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Why Are Proofs Relevant in Proof-Relevant Models?∗
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Relational models of 𝜆-calculus can be presented as type systems, the relational interpretation of a 𝜆-term

being given by the set of its typings. Within a distributors-induced bicategorical semantics generalizing the

relational one, we identify the class of ‘categorified’ graph models and show that they can be presented as type

systems as well. We prove that all the models living in this class satisfy an Approximation Theorem stating

that the interpretation of a program corresponds to the filtered colimit of the denotations of its approximants.

As in the relational case, the quantitative nature of our models allows to prove this property via a simple

induction, rather than using impredicative techniques. Unlike relational models, our 2-dimensional graph

models are also proof-relevant in the sense that the interpretation of a 𝜆-term does not contain only its typings,

but the whole type derivations. The additional information carried by a type derivation permits to reconstruct

an approximant having the same type in the same environment. From this, we obtain the characterization of

the theory induced by the categorified graph models as a simple corollary of the Approximation Theorem:

two 𝜆-terms have isomorphic interpretations exactly when their Böhm trees coincide.
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1 INTRODUCTION
The equational theories of 𝜆-calculus are called 𝜆-theories, and constitute the main object of

study when one is interested in the equivalence between terms, rather than focusing on their

computational process [Barendregt 1984]. Among the uncountably many possible 𝜆-theories [Lusin

and Salibra 2004], some are particularly relevant for computer scientists as they equate all programs

displaying the same operational/observational behavior. Examples are the theoryH , collapsing

together all unsolvables, the theory B, equating two 𝜆-terms exactly when they have the same

Böhm tree, and the extensional theoryH ∗ equating all observationally indistinguishable 𝜆-terms.

Lambda theories may also arise from denotational models D by taking the kernel Th(D) of their
interpretation function: classical results establish that Plotkin’s model P𝜔 has theory Th(P𝜔 ) =
B and Scott’s D∞ has theory Th(D∞) = H ∗ [Hyland 1976; Wadsworth 1976]. In both cases,

i.e. for D ∈ {P𝜔 ,D∞}, the inclusion B ⊆ Th(D) follows from the fact that D satisfies an

Approximation Theorem stating that the interpretation of a 𝜆-term in the model D is given by the

∗
Our answer: because the proof-derivations belonging to the interpretations allow to characterize the theory of the model.

Authors’ addresses: Axel Kerinec, Université Sorbonne Paris Nord, LIPN, CNRS UMR 7030, France, kerinec@lipn.univ-

paris13.fr; Giulio Manzonetto, Université Sorbonne Paris Nord, LIPN, CNRS UMR 7030, France, manzonetto@univ-paris13.fr;

Federico Olimpieri, School of Mathematics, University of Leeds, United Kingdom, f.olimpieri@leeds.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART8

https://doi.org/10.1145/3571201

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 8. Publication date: January 2023.

https://doi.org/10.1145/3571201
https://doi.org/10.1145/3571201


8:2 Axel Kerinec, Giulio Manzonetto, and Federico Olimpieri

supremum of the denotations of its finite approximants—a result usually achieved via impredicative

techniques [Barendregt et al. 2013, §17.3] generalizing Tait’s computability predicates [Tait 1966].

As the continuous semantics and its variations are nowadays well understood [Berline 2000], in

the last decades researchers mostly considered models living in quantitative semantics of linear
logic [Girard 1987]—the simplest being the relational semantics originated in [Girard 1988] and first

studied in [Bucciarelli et al. 2007; de Carvalho 2007; Hyland et al. 2006]. Since the pioneering work

of de Carvalho [2007] it is clear that relational models can be presented as relevant intersection

type systems where the operator ∩ is associative, commutative but not idempotent, i.e. 𝑎 ∩ 𝑎 ≠ 𝑎

(see [Bucciarelli et al. 2017; Paolini et al. 2017]). The relational interpretation of a 𝜆-term𝑀 is given

by the set of typings (Γ, 𝑎) such that Γ ⊢ 𝑀 : 𝑎. As shown in [de Carvalho 2018], the relevance of the

system and the lack of idempotency allow to extract from a typing an upper bound to the number of

head reductions from𝑀 to its hnf. Breuvart et al. [2018] exploited this quantitative information to

give a combinatorial proof of the Approximation Theorem satisfied by all relational graph models

(rgm’s), thus bypassing computability predicates. It follows that the theory of any rgm includes B.
They also constructed an rgm E whose theory is exactly B: the proof of Th(E) ⊆ B relies on the

fact that E has countably many atoms, thus the system admits a kind of principal typings.

The relational semantics has been generalized in a number of directions, see, e.g. [Ong 2017]. In

[Laird et al. 2013], relations𝑅 : 𝐴×𝐵 → 2 are extended to “weighted” relations𝑅 : 𝐴 × 𝐵 → S, where
S is an arbitrary continuous semiring. Another possible generalization is given by categorification,
where set-theoretic notions are replaced by categorical ones. In the categorified setting that we

consider, sets are replaced with small categories and relations with distributors—a distributor 𝐹
between small categories 𝐴, 𝐵 being a functor of the form 𝐹 : 𝐴op × 𝐵 → Set. Distributors are

proof-relevant, in the sense that two objects 𝑎, 𝑏 are mapped to the set 𝐹 (𝑎, 𝑏) of ‘witnesses’ of their
relationship, and determine a weak 2-dimensional categorical structure: in a bicategorical model

the interpretation of two 𝛽-convertible 𝜆-terms is only equal up to coherent isomorphisms.

The 2-dimensional setting refines the denotational semantics viewpoint, allowing the possibility

to categorically model rewriting [Fiore and Saville 2019; Hilken 1996; Seely 1987]. Moreover, Fiore

et al. [2008] introduced the generalized species of structure (see also [Gambino and Joyal 2017]), a

Kleisli bicategory of distributors categorifying the standard multiset-based semantics of 𝜆-calculus

as well as Joyal’s species of structures [Joyal 1986]. Their construction led to relevant developments

in denotational semantics. For instance, Tsukada et al. [2017] showed that the semantics of species

can be syntactically presented via a theory of approximation for 𝜆-terms refining Ehrhard and

Regnier’s Taylor expansion [2003]. In particular, they exploited this semantics to enumerate the

reduction paths to normal forms for non-deterministic programs (subsequently, generalized to other

effects [Tsukada et al. 2018]). Building on that work, and on Mazza et al.’s categorical approach to

intersection type theories [2017; 2018], Olimpieri [2020; 2021] considered a class of bicategories

generalizing the construction by Fiore et al. He proved that they actually determine categorical

models of 𝜆-calculus and can be syntactically presented via intersection types. Each of these models

gives a particular notion of intersection type, linked to an appropriate monadic construction.

The present work should be seen as a step further towards the categorification of the classical

theory of 𝜆-calculus, in the sense of [Hyland 2017]. In particular, we generalize the (relational) graph

models, that constitute an important class of “traditional” semantics [Berline 2000]. In doing so, we

aim at building a solid argument in favor of 2-dimensional categorical semantics. We show that the

proof-relevance given by the jump to second dimension grants access to powerful techniques for

studying computational properties of programs, that are simply unavailable in the usual settings.

We also build on a long-established tradition of type-theoretic approaches to 𝜆-terms semantics,

initiated by the Torino school [Barendregt et al. 1983; Coppo et al. 1984; Ronchi Della Rocca

1982], that can be seen as an instance of the logical presentation of domain theory by Abramsky
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[1991]. In our case, this produces a virtuous duality between sophisticated categorical tools and

concrete syntactic constructions. We believe that this aspect of our work could be formalized as a

2-dimensional generalization of [Abramsky 1991], but we leave this perspective for future works.

Main Results. We significantly generalize the semantics in [Olimpieri 2021] to arbitrary categori-
fied graph models (Definition 5.1). We prove that these models can be presented via an intersection

type systemwhere the intersection is neither commutative nor idempotent, thus 𝑎1∩· · ·∩𝑎𝑛 is given
as a list ⟨𝑎1, . . . , 𝑎𝑛⟩. Permutative actions on the type derivations allow to restore commutativity

“up to iso”. The semantics so-defined is proof-relevant: the interpretation of a 𝜆-term can be thought

of as the set of its type derivations. In other words, type derivations are the protagonists of our

bicategorical model. The interpretation map is then extended to the Böhm tree of𝑀 by taking the

filtered colimit of the interpretations of its finite approximants, which is available in the bicategory.

In general, in a derivation 𝜋 of Δ ⊢ 𝑀 : 𝑎, only some of the subterms of𝑀 need to be typed. We

expose the quantitative nature of the system by proving that the contraction of a redex in𝑀 typed

in 𝜋 yields a derivation 𝜋 ′ (intuitively, the reduct of 𝜋 ) having a strictly smaller size (Proposition 6.4).

Thus, this process needs to terminate after a finite number of steps, giving the (unique) normal

form nf (𝜋) of 𝜋 . We then define the normal form of the interpretation of a 𝜆-term 𝑀 , which we

prove to be equivalent to the interpretation of its Böhm tree. We show that from nf (𝜋) it is possible
to reconstruct a finite approximant 𝐴𝜋 of𝑀 such that nf (𝜋) is a derivation of Δ ⊢ 𝐴𝜋 : 𝑎. It follows

that any categorified graph model D satisfies the Approximation Theorem 6.13 stating that the

interpretation of𝑀 is isomorphic to the interpretation of its Böhm tree. Moreover, we demonstrate

that any 𝜋 living in the interpretation of𝑀 , but not in the interpretation of 𝑁 , yields an approximant

𝐴𝜋 of𝑀 which is not an approximant of 𝑁 . This leads to a characterization of the theory ofD, since

it allows to conclude that Th(D) = B (Theorem 7.3). This technique to characterize the theory of

a model is original, and the same reasoning cannot be performed in the relational semantics as

typings do not carry enough information to uniquely identify an approximant, in general.

It is worth stressing the fact that the bicategorical notion of theory of a model is defined in terms

of isomorphisms, not equality of denotations. In particular, our characterization relies on appropriate
isomorphisms that are coherent with respect to 𝛽-normalization, as explained in Section 7. Finally,

we define a decategorification pseudofunctor forgetting the bicategorical structure which is present

in the model D and retrieving a relational graph model U living in the coKleisli of the comonad of

finite multisets on the category Polr of preorders and monotonic relations [Ehrhard 2012, 2016]. We

show that the Approximation Theorem forU follows easily from the analogous result we proved

for D (Theorem 8.14), therefore Th(D) ⊆ Th(U) holds (Corollary 8.15). In the conclusions, we

discuss how these results could be used to characterize the theories of more bicategorical models.

Related works. Our work builds on the semantic techniques introduced by Olimpieri in 2021.

In that paper, the author presents a type-theoretic bicategorical semantics of 𝜆-calculus, where

the models under consideration are free-algebra constructions for an appropriate endofunctor.

We extend his approach to a considerably more general notion of bicategorical models, the class

of categorified graph models. The free-algebra models are then just particular (non-extensional)

instances of our construction. Categorified graphmodels can possibly be extensional and we provide

some canonical examples, categorifying classical filter models of 𝜆-calculus (see Remark 5.8).

The theory of normalization for our bicategorical semantics (Section 6) implicitly builds on

techniques introduced by Ehrhard and Regnier [2008] in the setting of the Taylor expansion of

𝜆-terms. The commutation theorem (Theorem 6.12)—stating that the normal form of the denotation

of a 𝜆-term coincides with the denotation of its Böhm tree—recalls a crucial result for Taylor

expansion. The underlying intuition is indeed that the intersection type derivations can be seen
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as (typed) linear approximations of 𝜆-terms. From this perspective, our work can be also seen as a

generalization to the untyped case of Tsukada et al.’s approach to Böhm trees semantics [2017].

As already mentioned, the first combinatorial proof of the Approximation Theory for relational

graph models was given in [Breuvart et al. 2018]. The technique for reconstructing an approximant

from any derivation in the associated type system has been introduced in [Bucciarelli et al. 2014].

General notations. In the proofs we abbreviate ‘induction hypothesis’ as IH. We write N for

the set of natural numbers. We use 𝐴, 𝐵,𝐶 to denote categories and A,B,C to denote bicategories.

Given a category 𝐶 we write 𝐶op
for its opposite category. Given a bicategory C, Cop

denotes the

bicategory obtained by reversing the 1-cells of C but not the 2-cells. Given bicategories C1, . . . ,C𝑛 ,

we write C1 × · · · × C𝑛 for their product and C1 ⊔ · · · ⊔ C𝑛 for their coproduct.

2 THE LAMBDA CALCULUS IN A NUTSHELL
We recall some basic notions and notations about the theory of 𝜆-calculus. We start by presenting

its syntax and operational semantics (§2.1), then we discuss solvability and introduce the Böhm

tree semantics (§2.2), and finally we recall the associated theory of program approximation (§2.3).

2.1 Its Syntax
Concerning the syntax of 𝜆-calculus, we mainly use the notations of Barendregt’s first book [1984].

We consider fixed a countably infinite set Var of variables denoted 𝑥,𝑦, 𝑧, . . . possibly with indices.

Definition 2.1. The set Λ of 𝜆-terms over Var is defined by the following grammar (for 𝑥 ∈ Var):
Λ : 𝑀, 𝑁 ::= 𝑥 | 𝜆𝑥 .𝑀 | 𝑀𝑁

As usual, application associates to the left, and has higher precedence than abstraction. E.g.,

𝜆𝑥𝑦𝑧.𝑥𝑦𝑧 := 𝜆𝑥.(𝜆𝑦.(𝜆𝑧.((𝑥𝑦)𝑧))). We let𝑀 ®𝑁 (resp. 𝜆®𝑥 .𝑀) denote𝑀𝑁1 · · ·𝑁𝑘 (resp. 𝜆𝑥1 . . . 𝑥𝑛 .𝑀).

The set FV(𝑀) of free variables of 𝑀 and the 𝛼-conversion are defined as in [Barendregt 1984,

Ch. 1§2]. If FV(𝑀) = ∅ then𝑀 is closed. Hereafter, 𝜆-terms will be considered up to 𝛼-conversion.

Definition 2.2. (i) A (single-hole) context 𝐶 [] is a 𝜆-term containing an occurrence of an alge-

braic variable, called hole and denoted by []. Formally, 𝐶 [] is generated by the grammar:

𝐶 [] ::= [] | 𝜆𝑥 .𝐶 [] | 𝐶 []𝑀 | 𝑀𝐶 [] (for𝑀 ∈ Λ)
(ii) Given a context 𝐶 [] and a 𝜆-term𝑀 , we write 𝐶 [𝑀] for the 𝜆-term obtained by substituting

𝑀 for all occurrences of [] in 𝐶 [], possibly with capture of free variables in𝑀 .

The set Λ is endowed with notions of reduction turning the 𝜆-calculus into a higher-order term

rewriting system.

Definition 2.3. Consider a binary relation R ⊆ Λ2
.

(i) The relation R is compatible if𝑀 R 𝑀 ′ entails 𝜆𝑥 .𝑀 R 𝜆𝑥 .𝑀 ′, 𝑁𝑀 R 𝑁𝑀 ′ and𝑀𝑁 R 𝑀 ′𝑁 .

(ii) The contextual closure of R, written→R, is the least compatible relation containing R.

(iii) The multistep R-reduction→→R is defined as the reflexive-transitive closure of→R.

(iv) The R-normal form (R-nf ) of𝑀 , if any, is denoted by nfR (𝑀). I.e.,𝑀 →→R nfR (𝑀) ↛R.

(v) The R-conversion =R is defined as the reflexive, transitive and symmetric closure of→R.

The 𝛽- and 𝜂-reductions are defined as the contextual closure of the following relations:

(𝛽) (𝜆𝑥.𝑀)𝑁 → 𝑀 [𝑁 /𝑥], (𝜂) 𝜆𝑥 .𝑀𝑥 → 𝑀, if 𝑥 ∉ FV(𝑀),
where𝑀 [𝑁 /𝑥] denotes the capture-free substitution of 𝑁 for all free occurrences of 𝑥 in𝑀 . The

term on the left-hand side of the arrow is called redex, the one on the right-hand side is its contractum.

It is easy to check that a 𝜆-term is in R-normal form if and only if it contains no R-redexes.
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Notation 2.4. Concerning specific 𝜆-terms, we fix the following notations:

I = 𝜆𝑥.𝑥, 1 = 𝜆𝑥𝑦.𝑥𝑦, Δ = 𝜆𝑥 .𝑥𝑥, Ω = ΔΔ, Y = 𝜆𝑓 .(𝜆𝑥 .𝑓 (𝑥𝑥)) (𝜆𝑥.𝑓 (𝑥𝑥)) .
It is readily seen that I is the identity, 1 is an 𝜂-expansion of the identity, Δ is the self-applicator, Ω
the paradigmatic looping 𝜆-term, and Y represents Curry’s fixed point combinator.

