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The speculative ambition of replacing the old theory of program approximation based on syntactic continuity

with the theory of resource consumption based on Taylor expansion and originating from the differential

λ-calculus is nowadays at hand. Using this resource sensitive theory, we provide simple proofs of important

results in λ-calculus that are usually demonstrated by exploiting Scott’s continuity, Berry’s stability or Kahn

and Plotkin’s sequentiality theory. A paradigmatic example is given by the Perpendicular Lines Lemma for
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1 INTRODUCTION

The theory of analytical differentiation has been fruitfully applied to many areas of computer
science, like deep learning [Baydin et al. 2017] (choosing weights in neural nets by gradient descent
optimisationmethods), algorithmic differentiation [Fiege et al. 2018; Griewank et al. 2018] (providing
techniques for efficient differentiation via source code transformation) and, recently, programming
languages with first-class differentiation have begun to appear, see e.g. [Walter and Lehmann 2013].

In the pioneering article [Ehrhard and Regnier 2003], Ehrhard and Regnier introduce a derivative
operator in the higher-order functional setting, thus defining a differential λ-calculus whose study is
shedding new light on the fundamental relationship between linearity and control of resources. The
main novelty of this approach, which is also its strength, is that it brings quantitative mathematics
in the programming language discipline by introducing a notion of (syntactic) derivative of a
program. Just like in analysis the derivative Df furnishes information on the function f , as it
measures the variation of f as its input changes, in functional programming languages it is possible
to infer quantitative properties of a program P by studying its derivative D P . The differential
λ-calculus has solid mathematical roots in quantitative semantics of linear logic, and extends the
celebrated Curry-Howard łproofs-as-programs and formulae-as-typesž correspondence as follows:
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Function Programming Feature Logical System

analytical ⇐⇒ duplication/erasure allowed ⇐⇒ proofs with structural/logical rules
linear ⇐⇒ resources used exactly once ⇐⇒ proofs with logical rules only

This opens the way for the application of interesting results developed in the study of analytical
differentiation to this area of computer science. For instance, Ehrhard and Regnier proposed to
approximate the behaviour of an ordinary program P by performing its Taylor expansion:

P x =
∑∞

n=0
1
n! (D

nP · xn)0

where 1
n! is a numerical coefficient, DnP · xn stands for the n-th derivative of P applied to n non

erasable nor duplicable copies of x , and 0 plays the role of a łguardianž in the sense that if DnP is
unable to use exactly n times its argument x than the whole program is annihilated (it reduces to
the empty program 0). By fully developing each application occurring in P into its corresponding
Taylor expansion, it is possible to represent P as an infinite power series of purely differential
programs all of which contain only linear applications, and regular applications to 0. This full
Taylor expansion defines the best linear approximation of a program and is strictly related to the
length of its linear head reduction and hence to its execution time [Ehrhard and Regnier 2006a].
The target language of the (full) Taylor expansion can be presented as a resource calculus where
terms are applied to bags (finite multisets) of linear resources, which is more familiar to computer
scientists because it shares similarities with Boudol’s λ-calculus with multiplicities [Boudol 1993].
From the denotational viewpoint, this resource calculus ś and therefore the whole λ-calculus via
the aforementioned Taylor expansion ś can be naturally interpreted in quantitative semantics of
linear logic, the simplest being the relational semantics that can be also represented in logical form
as a type system where types are endowed with a non-idempotent intersection [Paolini et al. 2017].
The paradigm shift initiated with the work of Ehrhard and Regnier has originated several dif-

ferent ś but interrelated ś axes of research. From a mathematical perspective, Blute, Cockett
and Seely launched in the mid 2000s a research programme aiming at providing an axiomatic
description of differentiation in the categorical setting. Not only these investigations were suc-
cessful, leading to the notion of (Cartesian) differential categories [Blute et al. 2006, 2009], but they
generated many related concepts as tangent structures [Cockett and Cruttwell 2014], categorical
antiderivatives [Ehrhard 2018], integral categories [Cockett and Lemay 2019] and the like. From
a more computer science oriented perspective, researchers have used the resource calculus and
its quantitative models to produce resource sensitive type systems and cost models for several
functional programming languages [Accattoli 2018]. For instance, De Carvalho proved that an
upper bound for the number of (head) reduction steps of a program can be extracted from a type
derivation in relevant systems [de Carvalho 2018], a result recently refined in [Accattoli et al. 2018]
where the authors are able to calculate the exact value by exploiting a notion of łtightž typings.
In [Laird et al. 2013], Laird et al. extend the relational semantics of linear logic by adding weights,
that allow to provide unified account of nondeterministic, probabilistic and algebraic PCF programs.
The interpretation of a program not only contains information concerning the amount of steps
needed to compute a value, but also on the number of łdifferent waysž or even its probability. This
approach can be generalized further to encompass the quantum PCF of [Pagani et al. 2014] by
considering categories as weights, and profunctors rather than relations, as done in [Tsukada et al.
2018] where Tsukada et al. define a ‘rigid’ Taylor expansion and show that it allows to characterize
the interpretation of programs in bicategories of generalised species of structures [Fiore et al. 2007].

The approach to program approximation via Taylor expansion is formally related to the classic
approximation theory, based on Böhm trees and Scott’s continuity, via a Commutation Theorem
stating that it is equivalent to Taylor expand a program and then normalize it, or to compute its
Böhm tree and then perform its Taylor expansion [Ehrhard and Regnier 2008]. A crucial advantage
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of the former approach is that it is easily generalizable from λ-calculus to other languages thanks to
its well-established and versatile logical background. Indeed, the numerical coefficients in the Taylor
expansion are well suited to model nondeterministic [Bucciarelli et al. 2012], probabilistic [Lago
and Zorzi 2012] and algebraic calculi [Vaux 2009] that are increasingly attracting the interest of the
scientific community. For instance, in [Lago and Leventis 2019] the authors show that the Taylor
expansion model is adequate for the probabilistic λ-calculus and satisfies an analogous commutation
property with respect to the nondeterministic Böhm trees recently introduced in [Leventis 2018].
A similar situation has arisen in the call-by-value setting Ð despite the fact that the call-by-value
λ-calculus was introduced by Plotkin several decades ago [Plotkin 1975], a notion of Böhm trees
adapted to this paradigm has only been introduced last year [Kerinec et al. 2018] and the authors
claim that they were inspired by the call-by-value Taylor expansion defined in [Ehrhard 2012].

What we find slightly disappointing in these recent articles is that researchers do make an effort
to generalize such notions and results, but do not explore their consequences in the new settings
(with the notable exception of [Kerinec et al. 2018], where some applications are actually given). We
believe that this phenomenon has multiple reasons. On the one hand, there is a common belief that
the Taylor expansion is only useful to investigate quantitative properties of programs, on the other
hand, in the current literature there are not many examples of qualitative properties demonstrated
via these notions. In the present paper we investigate the full potential of this approach and show
that fundamental results in λ-calculus, that are usually proved using Scott’s continuity [Scott
1972], Berry’s stability [Berry 1978] or Kahn and Plotkin’s sequentiality theory [Kahn and Plotkin
1978], can be endowed with simpler proofs that exploits the Commutation Theorem and the main
properties enjoyed by the resource calculus, namely confluence, strong normalization (SN) and
linearity. We first exhibit a proof sketch of the Commutation Theorem to show that such a result is
not so difficult to achieve, as it might seem at first sight reading [Ehrhard and Regnier 2008].

Once that this preliminary work is done, we show that if two λ-termsM,N share the same Böhm
tree, this property is preserved when they are plugged in the same context C[]. This is needed
to ensure that the Böhm tree semantics actually induces a λ-theory and usually proved via the
theory of syntactic continuity, while we proceed by structural induction on C[]. We then consider
more fundamental statements like the Genericity Lemma [Barendregt 1984, Prop. 14.3.24] that
motivates the nowadays well established choice of identifying unsolvable λ-terms as completely
undefined results and show that it is a direct consequence of the Commutation Theorem. To prove
the statements expressing continuity and stability it is convenient to perform a finer analysis of
resource approximants, by isolating the linearized/affine ones that represent the usual Böhm tree
approximants in a minimal way, but otherwise the proof techniques employed are actually similar.
We conclude by exhibiting a simple inductive proof of the Perpendicular Lines Lemma (PLL, for
short) [Barendregt 1984, Thm 14.4.12] stating that if a program is constant on n łperpendicular
linesž, then it must be constant everywhere. This lemma has several important consequences,
among which the celebrated non-definability of łparallel orž stands out. The PLL was originally
demonstrated for the Böhm tree semantics by applying Kahn and Plotkin’s theory of sequentiality,
then proved for β-conversion via the Reduction under Substitution property [Endrullis and de Vrijer
2008], while a counterexample was found for its closed term model [Statman and Barendregt 1999].
As we will show, our proof technique can be used for proving PLL both for the open and for the
closed term model of Böhm trees, the latter constituting ś as far as we know śan original result.

As a disclaimer, we do not claim that the proofs so obtained are simpler to read and follow: on the
one hand this will depend on the reader’s familiarity with linear logic and the resource calculus, on
the other hand there is inevitably a price to pay when considering linearized program approximants,
namely the appearance of several indices to keep track of the different occurrences of a variable.
What we claim is that our proofs are based on simpler principles ś induction rather than the
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coinduction naturally arising when considering Böhm trees ś and that the fact that approximants
cannot erase or duplicate their arguments is a very strong property that can be fruitfully used to
simplify the proofs (as an example, see the statement of the claim in the proof of Theorem 6.1).
Finally, we would like to stress the fact that we choose the regular untyped λ-calculus to

give a glimpse of the full potential of these proof methods because it is the original framework
where the Taylor expansion was introduced [Ehrhard and Regnier 2003] and the simplest Ð in
particular, in this setting it is customary to overlook the coefficients of the Taylor expansion that
represent unnecessary information for proving qualitative results. However, the proof techniques
that we discuss do generalize to more elaborate non-deterministic, probabilistic, algebraic systems
both typed and untyped, both in call-by-name and in call-by-value (even in call-by-push value,
see [Ehrhard and Guerrieri 2016; Ehrhard and Tasson 2019]).

