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Université Paris 13, LIPN,

CNRS UMR 7030, France

giulio.manzonetto@lipn.fr

Giordano Favro
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Abstract

We propose an algebraization of classical and non-classical logics, based on factor varieties and decomposition
operators. In particular, we provide a new method for determining whether a propositional formula is a tautology
or a contradiction. This method can be automatized by defining a term rewriting system that enjoys confluence
and strong normalization. This also suggests an original notion of logical gate and circuit, where propositional
variables becomes logical gates and logical operations are implemented by substitution. Concerning formulas
with quantifiers, we present a simple algorithm based on factor varieties for reducing first-order classical logic to
equational logic. We achieve a completeness result for first-order classical logic without requiring any additional
structure.

Introduction

Algebraic logic investigates the connections between a logic and algebraic properties of its corresponding class of
algebras. The origin of modern algebraic logic goes back to Tarski’s 1935 paper [24], where he introduced the
Tarski-Lindenbaum algebra as a tool for establishing the correspondence between classical propositional logic and
Boolean algebras. In this context the tautologies coincide with those formulas equivalent to the truth value “true”.
Subsequently, a number of different propositional logics were algebraized in this way, the most important being
the intuitionistic logic and the multi-valued logics of Post and of  Lukasiewicz. The problem of formulating the
notion of an algebraizable logic in full generality has been addressed by Blok and Pigozzi in [3], where they showed
that, if a logic L is algebraizable, then there exists a unique quasi-variety K of algebras which coincides with the
equivalent algebraic semantics of L. This means that the consequence relation ⊢L over L and the equational
consequence relation |=K over K are interpretable in one another in a certain (strong) sense (see [3, Def. 2.8 and
Thm 2.15]).

The problem of algebraizing predicate logics is much more complicated because of the variable binding proper-
ties of the quantifiers. On the one hand, the algebraization of classical predicate logic led Tarski to the definition
of cylindric algebras [13] and Halmos to the notion of polyadic Boolean algebras [12]. In practice these algebras
are difficult to manipulate because they are endowed with operators representing the quantifiers in the algebraic
structure and this complicates their theory.

On the other hand, much work in computer science has been focused on reducing first-order logic to equational
logic and, more recently, to term rewriting systems. In [16] McKenzie proved that for every sentence Φ in first-
order classical logic there is an equation Φ′ in a suitable algebraic language such that Φ has non-trivial models
of a given cardinality κ exactly when Φ′ does. In his 1992 paper [5], Burris made a substantial advance by using
discriminator varieties [27]. A discriminator variety V is characterized by a quaternary term s that realizes the
switching function on any subdirectly irreducible member of V [6, Def. 7.3]:

s(a, b, c, d) =

{

c if a = b,
d otherwise.

Thanks to this switching function, Burris has shown that discriminator varieties have unitary unification, which
is at the basis of resolution theorem provers and of the Knuth-Bendix method for finding rewriting systems. He
was also able to combine McKenzie’s analysis of satisfiability with a standard reduction of Ψ1, . . . ,Ψn |= Φ to a
set of unsatisfiable sentences in prenex normal form. Indeed, given a formula Φ and a finite set T of formulas, one
can prove that T ⊢ Φ holds by showing T |= Φ which is, in turn, equivalent to showing that Σ := T ∪ {¬Φ} has
no models. In [5], Burris shows how to define a set E of equations in the equational logic of a given discriminator
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variety such that Σ has no models of cardinality greater than 1 exactly when E has no non-trivial models. To
show that E has no non-trivial models it is enough to derive the identity x = y from E. This approach is however
not applicable to propositional logic and the process of deriving x = y is not easily automatable because of the
complexity of the axioms in the system.

In this paper we provide a new method for extracting the logical content of a formula: in particular, it allows
to determine whether a propositional formula is a tautology or a contradiction. This method is general enough to
be applied to any finite multi-valued matrix logic, and we feel that it can be extended to infinite logics, like fuzzy
logic [11] and probabilistic logic [19]. In our approach, rather than using the switching function of discriminator
varieties, we use the decomposition operators characterizing the factor varieties. Indeed, the very definition of
the switching function s suggests a natural move. One could meaningfully wonder what happens if the set {t, f}
of classical truth values is substituted by an arbitrary set V = {v1, . . . , vp} and the role of the equality in the
definition of s is played by a generic (multi-valued) relation R : An → V .

In other words, we could define an R-factor function on a set A as a function fR : An+p → A such that:

∀b1...bp.fR (a1, . . . , an, b1, . . . , bp) = bi iff R(a1, . . . , an)=vi.

These R-factor functions are at the core of our definition of factor variety, which generalizes not only the notion of
discriminator variety, but also the one of factor variety as it was introduced in [22]. Indeed, in that paper Salibra
et al. only consider the R-factor function corresponding to an arbitrary, but fixed, binary relation R.

Given a relational type ν, we define a factor variety as a variety V having an R-factor term fR(x1, . . . , xn, ξ1, . . . , ξp)
for each n-ary relation symbol R ∈ ν, that is a term such that the p-ary function fA

R (~a,−1, . . . ,−p) is a decomposi-
tion operation (see Definition 2) for all A ∈ V and all ~a ∈ An. The factor variety V is generated by the class Vfa of
all factor algebras A, that are algebras such that, for every R ∈ ν, the decomposition operator fA

R (~a,−1, . . . ,−p)
is trivial (i.e. it is an R-factor function on A). The class Vfa is in bijective correspondence with the class of (proper)
ν-structures. Once associated a factor algebra with every structure, we translate the formula Φ into an algebraic
term Φ∗. Under this translation, each truth value vi becomes a fresh variable ξi, each relation R is sent to the
corresponding R-factor term and logical connectives are translated via suitable substitutions. If vp represents the
truth value “true”, we then characterize the logical truth of a universal formula Φ through the equation Φ∗ = ξp
in the factor variety.

Concerning formulas with quantifiers, we present a new method, simplifying Burris-McKenzie’s one, for reduc-
ing first-order classical logic to equational logic. This approach allows to achieve a completeness result without
requiring any additional structure. However, it cannot be generalized further since it relies on specific properties
of classical logic, namely the fact that all formulas can be written in prenex normal form, Skolemization and
logical completeness.

Since the axioms of a factor variety are very simple, the process of checking whether Φ∗ = ξp holds in such
a variety can be automatized in the propositional case by defining a confluent and terminating term rewriting
system. The problem of showing Φ∗ = ξp is then reduced to the problem of checking whether the normal form of
Φ∗ is ξp. The analysis of the computational complexity of this system is left for future works.

Our algebraic framework also suggests a new notion of logic circuits, that we call factor circuits and are
based on components that we call D-gates. Rather than implementing a logical connective, a D-gate represents
a decomposition operator of some algebra A belonging to a factor variety. A propositional D-gate has a selector
switch and p input ports. When the selector switch is connected to a propositional variable P , the D-gate
implements the operator fP and its input ports correspond to the variables ~ξ in fP (~ξ). So, the wires that are
used for connecting D-gates do not carry signals representing truth values, but rather elements of the algebra A.

We believe that these applications are promising as McKenzie’s and Burris’s works appear to have been largely
overlooked by the communities working on proof assistants. This might be due to the fact that it is not readily
apparent how to manipulate the axioms of a discriminator variety. In future works, we plan to investigate unitary
unification for factor varieties and extensions of our rewriting system to relational types. It would be interesting
to combine our rewriting system with the results of Section 7 for reducing first-order logic inference to a rewriting
process. The integration of our methods in theorem provers also deserves to be investigated.

Outline. Section 1 contains some preliminary notions of universal algebra and logics. In Section 2 we discuss
classical logic as a motivating example. Factor algebras and factor varieties are introduced in Section 3. Section 4
is devoted to present our algebraization of multi-valued logics. In Section 5 we show how this method can be
automatized via a suitable term rewriting system. In Section 6 we introduce the factor circuits and we compare
them with the usual boolean circuits. Finally, in Section 7 we explain the new algorithm for reducing first-order
classical logic to equational logic, and we prove a completeness theorem.

