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Abstract

We recently introduced an extensional model of the pure λ-calculus living
in a canonical cartesian closed category of sets and relations [6]. In the
present paper, we study the non-deterministic features of this model. Un-
like most traditional approaches, our way of interpreting non-determinism
does not require any additional powerdomain construction. We show that
our model provides a straightforward semantics of non-determinism (may
convergence) by means of unions of interpretations, as well as of parallelism
(must convergence) by means of a binary, non-idempotent operation avail-
able on the model, which is related to the mix rule of Linear Logic. More
precisely, we introduce a λ-calculus extended with non-deterministic choice
and parallel composition, and we define its operational semantics (based on
the may and must intuitions underlying our two additional operations). We
describe the interpretation of this calculus in our model and show that this
interpretation is ‘sensible’ with respect to our operational semantics: a term
converges if, and only if, it has a non-empty interpretation.
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Introduction

Pure and typed λ-terms are specifications of sequential and determin-
istic processes. Several extensions of the λ-calculus with parallel and/or
non-deterministic constructs have been proposed in the literature, either
to increase the expressive power of the language, in the typed [21, 19, 16]
and untyped [4, 5] settings, or to study the interplay between higher order
features and parallel/non-deterministic features [18, 9, 10].

When introducing non-determinism in a functional setting, it is crucial
to specify what notion of convergence is chosen. Two widely used notions
are:
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• the must convergence: a non-deterministic choice converges if all its
components do. This characterizes the demonic non-determinism.

• the may convergence: a non-deterministic choice converges if at least
one of its components does. This characterizes the angelic non-deter-
minism.

The usual denotational models of functional calculi do not accommodate
may non-determinism: let true and false be two convergent terms2, whose
denotations in standard models are distinct. What semantic value should
take the non-deterministic term true + false, which may converges to
true and to false? The value should be both true and false if we want
the semantics to be invariant under reduction!

The typical way of interpreting “multi-valued” terms, like the one above,
is to use models based on powerdomains [20], often defined as filter models
with respect to suitable notions of intersection and union types [9, 10]. The
semantics of true + false becomes some kind of join of both values, avail-
able in the powerdomain (similar techniques are also used for interpreting
must non-determinism). In this framework, both kinds of non-determinism
are modelled by some idempotent, commutative and associative operations.

In a recent paper [13], Faure and Miquel define a categorical counterpart
of the syntactical notion of parallel execution: the aggregation monad. Pow-
erdomains, sets with union and multisets with multi-union are all instances
of aggregation monads (in categories of domains and of sets, respectively).
In general, the notion of parallel composition modelled by an aggregation
monad is neither idempotent, nor commutative, nor associative.

There are however models of the ordinary λ-calculus where aggregation,
considered as parallel composition (that is, as must non-determinism), can
be interpreted without introducing any additional structure, such as the
above mentioned aggregation monads or powerdomain constructions.

This is the case in models of multiplicative exponential linear logic
(MELL), where aggregation can be interpreted by the mix rule, if avail-
able. This rule allows to “put together” any two proofs whatsoever [8].
More precisely, parallel composition is obtained by combining the mix rule
with the contraction rule. Indeed, mix can be seen as a linear morphism
X ⊗ Y ( X ` Y , so that there is a morphism ?A ⊗ ?A ( ?A, obtained
by composing the mix morphism ?A⊗ ?A( ?A` ?A with the contraction

2They could be the actual boolean constants in a typed λ-calculus with constants, or
the projections λxy.x, λxy.y as pure λ-terms.
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morphism ?A`?A( ?A. This composite morphism defines a commutative
algebra structure on ?A, which is used to model the “parallel composition”
of MELL proofs. Thus, to obtain a model of parallel λ-calculus, it is sufficient
to solve the equation D ∼= D ⇒ D, with an object D of shape ?A.

This is precisely what we did in [6], in a particularly simple model of
linear logic: the model of sets and relations. Similar constructions are pos-
sible in other, richer models, such as the well known model of coherence
spaces [14], or the model of hypercoherences [11]: the mix rule is available
there, as well as in many other models. This shows that coherence (which
prevents the above join of true and false) is not an obstacle to the inter-
pretation of the must non-determinism in the pure λ-calculus3. Our model
D of [6] satisfies the recursive equation D = ?(A) where A = (DN)⊥, and
therefore, D has the commutative algebra structure mentioned above. It
is precisely this structure that we use for interpreting parallel composition,
just as Danos and Krivine did in [8] for an extension of λµ-calculus with a
parallel composition operation.

However, the category of sets and relations has another feature, which
allows for a direct interpretation of the may non-determinism as well: mor-
phisms are arbitrary relations between sets (interpreting types), and hence
morphisms are closed under arbitrary unions. Thanks to this union op-
eration on morphisms, may non-determinism can be interpreted directly,
without introducing any additional powerdomain construction or aggrega-
tion monad. Of course, this operation is not available in the coherence or
hypercoherence space models. Note that, if we consider M + N → M as
a reduction rule of our calculus, then our semantics is not invariant under
reduction, since the process of performing non-deterministic choices entails
a non recoverable loss of information. But the situation is fundamentally
similar with the powerdomain-based interpretations.