2 THE λ-CALCULUS IN A NUTSHELL

To keep this article as self-contained as possible, we summarize some definitions and results
concerning λ-calculus that are needed subsequently. With regard to the λ-calculus, we mainly
follow the notation and terminology of Barendregt’s first book [Barendregt 1984].

2.1 Its Syntax

The set Λ of λ-terms over an infinite set V of variables is defined by the simplified grammar :

Λ : L,M,N ::= x | λx .M | MN (for x ∈ V)

We assume that application associates to the left and has a higher precedence than abstraction.
For instance, λxyz.xyz stands for λx .(λy.(λz.((xy)z))). Moreover, for n ≥ 0, we write MnN as an

abbreviation forM(M(· · · (MN ) · · · )) (n times), λ®x .M for λx1 . . . xn .M and ®M forM1, . . . ,Mn .
The set FV(M) of free variables ofM and the α -conversion are defined as in Section 1.2 of [Baren-

dregt 1984]. Hereafter, we consider λ-terms up to α-conversion and denote by = syntactic equality.

Definition 2.1. A λ-termM is called closed, or a combinator, whenever FV(M) = ∅. We denote by
Λ
o the set of all closed λ-terms.

Let us recall the definition of k-ary contexts, that will be often considered in the rest of the paper.

Definition 2.2. Let (ξn)n∈N be an enumeration of fresh variables, in particular we assume ξn < V.

(i) For k ∈ N, a k-context C[ ®ξ ] is a λ-term possibly containing the variables ®ξ = ξ1, . . . , ξk , i.e.:

C[ ®ξ ],C ′[ ®ξ ] ::= ξi | x | λx .C[ ®ξ ] | (C[ ®ξ ]) (C ′[ ®ξ ]) (for i ∈ {1, . . . ,k})

The variables ξi occurring in C[ ®ξ ] are traditionally called holes.

(ii) Given ak-contextC[ ®ξ ] and λ-termsM1, . . . ,Mk , we denote byC[M1, . . . ,Mk ] the λ-term obtained

by simultaneously replacing eachMi for ξi in C[ ®ξ ], possibly with captures of free variables.
(iii) A 1-context is simply called a context and we denote its hole by ξ .
(iv) A context C[ξ ] is called single-hole whenever it contains exactly one occurrence of ξ .

Consider now an arbitrary binary relation R ⊆ Λ × Λ. We say that R is context closed ifM R N

entails C[M] R C[N ] for all single-hole contexts C[ξ ]. The contextual closure of a relation R is the
smallest context closed relation containing R.

Definition 2.3. The β-reduction→β is defined as the contextual closure of the rule

(λx .M)N → M{N /x}

whereM{N /x} denotes the simultaneous substitution of N for all free occurrences of x inM , subject
to the usual proviso about renaming bound variables inM to avoid capture of free variables in N .
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As it is customary, we write↠β for the multistep β-reduction and =β for β-conversion. Moreover,
we denote by nfβ (M) the β-normal form ofM , if it exists.

Notation. We will use the following notations for specific λ-terms:

I = λx .x , K = λxy.x , F = λxy.y, ∆ = λx .xx , Ω = ∆∆,

Y = λf .(λx . f (xx))(λx . f (xx)), Θ = (λf x .x(f f x))(λf x .x(f f x)),

where I is the identity, K and F are the first and the second projections, Y and Θ are Curry’s and
Turing’s fixed point combinators, respectively, and Ω the paradigmatic looping combinator.

2.2 Solvability and Böhm Trees

Lambda terms are classified into solvable or unsolvable depending on their capability of interaction
with the environment, which is represented in this setting by a context.

Definition 2.4. A λ-term M is called solvable if there exists a context having shape C[ξ ] =
(λx1 . . . xn .ξ )N1 · · ·Nk such that C[M] =β I. Otherwise, we say thatM is unsolvable.

A λ-term M is in head normal form (hnf ) if it has the shape λx1 . . . xn .yM1 · · ·Mk for some
n,k ≥ 0. It is well-known that if M has an hnf, then such a normal form can be reached by head
reductions ↠h , i.e., by repeatedly contracting its head redex λx1 . . . xn .(λy.P)QM1 · · ·Mk .

Theorem 2.5 (Wadsworth [Wadsworth 1976]).
A λ-termM is solvable if and only ifM has a head normal form.

Example 2.6. Using Wadsworth’s characterization it is easy to verify that I,K, F,∆,Y are all solvable,
while Ω, YI and ΘI are unsolvable.

In order to describe abstractly the possibly infinite behaviour of a λ-termM , Barendregt intro-
duced in [Barendregt 1977] the notion of Böhm tree ofM .

Definition 2.7. The Böhm tree BT(M) of a λ-termM is defined coinductively1 as follows:

• ifM is solvable thenM ↠h λx1 . . . xn .yM1 · · ·Mk and we define:

BT(M) = λx1 . . . xn .y

BT(M1) BT(Mk )· · ·

• otherwise,M is unsolvable and we define BT(M) = ⊥.

Example 2.8. We now provide some examples of Böhm trees of notable λ-terms:

BT(∆) = λx .x ,

x

BT(Ω) = ⊥, BT(Y) = λf . f ,

f

f

f

BT(Pz) = λx0.x0

λx1.x1

λx2.x2

λx3.x3

where P = Y(λyzx .x(yz)) satisfies Pz =β λx .x(Pz). Note that z ∈ FV(P ′) for all P ′ such that Pz ↠β P ′,
but it does not occur in BT(Pz). In this case we say that z is łpushed into infinityž.

It is well-known that Böhm trees are invariant under β-conversion [Barendregt 1984, Ch. 10].

1The interested reader is invited to consult the article [Lassen 1999] for a more detailed discussion of the coinduction

principle behind this definition.
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Lemma 2.9. ForM,N ∈ Λ, ifM =β N then BT(M) = BT(N ).

As pointed out by Jacobs and Rutten in [Jacobs and Rutten 1997], Böhm trees constitute one of
the first examples of a coinductive definition. However, the scientific community has only recently
acquired enough familiarity with the coinductive principle [Kozen and Silva 2017], for decades
researchers tried to harness the infinitary nature of Böhm trees with finite approximants and
syntactic continuity [Barendregt 1984, ğ14.2]. We quickly review the classic approach based on
such approximants, and recall the main notions and results.

Definition 2.10. (i) The set Λ⊥ of λ⊥-terms is inductively defined via the simplified grammar:

Λ⊥ : M,N ::= ⊥ | x | λx .M | MN

(ii) Let ≤⊥⊆ Λ⊥ × Λ⊥ be the contextual preorder generated by setting ⊥ ≤ M , for allM ∈ Λ⊥.
(iii) The λ⊥-terms are endowed with the reduction→β⊥, namely β-reduction augmented by

λx .⊥ →⊥ ⊥ ⊥M1 · · ·Mn →⊥ ⊥ (for n > 0)

(iv) The subset A ⊆ Λ⊥ of finite approximants is defined by the following simplified grammar:

A : P ,Q ::= ⊥ | λx1 . . . xn .yP1 · · · Pk (for n,k ≥ 0)

(v) Two approximants P1, P2 ∈ A are compatible if there exists Q ∈ A such that P1 ≤⊥ Q ≥⊥ P2.
In case P1, P2 , ⊥, we must have P1 = λx1 . . . xn .yP11 · · · P1k and P2 = λx1 . . . xn .yP21 · · · P2k
for the same n,k ≥ 0 and for some P1j , P2j that are compatible for all j (1 ≤ j ≤ k).

(vi) Given two compatible P1, P2 ∈ A , their supremum P1 ∨ P2 is defined inductively as follows:

P1 ∨ P2 =





λ®x .y(P11 ∨ P21) · · · (P1k ∨ P2k ) if P1 = λ®x .yP11 · · · P1k and P2 = λ®x .yP21 · · · P2k ,

P1 if P2 = ⊥,

P2 if P1 = ⊥.

(vii) Given a λ-termM , the set of finite approximants ofM is defined by:

A(M) = {P ∈ A | ∃N ∈ Λ .M ↠β N and P ≤⊥ N }

The finite approximants in A are exactly the λ⊥-terms in β⊥-normal form.

Lemma 2.11. (i) M ∈ Λ⊥ is in β⊥-normal form if and only ifM ∈ A .
(ii) ForM ∈ Λ, the set A(M) is an ideal, namely non-empty, downward closed and directed.

An issue intrinsic to these definitions is the difficulty of characterizing A(MN ) in terms of
A(M) and A(N ). Indeed, not only A is not closed under application, but applying PQ can give
rise to a term without a β⊥-normal form, like Ω. This is the main reason why, in order to prove the
Approximation Theorem below, one needs to develop the whole theory of syntactic continuity.

Theorem 2.12 (Approximation Theorem). For allM ∈ Λ

BT(M) =
∨

A(M)

Such a supremum always exists because, by Lemma 2.11(ii), A(M) is an ideal with respect to ≤⊥.

2.3 Lambda Theories

The equational theories of λ-calculus, called łλ-theoriesž become the main object of study when
considering the computational equivalence more important than the process of computation itself.
We now recall their definition together with some interesting properties and provide some examples.

Definition 2.13. (i) A relation R ⊆ Λ×Λ is called a congruence if it is a context closed equivalence.
(ii) A λ-theory T is any congruence containing the β-conversion.
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Given a λ-theory T , we write M =T N for (M,N ) ∈ T . The set of λ-theories, ordered by
set-theoretical inclusion, constitutes a complete lattice having a quite rich structure, see for in-
stance [Lusin and Salibra 2004]. A λ-theory T is called consistent if T , Λ × Λ; T is sensible if it is
consistent and equates all unsolvable λ-terms. We are mainly interested in the following λ-theories.