1 Preliminaries

We refer to [6] for universal algebra and to [3] for logics.
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1.1 Algebras, Varieties and Factor Congruences

Let ν be a relational type, that is a family of function/relation symbols with arity. We denote by νn the set of
symbols in ν having arity n. Function symbols will be denoted by lower case letters f, g, h, while relation symbols
by capital letters R,R1, R2, . . . Relation symbols of arity 0 are called propositional variables and are denoted by
P,Q. We write f ∈ ν (resp. R ∈ ν) to indicate that f is a function symbol (resp. R is a relation symbol) of type
ν.

An algebraic type is a relational type without relation symbols. If τ is an algebraic type, an algebra A of type
τ is called a τ -algebra. Con(A) is the lattice of all congruences on A. The trivial congruences ∆ = {(x, x) : x ∈ A}
and ∇ = A × A constitute the bottom and the top elements of Con(A), respectively. Given a, b ∈ A, we write
ϑ(a, b) for the principal congruence generated by a and b, that is for the smallest congruence relating them.

Definition 1. A family (ϕi)i∈I of congruences on A is a family of complementary factor congruences if the
function

f : A →
∏

i∈I(A/ϕi)

defined by f(a) = (a/ϕi)i∈I is an isomorphism. When |I | = 2, we say that (ϕ1, ϕ2) is a pair of complementary
factor congruences.

A factor congruence is any congruence which belongs to a family of complementary factor congruences.

Proposition 1. A family (ϕi)i∈I of congruences on A is a family of complementary factor congruences exactly
when:

1.
⋂

i∈I ϕi = ∆;

2. ∀a ∈ AI , there is u ∈ A such that ai ϕi u, for all i ∈ I.

Therefore (ϕ1, ϕ2) is a pair of complementary factor congruences if and only if ϕ1 ∩ ϕ2 = ∆ and ϕ1 ◦ ϕ2 = ∇.
The pair (∆,∇) corresponds to the product A ∼= A×1, where 1 is the singleton algebra; obviously 1 ∼= A/∇ and
A ∼= A/∆. The set of factor congruences of A is not, in general, a sublattice of Con(A).

We say that an algebra A is: (i) subdirectly irreducible if the lattice Con(A) has a unique atom; (ii) simple if
Con(A) = {∆,∇}; (iii) directly indecomposable if it admits only the two trivial factor congruences. Any simple
algebra is subdirectly irreducible and any subdirectly irreducible algebra is directly indecomposable.

A class V of τ -algebras is a variety if it is closed under subalgebras, direct product and homomorphic images.
By Birkhoff theorem a class of algebras is variety if and only if it is an equational class.

Factor congruences can be characterized in terms of certain algebra homomorphisms called decomposition
operators and acting on sequences (see [17, Def. 4.32] for more details).

Given a set A and a set of indices I we define an I-sequence ~x on A as a function ~x : I → A. For every index
i ∈ I and element a ∈ A we denote by ~x[a/i] the I-sequence which coincides with ~x, except on i, where it takes
the value a. Given a ∈ A we let aI denote the constant sequence taking value a for all indices i ∈ I .

Definition 2. A decomposition operator on an algebra A is a function f : AI → A satisfying the following
conditions:

(D1) f(aI) = a, for all a ∈ A;

(D2) f(f(aij)j∈I)i∈I = f(aii)i∈I;

(D3) f is an algebra homomorphism from AI to A.

If I is finite, the axioms (D1)-(D3) can be equationally expressed.
There is a bijective correspondence between families of complementary factor congruences and decomposition

operators, and thus, between decomposition operators and factorizations.

Proposition 2. Any decomposition operator f : AI → A on an algebra A induces a family of complementary
factor congruences (ϕi)i∈I where each ϕi ⊆ A× A is defined by:

a ϕi b if and only if f(aI [b/i]) = a.

Conversely, any family (ϕi)i∈I of complementary factor congruences induces a decomposition operator f on A:

f(~x) = u if and only if xi ϕi u, for all i ∈ I.

Indeed, it is possible to prove that such an element u is unique.
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1.2 Matrix Logics

A matrix logic L is defined by specifying the logical connectives, the set of truth values, among which there is a
“designated value” representing the traditional truth value “verum”, and the truth functions that interpret the
logical connectives.

We start by taking an algebraic type τ that represents the set of logical connectives together with their arity.

Definition 3. A logical τ -matrix is a pair (V, t) where V is a finite τ -algebra and t is an element of V .

When τ is clear from the context, we just speak of a logical matrix. The elements of the universe V are called
truth values and are denoted by v1, . . . , vp, while t is called the designated element.

We write Pvar for the set of propositional variables. Propositional formulas φ of type τ are defined by induction
as follows:

φ, ψ ::= P | o(φ1, . . . , φn) where P ∈ Pvar and o ∈ τn.

A truth assignment is any function I : Pvar → V . Given a propositional formula φ, its interpretation in V w.r.t.
I is the element JφKI inductively defined by (for P ∈ Pvar, o ∈ τn):

1. JP KI = I(P );

2. Jo(φ1, . . . , φn)KI = oV(Jφ1K
I , . . . , JφnKI).

We say that a propositional formula φ is a tautology (resp. a contradiction) whenever JφKI = t (resp. JφKI 6= t)
for all truth assignments I.

Definition 4. The propositional matrix logic L induced by a logical τ -matrix (V, t) is the logic whose semantics
is defined as follows: ψ1, . . . , ψn |=L φ if and only if, for every truth assignment I, JφKI = t whenever JψiK

I = t

for all i.

Example 1. We provide some examples of matrix logics.

1. Classical Logic C. The type of logical connectives is τ = {∧,∨,¬, f, t}, the logical matrix is (2, t) where
2 is the two elements boolean algebra of truth values f, t and t is the designated element. As usual, we consider
f < t.

2. The n-valued logics under consideration ( Lukasiewicz, Gödel and Post Logics) have a totally ordered set
0 < 1

n−1
< 2

n−1
< · · · < n−2

n−1
< 1 of truth values, 1 as designated element, and join and meet are defined by

a ∨ b = max{a, b} and a ∧ b = min{a, b}. These logics only differ for the definition of negation and implication,
which is not present in Post Logic.

•  Lukasiewicz Logic L–n:
¬a = 1 − a; a→ b = min(1, 1 − a+ b).

• Gödel Logic Gn:

a→ b =

{

1 if a ≤ b

b if a > b
¬a =

{

1 if a = 0

0 if a 6= 0.

• Post Logic Pn:

¬a =

{

a− 1
n−1

if a 6= 0

1 if a = 0.

The n-valued Gödel logics are superintuitionistic logics, which means they are logics between intuitionistic
and classical logics. Superintuitionistic logics form a complete lattice whose unique coatom is the 3-valued Gödel
Logic G3. As shown by Gödel in [10], the intuitionistic logic is not definable by a finite logical matrix.

Quantified Matrix Logics. In the rest of the section, we consider fixed a countably infinite set Var of
individual variables (that will be denoted by x, y, z, w), an algebraic type τ of logical connectives, a logical τ -
matrix (V, t) and a relational type ν containing both function and relation symbols with arity.

Terms of type ν, or ν-terms, are defined as usual from individual variables in Var and function symbols in ν.
The set of all ν-terms will be denoted by Tν and its elements by t, t1, t2, . . .

Well formed formulas are defined by the following grammar, where R ∈ νm is a relation symbol, o ∈ τn is a
logical connective and t1, . . . , tm are ν-terms:

Φ,Ψ ::= R(t1, . . . , tm) | o(Φ1, . . . ,Φn) | ∀x.Φ | ∃x.Φ

We say that a formula Φ is: (i) a sentence if it has no free variables; (ii) open if it is quantifier-free; (iii) in prenex
form if it has the shape Q1x1 . . . Qnxn.Ψ where Qi ∈ {∀,∃} and Ψ is an open formula (called the matrix of Φ);
(iv) universal if it is in prenex form and all its quantifiers Qi are universal.

Definition 5. A ν-structure S on V is given by (S, gS , RS)g,R∈ν where S is a set, gS : Sk → S is a k-ary
operation for any function symbol g ∈ νk and RS : Sn → V is a function for any relation symbol R ∈ νn. We say
that S is proper whenever |S| > 1.
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We let Str
∗
ν,V be the class of all proper ν-structures on V .