2.2 Solvability and Böhm Trees
The 𝜆-terms are classified into solvable/unsolvable, depending on their capability of interaction

with the environment.

Definition 2.5. A closed 𝜆-term 𝑁 is solvable if there are ®𝑃 ∈ Λ such that 𝑁 ®𝑃 →→𝛽 I. A 𝜆-term𝑀

is solvable if its closure 𝜆®𝑥 .𝑀 is solvable. Otherwise𝑀 is called unsolvable.

A 𝜆-term𝑀 is in head normal form (hnf ) if it has the shape 𝜆𝑥1 . . . 𝑥𝑛 .𝑥 𝑗𝑀1 · · ·𝑀𝑘 where either

𝑥 𝑗 ∈ ®𝑥 or it is free. A 𝜆-term𝑀 has an hnf if it reaches an𝑀 ′ in hnf, in a finite number of reductions.

If𝑀 has an hnf, then such a normal form can be reached by performing head reductions→→ℎ , i.e.

by repeatedly contracting the head redex of𝑀 = 𝜆𝑥1 . . . 𝑥𝑛 .(𝜆𝑦.𝑁 )𝑀0𝑀1 · · ·𝑀𝑘 .

Theorem 2.6 ([Wadsworth 1976]). A 𝜆-term𝑀 is solvable if and only if𝑀 has an hnf.

The typical examples of unsolvables are Ω and YI. The execution of a 𝜆-term can be represented

as a possibly infinite tree, obtained by collecting all the stable pieces of information coming out

from the computation (if any). The complete lack of information is represented by a constant ⊥.

Definition 2.7. The Böhm tree BT(𝑀) of a 𝜆-term𝑀 is defined coinductively as follows:

• if𝑀 →→ℎ 𝜆𝑥1 . . . 𝑥𝑛 .𝑥𝑖𝑀1 · · ·𝑀𝑘 (for 𝑛, 𝑘 ≥ 0), then

BT(𝑀) = 𝜆𝑥1 . . . 𝑥𝑛 .𝑥𝑖

BT(𝑀1) BT(𝑀𝑘 ),· · ·

• otherwise𝑀 is unsolvable and BT(𝑀) = ⊥.

Example 2.8. The following are examples of Böhm trees.

(i) BT(I) = 𝜆𝑥 .𝑥 , BT(1) = 𝜆𝑥𝑦.𝑥𝑦 and BT(Δ) = 𝜆𝑥 .𝑥𝑥 .
(ii) More generally, if𝑀 is in 𝛽-nf then BT(𝑀) = 𝑀 .

(iii) Since Ω is unsolvable, we have BT(Ω) = ⊥. For analogous reasons, BT(YI) = ⊥.
(iv) More interestingly, we have BT(Y) = 𝜆𝑓 .𝑓 (𝑓 (𝑓 (𝑓 (𝑓 (· · · ))))).

Remark 2.9. Since BT(𝑀) is defined coinductively, so it is the equality between Böhm trees.

That is, BT(𝑀1) = BT(𝑀2) holds if and only if either 𝑀1, 𝑀2 are both unsolvable, or (for 𝑖 = 1, 2)

𝑀𝑖 →→ℎ 𝜆®𝑥 .𝑦𝑁𝑖1 · · ·𝑁𝑖𝑘 where BT(𝑁1𝑗 ) = BT(𝑁2𝑗 ) holds, for all 𝑗 (1 ≤ 𝑗 ≤ 𝑘).

The equivalence B obtained by equating all 𝜆-terms having the same Böhm tree, i.e.

B = {(𝑀, 𝑁 ) | BT(𝑀) = BT(𝑁 )} ⊆ Λ2,

is an example of a so-called 𝜆-theory, namely an equational theory of 𝜆-calculus. These theories

become the main object of study when considering the computational equivalence more important

than the process of computation itself [Lusin and Salibra 2004].

Definition 2.10. (i) A 𝜆-theory is any congruence on Λ (that is, an equivalence relation com-

patible with abstraction and application) containing the 𝛽-conversion.

(ii) A 𝜆-theory is called extensional if it contains the 𝜂-conversion as well.
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Given a 𝜆-theory T , we will write T ⊢ 𝑀 = 𝑁 , or simply 𝑀 =T 𝑁 , to express the fact that 𝑀

and 𝑁 are equal in T . The theory B is consistent as it does not equate all 𝜆-terms, and sensible in
the sense that it does equate all unsolvables.

Example 2.11. (i) B ⊢ Ω = 𝑀 , for all𝑀 unsolvable.

(ii) B ⊢ 𝜆𝑥 .𝑥Ω = 𝜆𝑥.𝑥 (YI), by (i) since YI is unsolvable.
(iii) B ⊢ Y = 𝑍 , for any fixed point combinator 𝑍 .

2.3 A Theory of Program Approximation
The notion of Böhm tree was introduced by Barendregt in the 70s [Barendregt 1977], and it

can be seen as one of the first appearances of a coinductive definition in the literature (see the

discussion in [Jacobs and Rutten 1997]). Researchers also proposed an (inductive) theory of program

approximation based on Scott-continuity and finite trees. The possibly infinite behavior of a 𝜆-term,

represented by its Böhm tree, is then retrieved by performing a ‘limit’ of its finite approximants.

Definition 2.12. (i) The set Λ⊥ of 𝜆⊥-terms over Var is inductively defined by the grammar:

Λ⊥ : 𝑀, 𝑁, 𝐿 ::= ⊥ | 𝑥 | 𝜆𝑥 .𝑀 | 𝑀𝑁
(ii) Let ≤⊥⊆ Λ⊥ × Λ⊥ denote the least contextual closed preorder generated by setting

⊥ ≤ 𝑀, for all𝑀 ∈ Λ⊥.
(iii) The 𝜆⊥-terms are endowed with the reduction→𝛽⊥, namely 𝛽-reduction extended with

𝜆𝑥.⊥ →⊥ ⊥,
⊥𝑀1 · · ·𝑀𝑛 →⊥ ⊥ (for 𝑛 > 0).

(iv) The set A ⊆ Λ⊥ of finite approximants is defined by:

A : 𝑃,𝑄 ::= ⊥ | 𝜆𝑥1 . . . 𝑥𝑛 .𝑦𝑃1 · · · 𝑃𝑘 (for 𝑛, 𝑘 ≥ 0)

(v) Two approximants 𝑃1, 𝑃2 ∈ A are compatible if there exists 𝑄 ∈ A such that 𝑃1 ≤⊥ 𝑄 ≥⊥ 𝑃2.
(vi) Given a 𝜆-term𝑀 , the set A(𝑀) of finite approximants of𝑀 is defined as follows:

A(𝑀) = {𝑃 ∈ A | ∃𝑁 ∈ Λ . 𝑀 →→𝛽 𝑁 and 𝑃 ≤⊥ 𝑁 }.

Intuitively, the finite approximants of a 𝜆-term 𝑀 are obtained by cutting its Böhm tree into

finite pieces, replacing the removed subtrees with ⊥.

Example 2.13. (i) A(I) = {⊥, 𝜆𝑥 .𝑥} and A(1) = {⊥, 𝜆𝑥𝑦.𝑥⊥, 𝜆𝑥𝑦.𝑥𝑦}.
(ii) A(Ω) = A(YI) = {⊥}, whence A(𝜆𝑥.𝑥Ω) = {⊥, 𝜆𝑥 .𝑥⊥} = A(𝜆𝑥 .𝑥 (YI)).
(iii) A(Y) = {⊥} ∪ {𝜆𝑓 .𝑓 𝑛 (⊥) | 𝑛 > 0}.

The following properties are well established. See, e.g., [Amadio and Curien 1998].

Lemma 2.14. (i) 𝑀 ∈ Λ⊥ is in 𝛽⊥-normal form if and only if𝑀 ∈ A.
(ii) For𝑀 ∈ Λ, the setA(𝑀) is an ideal (i.e. non-empty, downward closed and directed) and admits

a supremum.

The (syntactic) Approximation Theorem below shows that infinite Böhm trees can be recovered

by taking the supremum of their finite approximants.

Theorem 2.15 (Approximation Theorem). For all𝑀 ∈ Λ, we have

BT(𝑀) =
∨
A(𝑀)

Such a supremum always exists by Lemma 2.14(ii). Moreover, BT(𝑀) = BT(𝑁 ) ⇔ A(𝑀) = A(𝑁 ).
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3 CATEGORICAL PRELIMINARIES
In this section we recall some notions of 2-dimensional category theory, but we assume that the

reader is already familiar with basic category theory and with the notion of monoidal categories.

First, we provide the definitions of bicategories, of 2-categories, and of pseudoreflexive objects

living in a cartesian closed bicategory (§3.1). Then, we recall the notion of coend and present a

basic theorem of the associated coend calculus, i.e. the so-called Yoneda lemma for coends (§3.2).

Finally, we provide the construction of a free algebra for an endofunctor in Cat (§3.3).

3.1 Bicategories in a Nutshell
Intuitively, bicategories are categories with “morphisms between morphisms” called 2-morphisms.

The associativity and identity laws for composition of morphisms in a bicategory hold just up to

coherent isomorphisms. For a gentle introduction, we refer to [Johnson and Yau 2021].

Definition 3.1. A bicategory C consists of:

• a collection ob(C) of objects (denoted by 𝐴, 𝐵,𝐶, . . . ), also called 0-cells;
• for all 𝐴, 𝐵 ∈ ob(C), a category C(𝐴, 𝐵);
objects 𝐹 in C(𝐴, 𝐵), also written 𝐹 : 𝐴→ 𝐵, are called 1-cells or morphisms from 𝐴 to 𝐵;

arrows in C(𝐴, 𝐵) are called 2-cells or 2-morphisms and denoted by Greek letters (𝛼, 𝛽, . . . );

composition of 2-cells is denoted by − • − and generally called vertical composition;
• for every 𝐴, 𝐵,𝐶 ∈ ob(C), a bifunctor

◦𝐴,𝐵,𝐶 : C(𝐵,𝐶) × C(𝐴, 𝐵) → C(𝐴,𝐶)

called horizontal composition (often the indices 𝐴, 𝐵,𝐶 in ◦𝐴,𝐵,𝐶 are omitted). Therefore, for

all 1-cells 𝐹, 𝐹 ′ : 𝐴→ 𝐵 and 𝐺,𝐺 ′ : 𝐵 → 𝐶 , and for all 2-cells 𝛼 : 𝐹 ⇒ 𝐹 ′ and 𝛽 : 𝐺 ⇒ 𝐺 ′, we
have both a 1-cell 𝐺 ◦𝐴,𝐵,𝐶 𝐹 : 𝐴→ 𝐶 and a 2-cell 𝛽 ◦𝐴,𝐵,𝐶 𝛼 : (𝐺 ◦𝐴,𝐵,𝐶 𝐹 ) ⇒ (𝐺 ′ ◦𝐴,𝐵,𝐶 𝐹 ′);
• for every 𝐴 ∈ ob(C), a functor 1𝐴 : 1→ C(𝐴,𝐴), where 1 is the category with one object ∗
and one arrow. We slightly abuse notation and identify 1𝐴 (∗) with the identity 1𝐴 of 𝐴;

• for all 1-cells 𝐹 : 𝐴→ 𝐵, 𝐺 : 𝐵 → 𝐶 , and 𝐻 : 𝐶 → 𝐷, a family of invertible 2-cells expressing

the associativity law

𝛼𝐻,𝐺,𝐹 : 𝐻 ◦ (𝐺 ◦ 𝐹 ) � (𝐻 ◦𝐺) ◦ 𝐹 ;

• for every 1-cell 𝐹 : 𝐴→ 𝐵, two families of invertible 2-cells expressing the identity law

𝜆𝐹 : 1𝐵 ◦ 𝐹 � 𝐹, 𝜌𝐹 : 𝐹 � 𝐹 ◦ 1𝐴 .

Moreover, these data must satisfy two additional coherence axioms [Borceux 1994].

A 2-category is a bicategory where associativity and unit 2-cells are identities.

Example 3.2. (i) The most canonical example of 2-category is Cat: namely, the 2-category of

small categories, functors and natural transformations.

(ii) Any monoidal category is a one object bicategory, taking the tensor product as the horizontal

composition. The coherence laws for horizontal composition are indeed the ‘same’ as the ones

for the tensor product. Bicategories are in this way a generalization of monoidal categories,

in the same way as categories generalize monoids.

There is a notion of morphisms between bicategories, called pseudofunctors [Borceux 1994],

where composition is preserved only up to coherent isomorphism. Most notions of 1-dimensional

category theory can be expressed in the bicategorical setting as well. We recall here the most

important ones, that will be useful in the rest of the paper.
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Definition 3.3 (pseudoretraction (left inverse), pseudosection (right inverse) and equivalence).
Let C be a bicategory, 𝐶, 𝐷 ∈ ob(C) and 𝑖 : 𝐶 → 𝐷.

(i) A pseudoretraction for 𝑖 consists of a 1-cell 𝑗 : 𝐷 → 𝐶 with an invertible 2-cell 𝛼 : 1𝐶 � 𝑗 ◦ 𝑖 .
(ii) A pseudosection for 𝑖 consists of a 1-cell 𝑗 : 𝐷 → 𝐶 with an invertible 2-cell 𝛽 : 𝑖 ◦ 𝑗 � 1𝐷 .

(iii) A 1-cell 𝑗 : 𝐷 → 𝐶 is right adjoint to 𝑖 when there exist 2-cells 𝜂 : 1𝐶 ⇒ 𝑗 ◦𝑖 and 𝜖 : 𝑖 ◦ 𝑗 ⇒ 1𝐷 ,

satisfying the appropriate triangular laws. In this case, we say that 𝑖 is left adjoint to 𝑗 and
that the tuple ⟨𝑖, 𝑗, 𝜂, 𝜖⟩ is an adjunction.

(iv) If 𝑗 is both a pseudoretraction and a pseudosection for 𝑖 , we say that ⟨𝑖, 𝑗⟩ is an equivalence.
(v) An equivalence that is also an adjunction is called an adjoint equivalence.

Given a cartesian closed bicategory C, we denote its products as 𝐴 & 𝐵, the exponential objects

as 𝐵𝐴 and the associated evaluation morphism as ev𝐴,𝐵 : 𝐵𝐴 &𝐴 → 𝐵. For every 𝑋 ∈ ob(C), we
have an adjoint equivalence between C(𝑋, 𝐵𝐴) and C(𝑋 &𝐴, 𝐵) given by ⟨ev𝐴,𝐵 ◦ (− &𝐴),Λ(−)⟩,
where Λ(−) denotes the currying functor. For a precise definition, we refer to [Saville 2020].

Definition 3.4. A pseudoreflexive object in a cartesian closed bicategory C is given by a tuple

⟨𝐷, 𝛼, 𝑖 : 𝐷𝐷 → 𝐷, 𝑗 : 𝐷 → 𝐷𝐷⟩, where 𝐷 is an object and 𝑗, 𝛼 a pseudoretraction for 𝑖 .

3.2 The Coend Calculus
Coends are a universal categorical construction which is at the foundation of several structures

that we shall introduce. In the particular case we will consider, coends correspond to appropriate

quotient sums of sets.

Definition 3.5. Given a category𝐶 and a functor 𝐹 : 𝐶op×𝐶 → Set, the coend of 𝐹 is the coequalizer
of the following diagram∑︁

𝑐,𝑐′∈𝐶
𝐶 (𝑐′, 𝑐) × 𝐹 (𝑐, 𝑐′) ⇒

∑︁
𝑐∈𝐶

𝐹 (𝑐, 𝑐) →
∫ 𝑐∈𝐶

𝐹 (𝑐, 𝑐)

where the parallel arrows⇒ are given by left and right actions of 𝐹 on morphisms 𝑓 ∈ 𝐶 (𝑐′, 𝑐).
Since we work with coends in the category of sets, we have that this coequalizer is actually given

by the quotient

∑
𝑐∈𝐶 𝐹 (𝑐, 𝑐)/∼ where the equivalence relation ∼ is generated by the rule

𝑥 ∼ 𝑦 ⇐⇒ 𝐹 (𝑓 , 𝑐′) (𝑥) = 𝐹 (𝑐, 𝑓 ) (𝑦), for some 𝑓 : 𝑐′ → 𝑐.

A formal calculus has been developed for coends, that we employ to prove some of our results.