Example 2.14. Consider the following relations on Λ × Λ:

λ = {(M,N ) | M =β N }
B = {(M,N ) | BT(M) = BT(N )}

Now, λ is clearly the least λ-theory, while for proving that B is a λ-theory one needs to check that it is
context closed (See Section 5, for an original proof of this known fact). As another example, consider
also the least sensible λ-theory H , generated by equating all unsolvable λ-terms. We have:

• λ ⊊ H . The inclusion is trivial because of the minimality of λ among λ-theories. It is strict
because, for unsolvable λ-terms like Ω and YI, we have Ω ,β YI while Ω =H YI.

• H ⊊ B. The inclusion holds since the λ-theory B is sensible, and it is strict because all fixed
point combinators are equated in B while they can be different inH . E.g. Θ ,H Y, but Θ =B Y.

We will also consider an inequational version of B, where the preorder on λ-terms is inherited
from Definition 2.10 as follows.

Definition 2.15. ForM,N ∈ Λ we define

M ⊑B N ⇐⇒ A(M) ⊆ A(N )

It is easy to verify that the relation ⊑B captures the usual approximation order on Böhm trees,
namely M ⊑B N exactly when BT(M) is obtained from BT(N ) by replacing some subtrees by ⊥.
As a consequence, we have thatM =B N holds if and only if bothM ⊑B N and N ⊑B M do.

Example 2.16. Consider two λ-termsM,N having the following infinite Böhm trees

BT(M) = [I, [⊥, [I, [⊥, . . . ]]]], BT(N ) = [I, [K, [I, [K, . . . ]]]],

where [X ,Y ], for fresh x , denotes Church’s pairing λx .xXY . It is easy to check thatM ⊑B N holds.

We end this section by recalling that every λ-theory has an associated (open/closed) term model.

Definition 2.17. (i) Given a λ-theory T , its (open) term modelM
T
= (Λ/T , · ) consists of the set

of equivalence classes [M]T , together with the operation of application [M]T · [N ]T = [MN ]T .
(ii) The closed term modelMo

T
, is the subalgebra ofM

T
generated by the equivalence classes of

closed λ-terms.

3 THE RESOURCE CALCULUS IN A NUTSHELL

We recall the syntax and the main properties of the resource calculus [Ehrhard and Regnier 2003].
In this calculus, a term cannot be just applied to another term, but rather to a łbagž (finite multiset)
of resources. Each resource in a bag is linear in the sense that it cannot be erased or duplicated, it
must be consumed during the reduction.

Definition 3.1. The set Λr of resource terms and the set Λb of bags are defined by the simplified
grammar:

Λ
r : s, t ,u,v ::= x | λx .t | t b

Λ
b : b ::= [t1, . . . , tk ] (for k ≥ 0)

where [t1, . . . , tk ] represents a multiset. The empty bag will be denoted by 1.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 1. Publication date: January 2020.



1:8 Davide Barbarossa and Giulio Manzonetto

The application of a function to a bag, as in (λx .s)[t1, . . . , tk ], should be understood as follows:
the program s during its execution must perform n łcallsž to its argument x , one for each occurrence
of x in s , each time receiving as value a different ti non-deterministically chosen from the bag (in
the reduction we consider a formal sum of all possibilities). In case of a mismatch n , k , s łraises
an exceptionž annihilating the whole term, so the outcome of the computation is the empty sum 0.

For resource termswe adopt the same conventions as for λ-terms about associativity,α-conversion,
free variables. We now introduce the syntactic category of formal sums of resource terms.

Definition 3.2. Let 2 be the semiring of boolean values and 2⟨Λr ⟩ be the free 2-module generated
by Λ

r .

This amounts to saying that + is idempotent with neutral element 0, so T ∈ 2⟨Λr ⟩ can be seen as
a finite set {t1, . . . , tk } ∈ P(Λr ) that will be however represented by t1 + · · · + tk . Thus, for t ∈ Λ

r

and S,T ∈ 2⟨Λr ⟩, t ∈ T, T ⊆ S and T ∩ S have the obvious meaning. Similarly, we write 2⟨Λb ⟩ for
the set of finite sums of bags, whose elements are denoted B,B′, and use analogous conventions.

Definition 3.3. Given t ∈ Λ
r , the linear substitution t ⟨b/x⟩ ∈ 2⟨Λr ⟩ of a bag b = [s1, . . . , sk ] for a

variable x in t , is defined as follows:

t ⟨b/x⟩ =

{∑
σ ∈Sk

t{sσ (1)/x1, . . . , sσ (k)/xk } if degx (t) = k,

0 otherwise,

whereSk is the group of permutations of {1, . . . ,k}, degx (t) is the number of free occurrences of x
in t , and x1, . . . ,xk is an enumeration of such occurrences, so that t{sσ (i)/xi } denotes the resource
term obtained by substituting sσ (i) for xi in t .

As a syntactic sugar, and not as actual syntax, we extend all constructs to sums by (bi)linearity:

λx .(
∑

i ti ) = λx .
∑

i ti , (
∑

i ti )(
∑

j bj ) =
∑

i, j tibj , [
∑

i si ,T1, . . . ,Tk ] =
∑

i [si ,T1, . . . ,Tk ].

In particular λx .0 = 0s = t0 = 0 and [0, s1, . . . , sk ] = 0, therefore 0 annihilates the whole term.

Definition 3.4. This calculus is endowed with a reduction →r ⊆ Λ
r × 2⟨Λr ⟩

(λx .t)[s1, . . . , sk ] →r t ⟨[s1, . . . , sk ]/x⟩

which is the least one closed under the following rules:

t →r T

λx .t →r λx .T

t →r T

tb →r Tb

b →r B

tb →r tB

t →r T

[t , s1, . . . , sk ] →r [T, s1, . . . , sk ]

and extends to a relation →r ⊆ 2⟨Λr ⟩ × 2⟨Λr ⟩ by setting:

t →r T and t < S =⇒ t + S→r T + S

Example 3.5. 1. (λx .x)[y] →r y while (λx .x)[y,y] →r 0.
2. (λxy.x1)[z][z] →r (λy.z1)[z] →r 0, since erasing subterms is forbidden.
3. (λx .x[x][x])[y,y, z] →r y[y][z] + y[z][y] + z[y][y], because the sum is idempotent.

The following proposition guarantees that nf (t) always exists and is a finite sum, possibly 0.

Proposition 3.6. The reduction →r is confluent and strongly normalizable (SN).

Proof sketch. Strong normalization is trivial. Indeed, there is no duplication and contracting a
redex eliminates an abstraction, hence t →r S entails that the size of t is bigger than the one of
each s ∈ S. One can check that the resource calculus is actually locally confluent, thus confluence
follows from strong normalization and Newman’s lemma. □
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3.1 The Taylor Expansion

The resource calculus can be seen as the target language of Ehrhard and Regnier’s Taylor expansion
of regular λ-terms. Actually, the original Taylor expansion transforms a λ-term into the power
series of all its linear approximants, here, as we are considering an idempotent sum, we obtain a set.

Definition 3.7. The Taylor expansion T(M) of a λ-termM is a possibly infinite subset of Λr defined
by structural induction onM as follows:

T(x) = {x},
T(λx .M) = {λx .t | t ∈ T (M)},
T(MN ) = {tb | t ∈ T (M),b ∈ Mf (T (N ))},

whereMf (X) denotes the finite multisets ofX. The map T(·) extends to λ⊥-terms by setting T(⊥) = ∅.
For every X ⊆ Λ

r , define FV(X) =
⋃

t ∈X FV(t). It is easy to check that FV(T (M)) = FV(M).

Example 3.8. For t ∈ Λ
r , we use the notation [n.t] = [t , . . . , t] (n times).

(i) T(I) = {λx .x} and T(λx .x⊥) = {λx .x1} (recall that 1 stands for the empty bag).
(ii) T(∆) = {λx .x[n.x] | n ≥ 0}, from which it follows:
(iii) T(Ω) = {(λx .x[n.x])[λx .x[n1.x], . . . , λx .x[nk .x]] | n,k,ni ∈ N}.

The Taylor expansion of a k-context is defined in the obvious way, by treating the ξi ’s as variables.

Definition 3.9.

(i) A resource context cLξ1, . . . , ξk M is a resource term possibly containing the holes ξ1, . . . , ξk .
(ii) Given cLξ1, . . . , ξk M and t1, . . . , tk ∈ Λ

r , cLt1, . . . , tk M represents the resource term obtained by
replacing ti for all occurrences of ξi in cLξ1, . . . , ξk M, possibly with capture of free variables.

(iii) Similarly, for T1, . . . ,Tk ∈ 2⟨Λr ⟩, we set cLT1, . . . ,Tk M = ∑
t1∈T1 · · ·

∑
tk ∈Tk

cLt1, . . . , tk M.
(iv) We write ξi # cLξ1, . . . , ξk M whenever ξi does not occur in cLξ1, . . . , ξk M.
(v) The Taylor expansion is extended to k-contexts C[ξ1, . . . , ξk ] by setting:

T(ξi ) = {ξi } (for i ∈ {1, . . . ,k}).

Example 3.10. T(λx .ξ ) = {λx .ξ } and T(xξ ) = {x[n.ξ ] | n ≥ 0}, using the notation of Example 3.8.

In the following (see Lemma 3.12), we need to represent a single element t ∈ T (C[M]) by
exhibiting the part of t arising from the context C[ξ ] separated from its parts arising from M .
In other words, we would like to decompose t as t = cLs M for cLξ M ∈ T (C[ξ ]) and s ∈ T (M).
Unfortunately, this is not always possible. E.g., for C[ξ ] = xξ , all resource contexts cLξ M ∈ T (xξ )
have shape x[ξ , . . . , ξ ] for the same ξ so t = x[z1, z[y]] ∈ T (C[zy]) cannot be decomposed in
such a way because ξ can either become z1 or z[y], but not both. For this reason, we first need to
construct a resource context c•Lξ 1, ξ 2 M = x[ξ 1, ξ 2] where the occurrences of ξ are łlinearizedž (i.e.
distinguished by adding different labels 1, 2) and then represent t as c•Lz1, z[y]M = x[z1, z[y]].

Definition 3.11. Consider distinguished variables (ξ ℓi )i, ℓ∈N, where ξ
ℓ
i represents ξi with a label ℓ.