Given a ν-structure S on V as above, an environment is a function ρ : Var → S. The interpretation JtKSρ of a
term t is defined as usual. To interpret the quantifiers we assume the set V of truth values to be a finite lattice,
whose top element is the designated element t. The interpretation of a formula Φ in S w.r.t. ρ is then defined
inductively as follows (for R ∈ νm, ~t ∈ T

m
ν and o ∈ τn):

1. JR(t1, . . . , tm)KSρ = RS(Jt1K
S
ρ , . . . , JtmKSρ );

2. Jo(Φ1, . . . ,Φn)KSρ = oV(JΦ1K
S
ρ , . . . , JΦnKSρ );

3. J∀x.ΦKSρ =
∧

a∈SJΦKρ[a/x];

4. J∃x.ΦKSρ =
∨

a∈SJΦKρ[a/x].

We write S |=ρ Φ whenever JΦKSρ = t. We say that a formula Φ is a logical truth if S |=ρ Φ for every structure S
and environment ρ.

A class S of ν-structures is called universal if it can be axiomatized by universal formulas.

Definition 6. The quantified matrix logic QL, induced by a logical τ -matrix (V, t) and a relational type ν, is
the logic whose semantics is defined as: Ψ1, . . . ,Ψn |=QL Φ if and only if, for every structure S and environment
ρ, JΦKSρ = t whenever JΨkKSρ = t for all k.

The propositional translation of a formula Φ is the propositional formula Φp defined as:

• R(t1, . . . , tm)p = PR, where PR ∈ Pvar;

• o(Φ1, . . . ,Φn)p = o(Φp
1 , . . . ,Φ

p
n);

• (∀x.Φ)p = (∃x.Φ)p = Φp.

In classical logic with equality, there exists an equality symbol which is propositionally translated by setting
(t1 = t2)p = t.

Lemma 1. A formula Φ is true in all singleton structures if and only if its propositional translation Φp is a
tautology.

Proof. Let S be a structure over {s}, ρ : Var → {s} be its unique environment and I : Pvar → V be a truth
assignment such that I(PR) = vi if and only if RS(s, . . . , s) = vi. It is possible to prove that JΦKSρ = JΦpKI by
induction on the complexity of Φ.

2 The Motivating Example

In the following sections we provide a new method for extracting the logical content of a propositional formula φ
and determine whether φ is a tautology or a contradiction.

As a motivating example, we consider the classical logic C as defined in Example 1.1. Our approach consists
of two steps.

Step 1. The first step consists in defining a translation (·)∗ sending propositional formulas into algebraic
terms. Under this translation, the truth values f, t become new algebraic variables ξf , ξt. A propositional variable
P becomes a binary operator P (−,−). A propositional formulas φ is translated inductively into an algebraic term
φ∗ on the variables ξf , ξt. To simplify the notation, we will write φ∗(t0, t1) for the substitution φ∗{t0/ξf , t1/ξt}.

P ∗ = P (ξf , ξt);
(¬φ)∗ = φ∗(ξ¬f , ξ¬t) = φ∗(ξt, ξf);

(φ ∧ ψ)∗ = ψ∗(φ∗(ξf∧f , ξf∧t), φ
∗(ξt∧f , ξt∧t));

= ψ∗(φ∗(ξf , ξf), φ
∗(ξf , ξt));

(φ ∨ ψ)∗ = ψ∗(φ∗(ξf∨f , ξf∨t), φ
∗(ξt∨f , ξt∨t));

= ψ∗(φ∗(ξf , ξt), φ
∗(ξt, ξt));

(φ→ ψ)∗ = (¬φ ∨ ψ)∗ = ψ∗(φ∗(ξt, ξf), φ
∗(ξt, ξt)).

Connectives are therefore implemented through substitutions and Boolean operations on the indices of ξf , ξt. The
above translation determines a congruence ∼∗ on the set of propositional formulas by setting φ ∼∗ ψ if and only
if φ∗ = ψ∗. For instance, we have ¬¬φ ∼∗ φ and (φ1 ∨ φ2) ∨ φ3 ∼∗ φ1 ∨ (φ2 ∨ φ3), but φ1 ∨ φ2 6∼∗ φ2 ∨ φ1. This
defines a non-commutative intermediate logic Cint which is strictly weaker than classical logic.

For example, we have (¬P ∨ P )∗ = P (P (ξt, ξf), P (ξt, ξt)) and (P ∨ ¬P )∗ = P (P (ξt, ξt), P (ξf , ξt)), hence ¬P ∨
P 6∼∗ P ∨ ¬P .

Step 2. To retrieve classical logic, we need to give each P the operational behavior of a binary decomposition
operator:

(D1) P (x, x) = x;
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(D2) P (P (x, y), P (w, z)) = P (x, z);

(D3) P (Q(x, y),Q(w, z)) = Q(P (x,w), P (y, z)), for every propositional variable Q ∈ Pvar.

Both truth values and propositional variables, that are static objects in the logic C, become dynamic entities after
the translation: indeed variables ξf , ξt can receive substitutions and operators P (−,−) induce decompositions. We
prove that the formula φ is a tautology (resp. a contradiction) if and only if φ∗ = ξt (resp. φ∗ = ξf) is provable
using the axioms (D1)-(D3) above, see Corollary 1.

For example, the formula ¬P ∨ P is a tautology since

(¬P ∨ P )∗ = P (P (ξt, ξf), P (ξt, ξt)) =D2 P (ξt, ξt) =D1 ξt.

In Section 5, we give this process a computational flavor by showing that, by orienting the equations (D1)-
(D3) from left to right, we obtain a confluent term rewriting system. Moreover, by well-ordering the propositional
variables we can prevent (D3) from looping and ensure termination. This approach also suggests a new notion of
circuit, described in Section 6, which is based on components that we call “decomposition gates” and behave like
the decomposition operators of an algebra in a factor variety.

The translation above can be also generalized to first-order formulas by transforming an n-ary relation symbol
R into an operator R(−1, . . . ,−n+2) of arity n + 2 (since there are two truth values), which is a decomposition
operator in the last two coordinates. Open formulas can be therefore inductively translated, as in Step 1, into
algebraic terms on the variables Var ∪ {ξf , ξt}, assuming the following translation of atomic formulas:

R(t1, . . . , tn)∗ = R(t1, . . . , tn, ξf , ξt).

Such a translation provides a bijective correspondence between first-order theories axiomatized by universal sen-
tences without equality and varieties of factor algebras axiomatized by identities such as Φ∗ = ξt. In presence
of equality, the situation becomes more subtle. Intuitively, the problem is that factor algebras can only capture
correctly proper structures. In other words, a formula like ∀x∃y.¬(x = y), which is true in all proper structures,
but fails in any singleton structure, will be seen as a logical truth in any factor algebra. Hence, to see whether the
formula Φ is actually a logical truth, one also need to verify that its propositional translation Φp is a tautology
and apply Lemma 1.

3 Factor Algebras and Factor Varieties

In this section we are going to introduce factor algebras and factor varieties. We consider fixed a relational type
ν and a logical τ -matrix (V, t) where V = {v1, . . . , vp}. We write ν̂ for the smallest algebraic type containing: a
function symbol g ∈ ν̂k for each function symbol g ∈ νk; a function symbol fR ∈ ν̂n+p for each relation symbol
R ∈ νn. Remark that a relation R of arity n is transformed into a function fR having p additional arguments.

Definition 7. A ν̂-factor algebra A = (A, gA, fA

R )g,R∈ν is a ν̂-algebra such that, for all fR ∈ ν̂n+p and ~a ∈ An

there exists an index i ∈ [1..p] such that:

∀ξ1 . . . ξp.fR(~a, ξ1, . . . , ξp) = ξi. (3.1)

The class FAν̂ of all ν̂-factor algebras is a universal class, i.e. it is closed under subalgebras and ultraproducts.
We write FA

∗
ν̂ for the class of proper factor algebras (where proper means that |A| > 1).

Given a ν̂-factor algebra A, the algebraic reduct of A is the algebra Alg(A) = (A, gA)g∈ν .

Definition 8. We associate with every proper factor algebra A a proper structure Str(A) having the same algebraic
reduct, and relations defined by (for all fR ∈ ν̂n+p and ~a ∈ An):

RStr(A)(~a) = vk iff ∀ξ1, . . . , ξp.f
A

R (~a, ξ1, . . . , ξp) = ξk.