We refer to [Loregian 2021] for a more detailed presentation of this calculus. A basic theorem of

coend calculus is the Yoneda lemma for coends:

Theorem 3.6 (Yoneda, Density Theorem). Let 𝐾 : 𝐶op → 𝐷 and 𝐻 : 𝐶 → 𝐷 be two functors.
We have canonical natural isomorphisms

𝐾 (−) �
∫ 𝑐∈𝐶

𝐾 (𝑐) ×𝐶 (−, 𝑐), 𝐻 (−) �
∫ 𝑐∈𝐶

𝐻 (𝑐) ×𝐶 (𝑐,−).

3.3 Algebras of Cat Endofunctors
For 𝐴, 𝐵 ∈ Cat a full embedding 𝐺 : 𝐴 ↩→ 𝐵 is a fully faithful functor which is injective on objects.

Definition 3.7. Let F : Cat→ Cat be an endofunctor.

(i) An algebra for F consists of a small category 𝐴 equipped with a functor 𝐹 : F𝐴→ 𝐴.

(ii) A partial F-algebra on a small category 𝐴 consists of a pair of a functor and a full embedding

𝐴
𝐹← 𝐻

𝐺
↩→ F(𝐴).
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Definition 3.8 (Construction of Free F-Algebras [Kelly 1980]). Given a functor F : Cat→ Cat that

preserves colimits of𝜔-chains and a small category𝐴,we construct a canonical F-algebra as follows.
(Below, given a coproduct 𝐴 ⊔ 𝐵, we denote by in𝐴 and in𝐵 the associated injections.)

• First, we define an inductive family of small categories:

𝐷0 = 𝐴, 𝐷𝑛+1 = F𝐷𝑛 ⊔𝐴.

• Then, we construct a family of functors 𝜄𝑛 : 𝐷𝑛 ↩→ 𝐷𝑛+1, again by induction:

𝜄0 = in𝐴, 𝜄𝑛+1 = F(𝜄𝑛) ⊔𝐴.

Define now 𝐷𝐴 = lim−−→𝑛∈N
𝐷𝑛 . Then, we have a canonical algebra map 𝜄𝐴 : F(𝐷𝐴) → 𝐷𝐴 .

The small category 𝐷𝐴 is in particular the free F-algebra on 𝐴.

4 2-DIMENSIONAL SEMANTICS
We now introduce some basic definitions and results of 2-dimensional categorical semantics of

untyped 𝜆-calculus (§4.1). We show that the second dimension allows to explicitly model the

dynamics of computation (Theorem 4.5), an aspect which is hidden in the standard semantic setting.

We also present the bicategory of distributors (§4.2), originally introduced in [Benabou 1973], which

represents the core of our bicategorical investigations (see Section 5, and beyond).

4.1 Bicategorical Interpretation
The categorical framework for our semantic investigations is a cartesian closed bicategory C, where
each hom-category C(𝐴, 𝐵) admits all filtered colimits and an initial object ⊥𝐴,𝐵 .

Definition 4.1. (i) A bicategorical model of 𝜆-calculus is given by any pseudoreflexive object

D = ⟨𝐷, 𝛼, 𝑖, 𝑗⟩ in C, where ⟨𝑖, 𝑗⟩ represents the retraction pair and 𝛼 : 𝑖𝑑𝐷𝐷 � 𝑗 ◦ 𝑖 .
(ii) An extensional bicategorical model is a bicategorical model where the pseudoretraction carries

the structure of an adjoint equivalence:

𝐷𝐷 ⊥ 𝐷

𝑖

𝑗

In this setting, 𝜆-terms are interpreted by mimicking the standard 1-dimensional categorical

definition (see, e.g., [Amadio and Curien 1998, §4.6]). Fix a bicategorical model D = ⟨𝐷, 𝛼, 𝑖, 𝑗⟩
living in the bicategory C. Given 𝑥1, . . . , 𝑥𝑛 ∈ Var, define Λ𝑜 (𝑥1, . . . , 𝑥𝑛) = {𝑀 ∈ Λ | FV(𝑀) ⊆ ®𝑥}.

Definition 4.2. The interpretation of a 𝜆-term𝑀 ∈ Λ𝑜 (𝑥1, . . . , 𝑥𝑛) in D is a 1-cell

⟦𝑀⟧®𝑥 : 𝐷&𝑛 → 𝐷 (= (𝐷 & · · · & 𝐷) → 𝐷)

defined by induction on𝑀 as follows:

⟦𝑥𝑖⟧®𝑥 = 𝜋𝑛𝑖 ,

⟦𝜆𝑦.𝑀⟧®𝑥 = 𝑖 ◦Λ
(
⟦𝑀⟧®𝑥,𝑦

)
, wlog assume 𝑦 ∉ ®𝑥,

⟦𝑀𝑁⟧®𝑥 = ev𝐷,𝐷 ◦ ⟨ 𝑗 ◦ ⟦𝑀⟧®𝑥 , ⟦𝑁⟧®𝑥 ⟩.

The definition of interpretation extends to 𝜆⊥-terms by setting ⟦⊥⟧®𝑥 = ⊥𝐷&𝑛,𝐷 .

Since we are dealing with cartesian closed bicategories, the denotation of a 𝜆-term is invariant

under 𝛽-conversion only up to canonical coherent isomorphisms.
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Lemma 4.3 ((de)Substitution). Consider𝑀 ∈ Λ𝑜 ( ®𝑥,𝑦) and 𝑁 ∈ Λ𝑜 ( ®𝑥), where 𝑦 ∉ ®𝑥 = 𝑥1, . . . , 𝑥𝑛 .
The following canonical invertible 2-cell is built out of the cartesian closed structure:

sub𝑀,𝑦,𝑁
: ⟦𝑀 [𝑁 /𝑦]⟧®𝑥 � ⟦𝑀⟧®𝑥,𝑦 ◦ ⟨1𝐷&𝑛 , ⟦𝑁⟧®𝑥 ⟩

Theorem 4.4 (Soundness). Let𝑀, 𝑁 ∈ Λ𝑜 ( ®𝑥) and D = ⟨𝐷, 𝛼, 𝑖, 𝑗⟩ be a bicategorical model.
(i) If𝑀 →𝛽 𝑁 then we have a canonical invertible 2-cell (interpreting the 𝛽-reduction step)

⟦𝑀 →𝛽 𝑁⟧®𝑥 : ⟦𝑀⟧®𝑥 � ⟦𝑁⟧®𝑥
which is built out of the cartesian closed structure and the 2-cell 𝛼 .

(ii) If𝑀 →𝜂 𝑁 and the model D is extensional, then we also have a canonical invertible 2-cell

⟦𝑀 →𝜂 𝑁⟧®𝑥 : ⟦𝑀⟧®𝑥 � ⟦𝑁⟧®𝑥
built out of the cartesian closed structure and the 2-cell 𝛼 .

Thanks to the coherence theorem for cartesian closed bicategories proved by Fiore and Saville

[2020], the canonical interpretation of 𝛽-reduction steps enjoys confluence. This means that the

interpretations of two reductions𝑀 →→𝛽 𝐿 →→𝛽 𝑁 and𝑀 →→𝛽 𝐿
′ →→𝛽 𝑁 coincide as 2-cells.

Theorem 4.5 (Semantic is sound with respect to confluence).

Consider reduction sequences 𝜌 : 𝑀 →→𝛽 𝐿, 𝜌
′
: 𝐿 →→𝛽 𝑁 and 𝜈 : 𝑀 →→𝛽 𝐿

′, 𝜈 ′ : 𝐿′ →→𝛽 𝑁 . Then

⟦𝜌 ′⟧®𝑥 • ⟦𝜌⟧®𝑥 = ⟦𝜈 ′⟧®𝑥 • ⟦𝜈⟧®𝑥 ,
where − • − stands for vertical composition.

Proof. The main result of [Fiore and Saville 2020] is that, in the free cartesian closed bicategory

over a set 𝑋 , given two different 1-cells 𝐹,𝐺 there is at most one 2-cell between them. Therefore,

every “structural diagram” in a cartesian closed bicategory commutes. □

4.2 Distributors
We recall the definition of the bicategory Dist of distributors from [Benabou 1973]. See also [Borceux

1994] for a more recent presentation.

• 0-cells are small categories 𝐴, 𝐵,𝐶, . . .

• 1 cells 𝐹 : 𝐴 ↛ 𝐵 are functors 𝐹 : 𝐴op × 𝐵 → Set called distributors.
• 2-cells 𝛼 : 𝐹 ⇒ 𝐺 are natural transformations.

• For fixed 0-cells 𝐴 and 𝐵, the 1-cells and 2-cells are organized as a category Dist(𝐴, 𝐵).
• For𝐴 ∈ Dist, the identity 1𝐴 : 𝐴 ↛ 𝐴 is defined as the Yoneda embedding 1𝐴 (𝑎, 𝑎′) = 𝐴(𝑎, 𝑎′).
• For 1-cells 𝐹 : 𝐴 ↛ 𝐵 and 𝐺 : 𝐵 ↛ 𝐶 , the horizontal composition is given by

(𝐺 ◦ 𝐹 ) (𝑎, 𝑐) =
∫ 𝑏∈𝐵

𝐺 (𝑏, 𝑐) × 𝐹 (𝑎, 𝑏).

Associativity and identity laws for this composition are only up to canonical isomorphism.

For this reason Dist is a bicategory [Borceux 1994].

• There is a symmetric monoidal structure on Dist given by the cartesian product of categories:

𝐴 ⊗ 𝐵 = 𝐴 × 𝐵.
• The bicategory of distributors is compact closed and orthogonality is given by taking the

opposite category 𝐴⊥ = 𝐴op .

• The linear exponential object between two objects 𝐴 and 𝐵 is then defined as 𝐴op × 𝐵.
• Dist(𝐴, 𝐵) = Cat(𝐴op × 𝐵, Set) is a locally small cocomplete category. For 𝐴, 𝐵 ∈ Dist the

initial object ⊥𝐴,𝐵 ∈ Dist(𝐴, 𝐵) is given by the zero distributor defined as follows: for all

⟨𝑎, 𝑏⟩ ∈ 𝐴 × 𝐵,⊥𝐴,𝐵 (𝑎, 𝑏) = ∅.
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Definition 4.6.

(i) Given a functor 𝐹 : 𝐴→ 𝐵 we can define distributors
1 𝐹 : 𝐴 ↛ 𝐵 and 𝐹 : 𝐵 ↛ 𝐴 by setting

𝐹 (𝑎, 𝑏) = 𝐵(𝐹 (𝑎), 𝑏)
𝐹 (𝑏, 𝑎) = 𝐵(𝑏, 𝐹 (𝑎)).

(ii) Given a distributor 𝐹 : 𝐴 ↛ 𝐵 the web of 𝐹 is the set:

|𝐹 | =
⊔

⟨𝑎,𝑏 ⟩∈𝐴×𝐵
𝐹 (𝑎, 𝑏).

Given distributors 𝐹,𝐺 : 𝐴 ↛ 𝐵, wewrite 𝐹 ⊆ 𝐺 if there is a pointwise inclusion 𝐹 (𝑎, 𝑏) ⊆ 𝐺 (𝑎, 𝑏).
Remark that this inclusion is trivially a natural transformation which is, in particular, monic in the

hom-category Dist(𝐴, 𝐵).

Integers and permutations. Given 𝑛 ∈ N, define [𝑛] = {1, . . . , 𝑛}. In particular, we have [0] = ∅.
We denote by𝔖𝑛 the set of permutations over [𝑛] .

Definition 4.7. The category P of integers and permutations is defined as follows:

• the objects of P are sets of the form {[𝑛] | 𝑛 ∈ N};
• the hom-set from [𝑛] to [𝑚] is given by

P( [𝑛], [𝑚]) =
{
𝔖𝑛, if 𝑛 =𝑚;

∅, otherwise;

• composition of P is simply composition of functions and the identity on [𝑛] is denoted by 1𝑛 .

The category P is symmetric strict monoidal, with tensor product given by addition: [𝑛] ⊕ [𝑚] =
[𝑛 +𝑚] . Given 𝑘1, . . . , 𝑘𝑛 ∈ N and 𝜎 ∈ 𝔖𝑛 , define:

𝜎 : [∑𝑖∈[𝑛] 𝑘𝑖 ] → [
∑

𝑖∈[𝑛] 𝑘𝜎 (𝑖 ) ] as 𝜎 (∑𝑙−1
𝑟=1 𝑘𝑟 + 𝑝) =

∑𝑙−1
𝑟=1 𝑘𝜎 (𝑟 ) + 𝑝,

where 𝑙 ∈ [𝑛] and 1 ≤ 𝑝 ≤ 𝑘𝜎 (𝑙 ) .

Symmetric strict monoidal completion. Given a list ®𝑎 = ⟨𝑎1, . . . , 𝑎𝑘⟩ over a set𝐴, define len( ®𝑎 ) = 𝑘 .
Given two lists ®𝑎 and ®𝑏 over a set 𝐴, their concatenation is denoted by ®𝑎 ⊕ ®𝑏.
Let 𝐴 be a small category. For each object 𝑎 ∈ ob(𝐴), the identity morphism on 𝑎 is denoted

by 1𝑎 . The symmetric strict monoidal completion !𝐴 of 𝐴 is the category:

• ob(!𝐴) = {⟨𝑎1, . . . , 𝑎𝑛⟩ | 𝑎𝑖 ∈ 𝐴 and 𝑛 ∈ N};

• !𝐴[⟨𝑎1, . . . , 𝑎𝑛⟩, ⟨𝑎′1, . . . , 𝑎′𝑛′⟩] =
{
{⟨𝜎, 𝑓𝑖⟩𝑖∈[𝑛] | 𝑓𝑖 : 𝑎𝑖 → 𝑎′

𝜎 (𝑖 ) , 𝜎 ∈ 𝔖𝑛}, if 𝑛 = 𝑛′;

∅, otherwise;

• for 𝑓 = ⟨𝜎, 𝑓𝑖⟩𝑖∈[𝑛] : ®𝑎 → ®𝑏 and 𝑔 = ⟨𝜏, 𝑔𝑖⟩𝑖∈[𝑛] : ®𝑏 → ®𝑐 their composition is defined as follows

𝑔 ◦ 𝑓 = ⟨𝜏𝜎, 𝑔𝜎 (1) ◦ 𝑓1, . . . , 𝑔𝜎 (𝑛) ◦ 𝑓𝑛⟩;
• for ®𝑎 = ⟨𝑎1, . . . , 𝑎𝑛⟩ ∈ ob(!𝐴), the identity on ®𝑎 is given by 1®𝑎 = ⟨1𝑛, 1𝑎1 , . . . , 1𝑎𝑛 ⟩;
• the monoidal structure is given by list concatenation. The tensor product is symmetric, with

symmetries given by the morphisms of the shape (for 𝜎 ∈ 𝔖𝑛):

⟨𝜎, ®1⟩ : ⟨𝑎1, . . . , 𝑎𝑛⟩ → ⟨𝑎𝜎 (1) , . . . , 𝑎𝜎 (𝑛)⟩.

Definition 4.8. Given 𝜎 ∈ 𝔖𝑛 and ®𝑎1, . . . , ®𝑎𝑛 ∈ ob(!𝐴) with len( ®𝑎𝑖 ) = 𝑘𝑖 , define
𝜎★ :

⊕𝑛

𝑖=1 ®𝑎𝑖 →
⊕𝑛

𝑖=1 ®𝑎𝜎 (𝑖 ) as ⟨𝜎, 1𝑎1 , . . . , 1𝑎𝑘 ⟩, where 𝑘 =
∑

𝑖∈[𝑛] 𝑘𝑖 .
1
The two distributors are adjoint 1-cells in the bicategory Dist.
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As a matter of notation, we introduce the following abbreviations: !𝐴𝑛 = (!𝐴)𝑛 and !𝐴op = (!𝐴)op.
The previous construction naturally determines an endofunctor ! : Cat→ Cat, i.e. the 2-monad

on Cat for strict monoidal categories. We denote by CatSym the Kleisli bicategory of the pseudo-

comonad over Dist, obtained by lifting !(·) [Fiore et al. 2008; Gambino and Joyal 2017]. CatSym

is cartesian closed, the exponential object being given by 𝐵𝐴 = !𝐴 ⊸ 𝐵. This is the bicategory of

symmetric categorical sequences [Gambino and Joyal 2017], biequivalent to the generalized species
of structures [Fiore et al. 2008, 2017]. A functor 𝐹 : 𝐴→ 𝐵 determines also a pair of distributors

𝐹★ : !𝐴 ↛ 𝐵, 𝐹★ : !𝐵 ↛ 𝐴

defined by precomposing 𝐹, 𝐹 (see Definition 4.6(i)) with the counit of !.

Proposition 4.9 (Seely eqivalence). For all 𝐴, 𝐵 ∈ Cat, we have an equivalence of categories

!(𝐴 ⊔ 𝐵) ≃ !𝐴 × !𝐵.