Definition 3.9 extends in the obvious way to resource contexts cL ®ξ1, . . . , ®ξk M with ®ξi = ξ 1i , . . . , ξ
ni
i .

(i) A resource context c ′Lξ 11 , . . . , ξ
n1

1 , . . . , ξ
1
k
. . . , ξ

nk
k

M is a linearization of cLξ1, . . . , ξk M if it is

obtained from cLξ1, . . . , ξk M by replacing the jth occurrence of ξi by the variable ξ
j
i . Since

®ξi

contains a ξ
j
i for each occurrence of ξi in cLξ1, . . . , ξk M, we must have ni ≥ degξi (cLξ1, . . . , ξk M).

(ii) We denote by c•L ®ξ1, . . . , ®ξk M with ®ξi = ξ 1i , . . . , ξ
ni
i , an arbitrary linearization of cLξ1, . . . , ξk M.

Notice that ξ1, . . . , ξk # cLξ1, . . . , ξk M entails c•L®s1, . . . , ®sk M = cLξ1, . . . , ξk M for all s ji ∈ Λ
r .

Intuitively, c•L ®ξ M is a generic element of the sum cL[ξ 1, . . . , ξn]/ξ M where n = degξ (cLξ M) and
[ξ 1, . . . , ξn]/ξ denotes linear substitution as in Definition 3.3, but with possible capture of variables.
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With these definitions in place, we can state the following properties.

Lemma 3.12. Let C[ξ ] be a context andM ∈ Λ.

(i) If t ∈ T (C[M]) there are cLξ M ∈ T (C[ξ ]) and s1, . . . , sk ∈ T (M) such that t = c•Ls1, . . . , sk M.
(ii) If cLξ M ∈ T (C[ξ ]) but ξ # cLξ M then c•Ls1, . . . , sk M ∈ T (C[N ]) for all si ∈ Λ

r and N ∈ Λ.

The Taylor expansion enjoys the properties below, that can be promptly verified by structural
induction onM .

Lemma 3.13 (Substitution). ForM,N ∈ Λ and x ∈ V:

T(M{N /x}) =
⋃

t ∈T(M )

⋃

b ∈Mf (T(N ))

t ⟨b/x⟩

Lemma 3.14. ForM,N ∈ Λ⊥, ifM ≤⊥ N then T(M) ⊆ T (N ).

Remark 3.15. Since t ∈ T (P) follows the structure of the syntax tree of P ∈ A , it must be an r -nf.
E.g., t ∈ T (λx .x⊥x) must have shape λx .x1[x , . . . ,x], in this sense it follows its structure. To have a
redex (λx .x)[y] ∈ T (P) we should have P = (λx .x)y but this is impossible because P is β⊥-normal.

We now describe the classes of linear and affine resource terms that are interesting as they
contain just enough information to easily reconstruct a term in Λ and Λ⊥, respectively.

Definition 3.16.

(i) A resource term t is linearized (resp. affined) if every bag in t has cardinality (at most) 1.
(ii) Every affined resource term t ∈ Λ

r can be associated with a term |t | ∈ Λ⊥ via the injection | · | :

|x | = x , |λx .t | = λx .|t |, |s[t]| = |s | |t |, |s1| = |s | ⊥.

(iii) Conversely, every λ⊥-term M , ⊥ in ⊥-normal form, can be sent into an affined M◦ ∈ Λ
r via

the injection (·)◦ :

x◦ = x , (λx .M)◦ = λx .M◦
, (MN )◦ = M◦[N ◦], (M⊥)◦ = M◦1.

For all M ∈ Λ and linearized t ∈ Λ
r , we have |M◦ | = M and |t |◦ = t , where β-nfs are sent into

r -nfs and vice versa. For all P ∈ A − {⊥} and affined t ∈ Λ
r in r -nf, we have |P◦ | = P and |t |◦ = t .

Lemma 3.17. The maps above define a bijection between:

(i) Λ and the set of linearized terms, where β-nfs are in correspondence with linearized r -nfs.
(ii) A − {⊥} and the set of r -normal affined terms.

Remark 3.18. The Taylor expansion of a λ-term M always contains a (unique) linearized term,
namelyM◦. It also contains affined P◦, for all P ∈ A satisfying ⊥ , P ≤⊥ M .

4 TAYLOR’S COMMUTATION PROPERTY

Now that we have revised the definition of Taylor expansion of a λ-term, we can focus on its more
dynamic aspects. In particular, we will see how to compute easily its r -normal form.

4.1 Normalizing the Taylor Expansion

Since the resource calculus enjoys strong normalization the normal form of every subset of Λr can
be defined pointwise.

Definition 4.1. Given a possibly infinite set X ⊆ Λ
r , define:

NF(X) =
⋃

{nf (t) | t ∈ X}

E.g., NF(Λr ) is the set of all resource terms in r -nf and NF(T (M)) denotes the normal form of T(M).
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Definition 4.2. ForM,N ∈ Λ, we defineM ⊑τ N if and only if NF(T (M)) ⊆ NF(T (M)). Moreover,
we writeM =τ N wheneverM ⊑τ N ⊑τ M holds.

By Proposition 3.6, the normal form of T(M)may possibly be empty but always exists. In general,
it can be difficult to understand which resource terms actually belong to NF(T (M)) for someM ∈ Λ.
As an exercise, the reader can calculate NF(T (Ω)) or NF(T (Y)).

Example 4.3.

(i) T(I), T(∆) and T(λx .x⊥) are already normal.
(ii) NF(T (Ω)) = ∅ and NF(T (Y)) = {λf . f 1, λf . f [f 1], λf . f [f 1, f [f 1]], . . . }.

The next lemma from [Ehrhard and Regnier 2008] will be needed in Section 5.2.

Lemma 4.4. ForM ∈ Λ and s, t ∈ T (M), we have that nf (s) ∩ nf (t) , 0 entails s = t .

We now describe the relationship between the β-reduction of a λ-term and the r -reduction of its
resource approximants.

Lemma 4.5. LetM ∈ Λ, P ∈ A and t ∈ Λ
r .

(i) IfM →β N for some N ∈ Λ and t ∈ T (N ) then there exist t ′ ∈ T (M) and T ∈ 2⟨Λr ⟩ such that
t ′ ↠r t + T.

(ii) If t ∈ T (M) and t →r T then there exists N ∈ Λ such thatM →β N and T↠r T
′ ⊆ T(N ).

As we look at terms, rather than sums, as the protagonists of resource calculus we formulate our
statements for a single term as done in item (ii) of the lemma above. However, all our statements
do generalize to finite sums in 2⟨Λr ⟩.

Corollary 4.6. LetM ∈ Λ and t ∈ T (M). Then there isN ∈ Λ such thatM ↠β N and nf (t) ⊆ T (N ).

Proof (sketch). By induction on the length ℓ of a maximal reduction t ↠r nf (t). If ℓ = 0
then just take N = M . Otherwise, ℓ > 0 and t →r s + S ↠r nf (t), where the latter reduction is
strictly shorter. By Lemma 4.5(ii), there exist M ′ ∈ Λ and S′ ⊆f T(M ′) such that M →β M ′ and
s + S↠r S

′
↠r nf (t), so we conclude by induction hypothesis. □

4.2 Commutation between Taylor and Böhm

Recall that the Taylor expansion T(·) is extended to terms in Λ⊥ by setting T(⊥) = ∅ and can be
extended to sets X ⊆ Λ⊥, by taking T(X) =

⋃
{T (P) | P ∈ X}. This allows to define:

Definition 4.7. The Taylor expansion of BT(M) is given by:

T(BT(M)) = T(A(M))

Notice that FV(T (BT(M))) = FV(BT(M)) ⊆ FV(M).

Lemma 4.8. LetM ∈ Λ. Assume that t ∈ T (M) is in r -normal form, then there exists P ∈ A such
that t ∈ T (P) and P ≤⊥ M .

Proof. By induction on the r -normal structure of t . Assume that t = λ®x .yb1 · · ·bk ∈ T (M), then
M = λ®x .yM1 · · ·Mk with bi ∈ Mf (T (Mi )). Now, every s ∈ bi is in r -normal form and belongs to
T(Mi ) whence by induction hypothesis there exists Ps ∈ A such that Ps ≤⊥ Mi and s ∈ T (Ps ).
Define Pi =

∨
s ∈bi Ps , clearly Pi ≤⊥ Mi whence λ®x .yP1 · · · Pk ≤⊥ M . By definition, for every s ∈ bi ,

we have Ps ≤⊥ Pi , therefore Lemma 3.14 entails s ∈ T (Pi ) so we conclude t ∈ T (λ®x .yP1 · · · Pk ). □

Theorem 4.9 (Commutation Theorem). ForM ∈ Λ, we have

NF(T (M)) = T(BT(M))

So, ifM is β-normalizable then NF(T (M)) = T(nfβ (M)).
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Proof. (⊆) If t ∈ NF(T (M)) then there exists t ′ ∈ T (M) such that t ∈ nf (t ′). By Corollary 4.6,
there exists a λ-term N such thatM ↠β N and t ∈ nf (t ′) ⊆ T (N ). So by Lemma 4.8, there exists
P ∈ A such that t ∈ T (P) and P ≤⊥ N . By definition, P ∈ A(M) so we conclude t ∈ T (BT(M)).
(⊇) Assume t ∈ T (BT(M)), then there exists a reduction M ↠β N such that P ≤⊥ N and

t ∈ T (P). By Remark 3.15 and Lemma 3.14 we get t ∈ NF(Λr ) ∩ T (N ). We conclude because, by an
iterated application of Lemma 4.5(i), we obtain a t ′ ∈ T (M) such that t ∈ nf (t ′) ⊆ NF(T (M)). □

Corollary 4.10. M is solvable if and only if NF(T (M)) , ∅.

Proof. Recall thatM is solvable if and only if BT(M) , ⊥, i.e. whenever there is P ∈ A(M)−{⊥}.
By definition, this holds exactly when there exists P ∈ A(M) such that T(P) , ∅. We conclude
since ∪P ∈A(M )T(P) = T(BT(M)) = NF(T (M)), where the last equality holds by Theorem 4.9. □

Lemma 4.11.