Conversely, we associate with every proper structure S a proper factor algebra Fa(S) having the same algebraic
reduct as S and whose functions fR (R ∈ νn) are defined as follows:

f
Fa(S)
R (~a, ξ1, . . . , ξp) = ξk iff RS(~a) = vk.

In particular, we have Str(Fa(S)) = S and Fa(Str(A)) = A.

Note that the above correspondence fails on singleton structures. Let S ,T be two structures over {∗} with a
relation symbol R such that RS(∗) = t but RT (∗) 6= t. The structures S and T are not isomorphic, but correspond
to the same trivial factor algebra.

6



3.1 Congruences of Factor Algebras

This technical section, that can be skipped on a first reading, is devoted to analyze some properties of the
congruences on factor algebras. Let us consider a relational type ν and a ν̂-factor algebra A. Remember that p
is the cardinality of the set V of truth values.

Definition 9. We say that a pair of elements (b, c) ∈ A × A splits A if there exist fR ∈ ν̂n+p, ~a ∈ An and an

index i ∈ [1..n] such that (for all ~ξ ∈ Ap):

fR(~a[b/i], ~ξ) = ξk, fR(~a[c/i], ~ξ) = ξj , for k 6= j.

A pair is called unsplitting if it does not split A. We denote by ΥA the set of all unsplitting pairs of A.

From the point of view of the structure Str(A), a pair (b, c) is unsplitting if the elements b and c are indistin-
guishable, which means that for all R ∈ νn, ~a ∈ An and index i ∈ [1..n] we have:

RStr(A)(a1, . . . , ai−1, b, ai+1, . . . , an) =

RStr(A)(a1, . . . , ai−1, c, ai+1, . . . , an).
(3.2)

Lemma 2. Let fR ∈ ν̂n+p and ~a,~b ∈ An be two sequences. If there exists ~ξ ∈ Ap such that fR(~a, ~ξ) 6= fR(~b, ~ξ),
then there exists an index k ∈ [1..n] such that (ak, bk) splits A.

Proof. The proof is by induction over the cardinality of the set {j : aj 6= bj}. Let i be the least index such that
ai 6= bi. If the pair (ai, bi) splits A then we have the conclusion. Otherwise, by defining ~c = a[bi/i], we have

fR(~c, ~ξ) = fR(~a, ~ξ) 6= fR(~b, ~ξ). Now, if ~c = ~b we have a contradiction. If ~c 6= ~b then the conclusion follows by the
induction hypothesis.

Definition 9 extends to sets S ⊆ A × A by saying that S splits A if there exists a pair (c, d) ∈ S splitting A
(i.e. S 6⊆ ΥA).

Lemma 3. Let b, c be two distinct elements of A and B = Alg(A) be the algebraic reduct of A. The principal
congruence ϑA(b, c) ∈ Con(A) generated by b, c satisfies the following conditions:

• ϑB(b, c) ⊆ ϑA(b, c);

• ϑA(b, c) =

{

∇A if ϑB(b, c) splits A;

ϑB(b, c) otherwise.

Proof. If (d, e) ∈ ϑB(b, c) splits A, then for some fR,~a and i, fR(~a[d/i]) and fR(~a[e/i]) project on different

coordinates, say j and k. Thus ξj = fR(~a[d/i], ~ξ) ϑA(b, c) fR(~a[e/i], ~ξ) = ξk, so (ξj , ξk) ∈ ϑA(b, c). As ξj , ξk are
arbitrary ϑA(b, c) = ∇A. Otherwise, since the operations fR(~a,−, . . . ,−) are projections, the relation ϑB(b, c) is
a congruence on A.

By Lemmas 2 and 3, any proper congruence is contained in ΥA.

Definition 10. A factor algebra A is rigid whenever ΥA = A× A.

In other words, the factor algebra A is rigid exactly when the interpretation RStr(A) of a relation symbol R is
a constant function.

Proposition 3. If A is directly decomposable then A is rigid.

Proof. Let A be directly decomposable. Then there is a pair (ϕ, ϕ̄) of non-trivial complementary factor congru-
ences. By Lemma 3 and the fact that ϕ, ϕ̄ 6= ∇, we have ϕ ∪ ϕ̄ ⊆ ΥA. Since ΥA is an equivalence relation, we
have ∇ = ϕ ◦ ϕ̄ = ΥA, so A is rigid.

We now characterize simple and directly indecomposable factor algebras in terms of properties of their con-
gruences.

Proposition 4. Let A be a proper factor algebra.

1) A is simple iff every proper congruence ϑAlg(A)(b, c) splits A.

2) A is directly indecomposable iff one of the following conditions is satisfied: (i) A is not rigid; (ii) A is rigid
and the algebraic reduct Alg(A) of A is directly indecomposable.

Proof. Trivial by Lemma 3 and Proposition 3.
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3.2 Factor Varieties

A variety V generated by a class of ν̂-factor algebras is called a factor variety. If V is a factor variety then Vfa

denotes the class of ν̂-factor algebras belonging to V.

Proposition 5. The variety Vν̂ generated by the class of all ν̂-factor algebras is axiomatized by (for fR ∈ ν̂n+p):

(F1) fR(~x, ξ, . . . , ξ) = ξ;

(F2) fR(~x, fR(~x, ξ11, . . . , ξ1p), . . . , fR(~x, ξp1, . . . , ξpp)) =
fR(~x, ξ11, . . . , ξpp);

(F3) fR(~x, h(ξ11, . . . , ξ1k), . . . , h(ξp1, . . . , ξpk)) =
h(fR(~x, ξ11, . . . , ξp1), . . . , fR(~x, ξ1k, . . . , ξpk)), where h ∈ ν̂k is an arbitrary element of ν̂.

Let A ∈ Vν̂ . For every fR ∈ ν̂n+p and ~a ∈ An, the p-ary map fR(~a,−, . . . ,−) is a decomposition operator on
A. By (F3), the decomposition operators fR (R ∈ ν) are closed under composition.

By Definition 7 and by [6, Ch. 5, Thm. 2.20], the following proposition holds.

Proposition 6. Given a factor variety V, the class Vfa is a universal class, so that it is closed under subalgebras
and ultraproducts.

Proposition 7. Given a factor variety V, every directly indecomposable algebra A ∈ V is a factor algebra.

Proof. In any directly indecomposable algebra A ∈ V, every map fR(~a,−, . . . ,−) is a trivial decomposition
operator. So there must be i ∈ [1..p] such that A |= ∀ξ1...ξn.fR(~a, ξ1, . . . , ξn) = ξi.

Example 2. Let P,Q,R be propositional variables.
In this example we will write: (i) x · y, or just xy, for fP (x, y); (ii) x + y for fQ(x, y); (iii) 〈x, y, z〉 for

fR(x, y, z).
• Two-valued logic with a unique propositional variable. The factor variety of all algebras A = (A, ·A),
where the binary operation ·A is a decomposition operator on A, is the variety of rectangular bands (see [14]), i.e.,
idempotent semigroups satisfying xyz = xz. The factor algebras in this variety are the left-zero bands (satisfying
xy = x) and the right-zero bands (satisfying xy = y).
• Two-valued logic with two propositional variables. The factor variety of all algebras A = (A, ·A,+A),
where the binary operations ·A and +A are commuting decomposition operators on A, is the variety of distributive
rectangular double bands. Every algebra A in this variety is such that (A, ·A) and (A,+A) are rectangular bands,
where the operations ·A and +A distribute over each other. We have four kinds of factor algebras: (1) ll-zero
double bands: xy = x = x+ y; (2) rr-zero double bands: xy = y = x+ y; (3) lr-zero double bands: xy = x = y+x;
(4) rl-zero double bands: xy = y = y + x.
• Two-valued logic with two propositional variables P,Q such that P ↔ ¬Q. The factor subvariety of the
variety of distributive rectangular double bands generated by the rl-zero and lr-zero double bands constitutes the
variety of rectangular skew lattices. Skew lattices, whose study began with the 1989 paper of Leech [15], represent
the most studied class of non-commutative lattices. The importance of skew lattices lies in the structural role they
play in the study of discriminator varieties.
• Three-valued logic with a unique propositional variable corresponds to the factor variety axiomatized by:

(i) 〈x, x, x〉 = x;

(ii) 〈〈x, y, z〉, 〈a, b, c〉, 〈m,n, p〉〉 = 〈x, b, p〉.