To summarize, in our model D, the semantic counterparts of may and
must non-determinism are at hand: they are simply the set-theoretic union
and the mix-based algebraic operation. In this framework, parallel compo-
sition is no longer idempotent. This is quite natural if we consider each
component of a parallel composition as the specification of a process whose
execution requires the consumption of some kind of resources.

Contents. We introduce the λ+‖-calculus which is a λ-calculus extended
with parallel composition and non-deterministic choice. We define the oper-

3In a typed language like PCF, this would be more problematic, since the object
interpreting the type of booleans does not have the above mentioned structure.
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ational semantics of λ+‖-calculus using two different approaches. In the first
one, which is rather canonical, we define a one-step head-reduction rule and
we characterize the calculus as a term rewriting system. In the second one,
we define the operational semantics by associating with each term a ‘gener-
alized’ head normal form, which is a set of multisets of terms whose head
subterms are variables. Roughly speaking, the operational value of a term
is the collection of all possible outcomes of its head reductions. When the
head subterm is M +N (may non-deterministic choice), the head reduction
goes on by choosing either M or N , and when the head subterm is M‖N
(must parallelism), the head reduction forks.

Thus, the operational values of the terms are characterized in two differ-
ent ways: as sets of normal forms with respect to a canonical head-reduction
rule, and as limits of an inductively defined sequence of sets. We prove the
equivalence of the two approaches, and we use the latter to study the rela-
tionship between the operational and denotational semantics of this calculus.

We provide the denotational semantics of the λ+‖-calculus in D, consid-
ered as a λ-model, and endowed with two additional operations which turn
it into a semiring. We prove the soundness with respect to β-reduction, and
we show that the interpretations of the head normal forms of a term M are
included in the interpretation of M . Next, we generalize Krivine’s realiz-
ability technique to our extended calculus, showing that our denotational
model is sensible: the operational value of a term is non-empty (i.e., a term
is solvable) if, and only if, its denotation is non-empty.

Finally, we focus our attention on the contextual preorder on λ+‖-terms,
which is canonically associated to solvability. We show that the denotational
interpretation is adequate with respect to this preorder. However, we also
show that this model is not fully abstract. Intuitively, the lack of full ab-
straction is due to the fact that parallel composition is idempotent from the
operational point of view, whilst it is not idempotent from the denotational
one.

As usual, this mismatch can be fixed either by adding some resource sen-
sitive operators that increase the expressivity of the language, or by decreas-
ing the discriminating power of the model. We discuss these alternatives in
the final section of this paper.

1. Preliminaries

To keep this article self-contained we summarize some definitions and
results that will be used in the sequel. In particular, we present our semantic
framework MRel and we recall the construction of a specific reflexive object
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D of MRel, which we have introduced in [6]. Our main reference for category
theory is [1].

1.1. Multisets and Sequences
Let S be a set. We denote by P(S) the collection of all subsets of S. A

multiset m over S can be defined as an unordered list m = [a1, a2, . . .] with
repetitions such that ai ∈ S for all i. For each a ∈ S the multiplicity of a in
m is the number of occurrences of a in m. Given a multiset m over S, its
support is the set of elements of S belonging to m.

A multiset m is called finite if it is a finite list, we denote by [] the
empty multiset. Given two multisets m1 = [a1, a2, . . .] and m2 = [b1, b2, . . .]
the multi-union of m1,m2 is defined by m1 ] m2 = [a1, b1, a2, b2, . . .]. We
will write Mf (S) for the set of all finite multisets over S.

We denote by N the set of natural numbers. Given two N-indexed se-
quences σ = (σ1, σ2, . . .), τ = (τ1, τ2, . . .) of multisets we define the multi-
union of σ and τ componentwise as σ]̄τ = (σ1]τ1, σ2]τ2, . . .). An N-indexed
sequence σ = (m1,m2, . . . ) of multisets is quasi-finite if mi = [] holds for all,
but a finite number of indices i. If S is a set, then we denote by Mf (S)(ω)

the set of all quasi-finite N-indexed sequences of multisets over S. We write
? for the N-indexed sequence of empty multisets, i.e., ? is the only element
of Mf (∅)(ω).

1.2. Category Theory
In the following, C is a locally small4 cartesian closed category (ccc, for

short) and A,B,C are arbitrary objects of C.
We denote by A&B the categorical product5 of A and B, and by π1 ∈

C(A&B,A), π2 ∈ C(A&B,B) the associated projections. Given a pair of
arrows f ∈ C(C,A) and g ∈ C(C,B), 〈f, g〉 ∈ C(C,A&B) is the unique
arrow such that π1 ◦〈f, g〉 = f and π2 ◦〈f, g〉 = g.

We will write A⇒B for the exponential object and evalAB ∈ C(A⇒B&
A,B) for the evaluation morphism relative to A,B. Whenever A,B are
clear from the context we will simply call it eval.