(i) For P ,Q ∈ A such that P , ⊥, P◦ ∈ T (Q) entails P ≤⊥ Q .
(ii) For allM ∈ Λ and P ∈ A − {⊥}, P◦ ∈ NF(T (M)) if and only if P ∈ A(M).
(iii) LetM ∈ Λ. There exists a (unique) linearized t ∈ NF(T (M)) if and only ifM is β-normalizable.

In this case, we have nfβ (M) = |t |.

Proof. (i) By structural induction on P .
(ii) (⇒) P◦ ∈ NF(T (M)) if there is Q ∈ A(M) such that P◦ ∈ T (Q), so we conclude by (i).
(⇐) If P ∈ A(M), then M ↠β M ′ for some M ′ such that P ≤⊥ M ′, thus P◦ ∈ T (M ′) by

Remark 3.18. By Lemma 4.5(i), there is t ∈ T (M) such that P◦ ∈ nf (t) whence P◦ ∈ NF(T (M)).
(iii) If t ∈ NF(T (M)) is linearized then |t | is a β-normal ⊥-free λ-term. By (ii), there is a reduction

M ↠β M ′ such that |t | ≤⊥ M ′ but this entails |t | = M ′. The converse implication is easy. □

Corollary 4.12. The relations ⊑τ and ⊑B coincide.

Proof. (⊆) Assume M ⊑τ N and consider an approximant P ∈ A(M). If P = ⊥ we are done.
Otherwise, by Lemma 4.11(ii), we have P◦ ∈ NF(T (M)) ⊆ NF(T (N )) so we conclude that P ∈ A(N ).
(⊇) Assume that A(M) ⊆ A(N ) holds. By the Commutation Theorem, we have NF(T (M)) =

T(A(M)) ⊆ T (A(N )) = NF(T (N )). □

Thus the congruences =B and =τ coincide. In other words, considering the equalities induced on
λ-terms by the Böhm tree semantics is equivalent to considering those induced by the normal form
of their Taylor expansion. This is the key property that will be used in the following sections.

5 CONTINUITY AND STABILITY

We presented some well-known properties of λ-calculus and resource calculus. In particular the
Commutation Theorem is due to Ehrhard and Regnier [Ehrhard and Regnier 2006a], it is well-
established and has been generalized to several systems e.g. [Kerinec et al. 2018; Vaux 2019] Ð the
most recent generalization is in the non-deterministic setting [Lago and Leventis 2019]. The proof
we exhibited should convince the reader that this commutation is non-trivial, but not so difficult to
demonstrate either (although considering coefficients does add a further layer of complexity).
The rest of the paper is devoted to showing that this theorem łsubsumesž Scott’s (syntactic)

continuity [Barendregt 1984, ğ14.3], Berry’s stability [Berry 1978] and Kahn-Plotkin’s sequen-
tiality [Kahn and Plotkin 1978]. To achieve this goal, we show that many fundamental results in
λ-calculus, usually demonstrated by exploiting these techniques, have simpler proofs that only rely
on the Commutation Theorem and confluence, strong normalization and linearity of Λr .
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5.1 Scott’s Syntactic Continuity

Our work starts from the consideration made in [Kerinec et al. 2018] that the monotonicity of
NF(T (·)) with respect to ⊑τ (hence, the contextuality of =τ ) in the call-by-value setting has an easy
inductive proof. From Corollary 4.12, it follows the contextuality of BT(·) which is traditionally
obtained through syntactic continuity. The authors of [Kerinec et al. 2018] probably did not realize
to what extent this proof-technique is generalizable and applicable. We begin by presenting how
this methodology can be exploited to obtain a simple proof of the analogous statement for the
regular (call-by-name) λ-calculus. We silently use Proposition 3.6, namely the confluence and SN.

Lemma 5.1 (Monotonicity of NF(T (·))). LetM,N ∈ Λ and C[ξ ] be a context. Then

M ⊑τ N =⇒ C[M] ⊑τ C[N ]

Proof. We proceed by structural induction on C[ξ ].
Case C[ξ ] = x . Trivial, as the context is constant.
Case C[ξ ] = ξ . Trivial, as NF(T (M)) ⊆ NF(T (N )).
Case C[ξ ] = λx .C ′[ξ ]. For all t ∈ NF(T (λx .C ′[M])), there is λx .t ′ ∈ T (λx .C ′[M]) such that

λx .t ′ ↠r λx .nf (t
′) ∋ t . By induction hypothesis, we get nf (t ′) ⊆ NF(T (C ′[M])) ⊆ NF(T (C ′[N ]))

whence t ∈ λx .nf (t ′) ⊆ NF(T (λx .C ′[N ])).
CaseC[ξ ] = (C1[ξ ]) (C2[ξ ]). For every t ∈ NF(T ((C1[M]) (C2[M]))) there exist s ∈ T (C1[M]) and

b ∈ Mf (T (C2[M])) such that sb ↠r nf (s) nf (b) ↠r nf (sb) ∋ t . By induction hypothesis, we have

nf (s) ⊆ NF(T (C1[M])) ⊆ NF(T (C1[N ]))

and, by induction hypothesis and monotonicity of the map Mf (·), we derive

nf (b) ⊆ Mf (NF(T (C2[M]))) ⊆ Mf (NF(T (C2[N ]))),

so we conclude that t ∈ NF(T ((C1[N ]) (C2[N ]))). □

Since the relations ⊑τ and ⊑B coincide by Corollary 4.12, and BT(M) = BT(N ) holds exactly
whenM ⊑B N ⊑B M does, we immediately obtain the contextuality of BT(·), namely [Barendregt
1984, Cor. 14.3.20(iii)].

Corollary 5.2. LetM,N be λ-terms and C[ξ ] be a context. Then

BT(M) = BT(N ) =⇒ BT(C[M]) = BT(C[N ])

We conclude that the relation B, as defined in Example 2.14, is actually a λ-theory.
As amore substantial example, we now present a short proof of the Genericity Lemma [Barendregt

1984, Prop. 14.3.24], which constitutes a fundamental result in λ-calculus Ð its informal meaning is
that if a λ-term N reducing to a completely defined output (a β-normal form) contains a subterm
M which is meaningless (undefined), thenM does not have any influence on the computation of
this value, and therefore it may be replaced by any λ-term. In other words, the Genericity Lemma
motivates the equivalence between łmeaninglessž and unsolvable λ-terms, which in its turn justifies
the definition of the λ-theory H (Example 2.14).

Theorem 5.3 (Genericity Lemma). LetM be an unsolvable λ-term and C[ξ ] be a context. If C[M]
has a β-normal form then C[M] =β C[N ] for all N ∈ Λ.

Proof. By Lemma 4.11(iii), there is a linearized t ∈ NF(T (C[M])) such that |t | = nfβ (C[M]). By
Lemma 3.12(i), there exist cLξ M ∈ T (C[ξ ]) and s1, . . . , sk ∈ T (M) such that t ∈ nf (c•Ls1, . . . , sk M).
By Corollary 4.10 we derive nf (si ) = 0 and, by confluence, any reduction from c•Ls1, . . . , sk M to its
normal form nf (c•Ls1, . . . , sk M) = t + T factorizes as

c•Ls1, . . . , sk M ↠r c
•L0, . . . , 0M ↠r t + T
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Now, if a ξ actually occurs in cLξ M then we get c•L0, . . . , 0M = 0, but since the reduction 0 ↠r t +T

is impossible, we must have ξ # cLξ M. By Lemma 3.12(ii), we get c•Ls1, . . . , sk M ∈ T (C[N ]) which
implies t ∈ NF(T (C[N ])) and since t is linearized we obtain nfβ (C[N ]) = |t | by Lemma 4.11(iii). □

Our proof is certainly simpler than the original one in [Barendregt 1984], based on a topological
argument, and we believe it is even simpler than those presented in [Kuper 1995; Takahashi 1994]
(based on purely syntactic considerations), but we leave it to the reader to judge. Notice that we
are exploiting a crucial property of the resource calculus, namely that a resource term cannot erase
any subterm during the reduction. Indeed, in order to satisfy the Genericity Lemma, the context
C[ξ ] needs to discard all occurrences of its hole ξ during its reduction to a β-normal form. This is
impossible for its resource approximants cLξ M ∈ T (C[ξ ]), whence nf (cLξ M) , 0 is only possible if
its hole ξ did not occur in cLξ M in the first place, namely whenever ξ # cLξ M.
We now give a łsoftž proof of Corollary 3 in [Takahashi 1994]. Keeping Theorem 2.5 in mind,

such a statement can be seen as a generalization of the Genericity Lemma from β-normalizable to
head-normalizable λ-terms.

Proposition 5.4. Let M ∈ Λ be unsolvable and C[ξ ] a context. If C[M] is solvable then C[N ] is
solvable for all N ∈ Λ.

Proof. By Corollary 4.10 and Lemma 5.1, there exists t ∈ NF(T (C[M])) ⊆ NF(T (C[N ])), whence
NF(T (C[N ])) , ∅ from which it follows that C[N ] is solvable. □

We conclude this subsection by demonstrating Scott’s syntactic continuity itself, as formulated
in [Barendregt 1984, Prop. 14.3.19]. The intuitive meaning of this statement is that, when looking
at a context as a map C[ξ ] : M

B
→ M

B
, a łfinite portionž of its output can only be generated by

a łfinite portionž of its input. In this setting, a finite portion of the input (resp. output) of C[M]
corresponds to an approximant Q ∈ A(M) (resp. P ∈ A(C[M])). In order to apply our technique
based on Taylor expansions, we are going to associate a resource term t ∈ T (BT(M)) with an
approximant Pt ∈ A(M) by mapping the empty bag 1 to ⊥ and taking the supremum w.r.t. ≤⊥.
Recall from Definition 2.10(vi) that ∨ denotes the supremum between approximants in A .