4 Algebraization of Multi-Valued Logics

In this section we consider fixed a relational type ν and a logical τ -matrix (V, t), where V = {v1, . . . , vp}. As
announced in Section 2, we define a translation (·)∗ from open ν-formulas into suitable terms of type ν̂, that we
call logical terms.

4.1 Logical terms

First, let us fix a set Ξ = {ξ1, . . . , ξp} of fresh algebraic variables (one for each truth value), called logical variables.
Recall that Tν stands for the set of all ν-terms (denoted by t, ti) over the set Var. The set LTν̂ of logical terms of
type ν̂ (denoted by s, u) is generated by this grammar (for ξi ∈ Ξ, fR ∈ ν̂ and ~t ∈ T

n
ν ):

s, u ::= ξi | fR(~t, u1, . . . , up)

Note that LTν̂ 6⊆ Tν since ν 6= ν̂ and neither the logical variables ξi nor the function symbols fR can occur in t.
Let s, u1, ..., up ∈ LTν̂ , we write s{u1/ξ1, . . . , up/ξp} for the logical term obtained by substituting simultaneously
ui for each occurrence of ξi in s.
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Lemma 4. Given a factor algebra A, an environment ρ : Var → A and a logical term u, there exists a k ∈ [1..p]
such that A |=ρ ∀ξ1 . . . ξp.u = ξk.

Proof. By induction on the size of the logical term u.

4.2 From Open Formulas to Logical Terms through Substitutions

The translation (·)∗ given in Section 2 for classical logic, can be easily generalized to an arbitrary p-valued matrix
logic L. Since the result of the translation is very verbose, we first introduce some clever notation based on
(hyper)matrices.

Tabular notation. We consider hypermatrices of dimension n1 × · · ·× nk over the set LTν̂ of logical terms,
that is functions M : n1×· · ·×nk → LTν̂ . Given a hypermatrix M as above, we write Mi1...ik for the logical term
M(i1, . . . , ik). A hypermatrix M of dimension pk is called cubical. A vector v is any hypermatrix of dimension
p× 1 (or 1 × p) and its transpose is denoted by v

T .
Given a logical term s, we write v(s) for the constant vector [s, . . . , s]T , thus of dimension p× 1.
Let M be a cubical hypermatrix of dimension pk such that Mi1...ik ∈ LTν̂ and let s be a logical term possibly

containing ξ1, . . . , ξp as variables. The matrix multiplication Mv(s) is a hypermatrix of dimension pk−1 defined
as follows:

(Mv(s))i1...ik−1
= s{Mi1...ik−1,1/ξ1, . . . ,Mi1...ik−1,p/ξp}.

As an example, the product between a p×p-matrix and v(s) is:







u11 · · · u1p

...
. . .

...
up1 · · · upp













s
...
s






=







s{u11/ξ1, . . . , u1p/ξp}
...

s{up1/ξ1, . . . , upp/ξp}







Hereafter, we will write Mv1 · · · vk for ((· · · (Mv1) · · · )vk).
The translation. We translate inductively an open formula Φ of a matrix logic L into a logical term Φ∗ as

follows:

• v∗i = ξi;

• R(~t )∗ = fR(~t, ξ1, . . . , ξp);

• o(Ψ1, . . . ,Ψn)∗ =
(

Mo
v(Ψ∗

1) · · · v(Ψ∗
n−1)

)T
v(Ψ∗

n), where Mo is the cubical hypermatrix of dimension pn

defined by: Mo
i1i2...in = ξk if and only if oV(vin , . . . , vi2 , vi1 ) = vk.

In particular, the translation of P ∈ Pvar is P ∗ = fP (ξ1, . . . , ξp).
Note that, in the definition above, Mo has dimension pn and each v(ψ∗

i ) has dimension p×1. SoMo
v(Ψ∗

1) · · · v(Ψ∗
n−1)

is a p×1-matrix and its transposed a 1×p-matrix [u1, . . . , up]. By multiplying it by v(Ψ∗
n) we get a 1×1-matrix,

that is a term. Moreover, we have:

o(Ψ1, . . . ,Ψn)∗ = Ψ∗
n{u1/ξ1, . . . , up/ξp}. (4.1)

It is easy to check by a straightforward induction on the open formula Φ that its translation Φ∗ is actually
a logical term. Note that, in the propositional case, such a translation induces a congruence ∼∗ on the set of
formulas: two formulas φ and ψ are ∼∗-equivalent whenever they have the same translation φ∗ = ψ∗. Interestingly
enough, this defines a non-commutative logic L′ which is strictly weaker than the logic L we started from. The
precise relationship between the logics L and L′ will be investigated in further works.

Theorem 1. Let S be a proper structure and ρ : Var → S be an environment. Then JΦKSρ = vk iff Fa(S) |=ρ

∀ξ1 . . . ξp.Φ
∗ = ξk.

Proof. The proof is by induction over the complexity of the open formula Φ, using equation (4.1) and Lemma
4.

Recall that Φp denotes the propositional translation of Φ (see Section 1). From Theorem 1 and Lemma 1, we
obtain this corollary.

Corollary 1. A universal ν-sentence Φ is a logical truth if and only if Vν̂ |= ∀ξ1 . . . ξp.Φ
∗ = ξt and Φp is a

tautology.

When the logic under consideration is without equality, a sentence Φ fails in a singleton structure if and only
if it fails in some proper structure. Therefore, in this case it is possible to omit “and Φp is a tautology” in the
statement of Corollary 1.
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4.3 The algebraization of propositional logics

Propositional logic is a particular instance of quantified logic. Indeed, the set Pvar of propositional variables
can be considered as a relational type, where every P ∈ Pvar is a relation symbol of arity 0. According to
Definition 5, a structure S of type Pvar, hereafter called a propositional structure, is a pair (S,PS)P∈Pvar such
that PS ∈ V for every P ∈ Pvar. The propositional structure S determines the truth assignment IS : Pvar → V
defined by IS(P ) = PS . Conversely, every truth assignment I : Pvar → V determines, for each set S, a
propositional structure SI = (S, PSI )P∈Pvar where PSI = I(P ). The interpretation of a propositional formula
φ in a propositional structure S coincides with its propositional interpretation w.r.t. the truth assignment IS : in
other words, JφKSρ = JφKIS for every environment ρ : Var → S.

We call p-factor algebra every factor algebra associated with a propositional structure according to Definition 8.
Every p-factor algebra A is rigid and Con(A) coincides with the lattice of equivalence relations on A. So, a p-
factor algebra A is directly indecomposable exactly when A is finite of prime cardinality. We denote by Vprop the
factor variety generated by all p-factor algebras.

Corollary 2. Let Pvar be the type of propositional variables. A propositional formula φ is a tautology iff
Vprop |= ∀ξ1 . . . ξp.φ

∗ = ξt.

We now apply our translation to propositional formulas of the logics in Example 1. To simplify the notations
we confuse P with fP , and i with ξi. We also perform some on-the-flight application of (F1) and directly write u
rather than s{u/ξ1, . . . , u/ξp}.

Example 3. (3-valued Logics with 0 < 1
2
< 1) The translation of some basic formulas:

• L– 3G3P3: (P ∧Q)∗ = Q(0, P (0, 1
2
, 1
2
), P (0, 1

2
, 1))

• L– 3G3P3: (P ∨Q)∗ = Q(P (0, 1
2
, 1), P ( 1

2
, 1
2
, 1), 1)

• L– 3: (¬P )∗ = P (1, 1
2
, 0)

• G3: (¬P )∗ = P (1, 0, 0)

• P3: (¬P )∗ = P (1, 0, 1
2
)

• L– 3: (P → Q)∗ = Q(P (1, 1
2
, 0), P (1, 1, 1

2
), 1)

• G3: (P → Q)∗ = Q(P (1, 0, 0), P (1, 1, 1
2
), 1).

Example 4. The translation of P ∨ ¬P in three-valued logics:

• L– 3: P (1, P ( 1
2
, 1
2
, 1), P (0, 1

2
, 1))

• G3: P (1, P (0, 1
2
, 1), P (0, 1

2
, 1))

• P3: P (1, P (0, 1
2
, 1), P ( 1

2
, 1
2
, 1)).