Moreover, for all objects A,B,C and arrow f ∈ C(C &A,B) we de-
note by Λ(f) ∈ C(C,A ⇒ B) the unique morphism such that evalAB ◦

4This means that C(A,B) is a set (called homset) for all objects A,B.
5We use the symbol & instead of × because, in the category we will be interested in,

the categorical product is the disjoint union. The usual notation is kept to denote the
set-theoretical product.
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〈Λ(f) ◦π1, π2〉 = f . Finally, 1 denotes the terminal object and !A the only
morphism in C(A,1).

We recall that in every ccc the following equalities hold:

(pair) 〈f, g〉 ◦h = 〈f ◦h, g ◦h〉 Λ(f) ◦g = Λ(f ◦ (g × Id)) (nat−Λ)
(βcat) eval ◦〈Λ(f), g〉 = f ◦〈Id, g〉 Λ(eval) = Id (Idcat)

where f1 × f2 is the product map defined by 〈f1 ◦π1, f2 ◦π2〉.
Given a set I and a family (Ai)i∈I of objects of C, we denote the I-

indexed product of (Ai)i∈I by Πi∈IAi. If the object Πi∈IAi exists in the
category C for all families (Ai)i∈I such that the cardinality of I is less than
or equal to ℵ0, then we say that C has countable products.

Let us fix now an object A. For all sets I, we write AI for the I-
indexed product of an adequate number of copies of A, πIi ∈ C(AI , A) for
the projection on the i-th component, and ΠI

J , where J ⊆ I, for 〈πIi 〉i∈J ∈
C(AI , AJ).

We say that the ccc C has enough points if, for all objects A,B and
morphisms f, g ∈ C(A,B), whenever f 6= g, there exists a morphism h ∈
C(1, A) such that f ◦h 6= g ◦h. Similarly, an object A has enough points if
the above property holds for all f, g ∈ C(A,A).

1.3. MRel: a Cartesian Closed Category of Sets and Relations
We now present the category MRel, which is the Kleisli category of the

functor Mf (−) over the ?-autonomous category Rel of sets and relations.
We provide here a direct definition, since in the sequel we will not use
explicitly the monoidal structure of Rel.

• The objects of MRel are all the sets.

• A morphism from S to T is a relation from Mf (S) to T , in other
words, MRel(S, T ) = P(Mf (S)× T ).

• The identity of S is the relation IdS = {([a], a) | a ∈ S} ∈MRel(S, S).

• The composition of s ∈MRel(S, T ) and t ∈MRel(T,U) is defined by:

t ◦s = {(m, c) | ∃(m1, b1), . . . , (mk, bk) ∈ s such that
m = m1 ] . . . ]mk and ([b1, . . . , bk], c) ∈ t}.

We now provide an overview of the proof of cartesian closedness, and we
show that MRel has countable products.
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Theorem 1.1. The category MRel is cartesian closed and has countable
products.

Proof. The terminal object 1 is the empty set ∅, and the unique element
!S of MRel(S, ∅) is the empty relation.

Given two sets S1 and S2, their categorical product S1 &S2 in MRel is
their disjoint union:

S1 &S2 = ({1} × S1) ∪ ({2} × S2)

and the projections π1, π2 are given by:

πi = {([(i, a)], a) | a ∈ Si} ∈MRel(S1 &S2, Si), for i = 1, 2.

It is easy to check that this is actually the categorical product of S1 and S2

in MRel; given s ∈ MRel(U, S1) and t ∈ MRel(U, S2), the corresponding
morphism 〈s, t〉 ∈MRel(U, S1 &S2) is given by:

〈s, t〉 = {(m, (1, a)) | (m, a) ∈ s} ∪ {(m, (2, b)) | (m, b) ∈ t} .

This definition extends to arbitrary I-indexed families (Si)i∈I of sets in the
obvious way:

˘
i∈I Si = ∪i∈I({i} × Si),

πi = {([(i, a)], a) | a ∈ Si} ∈MRel(
˘

i∈I Si, Si), for i ∈ I.

In particular, MRel has countable products.
Notice now that there exists a canonical bijection between Mf (S1) ×

Mf (S2) and Mf (S1 & S2) which maps the pair ([a1, . . . , ap], [b1, . . . , bq])
to the multiset [(1, a1), . . . , (1, ap), (2, b1), . . . , (2, bq)]. We will confuse this
bijection with an equality, hence we will still denote by (m1,m2) the corre-
sponding element of Mf (S1 &S2).

Given two objects S and T , the exponential object S⇒T isMf (S)× T
and the evaluation morphism is given by:

evalST = {(([(m, b)],m), b) |m ∈Mf (S) and b ∈ T} ∈MRel(S⇒T &S, T ) .

Again, it is easy to check that in this way we defined an exponentiation.
Indeed, given any set U and any morphism s ∈ MRel(U &S, T ), there is
exactly one morphism Λ(s) ∈MRel(U, S⇒T ) such that:

evalST ◦ (Λ(s)× IdS) = s,
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namely, Λ(s) = {(p, (m, b)) | ((p,m), b) ∈ s}. �

Here, the points of an object S, i.e. the elements of MRel(1, S), are the
relations betweenMf (∅) and S, and hence, up to isomorphism, the subsets
of S.