The proposition above extends to finite products and coproducts of categories !(𝐴1 ⊔ · · · ⊔𝐴𝑛) ≃
!𝐴1 × · · · × !𝐴𝑛 . We denote the two components of this equivalence respectively as

𝜇0 : !(𝐴1 ⊔ · · · ⊔𝐴𝑛) → !𝐴1 × · · · × !𝐴𝑛,

𝜇1 : !𝐴1 × · · · × !𝐴𝑛 → !(𝐴1 ⊔ · · · ⊔𝐴𝑛).

5 INTERSECTION TYPE DISTRIBUTORS AND BÖHM TREES
We introduce the notion of categorified graph models (§5.1), generalizing the relational graph models

from [Manzonetto and Ruoppolo 2014] and, ultimately, the usual graph models [Engeler 1981]. We

show that categorified graph models can be presented “in logical form”, namely as appropriate

intersection type systems (§5.2). Finally, we prove that the interpretation of a 𝜆-term can be seen as

an intersection type distributor, and define the interpretation of its Böhm tree by taking the filtered

colimit of the denotations of its finite approximants, which is available in the bicategory Dist (§5.3).

5.1 Categorified Graph Models
The class of categorified graph models will be the main subject of our semantic investigations.

Definition 5.1 (Categorified graph pre-models). A categorified graph pre-model consists of a small

category 𝐷 ∈ Cat equipped with a full embedding 𝜄 : !𝐷op × 𝐷 ↩→ 𝐷.

Theorem 5.2. Let ⟨𝐷, 𝜄⟩ be a categorified graph pre-model. Then, the canonical pair of symmetric
categorical sequences ⟨𝜄★, 𝜄★⟩ induces a pseudoreflexive object structure on 𝐷 in the bicategory CatSym.
If moreover 𝜄 is essentially surjective on objects, then ⟨𝜄★, 𝜄★⟩ is an adjoint equivalence.

Proof. We have 𝜄★ : !(!𝐷op × 𝐷) ↛ 𝐷 and 𝜄★ : !𝐷 ↛ !𝐷op × 𝐷 , defined as

𝜄★(⟨⟨ ®𝑎1, 𝑎1⟩, . . . , ⟨ ®𝑎𝑘 , 𝑎𝑘⟩⟩, 𝑎) = !𝐷 (⟨𝜄 (⟨ ®𝑎1, 𝑎1⟩), . . . , 𝜄 (⟨ ®𝑎𝑘 , 𝑎𝑘⟩)⟩, ⟨𝑎⟩)
𝜄★(𝑎, ⟨⟨ ®𝑎1, 𝑎1⟩, . . . , ⟨ ®𝑎𝑘 , 𝑎𝑘⟩⟩) = !𝐷 (⟨𝑎⟩, ⟨𝜄 (⟨ ®𝑎1, 𝑎1⟩), . . . , 𝜄 (⟨ ®𝑎𝑘 , 𝑎𝑘⟩)⟩).

In both cases the result is not empty only if 𝑘 = 1.We now prove that we have a natural isomorphism

𝛼 : 𝜄★ ◦CatSym 𝜄★ � 1!𝐷op×𝐷 . By definition and the Yoneda lemma for coends (Theorem 3.6) we have

(𝜄★ ◦CatSym 𝜄★) ( ®𝑑,𝑑) =
∫ 𝑑∈𝐷

!𝐷 (𝜄 ( ®𝑑), ⟨𝑑⟩) × !𝐷 (⟨𝑑⟩, 𝜄 ( ®𝑑)) � !𝐷 (𝜄 ( ®𝑑), ⟨𝑑⟩)

by the fact that 𝜄 is a full embedding we get !𝐷 (𝜄 ( ®𝑑), ⟨𝑑⟩) � (!𝐷op×𝐷) ( ®𝑑, 𝑑) = 1!𝐷op×𝐷 ( ®𝑑, 𝑑). Finally,
if 𝜄 is essentially surjective on objects, then we also obtain 𝜄★ ◦ 𝜄★ � 1𝐷 by a similar argument. □

We call the bicategorical model ⟨𝐷, 𝛼, 𝜄★, 𝜄★⟩ obtained in Theorem 5.2 a categorified graph model.
It is easy to check that if 𝜄 is essentially surjective on objects, then the induced model is extensional.
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5.2 System 𝑅→: Categorified Graph Models in Logical Form
We now show that the model induced by a categorified graph pre-model can be presented as a

non-idempotent intersection type system. Fix an arbitrary categorified graph pre-model ⟨𝐷, 𝜄⟩.

CatSym Semantics as Type System. The syntactic presentation of categorified graph models is

based on the intuition that, given a simple type 𝐴, the elements of !⟦𝐴⟧ can be seen as resource
approximations of the type !𝐴. Now, while !𝐴 represents the type of a resource that can be used

ad libitum, a list ⟨𝑎1, . . . , 𝑎𝑘⟩ ∈ !⟦𝐴⟧ should be thought of as a choice of exactly 𝑘 copies of resources
of type 𝐴. In fact, the list ⟨𝑎1, . . . , 𝑎𝑘⟩ corresponds to a type itself, in the form of an intersection type
where the intersection operator is not idempotent: 𝑎 ∩ 𝑎 ≠ 𝑎. The intersection constructor 𝑎 ∩ 𝑏 is

indeed given by the tensor product of !𝐴, that is, list concatenation (denoted here by ⊕):

𝑎1 ∩ · · · ∩ 𝑎𝑘 := ⟨𝑎1⟩ ⊕ · · · ⊕ ⟨𝑎𝑘⟩ = ⟨𝑎1, . . . , 𝑎𝑘⟩.

Similarly, the elements populating ⟦!𝐴 ⊸ 𝐵⟧ = !⟦𝐴⟧op × ⟦𝐵⟧ can be seen as arrow types ®𝑎 ⊸ 𝑏.

We shall prove that this type-theoretic correspondence is more then just an analogy: the inter-

pretation of a 𝜆-term in a categorified graph model living in CatSym actually corresponds to the

collection of its type derivations in the associated intersection type system (cf. Theorem 5.13). Such

a type system is strict in the sense of [van Bakel 2011], hence the intersections only appear on the

left hand-side of an arrow—not as independent types. This reflects the position of the promotion

!(−) in the linear logic translation of intuitionistic arrow𝐴→ 𝐵 = !𝐴 ⊸ 𝐵 [Girard 1987]. Strictness

is also needed to obtain a syntax-directed type system, as 𝜆-calculus does not have a syntactic

constructor corresponding to the introduction of an intersection type.

This line of thought can be extended to the untyped setting, by looking at categorified graph

models as categories of types. Indeed, the embedding 𝜄 : !𝐷 ×𝐷 ↩→ 𝐷 can be understood as a way of

defining ‘arrow types’ in 𝐷, just by letting ⟨𝑎1, . . . , 𝑎𝑘⟩ ⊸ 𝑎 := 𝜄 (⟨𝑎1, . . . , 𝑎𝑘⟩, 𝑎). The intersection
type constructor will be given again by the tensor product of !𝐷 . Standard intersection type systems

usually come equipped with a subtyping preorder ⪯, which in our setting becomes a category. Our
categorical subtyping is given by morphisms between elements of𝐷 , thus we prefer the notation→,

rather than ⪯. These morphisms are witnesses of the subtyping relation. Our approach gives then a

sort of operational subtyping: morphisms in the category of types 𝐷 specify which operations are

allowed on a list of resources. In our case, the only possible operations are given by permutations

and atomic morphisms, but one could consider a more general setting, as done in [Olimpieri 2021].

Our point of view follows a well-established tradition [Olimpieri 2020, 2021], that is rooted in De

Carvalho’s type theoretic presentation of relational semantics [de Carvalho 2007] and, ultimately,

in the pioneering work on filter models [Barendregt et al. 1983].

Definition 5.3. We define System 𝑅𝐷→, which is parametric on a categorified graph pre-model 𝐷 .

We shall keep the parameter 𝐷 implicit and just write 𝑅→.

(i) The objects of𝐷 are seen as intersection types. Given ⟨®𝑎, 𝑎⟩ ∈ !𝐷op×𝐷,we set ®𝑎 ⊸ 𝑎 = 𝜄 (⟨®𝑎, 𝑎⟩).
As usual, we assume that the operation⊸ is right-associative, e.g.𝑎 ⊸ 𝑏 ⊸ 𝑐 = 𝑎 ⊸ (𝑏 ⊸ 𝑐).
Given 𝑛 ∈ N, ⟨⟩𝑛 ⊸ 𝑎 stands for ⟨⟩ ⊸ · · · ⊸ ⟨⟩ ⊸ 𝑎 = ⟨⟩ ⊸ (· · · ⊸ (⟨⟩ ⊸ 𝑎) · · · ).

(ii) Subtyping in System 𝑅→ is given by morphisms in the appropriate category of types 𝐷 .

(iii) Finite lists of intersection types are called (type) environments and denoted by Γ,Δ. Formally,

type environments of length 𝑛 are objects of the category !𝐷𝑛
, the 𝑛-fold product of !𝐷 .

(iv) Since !𝐷 is monoidal, the category !𝐷𝑛
of type environments admits a tensor product:

⟨®𝑎1, . . . , ®𝑎𝑛⟩ ⊗ ⟨®𝑏1, . . . , ®𝑏𝑛⟩ = ⟨®𝑎1 ⊕ ®𝑏1, . . . , ®𝑎𝑛 ⊕ ®𝑏𝑛⟩

This tensor product inherits all the structure from ⊕, i.e., it is symmetric strict.
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Morphisms (the free construction):

𝑓 ∈ 𝐴(𝑜, 𝑜 ′)
𝑓 : 𝑜 → 𝑜 ′

⟨𝜎, ®𝑓 ⟩ : ®𝑎′ → ®𝑎 𝑓 : 𝑎 → 𝑎′

⟨𝜎, ®𝑓 ⟩ ⊸ 𝑓 : ( ®𝑎 ⊸ 𝑎) → (®𝑎′ ⊸ 𝑎′)
𝜎 ∈ 𝔖𝑘 𝑓1 : 𝑎1 → 𝑎′

𝜎 (1) · · · 𝑓𝑘 : 𝑎𝑘 → 𝑎′
𝜎 (𝑘 )

⟨𝜎, 𝑓1, . . . , 𝑓𝑘⟩ : ⟨𝑎1, . . . , 𝑎𝑘⟩ → ⟨𝑎′1, . . . , 𝑎′𝑘⟩

(a) Multigraph of Intersection Types 𝐺𝐴 .

Note: the last rule targets lists of types.

Derivations:

𝑓 : 𝑎′ → 𝑎
ax

𝑥1 : ⟨⟩, . . . , 𝑥𝑖 : ⟨𝑎′⟩, . . . , 𝑥𝑛 : ⟨⟩ ⊢ 𝑥𝑖 : 𝑎

Δ, 𝑥 : ®𝑎 ⊢ 𝑀 : 𝑎 𝑓 : ( ®𝑎 ⊸ 𝑎) → 𝑏
abs

Δ ⊢ 𝜆𝑥 .𝑀 : 𝑏

Γ0 ⊢ 𝑀 : ⟨𝑎1, . . . , 𝑎𝑘⟩ ⊸ 𝑎 (Γ𝑖 ⊢ 𝑁 : 𝑎𝑖 )𝑘𝑖=1 𝜂 : Δ→
⊗𝑘

𝑗=0 Γ𝑗
app

Δ ⊢ 𝑀𝑁 : 𝑎

(b) Derivations and Typing of System 𝑅𝐷→ .

Fig. 1. Type theoretic presentation of the semantics.

(v) A Derivation 𝜋 of System 𝑅→, in symbols 𝜋 ∈ 𝑅→, is constructed via the inference rules given
in Figure 1b (page 14). In case of ambiguity, we denote judgements in this system by ⊢CatSym.

(vi) Actions of morphisms on derivations are defined in Figures 2 and 3 (page 15).

We recall the type theoretic presentation of the graph model induced by the free algebra con-

struction on a small category 𝐴 (see Definition 3.8) for the functor ! −op ×− : Cat→ Cat already

presented in [Olimpieri 2021]. Let us denote by 𝐺𝐴 the multigraph where nodes are given by

elements of the set Ty𝐴, inductively defined by the grammar

Ty𝐴 ∋ 𝑎, 𝑏, 𝑐 ::= 𝑜 ∈ 𝐴 | ⟨𝑎1, . . . , 𝑎𝑘⟩ ⊸ 𝑎,

and arrows are inductively generated as shown in Figure 1a. We denote by𝐷𝐴 the free category over

𝐺𝐴, which we call the free category of intersection types over 𝐴 . Therefore we have ob(𝐷𝐴) = Ty𝐴 .
The category 𝐷𝐴 is the free algebra over 𝐴 for the endofunctor (!−)op × − : Cat → Cat (see

Definition 3.8). We denote by 𝑖𝐴 : 𝐴 ↩→ 𝐷𝐴 the canonical inclusion. We also have a canonical full

embedding 𝜄𝐴 : !𝐷
op

𝐴
× 𝐷𝐴 ↩→ 𝐷𝐴 defined by the map ⟨®𝑎, 𝑎⟩ ↦→ ®𝑎 ⊸ 𝑎.

Remark 5.4. (i) The rules of our system are induced by a fine-grained analysis of the 𝜆-terms

interpretations in CatSym. In contrast to what happens in standard intersection type systems,

type derivations of variables in an environment are not unique in the bicategorical setting.

In fact, a type derivation of a variable corresponds to a particular witness of subtyping.

(ii) Every derivation rule incorporates a subtyping inference. This differs from what happens in

the systems presented in [Olimpieri 2021], where the abstraction rule did not contain any

additional subtyping. As the models under consideration are not just the free categories of

intersection types, subtyping is needed also at the abstraction level now. We chose not to

separate the subtyping rule from the other rules in order to keep our system syntax-directed

and closer to the semantics.

By mimicking the free completion of a partial pair which is often used to generate a graph model

(see, e.g., [Berline 2000]), we show how to complete a partial (! −op ×−)-algebra by lifting it to an

appropriate algebra. We call the resulting algebra its completion.

Let us consider a partial (! −op ×−)-algebra 𝐴 𝐹←↪ 𝐻
𝐺
↩→ !𝐴op × 𝐴. We denote by 𝐺

𝐹,𝐺

𝐴
the

multigraph whose nodes are elements of Ty𝐴 and arrows are the ones from Figure 1a, plus a family

of invertible arrows:

e𝑥 : (𝑖𝐴 ◦ 𝐹 ) (𝑥) � (𝜄𝐴 ◦ (!𝑖op𝐴 × 𝑖𝐴) ◦𝐺) (𝑥),
for 𝑥 ∈ ob(𝐻 ), where we recall that 𝑖𝐴 : 𝐴 ↩→ 𝐷𝐴 and 𝜄𝐴 : !𝐷

op

𝐴
× 𝐷𝐴 ↩→ 𝐷𝐴 .
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(
𝑓 : 𝑎′ → 𝑎

⟨⟩, . . . , ⟨𝑎′⟩, . . . , ⟨⟩ ⊢ 𝑎

)
{𝑔 : 𝑏 → 𝑎′} =

𝑓 ◦ 𝑔
⟨⟩, . . . , ⟨𝑏⟩, . . . , ⟨⟩ ⊢ 𝑎

©­­«
𝜋
.
.
.

Δ, ®𝑎 ⊢ 𝑎 𝑓 : ( ®𝑎 ⊸ 𝑎) → 𝑏

Δ ⊢ 𝑏

ª®®¬ {𝜂} =

𝜋{𝜂 ⊕ ⟨1⟩}
.
.
.

Δ′, ®𝑎 ⊢ 𝑎 𝑓 : ( ®𝑎 ⊸ 𝑎) → 𝑏

Δ′ ⊢ ®𝑎 ⊸ 𝑎

©­­­«
𝜋1
.
.
.

Γ0 ⊢ ®𝑎 ⊸ 𝑎

( 𝜋𝑖
.
.
.

Γ𝑖 ⊢ 𝑎𝑖

)𝑘
𝑖=1 𝜃 : Δ→

⊗𝑘

𝑗=0 Γ𝑗

Δ ⊢ 𝑎

ª®®®¬ {𝜂} =

𝜋1
.
.
.

Γ0 ⊢ ®𝑎 ⊸ 𝑎

( 𝜋𝑖
.
.
.

Γ𝑖 ⊢ 𝑎𝑖

)𝑘
𝑖=1 𝜃 ◦ 𝜂

Δ′ ⊢ 𝑎
where ®𝑎 = ⟨𝑎1, . . . , 𝑎𝑘⟩ and 𝜂 : Δ′ → Δ.

Fig. 2. Right action on derivations.