Example 5. The Pierce law ((P → Q) → P ) → P translated in classical logic and in some three-valued logics:

• C: P (P (Q(P (t, f), t), f), t)

• L– 3: P (P (α1, α2, 0), P (β1, β2,
1
2
), 1) where

– α1 = Q(P (1, 1
2
, 0), P (1, 1, 1

2
), 1)

– α2 = Q(P ( 1
2
, 0, 0), P ( 1

2
, 1
2
, 0), 1

2
)

– β1 = Q(P (1, 1, 1
2
), 1, 1)

– β2 = Q(P (1, 1
2
, 1
2
), P (1, 1, 1

2
), 1)

• G3: P (P (γ1, 0, 0), P (δ1, δ2,
1
2
), 1) where

– γ1 = Q(P (1, 0, 0), 1, 1)

– δ1 = Q(P (1, 1
2
, 1
2
), 1, 1)

– δ2 = Q(P (1, 1
2
, 1
2
), P (1, 1, 1

2
), 1).

4.4 The Treatment of Equality in Classical Logic

Classical logic with equality has a binary relation symbol E as a primitive logical symbol which is always interpreted
as the actual equality relation between members of the domain of discourse.

If S is a structure with equality on V = {ξf , ξt}, then the factor algebra Fa(S) has the following switching
function fE defined on S:

fE(x, y, w, z) =

{

z if x = y;

w if x 6= y.

As mentioned in the introduction, a variety of algebras generated by a class of algebras with a common switching
term operation is called a discriminator variety [6, §9]. Discriminator varieties [27] are referred by Burris and
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Sankappanavar in [6, p. 186] as “the most successful generalization of Boolean algebras to date, successful because
we obtain Boolean product representations (which can be used to provide a deep insight into algebraic and logical
properties)”.

If νeq is a relational type with equality, then the factor variety VE

νeq generated by all ν̂eq-factor algebras, where

fE is the switching function, is a discriminator variety. Notice that VE
νeq is a proper subvariety of the variety

generated by all ν̂eq-factor algebras.
Following Vaggione [26], we have that VE

νeq is axiomatized by the axioms (F1)-(F3) and the identities fE(x, x, ξf , ξt) =
ξt (the reflexive property of E) and fE(x, y, x, y) = x. This last identity expresses the implication E(x, y) → x = y.

We now introduce a general method to express some properties of relations involving equality, such as the
anti-symmetric property of a binary relation, without introducing an operation symbol fE for equality in the
algebraic type. Let Φ be a formula without equality, whose free variables include x and y, and let Φ → x = y
be an implication. The logical term Φ∗, which is the translation of the formula Φ, depends on ξf , ξt. If S is
a proper structure and ρ : Var → S is an environment, then by Theorem 1 we have S |=ρ Φ if and only if
Fa(S) |=ρ ∀ξfξt.Φ

∗ = ξt.

Lemma 5. Given a proper structure S and a formula Φ without equality, we have that S |= Φ → x = y holds if
and only if Fa(S) |= ∀ξf .Φ

∗{x/ξt} = Φ∗{y/ξt} holds.

Notice that Vaggione’s axiom fE(x, y, x, y) = x (that expresses the implication E(x, y) → x = y) can be
rewritten as follows fE(x, y, ξf , x) = fE(x, y, ξf , y), while the anti-symmetric property (xRy ∧ yRx → x = y) can
be translated by fR(y, x, ξf , fR(x, y, ξf , x)) = fR(y, x, ξf , fR(x, y, ξf , y)).

In the next example we explain how ordered algebras, introduced by Bloom in [4], can be developed as pure
algebraic structures.

Example 6. (Ordered Algebras = Classical logic with a binary relation defining a compatible partial ordering)
An ordered algebra is an algebra endowed with a compatible partial order ≤. The factor variety corresponding to
ordered algebras is the variety axiomatized by (F1)-(F3) and the following identities:

(O1) f≤(x, x, ξf , ξt) = ξt (Reflexivity);

(O2) f≤(x, z, f≤(y, z, ξt, f≤(x, y, ξt, ξf)), ξt) = ξt (Transitivity);

(O3) f≤(y, x, ξf , f≤(x, y, ξf , x))) = f≤(y, x, ξf , f≤(x, y, ξf , y))(Antisymmetry);

(O4) f≤(g(~z [x/zi]), g(~z [y/zi]), f≤(x, y, ξt, ξf), ξt) = ξt for every function symbol g (Monotonicity wrt coordi-
nate i).

Every factor algebra A in this variety is a simple algebra, because every pair (a, b) (with a 6= b) splits A (see
Section 3.1).

The remaining examples are devoted to show that some universal theories can be represented by well-known
varieties of algebras.

Example 7. (Right-handed Skew Boolean Algebras = Classical logic with a unary relation R satisfying R(0) ∧
∀x(R(x) → x = 0)) Let R be a unary relation and 0 be a constant. Following Cvetko-Vah and Salibra [8], the factor
variety axiomatized by fR(0, ξf , ξt) = ξt and fR(x, ξf , 0) = fR(x, ξf , x), is term equivalent to the variety of right-
handed skew Boolean algebras. A factor algebra A in this variety satisfies fR(0, ξf , ξt) = ξt and fR(x, ξf , ξt) = ξf
for all x ∈ A \ {0}. Skew Boolean algebras, introduced by Cornish in [7], are non-commutative one-pointed
generalizations of Boolean algebras, and occur naturally in rings, where they can be defined on certain sets of
idempotents, and in particular in rings whose full set of idempotents is closed under multiplication.

Example 8. (Boolean Algebras = Classical logic with a unary relation R satisfying ¬R(0)∧R(1)∧∀x(¬R(x) →
x = 0) ∧ ∀x(R(x) → x = 1)) Following Salibra et al. [23], the factor variety axiomatized by fR(0, ξf , ξt) = ξf ,
fR(1, ξf , ξt) = ξt, fR(x, ξf , 1) = fR(x, ξf , x) and fR(x, 0, ξt) = fR(x, x, ξt), is term equivalent to the variety of
Boolean algebras. Up to isomorphism, we have only one factor algebra which corresponds to the Boolean algebra
of truth values 2.

5 Term Rewriting System for Factor Axioms

We now show how to turn the equations (F1)-(F3) axiomatizing the factor variety Vν̂ into rewriting rules. The
term rewriting system (TRS, for short) that we obtain enjoys confluence and strong normalization. Therefore, in
order to check whether Vν̂ |= Φ∗ = ξk holds it is enough to see whether the normal form of Φ∗ is ξk.

For the sake of simplicity, we consider a propositional matrix logic L with two truth values t, f (so Ξ = {ξt, ξf}).
All definitions and results extend easily to all p-valued propositional matrix logics. We feel that this method is
generalizable to arbitrary quantified matrix logics, but the actual generalization is left for future works.

We then consider a relational type ν only containing (countably many) propositional variables. Let us fix an
enumeration (Pi)i∈N of all the propositional variables in ν. Intuitively, this associates a priority i ∈ N with each
propositional variable. To simplify the notation, we will still denote by Pi the binary operator fPi

∈ ν̂.
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Definition 11. The rewriting rules R on LTν̂ are (for i ∈ N):

(F1) Pi(x, x)  x;

(F ℓ
2 ) Pi(Pi(x, y), z)  Pi(x, z);

(F r
2 ) Pi(x,Pi(y, z))  Pi(x, z);

(F3) Pi(Pj(x, y), Pj(w, z))  Pj(Pi(x,w), Pi(y, z));

(F ℓ
3 ) Pi(Pj(x, y), z)  Pj(Pi(x, z), Pi(y, z));

(F r
3 ) Pi(x,Pj(y, z))  Pj(Pi(x, y), Pi(x, z));

where the rules (F3), (F ℓ
3 ) and (F r

3 ) only apply when i > j.

The TRS R is rather standard, except for the fact that it has infinitely many function symbols, a property
that we need to handle carefully when proving termination. Note that equation (F2) of Proposition 5 is recovered
in two steps: Pi(Pi(x, y), Pi(w, z)) F ℓ

2
Pi(x,Pi(w, z)) F r

2
Pi(x, z). Analogously, (F3) corresponds to (F ℓ

3 ) and

(F r
3 ), but we keep the redundant rule (F3) to avoid an unnecessary growth of the size of the terms during the

reduction.
We prove that R is locally confluent and terminating, so we conclude that it is confluent by Newman’s lemma [2,

Thm. 1.2.1].