In the next subsection we will present a reflexive object in MRel which
is extensional, although MRel is “strongly” non-extensional in the sense
expressed by the following theorem.

Theorem 1.2. No object S 6= 1 of MRel has enough points.

Proof. We can always find t1, t2 ∈ MRel(S, S) such that t1 6= t2 and,
for all s ∈ MRel(1, S), t1 ◦ s = t2 ◦ s. Recall that, by definition of com-
position, t1 ◦ s = {([], b) | ∃a1, . . . , an ∈ S ([], ai) ∈ s ([a1, . . . , an], b) ∈
t1} ∈ MRel(1, S), and similarly for t2 ◦ s. Hence, it is sufficient to choose
t1 = {(m1, b)} and t2 = {(m2, b)} such that m1,m2 are different multisets
with the same support. �

Corollary 1.3. MRel does not have enough points.

1.4. An Extensional Reflexive Object in MRel

From the category-theoretic point of view, a model of λ-calculus is a
reflexive object of a cartesian closed category [2, Sec. 5.5].

Definition 1.4. A reflexive object of a ccc C is a triple U = (U,A, λ) such
that U is an object of C, and λ ∈ C(U⇒U,U) and A ∈ C(U,U⇒U) satisfy
A ◦λ = IdU⇒U . U is called extensional if, moreover, λ ◦A = IdU ; in this
case we have that U ∼= U⇒U .

We define a reflexive object D in MRel, which is extensional by con-
struction.

Definition 1.5. We let (Dn)n∈N be the increasing family of sets defined by:

• D0 = ∅,

• Dn+1 =Mf (Dn)(ω).

Finally, we set D =
⋃
n∈NDn.
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So we have D0 = ∅ and D1 = {?} = {([], [], . . . )}. The elements of
D2 are quasi-finite sequences of multisets over a singleton, i.e., quasi-finite
sequences of natural numbers, and so on.

More generally, an element of D can be represented as a finite tree which
alternates two kinds of layers:

• ordered nodes (the quasi-finite sequences), where immediate subtrees
are indexed by a possibly empty finite set of natural numbers,

• unordered nodes where subtrees are organised in a non-empty multiset.

Definition 1.6. We say that σ ∈ D has rank n if n ∈ N is minimum such
that σ ∈ Dn.

In order to define an isomorphism in MRel between D and D⇒D =
Mf (D)×D just notice that every element σ = (σ1, σ2, . . .) ∈ D stands for
the pair (σ1, (σ2, . . .)) and vice versa. Given σ ∈ D and m ∈ Mf (D), we
write m :: σ for the element τ = (τ1, τ2, . . .) ∈ D such that τ1 = m and
τi+1 = σi. This defines a bijection between Mf (D) ×D and D, and hence
an isomorphism in MRel as follows:

Proposition 1.7. (Bucciarelli, et al. [6]) The triple D = (D,A, λ) where:

• A = {([m :: σ], (m,σ)) | m ∈Mf (D), σ ∈ D} ∈MRel(D,D⇒D),

• λ = {([(m,σ)],m :: σ) | m ∈Mf (D), σ ∈ D} ∈MRel(D⇒D,D),

is an extensional reflexive object of MRel.

Of course, by Theorem 1.2, the object D does not have enough points.

2. The λ+‖-calculus: a Parallel and Non-Deterministic λ-calculus

In this section we introduce the syntax and the operational semantics
of a parallel and non-deterministic extension of λ-calculus that we call λ+‖-
calculus.

2.1. Syntax of λ+‖-calculus
To begin with, we define the set Λ+‖ of λ-terms enriched with two bi-

nary operators + and ‖, that is the set of terms generated by the following
grammar (where x ranges over a countable set Var of variables):

M,N ::= x | λx.M | MN | M +N | M‖N .
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The elements of Λ+‖ are called λ+‖-terms and will be denoted byM,N,P, . . .
Intuitively, M +N denotes the non-deterministic choice between M and N ,
and M‖N stands for their parallel composition.

As usual, we suppose that application associates to the left and λ-
abstraction to the right. Moreover, to lighten the notation, we assume that
application and λ-abstraction take precedence over + and ‖ . The notions
of free and bound variables of a term are defined in the obvious way.

Concerning specific λ+‖-terms, that will be used in the following to build
examples, we set:

I ≡ λx.x; ∆ ≡ λx.xx; Ω ≡ (λx.xx)(λx.xx),
n ≡ λsz.sn(z) for each n ∈ N; s ≡ λnxy.nx(xy),

where ≡ denotes syntactical equality modulo α-conversion. Notice that n
is the n-th Church numeral [2, Def 6.4.4] and s implements the successor
function.

Notation 2.1.

• We will write ~P for a (possibly empty) finite sequence of λ+‖-terms
P1 . . . Pk and `(~P ) for the length of ~P .

• Given a sequence ~P ≡ P1 . . . Pk ∈ Λ+‖ with k ≥ 1, we will denote by
~P≥2 the (possibly empty) sequence P2 . . . Pk.