Definition 5.5. ForM =β λ®x .yM1 · · ·Mk and t ∈ T (BT(M)), we define by structural induction on t
an approximant Pt ∈ A(M). Since t ∈ T (BT(M)), it must have shape t = λ®x .y b1 · · ·bk for some
bi ∈ Mf (T (BT(Mi ))) with 1 ≤ i ≤ k , whence we define:

Pt = λ®x .y (
∨

s1∈b1 Ps1 ) · · · (
∨

sk ∈bk
Psk )

where Ps ∈ A(Mi ) for s ∈ bi and we assume that the łemptyž supremum is equal to ⊥, i.e.
∨

s ∈1 s = ⊥.

The underlying fact that we are exploiting in a crucial way in this definition is that a resource
term t ∈ T (BT(M)) is łinternallyž coherent (i.e. coherent with itself) in the sense that all terms
belonging to the same bag in t have a similar structure. For instance, the resource term x[y, z] is
not internally coherent because its bag contains terms y, z that are not coherent with each other.
However terms that are not internally coherent cannot belong to the Taylor expansion of the same
BT(M). This can be formally demonstrated, as done in [Ehrhard and Regnier 2008], by introducing
a coherence relation s ¨ t capturing the fact that s, t are coherent both internally and with each
other, and then proving that T(BT(M)) is a clique w.r.t. ¨.
This coherence assumption guarantees in Definition 5.5 that the resource terms belonging to

the same bag bi are associated with approximants that are compatible w.r.t. ≤⊥, therefore their
supremum is always well defined. In our formulation of this definition, this is not formally needed
because the induction hypothesis already guarantees that, for every s ∈ bi , Ps ∈ A(Mi ) for the
same λ-termMi , and this set is an ideal (by Lemma 2.11(ii)).
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Lemma 5.6. For allM solvable and t ∈ T (BT(M)) we have t ∈ T (Pt ).

Proof. We proceed by structural induction on t .
By Theorem 2.5,M =β λ®x .yM1 · · ·Mk whence t = λ®x .y b1 · · ·bk for some bi ∈ Mf (T (BT(Mi )))

with 1 ≤ i ≤ k . Now, if bi is the empty bag then there is nothing to check. Otherwise, every s ∈ bi is
structurally smaller than t , so by induction hypothesis it belongs to T(Ps ). By Lemma 3.14, for every
s ∈ bi we have T(Ps ) ⊆ T (

∨
si ∈bi Psi ) so we conclude t ∈ T (λ®x .y (

∨
s1∈b1 Ps1 ) · · · (

∨
sk ∈bk

Psk )). □

Example 5.7.

(i) For all affined t ∈ T (BT(M)) we have Pt = |t |.
(ii) P(λx .x [x,x ]) = ∆ and P(λx .x1) = λx .x⊥.
(iii) P(λf .f [f 1,f [f 1]]) = λf . f (f (f ⊥)).

Everything is now in place to prove Scott’s continuity. The scrupulous reader will notice that we
apply to terms inΛ⊥ some definitions and results originally stated forΛ, e.g.,A(−), ⊑B , Lemma 4.11.
This should not be particularly troubling because the constant⊥ is observationally indistinguishable
from the λ-term Ω, i.e., T(⊥) = NF(T (Ω)) = ∅.

Lemma 5.8 (Scott’s continuity, [Barendregt 1984, Prop. 14.3.19]). LetM ∈ Λ and C[ξ ] be a context.
For all approximants P ∈ A(C[M]), there exists Q ∈ A(M) such that P ⊑B C[Q].

Proof. Let P ∈ A(C[M]). Since P is β⊥-normal, we have A(P) = {P ′ ∈ A | P ′ ≤⊥ P}, whence
it is a finite setA(P) = {P1, . . . , Pk }∪{⊥} where k ≥ 0 and each Pi , ⊥. As Pi ∈ A(P) ⊆ A(C[M]),
by Lemma 4.11(ii), we have P◦

i ∈ NF(T (C[M])) so there exists ti ∈ T (C[M]) such that P◦
i ∈ nf (ti ).

By Lemma 3.12(i), there are ci Lξ M ∈ T (C[ξ ]) and s1i , . . . , s
ni
i ∈ T (M) such that ti = c

•
i L®si M, so any

reduction c•i L®si M ↠r nf (c
•
i L®si M) factorizes as follows

c•i L®si M ↠r c
•
i Lnf (s1i ), . . . , nf (snii )M ↠r nf (c

•
i L®si M) ∋ P◦

i

where 0 , nf (smi ) ⊆ NF(T (M)) = T(BT(M)) for 1 ≤ m ≤ ni . As there are finitely many such smi
and each nf (smi ) is a finite sum, the following set

Q =

k⋃

i=1

ni⋃

m=1

nf (smi )

is finite, so we can take Q =
∨
{Pu | u ∈ Q} ∈ A(M). Now, we know that P◦

i ∈ nf (cLu1i , . . . ,u
ni
i M)

for some umi ∈ Q (1 ≤ m ≤ ni ) and, since by Lemmas 5.6 and 3.14 every umi ∈ T (Pum
i
) ⊆ T (Q), we

derive that P◦
i ∈ NF(T (C[Q])). By Lemma 4.11(ii), we conclude that A(P) ⊆ A(C[Q]). □

5.2 Berry’s Stability

The theory of stability was developed by Berry, while studying sequential computations and full
abstraction for PCF [Berry 1978]. We exhibit a new proof of the Stability Theorem as formulated
in [Barendregt 1984, Thm. 14.4.10]. The original demonstration exploits a causality relation capturing
the fact that suitable subtrees of BT(C[M1, . . . ,Mn]) łare caused byž some argumentMi .

Definition 5.9. Given a non-empty subset X ⊆ Λ, define its B-infimum as
l

X =
⋂

M ∈X A(M)

We say that X is bounded, in symbols X↑, if there exists an N ∈ Λ satisfying, for allM ∈ X,M ⊑B N .

Example 5.10. (i) For allM ∈ Λ, we have
d
{M} = A(M).

(ii)
d
{I,Ω} = {⊥} and

d
{λx .xΩ,∆} = {⊥, λx .x⊥}.

(iii)
d
{λf . f n(Ω) | n ≥ 2} = {⊥, λf . f ⊥, λf . f (f ⊥)}.
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A subsetA ⊆ A is equal toA(M) for someM ∈ Λ if and only if it is directed w.r.t. ≤⊥, it contains
a finite number of free variables and is r.e. (after coding), by [Barendregt 1984, Thm. 10.1.23]. The last
condition follows since λ-calculus is not only a formal system, but a Turing-complete programming
language as well. Now, for infinite bounded subsets X ⊆ Λ, it is possible that

d
X is not r.e., so it

does not correspond to the set of approximants of anyM . The B-infimum
d
X is however always

directed, whence its supremum gives a so-called łBöhm-likež tree.

Theorem 5.11 (Stability). Let C[ξ1, . . . , ξn] be a n-context and I = {1, . . . ,n}. For all i ∈ I, take
non-empty subsets Xi ⊆ Λ andMi ∈ Λ. Assume, for all i ∈ I, that Xi↑ and A(Mi ) =

d
Xi then

A(C[M1, . . . ,Mn]) =
l

{C[N1, . . . ,Nn] | ∀i ∈ I.Ni ∈ Xi }

Proof. By Corollary 4.12, Xi↑ means that there exists Li ∈ Λ such that
⋃

Ni ∈Xi NF(T (Ni )) ⊆
NF(T (Li )), we can assume NF(T (Mi )) =

⋂
Ni ∈Xi NF(T (Ni )) and it is enough to show:

NF(T (C[M1, . . . ,Mn])) =
⋂

{NF(T (C[N1, . . . ,Nn])) | ∀i ∈ I.Ni ∈ Xi }

(⊆) Clearly, for all i ∈ I and Ni ∈ Xi , we have NF(T (Mi )) ⊆ NF(T (Ni )), therefore we conclude
NF(T (C[M1, . . . ,Mn])) ⊆ NF(T (C[N1, . . . ,Nn])) by Lemma 5.1.

(⊇) Let t ∈
⋂

®N ∈ ®X
NF(T (C[N1, . . . ,Nn])) where ®N ∈ ®X stands for N1 ∈ X1, . . . ,Nn ∈ Xn . For

every ®N ∈ ®X, by Lemma 3.12(i) there exist c ®N
Lξ1, . . . , ξn M ∈ T (C[ξ1, . . . , ξn]) and, for every i ,

®s i
®N
= si1

®N
, . . . , s

iki
®N

∈ T (Ni ) such that (using confluence to factorize the reduction):

c•
®N
L®s 1

®N
, . . . , ®s n

®N
M ↠r c•

®N
Lnf (s11

®N
), . . . , nf (s1k1

®N
), . . . , nf (sn1

®N
), . . . , nf (snkn

®N
)M

↠r nf (c•
®N
L®s 1

®N
, . . . , ®s n

®N
M) ∋ t

So, for all i ∈ I and j (1 ≤ j ≤ ki ), there exist v
i j

®N
∈ nf (s

i j

®N
) ⊆ NF(T (Ni )) ⊆ NF(T (Li )) such that

nf (c•
®N
L ®v 1

®N
, . . . , ®v n

®N
M) = t + T ®N

for some T ®N
. From the last inclusion, we obtain a resource term

u
i j

®N
∈ T (Li ) such that nf (u

i j

®N
) = v

i j

®N
+ T

i j

®N
for some T

i j

®N
. By composing the reductions:

c•
®N
L ®v 1

®N
, . . . , ®v n

®N
M ↠r t + T ®N

and u
i j

®N
↠r v

i j

®N
+ T

i j

®N
(∀i ∈ I, 1 ≤ j ≤ ki )

we obtain t ∈ nf (c•
®N
L ®u 1

®N
, . . . , ®un

®N
M). This holds for all ®N ∈ ®X, thus t ∈

⋂
®N ∈ ®X

nf (c ®N
L ®u 1

®N
, . . . , ®un

®N
M).