Proposition 8. The TRS R is locally confluent.

Proof. By [2, Lemma 2.7.15], as all critical pairs are convergent.

The fact that R is terminating is non-trivial because the duplication in the rules (F ∗
3 ) may increase substantially

the size of the term. Thanks to the condition “i > j” these rules push the symbols with small indices towards the
root and those with big indices toward the leaves. Thus, two terms should be compared by first comparing their
root symbols, and then recursively comparing their immediate subterms. In other words, we need a lexicographic
path order (lpo).

Definition 12. The lexicographic path order >lpo on terms is defined as follows: s >lpo u if and only if

(LPO1) u ∈ Var ∪ Ξ , u occurs in s and s 6= u, or

(LPO2) s = Pi(s1, s2), u = Pj(u1, u2) and one of the following conditions holds:
(a) ∃k ∈ [1, 2], sk ≥lpo u,
(b) i > j, and ∀k ∈ [1, 2], s >lpo uk,
(c) i = j, (s1, s2)>lex

lpo (u1, u2) and ∀k∈ [1, 2], s>lpouk,

where >lex
lpo stands for the lexicographic lpo-order on pairs.

By [2, Prop. 6.4.25], the relation >lpo is a simplification order, which means that it is an order closed under
contexts, under substitutions, and possesses the subterm property.

Let us denote by Fun(u) the set of function symbols occurring in u. The TRS R satisfies the following
properties:

Lemma 6. For all rewriting rules s u ∈ R we have:

(i) s >lpo u,

(ii) Fun(u) \ Fun(s) = ∅.

Proof. By a straightforward case analysis.

Condition (i) amounts to saying that the TRS is simplifying, that is compatible with a simplification order.
In the case of finite TRS, this is enough to conclude termination. As shown in [20], for infinite TRS one also need
to check that the rules only introduce finitely many function symbols (in our case none, see condition (ii)).

Theorem 2. The TRS R is confluent and terminating.

Proof. By Lemma 6 and [20, Thm. 4.13] R is terminating, therefore by Proposition 8 and Newman’s lemma it is
confluent.

We denote by nf(u) the (unique) normal form of u w.r.t. R.

Corollary 3. A propositional formula φ is a tautology iff nf(φ∗) = ξt.
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As an example, we apply the TRS to show that the law of Pierce ((P → Q) → P ) → P holds in classical logic
C, but not in Gödel’s logic G3. We recall that both translations are given in Example 5. Without loss of generality,
we assume that the priority of P is smaller than the priority of Q. As in Example 5, we will just write i for ξi.

In C we have the following reduction:

P (P (Q(P (t, f), t), f), t) F ℓ
2
P (Q(P (t, f), t), t) F ℓ

3

P (P (Q(t, t), Q(f, t)), t) F ℓ
2
P (Q(t, t), t) F1

P (t, t) F1
t.

Since t is designated, the formula is a classical tautology.
To compute the reduction in G3, we will use the notations γ1, δ1, δ2 introduced in Example 5, and the following

facts:
1. γ1

F3→ γ′
1, for γ′

1 = P (Q(1, 1, 1), Q(0, 1, 1), Q(0, 1, 1));

2. δ2
F3→ δ′2, for δ′2 = P (Q(1, 1, 1), Q( 1

2
, 1, 1), Q( 1

2
, 1
2
, 1)).

Therefore, in G3 we have the following reduction:

P (P (γ1, 0, 0), P (δ1, δ2,
1
2
), 1) F2

P (γ1, δ2, 1) F3

P (γ′
1, δ2, 1) F3

P (γ′
1, δ

′
2, 1) F2

P (Q(1, 1, 1), δ′2, 1) F2

P (Q(1, 1, 1), Q( 1
2
, 1, 1), 1) F1

P (1, Q( 1
2
, 1, 1), 1)

Since P (1, Q( 1
2
, 1, 1), 1) is in normal form, we conclude that Pierce law is neither a tautology nor a contradiction

in G3.
We end this section by remarking that the logical terms that appear during the reduction are not necessarily

the translation of a logical formula. Henceforth, this process of calculus cannot be simulated within the logic
under consideration.

6 Factor Circuits and Applications to Hardware Design

Classical propositional logic is used as a technical tool for the analysis and the synthesis of electrical circuits built
up from switches with two stable states: the voltage levels. Analogously, p-valued logics correspond to circuits
built from similar switches with p stable states, each representing a different truth value. This whole field of
application of logic is called many-valued (or fuzzy) switching.

We refer the reader to [9] for a good introduction on this subject.
Our algebraic approach to multi-valued logics suggests a new notion of circuit, based on components that we

call “decomposition gates” and behave as decomposition operators of an algebra A belonging to a factor variety
Vν̂ . In this section we consider A fixed.

We start by presenting the p-valued propositional case, then we instantiate it to propositional classical logic
and compare it with the usual boolean circuits, finally we discuss the most general case.

A propositional decomposition gate (D-gate, for short) has:

- p input ports i1, . . . , ip (one for each truth value);

- a switch s, called the selector switch;

- an output port o.

The graphical representation of a D-gate is the following:

P
s

i1

ip

o

The selector switch has a particular status since it specifies which decomposition operator fP is implemented by
the gate. For instance, when A is a factor algebra then fP is a projection πp

k (that is a trivial decomposition
operator) and the selector switch transforms the D-gate into a multiplexer selecting its k-th input (thus o := ik).

D-gates can be composed using wires by connecting the output port o of a D-gate with one (or more) input
port(s) ik of other D-gates. Therefore the wires transport the values of the algebraic variables ξ1, . . . , ξp, in other
words elements of A.

The circuit obtained by composing several D-gates is called factor circuit. Since each D-gate implements a
decomposition operator of the algebra A and by (F3) decomposition operators of A commute, by [17, Ex. 4.38.15
p. 167] a factor circuit represents itself a decomposition operator on A.

Every logical term u can be easily represented as a factor circuit by following its syntactic tree and drawing
a D-gate with selector switch Pi for each function symbol fPi

. A formula φ is then transformed into the factor
circuit corresponding to the term φ∗.
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D-gates for propositional classical logic C are shown in Figure 1(a): to simplify the picture, we omit the
selector switch and directly label the gate with the propositional variable Pi, where i represents the priority of P
(as in Section 5). A quick comparison between the usual boolean circuits and factor circuits shows the novelty of
this approach (cf. Figure 1(b)).

In the boolean circuits, each logical gate implements a logical connective o ∈ τ of arity n, so it has n input
ports i1, . . . , in, and its output is obtained by applying such a connective to the inputs: o(i1, . . . , in). The logical
gates are connected with each others through wires that transport truth values. The remaining input wires are
connected with propositional variables that can be seen as switches allowing to choose their truth values. The
circuit as a whole corresponds to a boolean expression and can be simplified accordingly. Popular techniques are
based, for instance, on Karnaugh maps and the result is a circuit in sum-of-products form.

On the contrary, in factor circuits there is a unique kind of gate, the D-gate, whose behavior depend on its
selector switch. Every D-gate implements a decomposition operator fPi

, possesses two input ports because there
are two truth values, and its output is fPi

(i1, i2). D-gates are connected through wires transporting elements
of the ν̂-algebra A. The remaining input wires are connected with switches representing algebraic variables
ξi. Globally, a factor circuit represents a decomposition operator built up from basic decomposition operators
(namely, those in ν̂). Factor circuits can be simplified by calculating their normal form using the term rewriting
system defined in Section 5 (see Figure 1(c)). Note that a factor circuit in normal form has a particular shape
(see Figure 1(d)): it is a binary tree such that all the D-gates Pi1 , . . . , Pik encountered in a root-to-leaf path have
strictly increasing priority.

An interesting feature of factor circuits is that it is possible to exclude a sub-circuit by exploiting the algebraic
properties of its components. Consider, for instance, the circuit in Figure 1(d) and suppose that we want to give
ξf as first input of P2 (rather than the result of P3(P4(x, y), P4(w, z))). Then it is enough to connect the variable
ξf to all input ports of the gates labelled with P4 and the dashed subgraph trivializes thanks to axiom (D1).