It is easy to check that every λ+‖-term M has the form λ~x.N ~P where
N , which is called the head subterm of M , is either a variable, a non-
deterministic choice, a parallel composition or a λ-abstraction. Notice that,
in this last case, we must have `(~P ) > 0.

Definition 2.2. A substitution is a finite set s = {(x1, N1), . . . , (xk, Nk)}
such that xi 6= xj for all 1 ≤ i < j ≤ k.

Given a λ+‖-term M and a substitution s as above, we denote by Ms
the term obtained by substituting simultaneously the term Nj for all free
occurrences of xj (for 1 ≤ j ≤ k) in M , subject to the usual proviso about
renaming bound variables in M to avoid capture of free variables in the
Nj ’s. If s = {(x,N)} then we write M [N/x] for Ms.

Remark 2.3. In general, M{(x1, N1), . . . , (xk, Nk)} 6= M [N1/x1] · · · [Nk/xk].
For instance, x{(x, y), (y, z)} = y, whereas x[y/x][z/y] = z.
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Actually, k-ary substitutions will be only used in Section 5 in the proof of
Lemma 5.9.

In this framework, contexts are λ+‖-terms with some occurrences of a
‘hole’, denoted by 〈〉, inside.

Definition 2.4. A context is inductively defined as follows: 〈〉 is a context;
x is a context, for every variable x; if C is a context, then λx.C is a context
for each variable x; if C1 and C2 are contexts then so are C1C2, C1 + C2

and C1‖C2.

If M is a λ+‖-term, we will write C〈M〉 for the context C〈−〉 where all
the occurrences of 〈〉 have been simultaneously and syntactically replaced
by M . Notice that this substitution can generate capture of free variables
of M . Consider, for instance, the context C〈−〉 ≡ λx.(x+ 〈〉) and the term
M ≡ λy.yx; in this case x, which occurs free in M , becomes bound in
C〈N〉 ≡ λx.(x+ λy.yx).

2.2. Operational Semantics: One-Step Head Reduction
In this section we give the operational semantics of λ+‖-calculus by defin-

ing a one-step head reduction rule. How should the head-reduction proceed
when a sum or a parallel composition comes in head position?

• When the head subterm is of the shape M + N , a non-deterministic
choice is performed, and the head reduction goes on by picking either
M or N as new head subterm;

• when the head subterm is of the shape M‖N two threads, having M
and N as head subterms, are executed in parallel.

The following definition captures this intuitive idea.

Definition 2.5. The one-step head reduction of λ+‖-terms is the smallest
binary relation→h⊆ Λ+‖×Λ+‖ such that, for all λ+‖-terms M,M ′, N,N ′, P
and variables x, we have:
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(λx.M)N →h M [N/x]
(β)

M →h M
′

λx.M →h λx.M
′ (η)

M +N →h N
(+`

c) M +N →h M
(+r

c)

N →h N
′

N‖M →h N
′‖M (‖`a)

M →h M
′

N‖M →h N‖M ′
(‖ra)

(M‖N)P →h MP‖NP
(‖app)

M →h M
′ M 6≡ λx.Q, Q1‖Q2

MN →h M
′N

(ν)

We denote by →∗h the transitive and reflexive closure of →h.

This reduction is similar to the →h
pn reduction of [9], except for the

fact that in our framework the head reduction of parallel composition is
asynchronous; the relation between →h and →h

pn is discussed in Section 7.
Head reduction is clearly not Church-Rosser because of the (+c) rules.

The set of head normal forms of a given λ+‖-term M is defined as usual.

Definition 2.6. Given a λ+‖-term M , we define the set HNF(M) of head
normal forms of M by HNF(M) = {N | M →∗h N and N 6→h}.

In order to endow non-deterministic choice and parallel composition with
may and must semantics, respectively, we say that a λ+‖-term M is solvable
if at least one head reduction starting from M terminates.

Definition 2.7. A λ+‖-term M is solvable if HNF(M) 6= ∅.

It is easy to see that a parallel composition is solvable if and only if both
its components are solvable, and that a non-deterministic choice is solvable
if and only if at least one of its components is.

Head normal forms, i.e., λ+‖-terms N such that N 6→h, have the shape
λ~x.N ′ ~P , where N ′ is either a variable, as in the case of ordinary λ-calculus,
or a parallel composition whose components are again head normal forms.
In the latter case, ~P must be empty, because of the (‖app) and (η) rules.

2.3. Operational Semantics: an Alternative Characterization
We introduce now an alternative characterization of HNF(M) that, in-

stead of relying explicitely on a term rewriting system, is based on an in-
ductive definition. (This can be seen as a first step from the operational to
the denotational semantics of λ+‖-calculus.)
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The intuitive idea underlying the notion of “value” (formalized below)
is the following:

• when a term of the form N1 +N2 gets in head position, either of the
alternatives may be chosen to pursue the head reduction, and the final
value is the union of the values obtained by each choice. In particular,
if one of the choices produces a non-empty value, then the global value
is non-empty.