[𝑔 : 𝑎 → 𝑏]
(

𝑓 : 𝑎′ → 𝑎

⟨⟩, . . . , ⟨𝑎′⟩, . . . , ⟨⟩ ⊢ 𝑎

)
=

𝑔 ◦ 𝑓 : 𝑎′ → 𝑏

⟨⟩, . . . , ⟨𝑎′⟩, . . . , ⟨⟩ ⊢ 𝑏

[𝑔 : 𝑎′ → 𝑏]
©­­«

𝜋
.
.
.

Δ, ®𝑎 ⊢ 𝑎 𝑓 : ( ®𝑎 ⊸ 𝑎) → 𝑎′

Δ ⊢ 𝑎

ª®®¬ =

𝜋
.
.
.

Δ, ®𝑎 ⊢ 𝑎 𝑔 ◦ 𝑓 : ( ®𝑎 ⊸ 𝑎) → 𝑏

Δ ⊢ 𝑏

[𝑔 : 𝑎 → 𝑏]
©­­­«

𝜋0
.
.
.

Γ0 ⊢ ®𝑎 ⊸ 𝑎

( 𝜋𝑖
.
.
.

Γ𝑖 ⊢ 𝑎𝑖

)𝑘
𝑖=1 𝜂 : Δ→

⊗𝑘

𝑗=0 Γ𝑗

Δ ⊢ 𝑎

ª®®®¬ =

[1 ⊸ 𝑔]𝜋0
.
.
.

Γ0 ⊢ ®𝑎 ⊸ 𝑏

( 𝜋𝑖
.
.
.

Γ𝑖 ⊢ 𝑎𝑖

)𝑘
𝑖=1 𝜂

Δ ⊢ 𝑏
where ®𝑎 = ⟨𝑎1, . . . , 𝑎𝑘⟩.

Fig. 3. Left action on derivations.

Definition 5.5 (Completion of Partial (!−op ×−)-Algebras). The completion of𝐴
𝐹←↪ 𝐻

𝐺
↩→ !𝐴op ×𝐴

is the category 𝐷
𝐹,𝐺

𝐴
defined as the categorical quotient of the free category over 𝐺

𝐹,𝐺

𝐴
by the

following coherence on morphisms:

𝐹 (𝑎) 𝐺 (𝑎) 𝐺 (𝑏)

𝐹 (𝑏)

e𝑎

𝐹 (𝑓 )

𝐺 (𝑓 )

e𝑏

for any 𝑓 : 𝑎 → 𝑏 in the category 𝐻 .

We remark that we have a canonical functor 𝜄𝐹,𝐺 : !(𝐷𝐹,𝐺 )op × (𝐷𝐹,𝐺 ) → 𝐷𝐹,𝐺
defined again by

the map ⟨®𝑎, 𝑎⟩ ↦→ ®𝑎 ⊸ 𝑎.

Definition 5.6. We construct some partial (! −op ×−)-algebras together with their completions.

(i) We observe that, given a small category𝐴, we have a canonical partial algebra over𝐴 defined

by 𝐴 ⊇ ∅ ⊆ !𝐴op ×𝐴. Then the completion of that pair is exactly 𝐷𝐴 .
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𝜋0
.
.
.

Γ0 ⊢ ®𝑏 ⊸ 𝑎

©­«
[𝑓𝑖 ]𝜋𝜎−1 (𝑖 )

.

.

.

Γ𝜎−1 (𝑖 ) ⊢ 𝑏𝑖

ª®¬
𝑘

𝑖=1
(1 ⊗ (𝜎−1)★) ◦ 𝜂

Δ ⊢ 𝑎

∼

[⟨𝜎, ®𝑓 ⟩ ⊸ 1]𝜋0
.
.
.

Γ0 ⊢ ®𝑎 ⊸ 𝑎

( 𝜋𝑖
.
.
.

Γ𝑖 ⊢ 𝑎𝑖

)𝑘
𝑖=1 𝜂

Δ ⊢ 𝑎

𝜋0{𝜃0}
.
.
.

Γ0 ⊢ ®𝑎 ⊸ 𝑎

©­«
𝜋𝑖 {𝜃𝑖 }

.

.

.

Γ𝑖 ⊢ 𝑎𝑖

ª®¬
𝑘

𝑖=1 𝜂 : Δ→
⊗𝑘

𝑗=0 Γ𝑗

Δ ⊢ 𝑎

∼

𝜋0
.
.
.

Γ′
0
⊢ ®𝑎 ⊸ 𝑎

( 𝜋𝑖
.
.
.

Γ′𝑖 ⊢ 𝑎𝑖

)𝑘
𝑖=1

(
⊗𝑘

𝑗=0 𝜃 𝑗 ) ◦ 𝜂
Δ ⊢ 𝑎

[𝑔]𝜋{1 ⊕ ⟨𝜎, ®𝑔⟩}
.
.
.

Δ, ®𝑎′ ⊢ 𝑎′ 𝑓 : ( ®𝑎 ⊸ 𝑎) → 𝑏

Δ ⊢ 𝑏

∼

𝜋
.
.
.

Δ, ®𝑎 ⊢ 𝑎 𝑓 ◦ (⟨𝜎, ®𝑔 ⟩ ⊸ 𝑔) : ( ®𝑎′ ⊸ 𝑎′) → 𝑏

Δ ⊢ 𝑏

where ⟨𝜎, 𝑓1, . . . , 𝑓𝑘⟩ : ®𝑎 = ⟨𝑎1, . . . , 𝑎𝑘⟩ → ®𝑏 = ⟨𝑏1, . . . , 𝑏𝑘⟩,
⟨𝜎, ®𝑔 ⟩ : ®𝑎′ → ®𝑎, 𝑔 : 𝑎 → 𝑎′ and 𝜃𝑖 : Γ𝑖 → Γ′𝑖 . For (𝜎−1)★, see Definition 4.8.

Fig. 4. Congruence on derivations.

(ii) Let 𝐴 = {∗}, then we have the following two full embeddings:

k+
𝐴
: 𝐴+ ↩→ 𝐴, ⟨⟨∗⟩, ∗⟩ ↦→ ∗, with 𝐴+ = {⟨⟨∗⟩, ∗⟩},

k∗
𝐴
: 𝐴∗ ↩→ 𝐴, ⟨⟨⟩, ∗⟩ ↦→ ∗, with 𝐴∗ = {⟨⟨⟩, ∗⟩}.

(iii) Given 𝑛 > 0, we consider the set [𝑛] = {1, . . . , 𝑛} equipped with its linear order structure.

We see [𝑛] as a posetal category. Now, consider the full subcategory of ![𝑛]op × [𝑛] induced
by the family [𝑛]+ = ⟨⟨𝑛 − (𝑖 − 1)⟩, 𝑖⟩𝑖∈[𝑛] . We define a functor k[𝑛] : [𝑛]+ ↩→ [𝑛] as follows:

k[𝑛] (⟨⟨𝑛 − (𝑖 − 1)⟩, 𝑖⟩) = 𝑖 .

By construction, if there exists a morphism ⟨⟨𝑛 − (𝑖 − 1)⟩, 𝑖⟩ → ⟨⟨𝑛 − ( 𝑗 − 1)⟩, 𝑗⟩ then 𝑖 ≤𝑛 𝑗 .
It is easy to verify that k[𝑛] is a full embedding.

(iv) We set 𝐷+ = 𝐷k+,in
!𝐴op×𝐴 , 𝐷∗ = 𝐷k∗,in

!𝐴op×𝐴 , 𝐷 [𝑛] = 𝐷k[𝑛] ,in
![𝑛]op×[𝑛] , and write 𝜄♠, with

♠ ∈ {+, ∗} ∪ N, for the respective algebra maps. Notice that 𝐷 [1] = 𝐷+.

Theorem 5.7. The functor 𝜄♠ : !(𝐷♠)op × (𝐷♠) → 𝐷♠ for ♠ ∈ {+, ∗} ∪ N is an equivalence of
categories.

Proof. Faithfulness is immediate by definition of 𝜄♠. Moreover 𝜄♠ is essentially surjective on

objects by construction, since each atomic type of 𝐷♠ is isomorphic to some arrow type. Fullness is

trickier and the proof consists of a fine-grained analysis of morphisms between arrow types. □

Remark 5.8. The categories 𝐷+ and 𝐷∗ are categorifications of extensional graph models living

in the relational semantics of 𝜆-calculus [Breuvart et al. 2018]. Intuitively, they are given by the

category 𝐷 of types, where we add isomorphisms between atomic types in 𝐴 and appropriate

arrow types. For instance, in 𝐷+ we obtain ∗ � 𝜄+ (⟨∗⟩, ∗) = ⟨∗⟩ ⊸ ∗, while in 𝐷∗ we have

∗ � 𝜄∗ (⟨⟩, ∗) = ⟨⟩ ⊸ ∗. In this way, every 𝜆-term which is typed with an atomic type can always

be seen as a “function” and—as a consequence—one obtains extensionality. The category 𝐷 [2] is a
categorification of Coppo-Dezani-Zacchi’s model, first appeared in [Coppo et al. 1987].
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Define a congruence on derivations ∼ ⊆ 𝑅→ ×𝑅→ as the least congruence generated by the rules

given in Figure 4. This congruence is the syntactic counterpart of the one generated by coends

in the composition of distributors—it can be seen as the congruence equating derivations up to

permutations that do not affect their computational information.

Notation. Let 𝜋 ∈ 𝑅→ be a derivation.

• The ∼-equivalence class of 𝜋 is denoted by 𝜋̃ = {𝜋 ′ ∈ 𝑅→ | 𝜋 ∼ 𝜋 ′} ∈ 𝑅→/∼.
• For a 𝜆-term𝑀 , an environment Γ and a type 𝑎, write 𝜋 ⊲Γ ⊢ 𝑀 : 𝑎 whenever 𝜋 is a derivation

of Γ ⊢ 𝑀 : 𝑎.

Example 5.9. Let 𝑘 ∈ N, 𝜎 ∈ 𝔖𝑘 and 𝜋 =

𝜋0
.
.
.

Γ0 ⊢ ⟨𝑎1, . . . , 𝑎𝑘⟩ ⊸ 𝑎

( 𝜋𝑖
.
.
.

Γ𝑖 ⊢ 𝑎𝑖

)𝑘
𝑖=1 𝜂

Δ ⊢ 𝑎
moreover, let 𝜂′ = (1 ⊗ (𝜎)★) ◦ 𝜂 and 𝜋 ′ =

𝜋0 [𝜎 ⊸ 𝑎]
.
.
.

Γ0 ⊢ ⟨𝑎𝜎 (1) , . . . , 𝑎𝜎 (𝑘 )⟩ ⊸ 𝑎

( 𝜋𝜎 (𝑖 )
.
.
.

Γ𝜎 (𝑖 ) ⊢ 𝑎𝜎 (𝑖 )

)𝑘
𝑖=1

𝜂′

Δ ⊢ 𝑎
then 𝜋 ∼ 𝜋 ′ by the first rule of Figure 4. In fact, writing 𝜋 ′

0
for 𝜋0 [𝜎 ⊸ 𝑎], we obtain 𝜋0 =

𝜋 ′
0
[𝜎−1 ⊸ 𝑎] . The two derivations have indeed the same computational meaning—they only differ

by performing the same permutation on inputs and on the list of types in the implication.

The congruence on type derivations is what ensures the possibility of having a natural isomor-

phism ⟦𝑀⟧®𝑥 � ⟦𝑁⟧®𝑥 , whenever𝑀 →𝛽 𝑁 .

Example 5.10. Given𝑀 = (𝜆𝑥.𝑥)𝑦 and 𝑁 = 𝑦, we have𝑀 →𝛽 𝑁 .

Consider 𝜋1 =

1

𝑥 : ⟨𝑎⟩ ⊢ 𝑥 : 𝑎 ⟨𝑓 ⟩ ⊸ 𝑔 : (⟨𝑎⟩ ⊸ 𝑎) → (⟨𝑐⟩ ⊸ 𝑏)
⊢ 𝜆𝑥 .𝑥 : ⟨𝑐⟩ ⊸ 𝑏

1

𝑦 : ⟨𝑐⟩ ⊢ 𝑦 : 𝑐 1

𝑦 : ⟨𝑐⟩ ⊢ (𝜆𝑥 .𝑥)𝑦 : 𝑏

and 𝜋2 =

𝑔 ◦ 𝑓
𝑥 : ⟨𝑐⟩ ⊢ 𝑥 : 𝑏 1

⊢ 𝜆𝑥 .𝑥 : ⟨𝑐⟩ ⊸ 𝑏

1

𝑦 : ⟨𝑐⟩ ⊢ 𝑦 : 𝑐 1

𝑦 : ⟨𝑐⟩ ⊢ (𝜆𝑥 .𝑥)𝑦 : 𝑏

Then, consider the following derivation of 𝑦, 𝜋3 :

𝑔 ◦ 𝑓
𝑦 : ⟨𝑐⟩ ⊢ 𝑦 : 𝑏

By congruence (Figure 4, second rule) we have that 𝜋1 ∼ 𝜋2. Indeed, we have that
⟦𝑀 →𝛽 𝑁⟧®𝑥 (𝜋1) = ⟦𝑀 →𝛽 𝑁⟧®𝑥 (𝜋2) = 𝜋3.

Left and right actions on derivations are preserved under congruence: [𝑓 ]𝜋̃=�[𝑓 ]𝜋 and 𝜋̃{𝜂}=�𝜋{𝜂}.
We are now able to define the intersection type distributors, that will be the syntactic presentation

of our bicategorical semantics.
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Definition 5.11. Let 𝑀 ∈ Λ𝑜 (𝑥1, . . . , 𝑥𝑛). Define the 𝑅→-intersection type distributor ( ITD, for
short) of𝑀 , written T®𝑥 (𝑀) : !𝐷𝑛 ↛ 𝐷, as follows:

(1) on objects:

T®𝑥 (𝑀) (Δ, 𝑎) = {𝜋̃ ∈ 𝑅→/∼| 𝜋 ⊲ Δ ⊢ 𝑀 : 𝑎}
(2) on morphisms:

T®𝑥 (𝑀) (𝑓 , 𝜂) : T®𝑥 (𝑀) (Δ, 𝑎) → T®𝑥 (𝑀) (Δ′, 𝑎′) 𝜋̃ ↦→ �[𝑓 ]𝜋{𝜂}
Definition 5.12. (i) Given a derivation 𝜋 ∈ 𝑅→, a 𝛽-redex of 𝜋 is a subderivation of 𝜋 of shape:

Γ0, ⟨𝑎1, . . . , 𝑎𝑘⟩ ⊢ 𝑎
Γ0 ⊢ ⟨𝑎1, . . . , 𝑎𝑘⟩ ⊸ 𝑎

.

.

.

(Γ𝑖 ⊢ 𝑎𝑖 )𝑘𝑖=1 𝜂 : Δ→
⊗𝑘

𝑖=0 Γ𝑖

Δ ⊢ 𝑎
(ii) Assume that 𝜋 ⊲ Δ ⊢ 𝑀 : 𝑎. We say that a redex 𝑅 of𝑀 is informative in 𝜋 if it is typed by a

redex of 𝜋.

(iii) A derivation 𝜋 is in 𝛽-normal form if it has no 𝛽-redexes as subderivations.

5.3 Intersection Type Distributors of Böhm Trees
We show that the bicategorical semantics previously introduced can be presented syntactically—up

to Seely equivalence (Proposition 4.9)—via intersection type distributors.

First, recall that 𝜇1 : !𝐷×· · ·×!𝐷 → !(𝐷⊔· · ·⊔𝐷) is a component of Seely’s equivalence (see p. 12),

thus 𝜇
1
: !𝐷 ⊗ · · · ⊗ !𝐷 ↛ !(𝐷& · · ·&𝐷) by Definition 4.6(i). Also, since CatSym is a full subcategory

of Dist, the interpretation of a 𝜆-term can be seen as a distributor ⟦𝑀⟧®𝑥 : !(𝐷 & · · · & 𝐷) ↛ 𝐷 .

Theorem 5.13. For all𝑀 ∈ Λ⊥, there is a natural isomorphism

itd𝑀®𝑥 : T®𝑥 (𝑀) � ⟦𝑀⟧®𝑥 ◦Dist 𝜇1.

Proof. By structural induction on𝑀 , via lengthy but straightforward coend manipulations. □

By Theorem 4.4 we also get a natural isomorphism

⟦𝑀 →𝛽 𝑁⟧®𝑥 ◦Dist 𝜇1 : ⟦𝑀⟧®𝑥 ◦Dist 𝜇1 � ⟦𝑁⟧®𝑥 ◦Dist 𝜇1
whenever𝑀 →𝛽 𝑁 . This straightforwardly induces an iso

T®𝑥 (𝑀 →𝛽 𝑁 ) : T®𝑥 (𝑀) � T®𝑥 (𝑁 ).
If 𝐷 is an extensional model, then we have analogous isomorphisms in the case that𝑀 →𝜂 𝑁 .