The D-gates for quantified matrix logics are a straightforward generalization of the propositional ones.
Since an arbitrary D-gate represents a decomposition operator of shape fR ∈ ν̂n+p, it has n additional input
parameters corresponding to the arguments of the relation R(x1, . . . , xn), that is it can be drawn as follows:

R
s

x1, . . . , xn

i1, . . . , ip{
o

When composing arbitrary D-gates with each other, the new arguments do not play any role. In other words, it
is forbidden to connect the output o with an input xk. In a factor circuit the wires corresponding to x1, . . . , xn

will remain as pending input lines.

7 Symbolic Computation

Much work in computer science has been focused on reducing first-order logic to equational logic and term rewriting
systems. In Tarski-Givant [25] one has a reduction of first-order Zermelo-Fraenkel set theory to traditional
equational logic by using a sophisticated encoding into the equational logic of relation algebras. Burris-McKenzie’s
reduction of first-order logic with equality to equational logic through discriminator varieties uses a technique which
is described in [5]. The new technique of reduction introduced in this section is based on factor varieties and can
be applied to first-order logic with or without equality.

Let ν be a relational type and let T ∪ {Φ} be a finite set of first-order ν-sentences. One of the fundamental
achievements of Gödel was to show that the semantic notion T |= Φ can be captured by a syntactic notion
T ⊢ Φ. The usual procedure to avoid the manipulation of quantifiers consists in observing that T |= Φ holds
iff T ∪ {¬Φ} is not satisfiable iff the set of sentences in T ∪ {¬Φ} Skolemized is not satisfiable. This reduces
the syntactic level to universally quantified sentences. Such sentences are easily expressed as conjunctions of
clauses (i.e., universally quantified disjunctions of atomic and/or negated atomic formulas), so we have T |= Φ
iff a suitable set of clauses is not satisfiable. Robinson’s resolution rule [21] is complete for unsatisfiable sets of
clauses, provided that the equality is not present in the language. In presence of equality, other rules must be
introduced like paramodulation [18].

Burris and McKenzie replaces all atomic subformulas of the form R(t1, . . . , tn) in the universally quantified
sentences obtained after Skolemization, by fR(t1, . . . , tn) = t1, where fR is a new function symbol corresponding
to R (This approach to encoding relations as functions can be found in [1, p. 98]). The switching function of a
suitable discriminator variety is used to remove the logical connectives and to derive a set of equations axiomatizing
a new discriminator variety, which can be used to analyze T |= Φ when we are working with a first-order language
with equality.
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gate AND

P
Q

P ∧Q P

D-gate

ξf
ξt P

Q

factor circuit

ξf

ξt

(a) A logic gate AND, a decomposition gate P and a factor circuit implementing the classical logic formula P ∧Q.

logic gate AND D-gate

operation connective ∧ decomposition operator fP
meaning static (AND) dynamic (depends on P )
no. inputs arity of ∧ |V |
input values prop. variables P,Q algebraic variables ξf , ξt
signals carried truth values elements of A
by the wires

output P ∧Q fP (ξf , ξt)
(b) Comparison between a logic gate AND and a D-gate.
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(c) Rewriting System for Factor Circuits.

A Factor Circuit in Normal Form

P1

P2

P3

P3

P5

P5

P4

P4

P8

P7

P6

ξf

ξt

(d) Example of a factor circuit in normal form. The dashed subtree morally disappears because all input ports receive the same value ξf .

P1P1

ξt

ξf

F r

2

 P1

P1

P1

ξt

ξf

F1

 P1ξf ξf
F1



Example of Reduction

(e) A reduction showing that P1 ∧ ¬P1 is a contradiction in classical logic.

Figure 1: Factor circuits and decomposition gates.
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7.1 Reduction to Equations through Factor Varieties

Let T = {Ψ1, . . . ,Ψn} be a set of first-order sentences in classical logic and Φ be a sentence. Our goal is to reduce
the semantical problem of checking whether T |= Φ holds to an equational problem in factor varieties. This will
be achieved by executing the following reduction procedure, and then applying Theorem 3 below.

Reduction procedure. Consider the set Σ = {Ψ1, . . . ,Ψn,¬Φ}.

1. Convert all sentences in Σ into prenex normal form.

2. Compute the set Σσ = {Ψσ
1 , . . . ,Ψ

σ
n, (¬Φ)σ} by Skolemizing the sentences obtained in Step 1. As it is

customary, we omit the universal quantifiers in the Skolemized sentences.

3. Add to the relational type ν the new function symbols introduced by the Skolemization to obtain the new
relational type µ.

4. Consider the µ̂-factor variety VΣ axiomatized by:

(i) the axioms (F1)-(F3);

(ii) (Ψσ
1 )∗ = ξt, . . . , (Ψ

σ
n)∗ = ξt and ((¬Φ)σ)∗ = ξt;

(iii) fE(x, x, ξf , ξt) = ξt and fE(x, y, x, y) = x only if the equality symbol E is present in the language.

Let us denote by Ax(VΣ) the set of these axioms.

We denote by ⊢eq the deducibility in the equational calculus. We have the following completeness theorem.

Theorem 3 (Completeness Theorem). Let Φ,Ψ1, . . . ,Ψn be first-order sentences in classical logic. Then we have
Ψ1, . . . ,Ψn |= Φ if and only if Ax(VΣ) ⊢eq ∀xy(x = y) and the propositional formula (Ψ1 ∧ · · · ∧ Ψn → Φ)p is a
tautology.

Proof. (⇒) The factor variety VΣ is generated by the class (VΣ)fa of factor algebras. From the hypothesis it
follows that (VΣ)fa is constituted by the trivial factor algebra. By Lemma 1 and by hypothesis we conclude that
(Ψ1 ∧ · · · ∧ Ψn → Φ)p is a tautology.

(⇐) If Ψ1, . . . ,Ψn 6|= Φ then there exist a ν-structure S and a µ-structure W such that S |= Σ, |S| = |W | and
W |= Σσ. If |W | > 1, then by Theorem 1 we have Fa(W) |= (Ψσ)∗ = ξt for every Ψ ∈ Σ, so that Fa(W) ∈ VΣ and
VΣ 6|= ∀xy(x = y). If |W | = 1, then by Lemma 1 and the hypothesis on W the formula (Ψ1 ∧ · · · ∧ Ψn → Φ)p is
not a tautology.

The following examples are described in [5, pp. 198-199]. The reader can compare the simplicity of our method
with respect to Burris’s and McKenzie’s reduction procedure.

Example 9. Let T be empty and Φ = ∀x(R(x) ∨ ¬R(x)). Then ¬Φ is logically equivalent to ∃x(¬R(x) ∧ R(x)).
After Skolemization we obtain the formula ¬R(c)∧R(c). We consider the factor variety axiomatized by the identity
fR(c, ξf , fR(c, ξt, ξf)) = ξt, that implies ξf = ξt. Then by Theorem 3 it follows that ∅ |= Φ.

Example 10. Let T be the theory axiomatized by:

a 6= b,
∀x(x = a ∨ x = b), ∀xyz(R(x, y) ∧R(x, z) → y = z),
∀x∃yR(x, y), ∀xyz(R(x, z) ∧R(y, z) → x = y).

Let Φ = ∀y∃xR(x,y) and Σ = T ∪ {¬Φ}. After Skolemization of Σ we get the following Σσ:

a 6= b, x = a ∨ x = b, R(x, y) ∧R(x, z) → y = z,
R(x, g(x)), ¬R(x, c), R(x, z) ∧R(y, z) → x = y.

The factor variety VΣ is axiomatized by:

fE(x, x, ξf , ξt) = ξt, fE(x, y, x, y) = x,
fE(a, b, ξt, ξf) = ξt, fE(x, b, fE(x, a, ξf , ξt), ξt) = ξt,
fR(x, z, ξf , fR(x, y, ξf , y)) = fR(x, z, ξf , fR(x, y, ξf , z)),
fR(x, z, ξf , fR(y, z, ξf , x)) = fR(x, z, ξf , fR(y, z, ξf , y)),

fR(x, g(x), ξf , ξt) = ξt, fR(x, c, ξt, ξf) = ξt.

Since T has no singleton models, by Theorem 3 we have that T |= Φ iff we can equationally prove Ax(VΣ) ⊢eq a = b.
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