• when a term of the form N1‖N2 gets in head position, the head re-
duction forks, and the final value is obtained by “mixing” the values
eventually obtained. In particular, if the value of one of the subpro-
cesses is empty, then also the global value is.

Specifically, we use union (resp. multi-union) to get the value of M1+M2

(resp. M1‖M2) out of the values of M1 and M2.
As showed in Proposition 2.16, following this approach, we still associate

with each M ∈ Λ+‖ the value eventually obtained by head reducing M .

Definition 2.8. A basic head normal form is a λ+‖-term of the form λ~x.y ~P .
A multiple head normal form is a finite multiset of basic head normal forms.
A value is a set of multiple head normal forms.

To help the reader to get familiar with these notions, we first provide
some simple examples of values:

• the value of I+ ∆ is {[I], [∆]}. In other words, the term I+ ∆ has two
different multiple head normal forms, which are singleton multisets;

• the value of I‖∆ is {[I,∆]}, then I‖∆ has just one multiple head
normal form;

• the values of I + Ω and I‖Ω are {[I]} and ∅, respectively. This is a
consequence of the fact that the value of Ω is the empty-set.

In general, the value H(M) of a λ+‖-term M can be characterized as the
limit of an increasing sequence (Hn(M))n∈N of “partial” values, which are
defined by induction on n ∈ N and by cases on the form of the head subterm
of M .

Definition 2.9. Let M ≡ λ~x.N ~P be a λ+‖-term.

• H0(M) = ∅;

14



• Hn+1(M) =


{[M ]} if N ≡ y,
Hn(λ~x.Q[P1/y]P2 · · ·P`(~P )) if N ≡ λy.Q,
Hn(λ~x.N1

~P ) ∪Hn(λ~x.N2
~P ) if N ≡ N1 +N2,

{m1 ]m2 | ∃mi ∈ Hn(λ~x.Ni
~P ) for i = 1, 2} if N ≡ N1‖N2.

Notice that, for all M ∈ Λ+‖ and n ∈ N, the value Hn(M) is a finite set of
multiple head normal forms. Since the sequence (Hn(M))n∈N is increasing,
we can define the (final) value of M as its limit.

Definition 2.10. The value of a λ+‖-termM is defined by H(M) =
⋃
n∈NHn(M).

Of course, H(M) may be infinite as shown in the example below.

Example 2.11. Consider the λ+‖-term6 M ≡ λn.0 + sn. Let now N ≡
YM , where Y is some fixpoint combinator. To have simpler calculations, we
suppose that YM reduces to M(YM) in just one step of head β-reduction.
Then, we get:

• H0(N) = ∅,

• H1(N) = H0(MN) = ∅,

• H2(N) = H1(MN) = H0(0 + sN) = ∅,

• H3(N) = H2(MN) = H1(0 + sN) = {[0]} ∪H0(sN) = {[0]}.

Pursuing the calculation a little further, one gets H9(N) = {[0], [1]} and,
eventually, H(N) = {[n] | n ∈ N}.

2.4. Equivalence Between the Two Approaches
We now prove that H(M) and HNF(M) are essentially the same set:

multi-unions in the former replace parallel compositions in head position
in the latter. In the rest of the paper, we will use the characterization of
solvability expressed in terms of H(M) (see Corollary 2.17).

We start by defining an operator ι mapping head normal forms into
multiple head normal forms. The idea is simply that, for instance, the head
normal form I‖I will be associated with the multiset [I, I].

6We recall that 0 denotes the 0-th Church numeral and s the successor function.
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Definition 2.12. Let Q ≡ λ~x.N ~P be a head normal form. The multiset
ι(Q) is defined by cases on N and by structural induction on Q as follows:

ι(Q) =
{

[Q] if N ≡ x,
ι(λ~x.Q1) ] ι(λ~x.Q2) if N ≡ Q1‖Q2.

Remark that, in the definition above, if N is not a variable then `(~P ) = 0
since Q is a head normal form.

The following simple lemmata, whose proofs are omitted, are useful for
relating HNF(M) and H(M).

Lemma 2.13. Let P be a λ+‖-term and ~x be a sequence of variables. If
λ~x.P →∗h Q then Q ≡ λ~x.Q′ and P →∗h Q′.

The proof is a simple analysis of →h rules. The relevant one is the (η)
rule: in this case head abstractions persist and reductions take place in the
body of the term.

Lemma 2.14. Let M ∈ Λ+‖. If M →∗h N then:

(a) H(N) ⊆ H(M)
(b) HNF(N) ⊆ HNF(M).

Notice that head reductions do not preserve the values of terms, due to
the non deterministic choice (+c). Nevertheless, it is easy to check that both
the value and the set of head normal forms of a term can only decrease by
head reducing it.

Lemma 2.15. If Q ∈ Λ+‖ is a head normal form, then H(Q) = {ι(Q)}.

In the following proposition we give the precise relationship between
HNF(M) and H(M).

Proposition 2.16. Let M ∈ Λ+‖, then we have that

H(M) = {ι(Q) | Q ∈ HNF(M)}.