Now, note that the type assignment system generalizes to 𝜆⊥-terms without adding any rule

(thus, ⊥ is not typable). We also extend the notion of intersection type distributor to 𝜆⊥-terms in

the natural way, i.e. by setting T®𝑥 (⊥) = ∅!𝐷𝑛,𝐷 .

Lemma 5.14. Let𝑀, 𝑁 ∈ Λ⊥. If𝑀 ≤⊥ 𝑁 then ⟦𝑀⟧®𝑥 ⊆ ⟦𝑁⟧®𝑥 . Equivalently, T®𝑥 (𝑀) ⊆ T®𝑥 (𝑁 ).

Proof. By an easy induction on the structure of𝑀 . □

Let us consider ⟨A(𝑀), ≤⊥⟩ as a preorder category. By applying the preceding lemma, for every

𝑀 ∈ Λ𝑜 (𝑥1, . . . , 𝑥𝑛) there exists an evident functor

⟦−⟧®𝑥 : A(𝑀) → Dist(!(𝐷 & · · · & 𝐷), 𝐷),
𝑃 ↦→ ⟦𝑃⟧®𝑥 ,

𝑃 ≤⊥ 𝑄 ↦→ ⟦𝑃⟧®𝑥 ⊆ ⟦𝑄⟧®𝑥 .
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Definition 5.15. Let𝑀 ∈ Λ𝑜 (𝑥1, . . . , 𝑥𝑛).
(i) Since Dist has cocomplete hom-categories, we can define the interpretation of the Böhm tree

of𝑀 as the following filtered colimit:

⟦BT(𝑀)⟧®𝑥 = lim−−→
𝑃∈A (𝑀 )

⟦𝑃⟧®𝑥 .

(ii) We define the 𝑅→-intersection type distributor of a Böhm tree T®𝑥 (BT(𝑀)) : !𝐷𝑛 ↛ 𝐷 in the

following natural way.

(a) On objects: we set T®𝑥 (BT(𝑀)) (Δ, 𝑎) =
⋃

𝑃∈A (𝑀 ) T®𝑥 (𝑃) (Δ, 𝑎).
(b) On morphisms: for all 𝜂 : Δ′ → Δ, 𝑓 : 𝑎 → 𝑎′, we set

T®𝑥 (BT(𝑀)) (𝜂, 𝑓 ) (𝜋̃) = �[𝑓 ]𝜋{𝜂}.
Theorem 5.16. Let𝑀 ∈ Λ.We have a natural isomorphism ⟦BT(𝑀)⟧®𝑥 ◦Dist 𝜇1 � T®𝑥 (BT(𝑀)).
Proof. It follows from an inspection of the definitions and basic category theory, showing that

T®𝑥 (BT(𝑀)) is a presentation of the filtered colimit of the ITDs of the finite approximants of𝑀 . □

6 A SEMANTIC APPROXIMATION THEOREM
We now study the behavior of intersection type distributors under reduction (§6.1). We prove that

the reduction strategy contracting redexes of𝑀 typed in a derivation 𝜋 living in its interpretation is

strongly normalizing (Theorem 6.6). Moreover, we show that the normal form of 𝜋 uniquely identi-

fies an approximant 𝐴𝜋 ∈ A(𝑀) (§6.2). By combining these properties, we provide a combinatorial

proof of the fact that every categorified graph model satisfies an Approximation Theorem 6.13

stating that the interpretation of a 𝜆-term is isomorphic to the interpretation of its Böhm tree. These

results constitute a 2-dimensional generalization of [Breuvart et al. 2018; Bucciarelli et al. 2014].

6.1 Typed Reductions
The following technique originates in [Bucciarelli et al. 2014]. Consider a 𝜆-term𝑀 . Notice that a

subterm occurrence 𝑁 of𝑀 is uniquely identified by a single-hole context𝐶 [] satisfying𝑀 = 𝐶 [𝑁 ].
Definition 6.1. Let 𝜋 ∈ 𝑅→ be such that 𝜋̃ ∈ |T®𝑥 (𝑀) |.
(i) Define a measure s (𝜋) = 𝑛 if and only if the derivation 𝜋 contains exactly 𝑛 applications of

the rule (app).

(ii) The set tocc(𝜋) of subterm occurrences of𝑀 that are typed in 𝜋 is defined by induction on 𝜋 ,

splitting into cases depending on the last rule applied:

• (ax) tocc(𝜋) = {[]};
• (abs) tocc(𝜋) = {[]} ∪ {𝜆𝑥.𝐶 [] | 𝐶 [] ∈ tocc(𝜋 ′)}, where𝑀 = 𝜆𝑥 .𝑀 ′ and the derivation 𝜋 ′

is the premise of the rule;

• (app) tocc(𝜋) = {[]} ∪ {𝐶 []𝑀1 | 𝐶 [] ∈ tocc(𝜋0)} ∪ {𝑀0 (𝐶 []) | 𝐶 [] ∈
⋃𝑘

𝑖=1 tocc(𝜋𝑖 )},
where𝑀 = 𝑀0𝑀1, the derivation 𝜋0 is the premise corresponding to𝑀0, and 𝜋1, . . . , 𝜋𝑘 are

those corresponding to𝑀1 (if any).

(iii) We say that a subterm 𝑁 of𝑀 is typed in 𝜋 whenever𝑀 = 𝐶 [𝑁 ], for some 𝐶 [] ∈ tocc(𝑀).
Example 6.2. The redex II = (𝜆𝑥 .𝑥) (𝜆𝑥.𝑥) is not typed in the following derivation 𝜋 .

𝜋 =

𝑓 : 𝑎 → 𝑎′

𝑥 : ⟨⟨⟩ ⊸ 𝑎⟩ ⊢ 𝑥 : ⟨⟩ ⊸ 𝑎′

𝑥 : ⟨⟨⟩ ⊸ 𝑎⟩ ⊢ 𝑥 (II)
Thus, tocc(𝜋) = {[], [] (II)}.

The redex occurrences of 𝑀 that are typed in 𝜋 correspond to the informative redexes of 𝜋.

Therefore, 𝜋 is in normal form exactly when none of the redexes of𝑀 is typed in 𝜋.
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𝑥 : ⟨⟨𝑎, 𝑎⟩ ⊸ 𝑎⟩ ⊢ 𝑥 : ⟨𝑎, 𝑎⟩ ⊸ 𝑎

𝑦 : ⟨⟨⟩ ⊸ 𝑎⟩ ⊢ 𝑦 : ⟨⟩ ⊸ 𝑎

𝑦 : ⟨⟨⟩ ⊸ 𝑎⟩ ⊢ 𝑦𝑧 : 𝑎
𝑦 : ⟨⟨𝑎⟩ ⊸ 𝑎⟩ ⊢ 𝑦 : ⟨𝑎⟩ ⊸ 𝑎 𝑧 : ⟨𝑎⟩ ⊢ 𝑧 : 𝑎

𝑦 : ⟨⟨𝑎⟩ ⊸ 𝑎⟩, 𝑧 : ⟨𝑎⟩ ⊢ 𝑦𝑧 : 𝑎
𝑥 : ⟨⟨𝑎, 𝑎⟩ ⊸ 𝑎⟩, 𝑦 : ⟨⟨𝑎⟩ ⊸ 𝑎, ⟨⟩ ⊸ 𝑎⟩, 𝑧 : ⟨𝑎⟩ ⊢ 𝑥 (𝑦𝑧) : 𝑎

Fig. 5. Example of a normal derivation in 𝑅→.

Lemma 6.3 (Derivations of Approximants). Let 𝑃 ∈ A . If 𝜋̃ ∈ |T®𝑥 (𝑃) | then 𝜋 is a normal form.

Proof. Immediate, since 𝑃 does not contain any redex. □

Let 𝜋̃ ∈ T®𝑥 (𝑀) (Δ, 𝑎) for some ⟨Δ, 𝑎⟩ ∈ !𝐷 len( ®𝑥 ) × 𝐷. We say that 𝜋̃ is normalizable along 𝑀 if

there exists 𝑁 ∈ Λ such that𝑀 →→𝛽 𝑁 and T®𝑥 (𝑀 →→𝛽 𝑁 )Δ,𝑎 (𝜋̃) is a normal form. The unicity of

normal forms for typing derivations along a 𝜆-term𝑀 is guaranteed by the fact that the semantics

satisfies the diamond property (Theorem 4.5).

Proposition 6.4. Let𝑀, 𝑁 ∈ Λ𝑜 ( ®𝑥) and 𝜋̃ ∈ T®𝑥 (𝑀) (Δ, 𝑎). Assume that𝑀 →𝛽 𝑁 because a redex
occurrence 𝑅 in𝑀 is contracted.

(1) If 𝑅 is typed in 𝜋 then s

(
T®𝑥 (𝑀 →𝛽 𝑁 )Δ,𝑎 (𝜋̃)

)
< s (𝜋̃) ,

(2) Otherwise, we have T®𝑥 (𝑀 →𝛽 𝑁 )Δ,𝑎 (𝜋̃) = 𝜋̃ .

Proof. Both items are proved by induction on a derivation of𝑀 →𝛽 𝑁 . The proofs consist in

making explicit the iso T®𝑥 (𝑀 →𝛽 𝑁 ). Due to the structure of the free symmetric strict monoidal

completion, no duplication of subderivations is allowed. □

Definition 6.5. For𝑀 ∈ Λ𝑜 ( ®𝑥), define

nf (T®𝑥 (𝑀) (Δ, 𝑎)) = {𝜋̃ ∈ nf (𝑅→) | ∃𝑁 ∈ Λ . 𝑀 →→𝛽 𝑁 and 𝜋̃ ∈ ⟦𝑁⟧®𝑥 (Δ, 𝑎)}.

The previous construction naturally extends to a distributor that we shall denote by nf (T®𝑥 (𝑀)).

Notice that, by definition of normalization, 𝜋̃ ∈ nf (T®𝑥 (𝑀) (Δ, 𝑎)) whenever there exists a 𝜆-term
𝑁 such that𝑀 →→𝛽 𝑁 and 𝜋̃ ∈ T®𝑥 (𝑁 ) (Δ, 𝑎).

Theorem 6.6. The reduction strategy contracting typed redexes in type derivations along 𝑀 is
strongly normalizing.

Proof. By Proposition 6.4, the measure s (𝜋) strictly decreases when contracting a redex typed

in 𝜋 . Therefore the reduction must terminate after a finite amount of steps. □

Hence, normal forms along 𝑀 always exist for typing derivations and they are unique by

confluence. For 𝜋̃ ∈ |T®𝑥 (𝑀) | (=the web of T®𝑥 (𝑀), by Definition 4.6(ii)) we denote its normal form as

nf (𝜋̃)𝑀 . In what follows, we shall keep the parameter𝑀 implicit, writing just nf (𝜋̃). In particular,

nf (T®𝑥 (𝑀) (Δ, 𝑎)) = {nf (𝜋̃) ∈ 𝑅→ | 𝜋̃ ∈ ⟦𝑀⟧®𝑥 (Δ, 𝑎)}. (1)

Theorem 6.7. For𝑀 ∈ Λ𝑜 ( ®𝑥), there is a canonical natural isomorphism

Norm®𝑥 (𝑀) : T®𝑥 (𝑀) � nf (T®𝑥 (𝑀))

given by normalization 𝜋̃ ↦→ nf (𝜋̃).

Proof. The injectivity and naturality of this map follow from Theorems 4.4 and 4.5. □
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6.2 Reconstructing Approximants
Consider a derivation 𝜋 ⊲ Δ ⊢ 𝑀 : 𝑎. We have seen that not all subterms of 𝑀 need to be typed

in a subderivation of 𝜋 . Thus we might have 𝜋 ⊲ Δ ⊢ 𝑁 : 𝑎 also for 𝜆⊥-terms 𝑁 ≠ 𝑀 , as untyped

subterms of𝑀 can be replaced by anything (even ⊥) without affecting the derivation validity. We

are going to show that every derivation 𝜋 contains enough information to reconstruct the minimal

𝜆⊥-term 𝐴𝜋 ≤⊥ 𝑀 satisfying 𝜋 ⊲ Δ ⊢ 𝐴𝜋 : 𝑎.

Definition 6.8. Define a map 𝐴®𝑥− : 𝑅→ → Λ⊥ by induction on the structure of 𝜋 as follows:

• if 𝜋 is an axiom, then 𝐴®𝑥𝜋 = 𝑥𝑖 , where 𝑖 is the index of the only type appearing in the type

environment of 𝜋 ;

• if 𝜋 is an abstraction, then 𝐴®𝑥𝜋 = 𝜆𝑦.(𝐴®𝑥,𝑦
𝜋 ′ ), where 𝜋 ′ ∈ 𝑅→ is the unique premise of 𝜋 ∈ 𝑅→

and we can assume 𝑦 ∉ ®𝑥 (wlog, by 𝛼-conversion);

• if 𝜋 is an application, then 𝐴®𝑥𝜋 = 𝐴®𝑥𝜋0

(∨𝑘
𝑖=1𝐴

®𝑥
𝜋𝑖
) where 𝜋0 ∈ 𝑅→ and 𝜋1, . . . , 𝜋𝑘 ∈ 𝑅→, for

some 𝑘 ∈ N, are the premises of 𝜋 ∈ 𝑅→.
Note that in the last case, when 𝑘 = 0, we have

∨𝑘
𝑖=1𝐴

®𝑥
𝜋𝑖

= ⊥. This is a hidden base case.

Example 6.9. (i) Let 𝜋 =

𝑓 : 𝑎′ → 𝑎

𝑥 : ⟨⟨⟩ ⊸ 𝑎′⟩ ⊢ 𝑥 : ⟨⟩ ⊸ 𝑎

𝑥 : ⟨⟨⟩ ⊸ 𝑎′⟩ ⊢ 𝑥Ω : 𝑎

. We have tocc(𝜋) = {[], []Ω} and𝐴𝑥
𝜋 = 𝑥⊥.

(ii) Consider the derivation 𝜋 in Figure 5. Then tocc(𝜋) = {[], [] (𝑦𝑧), 𝑥 [], 𝑥 ( []𝑧), 𝑥 (𝑦 [])} and
the associated approximant is 𝐴

⟨𝑥,𝑦,𝑧⟩
𝜋 = 𝑥 (𝑦𝑧) since 𝑥 (𝑦⊥ ∨ 𝑦𝑧) = 𝑥 (𝑦𝑧).

Remark 6.10. By definition, we have𝐴®𝑥𝜋 = 𝐴®𝑥
𝜋 {𝜂} and𝐴

®𝑥
[ 𝑓 ]𝜋 = 𝐴®𝑥𝜋 . Also, 𝜋 ∼ 𝜋 ′ implies𝐴®𝑥𝜋 = 𝐴®𝑥

𝜋 ′ .

Thus, we can extend 𝐴®𝑥− to equivalence classes 𝜋̃ and write 𝐴®𝑥
𝜋̃
for the corresponding approximant.

Proposition 6.11. Let𝑀 ∈ Λ𝑜 ( ®𝑥) and 𝜋 ∈ 𝑅→ (𝑀).
(i) 𝜋 ∈ 𝑅→ (𝐴®𝑥𝜋 ) and 𝐴®𝑥𝜋 ≤⊥ 𝑀 .
(ii) If 𝜋 is a normal form then 𝐴®𝑥𝜋 ∈ A, whence 𝐴®𝑥𝜋 ∈ A(𝑀).

Proof. (i) By a straightforward induction on the structure of𝑀 .

(ii) By structural induction on𝑀 , using the fact that 𝜋 has no 𝛽-redexes. □

We prove a semantic analogue of Ehrhard and Regnier’s theorem [2006] stating that the normal

form of the Taylor expansion of a 𝜆-term coincide with the Taylor expansion of its Böhm tree.

Theorem 6.12 (Commutation Theorem). For all𝑀 ∈ Λ𝑜 ( ®𝑥),
nf (T®𝑥 (𝑀)) = T®𝑥 (BT(𝑀)) .

Proof. (⊆) Let 𝜋̃ ∈ nf (T®𝑥 (𝑀)) (Δ, 𝑎). By definition of normalization along 𝑀, there exist

𝜌 ∈ T®𝑥 (𝑀) (Δ, 𝑎) and 𝑁 ∈ Λ such that 𝜋̃ = nf (𝜌) and 𝜋̃ ∈ T®𝑥 (𝑁 ) (Δ, 𝑎) with 𝑀 →→𝛽 𝑁 . By

Proposition 6.11, we get 𝜋̃ ∈ T®𝑥 (𝐴®𝑥𝜋 ) and𝐴®𝑥𝜋 ≤⊥ 𝑁 is a 𝛽⊥-normal form. Thus we have𝐴®𝑥𝜋 ∈ A(𝑁 ),
so we conclude 𝜋̃ ∈ T®𝑥 (BT(𝑀)) (Δ, 𝑎).
(⊇) Let 𝜋̃ ∈ BT(𝑀) (Δ, 𝑎). By definition, there exists a 𝑃 ∈ A(𝑀) such that 𝜋̃ ∈ T®𝑥 (𝑃) (Δ, 𝑎).