Since c•
®N
L ®u 1

®N
, . . . , ®un

®N
M ∈ T (C[L1, . . . ,Ln]) and the λ-terms Li ’s are independent from N1, . . . ,Nn

we can apply Lemma 4.4, so we obtain that the set {c•
®N
L ®u 1

®N
, . . . , ®un

®N
M | ®N ∈ ®X} is actually a singleton.

Moreover, its only element is of the form c•L ®u 1, . . . , ®un M for some cLξ1, . . . , ξn M ∈ T (C[ξ1, . . . , ξn])

and ui j ∈ T (Li ). Recalling that v
i j

®N
∈ nf (ui j ) ⊆ NF(T (Li )), we obtain by Corollary 4.6 that there

exists L′i such that Li ↠β L′i and v
i j

®N
∈ T (L′i ) for all 1 ≤ j ≤ ki . That is, for every ®N ∈ ®X, we derive:

c•L ®v 1
®N
, . . . , ®vn

®N
M ∈ T (C[L′1, . . . ,L

′
n]). (1)

Now, we already know that t ∈ nf (c•
®N
L ®v 1

®N
, . . . , ®vn

®N
M), from which it follows:

t ∈
⋂

®N ∈ ®X
nf (c•L ®v 1

®N
, . . . , ®vn

®N
M). (2)

By (1), (2) and the fact that the L′i ’s are independent from N1, . . . ,Nn we can apply Lemma 4.4, thus

we obtain that {c•L ®v 1
®N
, . . . , ®vn

®N
M | ®N ∈ ®X} = {c•L ®v 1, . . . , ®vn M} with t ∈ nf (c•L ®v 1, . . . , ®vn M). Since

vi j ∈ NF(T (Ni )) for all i ∈ I, this means vi1, . . . ,viki ∈
⋂

i ∈I NF(T (Ni )) = NF(T (Mi )).
We conclude that t ∈ nf (c•L ®v1, . . . , ®vn M) ⊆ NF(T (C[M1, . . . ,Mn])). □
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6 THE PERPENDICULAR LINES LEMMA

We present the Perpendicular Lines Lemma (PLL, for short), namely Theorem 14.4.12 in [Barendregt
1984], and show that it can be proved in a particularly elegant way, by applying the techniques
previously introduced. In our personal opinion this constitutes the most outstanding example in
the present paper, both for the simplicity of the proof and for the importance of the result. For
example, as a consequence, one immediately derives the fact that the łparallel orž is not definable in
λ-calculus. Before going further, we discuss the intuitive meaning of the PLL, its validity in different
term models (Definition 2.17), and the techniques employed in the proofs from the literature.
Let R be the set of reals. In the Euclidean plane R2, the lines (1,y)y∈R := {(1,y) | y ∈ R} and

(x , 2)x ∈R are perpendicular and intersect in the point (1, 2). Analogously, in the space R3, the lines
(x , 1, 2)x ∈R, (3,y, 4)y∈R and (5, 6, z)z∈R are perpendicular even if they do not intersect. Translated
in terms of λ-calculus, one could say that {(X ,K) | X ∈ Λ} and {(F,Y ) | Y ∈ Λ} are łperpendicularž,
and similarly in higher dimensions. Intuitively, PLL states that if an n-contextC[ξ1, . . . , ξn], seen as
a function from Λ

n to Λ, is constant on n perpendicular lines, then it must be constant everywhere.
We now exhibit and discuss the statement, the proof will follow.

Theorem 6.1 (Perpendicular Lines Lemma). Let n ≥ 0, I = {1, . . . ,n},C[ξ1, . . . , ξn] be a n-context,
(Mi j )(i, j)∈I×I and (Ni )i ∈I be sequences of λ-terms. Assume that

∀Z ∈ Λ





C[Z , M12, . . . . . . ,M1n ] =B N1

C[M21,Z , . . .. . . . . . ,M2n] =B N2

. . .
...

...

C[Mn1, . . . ,Mn(n−1),Z ] =B Nn

then ∀Z1, . . . ,Zn ∈ Λ, C[Z1, . . . ,Zn] =B N1 =B · · · =B Nn .

As in the original lemma we consider Böhm-tree equality, but the statement can be rewritten
using =T for any λ-theory T and we can meaningfully wonder whether PLL is valid in the term
modelM

T
, writtenM

T
|= PLL. A similar question can be raised for the closed term modelMo

T
(intuitively, replace ł∀Z ∈ Λž by ł∀Z ∈ Λ

ož in the statement). The proof given in [Barendregt 1984]
exploits Kahn and Plotkin’s sequentiality theory (developed in [Kahn and Plotkin 1978] in the
context of concrete domains), which is stronger than Berry’s stability, and shows that M

B
|= PLL.

As we are considering =B , a context C[ξ ] can display a constant behaviour for several reasons:

(i) C[ξ ] does not contain the hole ξ at all (the trivial case);
(ii) ξ is łerasedž during its reduction as in C[ξ ] = (λxy.y)ξ ;
(iii) ξ is łhiddenž behind an unsolvable as in C[ξ ] = Ω ξ ;
(iv) ξ is pushed into infinity like the variable z in BT(Pz) from Example 2.8, namely C[ξ ] = Pξ .

The fact that M
λ

|= PLL was only suggested in [Barendregt 1984], and proved later on by

Endrullis and de Vrijer [Endrullis and de Vrijer 2008] that applied van Daalen’s Reduction under
Substitution property [van Daalen 1980], which is a strengthening of the famous łBarendregt
Lemmaž. As we are now considering =β , a constant context C[ξ ] can only display two possible
behaviours, namely (i) or (ii) in the list above. In particular,C[ξ ] cannot push its hole ξ into infinity.
Moreover, since we are working in the open term model, the hypotheses of PLL must hold when
taking Z = x and Z = y for x , y. This is a strong assumption because x and y are completely
defined different values thus enforcing a łmaximalž distinction among the terms. These are the
main ingredients used in [Endrullis and de Vrijer 2008] to deriveM

λ
|= PLL and they are crucial Ð

indeed, as shown in [Statman and Barendregt 1999], the property fails in the closed term model
Mo

λ
̸ |= PLL. The last result relies on the existence of so-called Plotkin terms [Plotkin 1974], namely

β-distinct termsM,N ∈ Λ
o satisfyingML =β NL for all L ∈ Λ

o .
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We now show our proof of Theorem 6.1, where the use of Taylor expansion guarantees properties
stronger than those described for λ, despite the fact that we consider equality in B. Indeed, while a
constant context C[ξ ] may exhibit all the aforementioned behaviours (i)-(iv), a resource context
cLξ M belonging to its Taylor expansion T(C[ξ ]) must be constant for trivial reasons:

(i) either because cLξ M ↠r 0,
(ii) or because its hole ξ does not occur in cLξ M, i.e. ξ # cLξ M.
In fact, since the resource calculus is linear and SN, cLξ M cannot erase any occurrence of ξ nor
push ξ into infinity. These are the intuitions behind the claim formulated below.

Proof of Theorem 6.1. Assume without loss of generality that n = 3 (the same assumption is
considered in [Barendregt 1984, Proof of Thm. 14.4.12]). By Corollary 4.12, the system of equations
becomes:

∀Z ∈ Λ





C[Z ,M12,M13] =τ N1

C[M21,Z ,M23] =τ N2

C[M31,M32,Z ] =τ N3

(3)

We show that under these hypotheses the following holds.

Claim. For all cLξ1, ξ2, ξ3 M ∈ T (C[ξ1, ξ2, ξ3]), if nf (cLξ1, ξ2, ξ3 M) , 0 then ξ1, ξ2, ξ3 # cLξ1, ξ2, ξ3 M.

We proceed by induction on the size of cLξ1, ξ2, ξ3 M. If t ∈ nf (cLξ1, ξ2, ξ3 M) then t has shape t =
λ®x .χb1 · · ·bk for some χ ∈ V∪{ξ1, ξ2, ξ3}. By Corollary 4.6, there exists a reductionC[ξ1, ξ2, ξ3] ↠β

C ′[ξ1, ξ2, ξ3] such that nf (cLξ1, ξ2, ξ3 M) ⊆ T (C ′[ξ1, ξ2, ξ3]), whence

C ′[ξ1, ξ2, ξ3] = λ®x .χC1[ξ1, ξ2, ξ3] · · ·Ck [ξ1, ξ2, ξ3]

with every bj ∈ Mf (T (Cj [ξ1, ξ2, ξ3])). We split into subcases, depending on the shape of χ .

• χ = ξi for some i ≤ 3, say, i = 2. In this case we have λ®x .ξ21 · · · 1 ∈ T (C ′[ξ1, ξ2, ξ3])
therefore, by Lemma 4.5(i) there exists c0Lξ1, ξ2, ξ3 M ∈ T (C[ξ1, ξ2, ξ3]) such that λ®x .ξ21 · · · 1 ∈
nf (c0Lξ1, ξ2, ξ3 M), whence ξ1, ξ3 # c0Lξ1, ξ2, ξ3 M since no hole can be erased along reductions.
By Lemma 3.12(ii) and instantiating the 2nd equation of the system with Z = z < FV(N2) we
have, for all ®s1, ®s3 ∈ Λ

r , λ®x .z1 · · · 1 ∈ nf (c•0L®s1, ®z, ®s3 M) ⊆ NF(T (C[M21, z,M23])) ⊆ NF(T (N2)).
Thus we obtain z ∈ FV(NF(T (N2))) = FV(T (BT(N2))) = FV(BT(N2)) ⊆ FV(N2), from which
we derive a contradiction.