Proof. We start by proving H(M) ⊆ {ι(Q) | Q ∈ HNF(M)}. It is enough
to show that, for all natural numbers n and for all multiple head normal
forms m, if m ∈ Hn(M) then there exists Q ∈ HNF(M) such that m = ι(Q).
This is proven by induction on n ∈ N.
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• case n = 0. This case holds trivially, since H0(M) is empty.

• case n + 1. Let m ∈ Hn+1(M), and let us inspect the four possible
cases for the head term N of M ≡ λ~x.N ~P , as in Definition 2.9:

1. N ≡ y: this case is trivial.
2. N ≡ λy.Q: let M ′ ≡ λ~x.Q[P1/y]P2 · · ·P`(~P ). By definition
m ∈ Hn(M ′), and by the inductive hypothesis there exists a
λ+‖-term Q ∈ HNF(M ′) such that m = ι(Q). We conclude by
Lemma 2.14(b).

3. N ≡ N1 + N2: let M ′ ≡ λ~x.N1
~P , and let us suppose, without

loss of generality, that m ∈ Hn(λ~x.N1
~P ). We conclude by using

the inductive hypothesis and Lemma 2.14(b).
4. N ≡ N1‖N2: then m = m1 ]m2 and mi ∈ Hn(λ~x.Ni

~P ). By the
inductive hypothesis, there exists Qi ∈ HNF(λ~x.Ni

~P ) such that
mi = ι(Qi) for i = 1, 2. By Lemma 2.13, there exists a head
reduction starting from M and ending with Q′ ≡ λ~x.(Q′1‖Q′2)
such that Qi ≡ λ~x.Q′i. We conclude since ι(Q′) = m1 ] m2 by
definition.

The proof of the other inclusion is given by a simple induction on the length
of the derivation M →∗h Q. One uses Lemma 2.15 for the base case and
Lemma 2.14(a) for the inductive step. �

Corollary 2.17. Let M be a λ+‖-term. Then HNF(M) = ∅ if, and only if,
H(M) = ∅.

As a matter of fact, given M,N ∈ Λ+‖ it is possible that H(M) = H(N)
and HNF(M) 6= HNF(N). Consider for instance M ≡ (I‖I)‖I and N ≡
I‖(I‖I). These terms can of course be consistently equated, and actually
they will get the same denotational interpretation in our model. However,
we can notice that in the general framework of aggregation monads, where
‖ may be interpreted by a non associative operation, more discriminating
notions of value could be considered.

From now on, we will focus on the value H(M) of a given term M ,
forgetting about →h. Notice that the two points of view are equivalent, as
showed in Proposition 2.16.

3. Some Remarkable Sets of Sovable Terms

In Definition 2.7 we say that a term is solvable if its set of head normal
forms is non-empty; however, Corollary 2.17 allows us to shift our point of
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view, keeping the basic intuition of head normalization. Indeed, a λ+‖-term
M is solvable if, and only if, H(M) 6= ∅.

Notation 3.1. We will write N for the set of solvable λ+‖-terms.

Among solvable terms, we single out the set N0 of head normal forms
starting with a variable, and the set N1 of solvable terms having a multiple
head normal form whose head variables are free.

Definition 3.2. We set:

• N0 = {x~P | x ∈ Var and ~P ∈ Λ+‖}, and

• N1 = {M ∈ Λ+‖ | ∃[λ~x1.y1
~P1, . . . , λ~xk.yk ~Pk] ∈ H(M)∧(∀j = 1..k) yj /∈

~xj}.

The rest of this section is devoted to the proof the following proposi-
tion, which is the main technical tool used in the realizability argument of
Section 5.

Proposition 3.3. Let M ∈ Λ+‖ and x ∈ Var, then we have that:

(i) if Mx ∈ N then M ∈ N ,

(ii) if MΩ ∈ N1 then M ∈ N1,

(iii) if M ∈ N1 then MN ∈ N1 for all N ∈ Λ+‖.

Notice that in the case of the pure λ-calculus the analogous properties
are trivially true.

In order to prove the above proposition, we need to introduce some
additional definitions and results.

Definition 3.4. A multiple head normal form m is head-free if none of the
head normal forms contained in m binds its head variable.

The following definition extends the notion of application of λ-calculus
to multiple head normal forms.

Definition 3.5. Let m be a multiple head normal form and N ∈ Λ+‖, then
we set mN = [MN | M ∈ m ∩N0] ] [P [N/x] | λx.P ∈ m].

Proposition 3.6. Given a multiple head normal form m, we have that:
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• mx is a multiple head normal form, for all x ∈ Var;

• if m is head-free, then mN is a head-free multiple head normal form,
for all N ∈ Λ+‖.

Proof. Straightforward. �

We provide now three technical lemmata which will be used respectively
for proving the three items of Proposition 3.3.

Lemma 3.7. For all M ∈ Λ+‖ and x ∈ Var we have that for all n ∈ N:

m ∈ Hn(Mx)⇒ ∃k ≤ n, ∃m′ ∈ Hk(M) such that m = m′x.

Proof. By induction on n ∈ N.
If n = 0 then the implication follows trivially, since H0(Mx) = ∅.
Suppose now that n > 0, then the proof is by cases on the shape of M ≡
λ~z.M ′ ~P .