By Lemma 6.3, such a 𝜋̃ is a normal form. From Lemma 5.14 and the definition of A(𝑀), we get
T®𝑥 (𝑃) ⊆ T®𝑥 (𝑁 ) for some 𝜆-term 𝑁 such that𝑀 →→𝛽 𝑁 . By Theorem 4.4, we conclude that there

exists 𝜌 ∈ T®𝑥 (𝑀) such that 𝜋̃ is the normal form of 𝜌. □

The following result is a generalization of the Approximation Theorem for relational graph

models [Breuvart et al. 2018] to categorified graph models.
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Theorem 6.13 (Bicategorical Approximation Theorem).

Let𝑀 ∈ Λ𝑜 ( ®𝑥).We have a natural isomorphism

appr®𝑥 (𝑀) : T®𝑥 (𝑀) � T®𝑥 (BT(𝑀)) .

Proof. It is sufficient to compose the isomorphisms obtained by Theorems 6.7 and 6.12. □

From the above Approximation Theorem it follows the sensibility of the bicategorical model.

Corollary 6.14. For all𝑀 ∈ Λ𝑜 ( ®𝑥), we have:

BT(𝑀) = ⊥ ⇐⇒ T®𝑥 (𝑀) � ∅!𝐷 ®𝑥 ,𝐷 .

Proof. (⇒) If BT(𝑀) = ⊥, then A(𝑀) = {⊥}. By the Approximation Theorem 6.13, we have

T®𝑥 (𝑀) � T®𝑥 ({⊥}) = ∅!𝐷 ®𝑥 ,𝐷 .
(⇐) Assume by contradiction that BT(𝑀) ≠ ⊥. Then, there is 𝑃 = 𝜆𝑦1 . . . 𝑦𝑚 .𝑥𝑃1 · · · 𝑃𝑘 ∈ A(𝑀).

Suppose that 𝑥 ∈ FV(𝑀), i.e. 𝑥 = 𝑥𝑖 for some 𝑖 (1 ≤ 𝑖 ≤ 𝑛), otherwise the argument can be easily

adapted. For every type 𝑎 = ⟨⟩𝑘 ⊸ 𝑏 with 𝑏 ∈ 𝐷 , we can construct the derivation 𝜋𝑎 =

1𝑎

𝑥1 : ⟨⟩, . . . , 𝑥𝑖 : ⟨𝑎⟩, . . . , 𝑥𝑛 : ⟨⟩, 𝑦1 : ⟨⟩, . . . , 𝑦𝑚 : ⟨⟩ ⊢ 𝑥𝑖 : 𝑎
𝑥1 : ⟨⟩, . . . , 𝑥𝑖 : ⟨𝑎⟩, . . . , 𝑥𝑛 : ⟨⟩, 𝑦1 : ⟨⟩, . . . , 𝑦𝑚 : ⟨⟩ ⊢ 𝑥𝑖𝑃1 · · · 𝑃𝑘 : 𝑏

𝑥1 : ⟨⟩, . . . , 𝑥𝑖 : ⟨𝑎⟩, . . . , 𝑥𝑛 : ⟨⟩ ⊢ 𝜆®𝑦.𝑥𝑖𝑃1 · · · 𝑃𝑘 : ⟨⟩𝑚 ⊸ 𝑏

By Theorem 6.13, we obtain 𝜋̃𝑎 ∈ T®𝑥 (𝑀). Contradiction. □

7 CHARACTERIZATION OF THE THEORY
In 1-categorical semantics, like the relational semantics or Scott’s continuous semantics [1976], the

fact that a model D satisfies the Approximation Theorem just allows to conclude that B ⊆Th(D).
For instance, since the relational interpretation of a 𝜆-term is given by the set of its typings (Γ, 𝑎),
and many derivations 𝜋 of Γ ⊢ 𝑀 : 𝑎 may exist, one cannot univocally reconstruct an 𝐴𝜋 ∈ A(𝑀).
On the contrary, categorified graph models are proof-relevant in the sense that the interpretation of

a 𝜆-term in this settings is given by the ‘collection’ of all its type derivations. We now show that this

additional information is sufficient to obtain the characterization of the 𝜆-theory associated with

the model as an easy corollary of the Bicategorical Approximation Theorem (see Corollary 7.4).

7.1 Categorified Graph Models Induce as Theory B
In order to define the theory of a model, we focus on isomorphisms that ‘behave well’ w.r.t.→𝛽 .

We say that a natural isomorphism 𝛾 : ⟦𝑀⟧®𝑥 � ⟦𝑁⟧®𝑥 is coherent w.r.t. 𝛽-normalization when

the induced natural isomorphism 𝛾 : T®𝑥 (𝑀) � T®𝑥 (𝑁 ) satisfies the following property: for all

𝜋̃ ∈ T®𝑥 (𝑀) (Δ, 𝑎) we have nf (𝜋̃) = nf (𝛾Δ,𝑎 (𝜋̃)) .

Definition 7.1. The non-extensional theory of a bicategorical model D in CatSym is defined by

Th(D) = {(𝑀, 𝑁 ) | 𝑀, 𝑁 ∈ Λ𝑜 ( ®𝑥) and 𝛾 : ⟦𝑀⟧®𝑥 � ⟦𝑁⟧®𝑥 with 𝛾 ∈ ISO𝛽

𝑀,𝑁
},

where ISO𝛽

𝑀,𝑁
is the set of natural isomorphisms ⟦𝑀⟧®𝑥 � ⟦𝑁⟧®𝑥 coherent w.r.t. 𝛽-normalization.

It is readily proved that Th(D) is a 𝜆-theory. We now show that all categorified graph models

have the same non-extensional theory, namely B. Note that the definition of theory induced by a

model depends on an appropriate choice of isomorphisms. This was not the case for the analogous
notion in the 1-categorical setting, since the only possible choice of isos in that case is the equality.
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Lemma 7.2. Let𝑀 ∈ Λ𝑜 (𝑥1, . . . , 𝑥𝑛) and 𝑃 ∈ A(𝑀). If 𝑃 ≠ ⊥ then there exists 𝜋̃ belonging to the
web |nf (T®𝑥 (𝑀)) | (see Definition 4.6(ii) and Equation (1)) such that 𝑃 = 𝐴®𝑥

𝜋̃
.

Proof. By structural induction on 𝑃 . Since 𝑃 ≠ ⊥, we must have 𝑃 = 𝜆𝑦1 . . . 𝑦𝑚 .𝑥𝑃1 · · · 𝑃𝑘 with

FV(𝑃𝑖 ) ⊆ ®𝑥, ®𝑦. Wlog, assume 𝑛 > 0 and 𝑥 = 𝑥1 ∈ ®𝑥 . By definition, 𝑀 →→𝛽 𝜆𝑦1 . . . 𝑦𝑚 .𝑥1𝑀1 · · ·𝑀𝑘

with 𝑃 𝑗 ∈ A(𝑀 𝑗 ), for all 𝑗 (1 ≤ 𝑗 ≤ 𝑘). By IH, for all such 𝑗 , 𝑃 𝑗 ≠ ⊥ entails the existence of

𝜋̃ 𝑗 ∈ nf (T®𝑥 (𝑀 𝑗 )) (Δ 𝑗 , 𝑎 𝑗 ) such that 𝑃 𝑗 = 𝑃
®𝑥, ®𝑦
𝜋̃ 𝑗
. Setting

𝜇 𝑗 =

{
⟨⟩, if 𝑃 𝑗 = ⊥,
⟨𝑎 𝑗 ⟩, else,

Γ𝑗 =

{
⟨⟩, if 𝑃 𝑗 = ⊥,
Δ 𝑗 , else,

and 𝑏 = 𝜇1 ⊸ · · · ⊸ 𝜇𝑘 ⊸ 𝑐 , with 𝑐 ∈ 𝐷 , it is easy to construct

𝜋̃ ′ ∈ nf (T®𝑥 (𝑥1𝑀1 · · ·𝑀𝑘 )) (⟨⟨𝑏⟩, ⟨⟩, . . . , ⟨⟩⟩ ⊗
(⊗𝑘

𝑗=1 Γ𝑗
)
, 𝑐)

and therefore, by applying 𝑘-times the rule (app), the derivation 𝜋̃ we are looking for. Indeed, by

construction, we conclude 𝜋̃ ∈ |nf (T®𝑥 (𝑀)) | and 𝐴𝜋 = 𝑃 . □

Theorem 7.3. T®𝑥 (𝑀) � T®𝑥 (𝑁 ) ⇐⇒ BT(𝑀) = BT(𝑁 ).
Proof. (⇒) Assume T®𝑥 (𝑀) � T®𝑥 (𝑁 ). By definition, this entails nf (T®𝑥 (𝑀)) = nf (T®𝑥 (𝑁 )).

Assume BT(𝑀) ≠ BT(𝑁 ) towards a contradiction. Say, there is 𝐴 ∈ A(𝑀) \ A(𝑁 ). By Lemma 7.2

there is 𝜋̃ ∈ |nf (T®𝑥 (𝑀)) | = |nf (T®𝑥 (𝑁 )) | such that 𝐴®𝑥
𝜋̃
= 𝑃 . By definition of normalization along 𝑁 ,

we have 𝜋̃ ∈ |T®𝑥 (𝑁 ′) | for some 𝑁 ′ such that 𝑁 →→𝛽 𝑁
′
. By Proposition 6.11 we obtain 𝑃 ≤⊥ 𝑁 ′,

from which it follows 𝑃 ∈ A(𝑁 ). Contradiction.
(⇐) AssumeBT(𝑀) = BT(𝑁 ). Then ⟦𝑀⟧®𝑥 � T®𝑥 (𝑀), by Theorem 5.13,

� T®𝑥 (BT(𝑀)), by Theorem 6.13,

= T®𝑥 (BT(𝑁 )), as A(𝑀) = A(𝑁 ),
� T®𝑥 (𝑁 ), by Theorem 6.13,

� ⟦𝑁⟧®𝑥 , by Theorem 5.13. □

Corollary 7.4. Th(D) = B.
Remark 7.5. The reader could be surprised by the prima facie paradoxical result of Corollary 7.4.

Our result works for arbitrary categorified graph models, while it is well-known that in the 1-

dimensional case no extensional model can have theory B, since B is not an extensional theory.

However, the 2-dimensional aspect of our semantics considerably refines the situation. At the

beginning of the section we restricted our attention to isomorphisms preserving 𝛽-normalization
of type derivations. It is easy to see that, if 𝐷 is extensional, the canonical natural isomorphism

⟦𝑀 →𝜂 𝑁⟧®𝑥 : ⟦𝑀⟧®𝑥 � ⟦𝑁⟧®𝑥
does not preserve 𝛽-normalization of type derivations. Indeed, take 𝐷 = 𝐷+, 𝑀 = 𝜆𝑥 .𝑦𝑥 and 𝑁 = 𝑦.

Now, consider 𝜋 =

e−1⟨∗⟩⊸∗ : ∗ → (⟨∗⟩ ⊸ ∗)

𝑦 : ⟨∗⟩ ⊢ 𝑦 : ⟨∗⟩ ⊸ ∗ 𝑥 : ⟨∗⟩ ⊢ 𝑥 : ∗
𝑦 : ⟨∗⟩, 𝑥 : ⟨∗⟩ ⊢ 𝑦𝑥 : ∗ e⟨∗⟩⊸∗ : (⟨∗⟩ ⊸ ∗) → ∗

𝑦 : ⟨∗⟩ ⊢ 𝜆𝑥.𝑦𝑥 : ∗
and 𝜋 ′ =

𝑦 : ⟨∗⟩ ⊢ 𝑦 : ∗
We have that T®𝑥 (𝑀 →𝜂 𝑁 ) (⟨∗⟩, ∗)(𝜋̃) = 𝜋̃ ′ . Clearly, there is no 𝛽-reduction chain that produces

nf (𝜋) = nf (𝜋 ′) so, by 𝜆-abstracting𝑦 on both sides, we get that the model distinguishes ⟦1⟧ and ⟦I⟧.
In fact, our choice of isomorphisms automatically discards the isos induced by extensionality.
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8 DECATEGORIFICATION OF THE SEMANTICS
In this section we show how one can decategorify

2
our results to derive consequences in the

1-dimensional setting where the relational models of 𝜆-calculus live [Bucciarelli et al. 2007]. We

start by defining the target category Polr (§8.1) of the decategorification pseudofunctor (§8.2), and

provide a type-theoretic description of the relational graph models living in Polr (cf. Definition 8.4).

We then prove that the Approximation Theorem, for those relational graph models arising from the

decategorification, follows directly from its bicategorical analogue (Cor. 8.14). We conclude that the

theory of the categorified graph model is included in the theory of its decategorification (Cor. 8.15).

8.1 The Category Polr

We shall work within the category Polr [Ehrhard 2012, 2016] of preorders and monotonic relations,

of which we recall the basic structure. Notice that the category Rel of sets and relations is a full

subcategory of Polr, considering sets as discrete preorders.

Definition 8.1. (i) Objects of Polr are preorders;

(ii) a morphism 𝑓 : X → Y from X = ⟨|X|, ≤X⟩ to Y = ⟨|Y|, ≤Y⟩ is a monotonic relation from

|X| to |Y|, i.e., a relation 𝑓 ⊆ |X|× |Y| such that ⟨𝑥,𝑦⟩ ∈ 𝑓 entails ⟨𝑥 ′, 𝑦′⟩ ∈ 𝑓 , for all 𝑥 ′ ≤X 𝑥
and 𝑦 ≤Y 𝑦′. Composition is given by relational composition.

(iii) In Polr the productX1&X2 is the disjoint union of sets |X1 |⊔ |X2 | with the preorder ≤X1 ⊔ ≤X2
defined as ⟨𝑖, 𝑥⟩ ≤X1&X2 ⟨ 𝑗, 𝑦⟩ whenever 𝑖 = 𝑗 and 𝑥 ≤X𝑖 𝑦.

(iv) The terminal object is ∅ with the empty order.

(v) Polr has a symmetric monoidal structure. The tensor X1 ⊗ X2 is the cartesian product of sets

with the product preorder. The endofunctor X ⊗ (−) admits a right adjoint (−) ⊸ Y defined

as follows: |X ⊸ Y| = |X| × |Y| and ⟨𝑥,𝑦⟩ ≤X⊸Y ⟨𝑥 ′, 𝑦′⟩ if 𝑥 ′ ≤X 𝑥 and 𝑦 ≤Y 𝑦′ .

The following remark is crucial to properly establish the decategorification.

Remark 8.2. The definitions above could be equivalently rephrased by taking the characteristic
function point of view, i.e. considering a monotonic relation 𝑓 : X → Y as a monotonic function

𝑓 : Xop × Y → {0, 1}.

The category Polr extends naturally to a bicategory by considering inclusions 𝑓 ⊆ 𝑔 as 2-cells.

The exponential modality. The exponential modality of Linear Logic is interpreted by exploit-

ing the free commutative monoid construction over a set. What happens here is again a direct

generalization of the well-known relational case, where the multiset construction is considered.

We denote byMf (𝑋 ) the free commutative monoid of finite multisets over a set 𝑋 . A finite

multiset 𝑎 over 𝑋 is denoted as an unordered list [𝑎1, . . . , 𝑎𝑘 ], possibly with repetitions. Given finite

multisets 𝑎 = [𝑎1, . . . , 𝑎𝑘 ], 𝑏 = [𝑏1, . . . , 𝑏𝑛] ∈ Mf (𝑋 ), their union is 𝑎 + 𝑏 = [𝑎1, . . . , 𝑎𝑘 , 𝑏1, . . . , 𝑏𝑛].
We now detail the action on objects of the comonadic endofunctor that gives the interpretation

of the ! modality.

Definition 8.3. (i) The endofunctor ! : Polr → Polr is given by !X = ⟨Mf ( |X|), ≤X⟩, where
[𝑥1, . . . , 𝑥𝑛] ≤!X [𝑥 ′1, . . . , 𝑥 ′𝑛′ ] holds if and only if 𝑛 = 𝑛′ and there exists 𝜎 ∈ 𝔖𝑛 such that

𝑥𝑖 ≤X 𝑥 ′𝜎 (𝑖 ) , for all 𝑖 (1 ≤ 𝑖 ≤ 𝑛).
(ii) We denote by MPolr the Kleisli category of the comonad defined in (i).