• χ = y. For all i ≤ 3, by applying the i-th equation, we derive that Ni ↠h λ®x .yNi1 · · ·Nik

with Ni j =τ Cj [Mi1, . . . ,Mi(i−1),Z ,Mi(i+1), . . . ,Mi3] for all Z ∈ Λ and j = 1, . . . ,k . In other
words, for every such j we found a context Cj [ξ1, ξ2, ξ3] and λ-terms N1j ,N2j ,N3j satisfying:

∀Z ∈ Λ





Cj [Z ,M12,M13] =τ N1j

Cj [M21,Z ,M23] =τ N2j

Cj [M31,M32,Z ] =τ N3j

Since every c jLξ1, ξ2, ξ3 M ∈ bj is normal nf (c jLξ1, ξ2, ξ3 M) , 0. As it belongs to T(Cj [ξ1, ξ2, ξ3])
and has size strictly smaller than cLξ1, ξ2, ξ3 M, by induction hypothesis ξ1, ξ2, ξ3 # c jLξ1, ξ2, ξ3 M,
from which it follows ξ1, ξ2, ξ3 # λ®x .yb1 · · ·bk and, ultimately, ξ1, ξ2, ξ3 # cLξ1, ξ2, ξ3 M.

This completes the proof of the claim, we now prove the main statement.
Consider fixed Z1,Z2,Z3 ∈ Λ, we prove NF(T (C[Z1,Z2,Z3])) = NF(T (Ni )) for all i (1 ≤ i ≤ 3)

by showing the two inclusions.

(⊆) Let t ∈ NF(T (C[Z1,Z2,Z3])). By definition, there is t ′ ∈ T (C[Z1,Z2,Z3]) such that t ∈ nf (t ′).
By Lemma 3.12(i), t ′ = c•L®s1, ®s2, ®s3 M for some cLξ1, ξ2, ξ3 M ∈ T (C[ξ1, ξ2, ξ3]) and ®si ∈ T (Zi ).
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Since c•L®s1, ®s2, ®s3 M , 0 entails cLξ1, ξ2, ξ3 M , 0, the claim ensures that none of the holes ξi
may actually occur in cLξ1, ξ2, ξ3 M. Thus, by applying Lemma 3.12(ii), we derive

t ′ = c•L®s1, ®s2, ®s3 M ∈ T (C[Mi1, . . . ,Mi(i−1),Z ,Mi(i+1), . . . ,Mi3])

From the i-th equation, we get NF(T (C[Mi1, . . . ,Mi(i−1),Z ,Mi(i+1), . . . ,Mi3])) ⊆ NF(T (Ni )),
so we conclude t ∈ NF(T (Ni )).

(⊇) For the converse we consider the case i = 1, the others being analogous. If t ∈ NF(T (N1)) ⊆
NF(T (C[Z1,M12,M13])) then there are cLξ1, ξ2, ξ3 M ∈ T (C[ξ1, ξ2, ξ3]), ®s ∈ T (Z1), ®u ∈ T (M12)
and ®v ∈ T (M13) such that t ∈ nf (c•L®s, ®u, ®v M) which entails nf (cLξ1, ξ2, ξ3 M) , 0. Now,
the claim ensures that ξ1, ξ2, ξ3 # cLξ1, ξ2, ξ3 M so, by Lemma 3.12(ii), we get c•L®s, ®u, ®v M ∈
T (C[Z1,Z2,Z3]) from which it follows t ∈ NF(T (C[Z1,Z2,Z3])).

As =τ and =B coincide by Corollary 4.12, we conclude that C[Z1,Z2,Z3] =B Ni for all i . □

As promised, the undefinability of the łparallel orž, whose proof is taken from [Barendregt 1984,
pag. 380], follows immediately.

Corollary 6.2. The łparallel orž is not λ-definable: there is no λ-term F such that, for allM,N ∈ Λ:

FMN =β

{
I ifM or N are solvable,

U for some unsolvableU ∈ Λ, otherwise.

Proof. Otherwise we would have, for all Z ∈ Λ, F IZ =B FZ I =B I, while F ΩΩ =B Ω, thus
contradicting PLL. □

The Proof of Theorem 6.1 can be easily modified to encompass the closed statement as well.

Theorem 6.3. Mo
B
|= PLL

Proof. The reader can check that the only point wherewe exploited open terms, is the case χ = ξ2
in the proof of the claim, where we takeZ = z < FV(N2). It is therefore enough to rewrite that part as
follows: łBy instantiating Z in the 2nd equation of (3) respectively with Z1 = λz1 . . . zk .K and Z2 =

λz1 . . . zk .F we would get C[M21,Z1,M23] ↠β λ®x .Z1(C1[M21,Z1,M23]) · · · (Ck [M21,Z1,M23]) ↠β

λ®x .K =B N2 and C[M21,Z2,M23] ↠β λ®x .F =B N2, which is impossible since λ®x .K ,B λ®x .F.ž
All other cases remain unchanged. □

To the best of our knowledge, the result above is original.

7 COMPARISON WITH LABELLED λ-CALCULUS

We have seen that approximating the behaviour of a λ-term by calculating its Taylor expansion al-
lows to abandon proof-techniques based on coinduction and reducibility candidates in favour of the
inductive principle. We do not claim that this is the first successful attempt: already in [Wadsworth
1976], Wadsworth defined a labelled λ-calculus to calculate an approximant P ∈ A(M) in an effective
way. The idea is to annotate every subterm ofM with a certain amount of energy, represented by a
natural number n, which is then decremented along the reduction:

(λx .M)n+1N →βℓ (M{N n/x})n

(λx .M)0N →β⊥ (M{⊥/x})0

When two labels n,m are in each other proximity, they are unified by taking the minimum as in
(Mn)m →ℓ M

min{m,n } . The labelled λ-calculusΛℓ so obtained clearly enjoys strongly normalization,
and can be proved to be confluent as well. One retrieves an approximant P ∈ A(M) starting
from a fully annotated version Mℓ of M by first computing nfβℓβ⊥⊥ℓ(M

ℓ) and then removing
the labels. By exploiting the properties above, it is possible to give nice proofs of Church-Rosser
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and standardization for λ-calculus [Barendregt 1984, Ch. 14]. From a semantic perspective, the
labelled λ-calculus can be interpreted in well-stratified reflexive objects D living in cpo-enriched
categories [Manzonetto 2009]. It was first used by Hyland [Hyland 1975] to prove that Scott’s D∞

and Plotkin’s Pω induce a λ-theory including B.
Comparing the labelled λ-calculus and the resource calculus we can find some common principles:

in both cases the idea is to harness infinite reductions by bounding the availability of subprograms.
However, this idea is applied in different (somewhat dual) ways: inΛℓ the bound is on the contraction
of redexes, so it is the λ-abstraction that exhibits a restricted behaviour, while in Λr the restriction is
on the amount of resources a program has available. Another difference is that the labels of Λℓ give
an upper bound on the energy that can be consumed by a λ-termM , while a resource term t ∈ T (M)
that does not reduce to 0 must contain the exact number of resources needed by M in order to
compute its outcome. Moreover, while both Λ

ℓ and Λr are confluent and strongly normalizing, only
the latter enjoys linearity that prevents a resource term from erasing or duplicating its subterms
during its execution Ð a property that is crucial in our proof of PLL.
In conclusion, we believe that the labelled λ-calculus is a valid instrument, but rather ad hoc,

since it is driven by purely syntactic considerations. The resource calculus is more natural because it
arises from semantic considerations, namely Ehrhard’s observation that in Köthe spaces a derivative
operator is actually at hand [Ehrhard 2002]. Similarly, the Taylor expansion arises from the analysis
of Girard’s translation (·)• of λ-calculus into Linear Logic proof-nets sending (MN )• toM•(N •)!.
In fact, the advantage of the resource calculus is that it has a nowadays well-understood logical
background having its roots in Differential Linear Logic [Ehrhard and Regnier 2006b] and this
is the reason why it has been generalized so easily to non-deterministic, probabilistic, algebraic
call-by-name and call-by-value calculi. Also from the semantic perspective, Λr can be naturally
interpreted in every (linear) reflexive object living in a (Cartesian closed) differential category [Blute
et al. 2009], and the Taylor expansion can be used to obtain combinatorial proofs of (denotational)
Approximation Theorems [Manzonetto and Ruoppolo 2014].

8 CONCLUSIONS

We have shown that fundamental theorems in λ-calculus whose classic demonstrations require
advanced topological or coinductive techniques can be endowed with simpler proofs based on
Ehrhard and Regnier’s Commutation Theorem between Böhm trees and Taylor Expansions norma-
lization. We believe that such a technique is rather versatile and analogous results could be obtained
in other paradigms (e.g. call-by-value and call-by-need) as well as in the settings of algebraic,
non-deterministic, probabilistic and quantum λ-calculi. Besides exploring the consequences of
the Commutation Theorem for these languages, the real breakthrough would be the design of a
unifying framework allowing to transfer both syntactic and semantic properties from a source
language to many different target languages. We believe that an excellent starting point to achieve
this goal is represented by Ehrhard and Guerrieri’s bang calculus [Ehrhard and Guerrieri 2016], a
λ-calculus with explicit promotion that has arisen from a deep analysis of differential linear logic.
From an operational point of view, both the call-by-name and the call-by-value λ-calculi can be
faithfully interpreted in the bang calculus via translation Ð indeed, it turns out that the latter
can be seen as an untyped version of Levy’s call-by-push value calculus [Levy 2006]. As shown
in [Guerrieri and Manzonetto 2018], these translations are ‘faithful’ in a technical sense Ð one
reduction step in the source language corresponds to exactly one step in the target and viceversa.
(As noticed by Faggian, this entails that Standardization Theorems for both paradigms can be
transferred from the analogous result enjoyed by the bang calculus.) Of course, in order to become
a candidate general enough to embed all languages mentioned above, the bang calculus should be
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endowed with coefficients from a semiring as done in [Laird et al. 2013] and non-determinism in
the spirit of [Goubault-Larrecq 2019].
From the point of view of denotational semantics, the most advanced attempt to provide a

unifying framework encompassing algebraic, non-deterministic, probabilistic and quantum calculi
is given in [Tsukada et al. 2018], where the authors develop a profunctorial semantics generalizing
the relational model of Linear Logic in the call-by-name setting. As noticed in [Ehrhard and
Guerrieri 2016], every categorical model of Linear Logic well-suited to interpret the bang calculus
is also suitable to interpret both paradigms Ð it would be therefore interesting to develop a
profunctorial semantics of the bang calculus and provide a parametric Adequacy Theorem that
might be instantiated to all aforementioned languages and paradigms.
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