operator.
Recall from Thm. 1 that e∨d = q(e, 1, d) and that in the Church algebra of T the
term q is the substitution operator. Then we obtain te∨d(x, y) = te(x, td(x, y)) =
td(x, te(x, y)). We have (x, y) ∈ h(e∨d)⇔ te∨d(x, y) = x⇔ te(x, td(x, y)) = x⇔
(x, td(x, y)) ∈ h(e)⇔ (x, y) ∈ h(d)◦h(e), because (td(x, y), y) ∈ h(d) holds from
property td(td(x, y), y) = td(x, y) of decomposition operators. We get h(e∨ d) ⊆
h(e) ∨ h(d). For the opposite it is sufficient to check h(e), h(d) ⊆ h(e ∨ d). Let
(x, y) ∈ h(e), i.e., te(x, y) = x. Then td(x, te(x, y)) = x, so that te∨d(x, y) = x.
A similar reasoning works for h(d).

Theorem 6. (Meta-Representation Theorem) Every variety V of algebras is
decomposable as a weak Boolean product of directly indecomposable subvarieties.

Proof. Let T be the equational theory of V and CT be the Church algebra of
T . By Thm. 2 we can represent CT as a weak Boolean product f : CT →
ΠI∈X(CT /φI), where X is the Stone space of the Boolean algebra Ce(CT ) of
central elements of CT , I ∈ X ranges over the maximal ideals of Ce(CT ), φI =
∪e∈Iθe, and θe is the factor congruence associated with the central element e ∈ I.
Since the lattice L(T ) of the equational theories extending T is isomorphic to
the congruence lattice of CT , the congruence φI corresponds to an equational
theory, say TI . The Church algebra of TI is isomorphic to CT /φI , so that it is
directly indecomposable. Then by Lemma 6 the variety VI axiomatized by TI is
directly indecomposable.

Let A ∈ V and h : Ce(CT )→ Con(A) be the lattice homomorphism defined
in Lemma 7. For every maximal ideal I of Ce(CT ), consider the congruence
φA
I = ∪e∈Ih(e). The map f : A→ ΠI∈X(A/φA

I ) defined by f(x) = ([x]φA
I

: I ∈
X), determines a weak Boolean representation of A, where A/φA

I ∈ VI . The
algebra A/φA

I may be directly decomposable also if it belongs to the directly
indecomposable variety VI .