It is worth noting that the construction above strongly recalls the one considered in Section 4.2.

Such a construction can indeed be seen as the decategorification of the free monoidal completion,

as we will detail in the next subsection.

2
From the point of view of enriched category theory, we perform a change of base [Kelly 1982].
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Relational Graph Models and Their Type-Theoretic Presentation. In this section we extend the

notion of relational graph model introduced in [Breuvart et al. 2018] to the preordered setting.

Definition 8.4 (Relational graph pre-models). A relational graph pre-model consists of a preorder
U equipped with a monotonic injection 𝜄 : !Uop ×U ↩→U .

It is easy to see that a relational pre-graph model canonically induces a reflexive object in MPolr.

We call this object a relational graph model.

Notation 8.5. A relational graph modelU can be presented as a non-idempotent intersection

type system R≤ (see Fig. 6), depending on a preordered set X = ⟨|X|, ≤X⟩ of atoms (ground types).

The types over |X| correspond to the elements of |U|. We let 𝑎 ⊸ 𝑎 be another notation for 𝜄 (⟨𝑎, 𝑎⟩).
(i) In this context the “non-idempotent intersection” is assumed to be commutative, therefore it

is represented by finite multisets rather than ordered lists. The preorder ≤U associated with

U is obtained by lifting ≤X from atoms to multisets and to higher types as expected.

(ii) The elements of !U𝑛
are called (type) environments (of length 𝑛) and are denoted by Γ,Δ.

(iii) The tensor product of two type environments is defined by applying multiset union, denoted

by +, componentwise: ⟨𝑎1, . . . , 𝑎𝑛⟩ ⊗ ⟨𝑏1, . . . , 𝑏𝑛⟩ = ⟨𝑎1 + 𝑏1, . . . , 𝑎𝑛 + 𝑏𝑛⟩.
(iv) We write ⊢MPolr to denote judgments in the associated type assignment system R≤ (Figure 6b).

Remark 8.6. Figure 6a actually describes a family of reflexive objects
3 UX in MPolr, since U

is parametric over a preordered set X. The underlying set ofU is populated by non-idempotent

intersection types over the set |X| of atoms. As in the categorified setting of distributors, U is

given by a free algebra construction, which determines an inclusion of preorders !Uop ×U ⊆ U .

Definition 8.7. (i) The interpretation of a 𝜆-term 𝑀 ∈ Λ𝑜 (𝑥1, . . . , 𝑥𝑛) in a relational graph

modelU living in MPolr is given by a monotonic relation

⟦𝑀⟧MPolr

®𝑥 : !U𝑛 →U, ⟦𝑀⟧MPolr

®𝑥 (Δ, 𝑎) =
{
1, if Δ ⊢MPolr 𝑀 : 𝑎,

0, otherwise.

We also write (Δ, 𝑎) ∈ ⟦𝑀⟧MPolr

®𝑥 for ⟦𝑀⟧MPolr

®𝑥 (Δ, 𝑎) = 1.

(ii) The interpretation above is extended to approximants 𝑃 ∈ A in the obvious way, and to

Böhm trees by setting:

(Δ, 𝑎) ∈ ⟦BT(𝑀)⟧MPolr

®𝑥 ⇔ ∃𝑃 ∈ A(𝑀) . (Δ, 𝑎) ∈ ⟦𝑃⟧MPolr

®𝑥 .

We remark that, if X is discretely ordered by =, then the construction boils down to the standard

one performed in the context of relational semantics [de Carvalho 2007].

8.2 Decategorification Pseudofunctor
We want to define a pseudofunctor Dec : Dist → Polr. We now take the characteristic function

point of view on monotonic relations. The construction that we shall present corresponds to a

change of base in the sense of enriched category theory [Galal 2020; Laird 2017], passing from

Set-enriched distributors to {0, 1}-enriched distributors.

Definition 8.8. (i) The preorder collapse Dec(𝐴) of a small category 𝐴 is defined by setting

|Dec(𝐴) | = ob(𝐴) and 𝑎 ≤Dec(𝐴) 𝑏 whenever 𝐴(𝑎, 𝑏) ≠ ∅.

3
This construction has been already explicitly considered in the context of bang calculus [Guerrieri and Olimpieri 2021]. It

derives from the type theoretic presentation of the Scott semantics in [Ehrhard 2012].
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Types (for 𝑥 ∈ |X |):
TyX ∋ 𝑎 := 𝑥 | [𝑎1, . . . , 𝑎𝑘 ] ⊸ 𝑎

Free construction of ≤U depending on X:
𝑥 ≤X 𝑥 ′

𝑥 ≤U 𝑥 ′
𝑎′ ≤U 𝑎 𝑎 ≤U 𝑎′

(𝑎 ⊸ 𝑎) ≤U (𝑎′ ⊸ 𝑎′ )

𝜎 ∈ 𝔖𝑘 𝑎1 ≤U 𝑎′
𝜎 (1)

𝑘∈N. . . 𝑎𝑘 ≤U 𝑎′
𝜎 (𝑘 )

[𝑎1, . . . , 𝑎𝑘 ] ≤U [𝑎′1, . . . , 𝑎′𝑘 ]

(a) Graph of intersection types 𝐺X .

Derivation rules:

𝑎′ ≤U 𝑎

𝑥1 : [ ], . . . , 𝑥𝑖 : [𝑎′ ], . . . 𝑥𝑛 : [ ] ⊢ 𝑥𝑖 : 𝑎

Γ0 ⊢ 𝑀 : [𝑎1, . . . , 𝑎𝑘 ] ⊸ 𝑎 (Γ𝑖 ⊢ 𝑁 : 𝑎𝑖 )𝑖∈ [𝑘 ] Δ ≤U𝑛

⊗𝑘
𝑗=0 Γ𝑗

Δ ⊢ 𝑀𝑁 : 𝑎

Δ, 𝑥 : 𝑎 ⊢ 𝑀 : 𝑎 𝑎 ⊸ 𝑎 ≤U 𝑏

Δ ⊢ 𝜆𝑥.𝑀 : 𝑏

(b) Non-idempotent intersection type system R≤ .

Fig. 6. Type theoretic presentation of a relational graph model living in Polr.

(ii) Given small categories𝐴 and 𝐵, define a functorDec𝐴,𝐵 : Dist(𝐴, 𝐵) → Polr(Dec(𝐴),Dec(𝐵))
by setting, for all 𝐹 : 𝐴 ↛ 𝐵,

Dec𝐴,𝐵 (𝐹 ) = {⟨𝑎, 𝑏⟩ | ⟨𝑎, 𝑏⟩ ∈ |Dec(𝐴)op × Dec(𝐵) | ∧ 𝐹 (𝑎, 𝑏) ≠ ∅}.

The data above naturally define a pseudofunctor Dec : Dist→ Polr, called the decategorification
of Dist to Polr, which also preserves the linear logic structure [Galal 2020].

Proposition 8.9. Let 𝐴 ∈ Cat.We have an equivalence of categories D! : Dec(!𝐴) ≃ !(Dec(𝐴))
given by the map ⟨𝑎1, . . . , 𝑎𝑘⟩ ↦→ [𝑎1, . . . , 𝑎𝑘 ] .

We work modulo the equivalence above, so we identify Dec(!𝐴) with the multiset construction

over Dec(𝐴). Remark that this equivalence extends to !𝐷𝑛, with 𝑛 ∈ N, in the natural way.

We show that the decategorification of the free category of intersection types 𝐷𝐴 (as described

in Subsection 5.1) is exactly the free preorder on intersection typesUDec(𝐴) .

Lemma 8.10. Let 𝐷𝐴 be a categorified graph model. Then Dec(𝐷𝐴) = UDec(𝐴) is a relational graph
model living in MPolr.

Proof. By exploiting the fact that the decategorification pseudofunctor preserve the linear logic

structure. □

Remark 8.11. Note that, if 𝐴 is a set, we recover the standard construction of non-extensional

models used in the relational setting [de Carvalho 2007]. The decategorifications of 𝐷∗ and 𝐷+

correspond to two extensional models in MRel, studied in [Breuvart et al. 2018], which can be seen

as a relational counterpart of classical filter models of 𝜆-calculus.

Lemma 8.12. Let𝑀 ∈ Λ⊥.
(i) If Δ ⊢CatSym 𝑀 : 𝑎 then D! (Δ) ⊢MPolr 𝑀 : D! (𝑎).
(ii) Consider Δ ⊢CatSym 𝑀 : 𝑎, 𝜂 : Δ′ → Δ and 𝑓 : 𝑎 → 𝑎′. We have D! (Δ′) ⊢MPolr 𝑀 : D! (𝑎′).

Proof. Both items follow easily by induction on a derivation of Δ ⊢CatSym 𝑀 : 𝑎. □

Theorem 8.13. Let𝑀 ∈ Λ⊥, we have Dec(T®𝑥 (𝑀)) = ⟦𝑀⟧MPolr

®𝑥 .

Proof. It follows from the previous lemma. □

We show that the Approximation Theorem for UDec(𝐴) is a direct consequence of the result
above and of the Bicategorical Approximation Theorem 6.13.
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Corollary 8.14 (Approximation Theorem for MPolr).

For all𝑀 ∈ Λ𝑜 ( ®𝑥), we have ⟦𝑀⟧MPolr

®𝑥 = ⟦BT(𝑀)⟧MPolr

®𝑥 , i.e.

(Δ, 𝑎) ∈ ⟦𝑀⟧MPolr

®𝑥 ⇐⇒ ∃𝑃 ∈ A(𝑀) . (Δ, 𝑎) ∈ ⟦𝑃⟧MPolr

®𝑥 .

Proof. Corollary of Theorem 6.13 and Theorem 8.13. The central point of the proof is the remark

that, by Proposition 8.9, (Δ, 𝑎) = D! (Δ′, 𝑎′) for some context and type of the system 𝑅→ . Then,
one derives that (Δ, 𝑎) ∈ ⟦𝑀⟧MPolr

®𝑥 if and only if T®𝑥 (𝑀) (Δ′, 𝑎′) ≠ ∅. We can therefore conclude by

applying the bicategorical Approximation Theorem. □

Note that the theory of the reflexive object Dec(𝐷), for 𝐷 categorified graph model, is the

standard 1-categorical notion defined as Th(Dec(𝐷)) = {(𝑀, 𝑁 ) | ⟦𝑀⟧MPolr

®𝑥 = ⟦𝑁⟧MPolr

®𝑥 }.

Corollary 8.15. For all𝑀, 𝑁 ∈ Λ𝑜 ( ®𝑥), we have
T®𝑥 (𝑀) � T®𝑥 (𝑁 ) ⇒ ⟦𝑀⟧MPolr

®𝑥 = ⟦𝑁⟧MPolr

®𝑥 .

Therefore B = Th(𝐷) ⊆Th(Dec(𝐷)).

9 CONCLUSIONS
In this paper we have shown that the interpretation of a 𝜆-term in a pseudoreflexive object D
living in a cartesian closed bicategory of distributors carries more information than, say, the

Scott-continuous or the relational semantics. Indeed, from an element 𝜋̃ ∈ T®𝑥 (𝑀) it is possible
to reconstruct an approximant 𝐴 of𝑀 having nf (𝜋̃) in its interpretation and, in the specific case

under consideration, this property allows to characterize the theory of the model. We conclude

with some more speculative discussions about possible future developments.

9.1 Perspective I : Towards 2-Dimensional 𝜆-Theories
Giving a suitable categorical characterization of the isomorphisms we considered in Section 7 will

be the first step of our future investigations. In order to do so, it seems natural to start from Fiore

and Saville works [2019; 2020] on cartesian closed bicategories. One could consider the 𝜆-calculus

Λ⊥ (𝑋 ) corresponding to the free cartesian closed bicategory with pseudoreflexive object 𝐷 on

a set 𝑋 , where each hom-category has an initial object that is preserved by composition and by

the cartesian closed structure in an appropriate sense. We conjecture that the isomorphisms we

characterized syntactically in Section 7 correspond to the ones in the free cocompletion under
filtered colimits of Λ⊥ (𝑋 ) (𝐷𝑛, 𝐷). In this way one could define, in full generality, the free non-
extensional theory of a model as the one that arises from those appropriate structural isomorphisms.

For the extensional case we would proceed analogously, taking an extensional 𝐷 . In particular,

this means that an extensional bicategorical model will determine both free non-extensional and

extensional theories, that will not coincide. Besides these free constructions, one could consider

also other relevant classes of isomorphisms between interpretations. Some questions immediately

arise, which depend both on the choice of isos and on the particular model considered: can these

isos be characterized via appropriate structural isomorphisms of some sort? What is the equational

theory associated with those isomorphisms? Moreover, we will try to elaborate these ideas in a

2-dimensional extension of Hyland’s operadic approach to 𝜆-calculus [Hyland 2014, 2017].

9.2 Perspective II: Second Dimension and Extensionality
We will then study the possible extension of the method introduced in this paper to study the

extensional theory of the models 𝐷+, 𝐷 [𝑛] and 𝐷∗, individually introduced in Definition 5.6(iv), and

the relationship between these models and other constructions of extensional models introduced

in [Fiore et al. 2008; Galal 2020]. Of course, as an approximation theory one shall consider Lévy’s
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extensional Böhm trees, as in [Breuvart et al. 2018; Manzonetto and Ruoppolo 2014], or Nakajima

trees as done for Scott’sD∞ model [Hyland 1976]. We conjecture that our technique can be adapted

to prove that the extensional models such as 𝐷+ and 𝐷 [𝑛] do satisfy an approximation theorem

w.r.t. Lévy’s extensional approximants and that, as a corollary, one gets Th(D) = H+, whereH+
is the 𝜆-theory equating two 𝜆-terms having the same Böhm tree up to countably many finite

𝜂-expansions4. Our conjecture is motivated by analogous results available in the relational setting

[Breuvart et al. 2018]. In Section 7 we presented a direct proof of Th(D) = B, which constitute the

first characterization of the 𝜆-theory induced by a bicategorical model. In [Breuvart et al. 2018] a

relational graph model E having theory B is presented, thus, by Corollary 8.15 all bicategorical

models D having E as decategorification satisfy Th(D) ⊆ Th(E) = B. Since B ⊆ Th(D) is a
corollary of the Approximation Theorem, this gives an indirect proof ofTh(D) = B for thesemodels.

Now, in [Olimpieri 2021] the construction of the bicategory of distributors is more parametrized

and allows to obtain also Scott-continuous models by decategorification, and many theories of

continuous models are known (see [Berline 2000], for a survey). Since Th(D) ⊆ T is usually
5
the

difficult direction in proving Th(D) = T , we believe that these results can be transferred from the

categorical to the bicategorical setting using the decategorification and the above reasoning.

9.3 Perspective III: 2-Dimensional Semantics in Logical Form
Abramsky has introduced a logical presentation of denotational semantics induced by categories

of domains [Abramsky 1991]. Simple types are interpreted by propositional theories, which are

shown to be syntactic presentations of the continous semantics. In particular, Abramsky shows that

a propositional theory corresponds to an appropriate notion of domain prelocale. He shows that
there is a Stone duality between the interpretation of types as dcpos and the one via propositional
theories. Filter models and their type-theoretic presentation constitute an instance of this duality:

there is an order-reversing isomorphism between elements of these models and intersection types.

In future works, we shall investigate the categorification of Abramsky’s construction. The first

step would be to establish the proper categorification of the notion of dcpo and of domain prelocale

(as defined by Abramsky). For the former, a natural choice is to consider finitely accessible categories.

For the latter—domain prelocales—we will probably need some sort of pretopos. Karazeris’ work

[Karazeris 2001] on the categorical theory of domains could be very useful at this stage. A simple

type would then be seen as a categorified propositional theory (that is, a domain pretopos). Of course,

we do expect isomorphisms between theories and their spectra to be replaced with appropriate

adjoint equivalences. At this point, a conceptually interesting question arises: in order to exploit

the linear logic decomposition, we should consider propositional theories that are not (distributive)

lattices, contrary to what happens in Abramsky’s paper. This makes sense since intersection types

are not necessarily idempotent. We hope that this can be nicely expressed parametrically, thus

generalizing Olimpieri’s construction [Olimpieri 2021].
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4
It should not be confused with the maximal sensible 𝜆-theory H∗ that also collapses 𝜂-expansions having infinite depth.

In fact B ⊊ H+ ⊊ H∗ (see, e.g., [Intrigila et al. 2019]). We conjecture that H∗ is the theory generated by 𝐷∗ .
5
With the notable exception of T = H∗, where the inclusion Th(D) ⊆ H∗ follows directly from the maximality of H∗
among sensible theories.
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