• If M ′ ≡ y and `(~z) = 0, then Hn(y ~Px) = {[y ~Px]}. Hence, the only
m ∈ Hn(Mx) is [y ~Px] and the result follows taking k = n and m′ =
[y ~P ].

• IfM ′ ≡ y and `(~z) > 0, thenHn((λ~z.y ~P )x) = Hn−1(λ~z≥2.y[x/z1]~P [x/z1]) =
{[λ~z≥2.y[x/z1]~P [x/z1]]} = {[λ~z.y ~P ]x}. Hence, if m ∈ Hn((λ~z.y ~P )x),
then m = [λ~z.y ~P ]x and the result follows for k = n and m′ = [λ~z.y ~P ].

• IfM ′ ≡ (λy.Q) and `(~z) = 0, thenHn((λy.Q)~Px) = Hn−1(Q[P1/y]~P≥2x).
Now, if m ∈ Hn(Mx), then m also belongs to Hn−1(Q[P1/y]~P≥2x)
and, by the inductive hypothesis, there exist k′ ≤ n − 1 and m′ ∈
Hk′(Q[P1/y]~P≥2) such that m = m′x. We can then conclude since
Hk′(Q[P1/y]~P≥2) = Hk′+1((λy.Q)~P ) and k = k′ + 1 ≤ n.

• If M ′ ≡ (λy.Q), `(~z) > 0 and Hn(Mx) 6= ∅, then we have that n > 2
and

Hn((λ~z.(λy.Q)~P )x) = Hn−1(λ~z≥2.(λy.Q[x/z1])~P [x/z1])
= Hn−2(λ~z≥2.Q[x/z1][P1[x/z1]/y]~P≥2[x/z1])
= Hn−2(λ~z≥2.Q[P1/y][x/z1]~P≥2[x/z1])
= Hn−1((λ~z.Q[P1/y]~P≥2)x).

Now, ifm ∈ Hn(Mx), thenm also belongs toHn−1((λ~z.Q[P1/y]~P≥2)x)
and, by the inductive hypothesis, there exist k′ ≤ n − 1 and m′ ∈
Hk′(λ~z.Q[P1/y]~P≥2) such that m = m′x. We can conclude since
Hk′(λ~z.Q[P1/y]~P ) = Hk′+1(λ~z.(λy.Q)~P ) and k = k′ + 1 ≤ n.
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• IfM ′ ≡M1+M2 and `(~z) = 0, thenHn((M1+M2)~Px) = ∪i=1,2Hn−1(Mi
~Px).

If m ∈ Hn(Mx) then m belongs to, say, Hn−1(M1
~Px) and by the in-

ductive hypothesis there exist k′ ≤ n − 1 and m′ ∈ Hk′(M1
~P ) such

that m = m′x. Thus, we conclude since m′ ∈ Hk′+1((M1 +M2)~P ) and
k = k′ + 1 ≤ n.

• If M ′ ≡M1 +M2, `(~z) > 0 and Hn(Mx) 6= ∅, then we have n > 2 and

Hn((λ~z.(M1 +M2)~P )x) = Hn−1(λ~z≥2.(M1[x/z1] +M2[x/z1])~P [x/z1])
= ∪i=1,2Hn−2(λ~z≥2.Mi[x/z1]~P [x/z1]).

Thus if m ∈ Hn(Mx) then m belongs to, say, Hn−2(λ~z≥2M1[x/z1]~P ) =
Hn−1((λ~z.M1

~P )x) and, by the inductive hypothesis, there exist k′ ≤
n− 1 and m′ ∈ Hk′(λ~z.M1

~P ) such that m = m′x. Hence, we conclude
since m′ ∈ Hk′+1(λ~z.(M1 +M2)~P ) and k = k′ + 1 ≤ n.

• If M ′ ≡ M1‖M2 and `(~z) = 0 then m ∈ Hn((M1‖M2)~Px) implies
that there exists mi ∈ Hn−1(Mi

~Px) (for i = 1, 2) such that m =
m1 ]m2. By the inductive hypothesis there exist k1, k2 ≤ n − 1 and
m′i ∈ Hki

(Mi
~P ) such that mi = m′ix (for i = 1, 2). Hence m1x]m2x ∈

Hmax(k1,k2)+1((M1‖M2)~P ) and we conclude since m1x ]m2x = (m1 ]
m2)x and k = max(k1, k2) + 1 ≤ n.

• If M ′ ≡ M1‖M2, `(~z) > 0 and H(M) 6= ∅, then we have n > 2 and
Hn((λ~z.(M1‖M2)~P )x) = Hn−1(λ~z≥2.(M1[x/z1]‖M2[x/z1])~P [x/z1]).
Hence, if m ∈ Hn(Mx) then there exists a multiple head normal form
mi ∈ Hn−2(λ~z≥2.Mi[x/z1]~P [x/z1]) = Hn−1((λ~z.Mi

~P )x) (for i = 1, 2)
such that m = m1 ] m2. By the inductive hypothesis there exist
k1, k2 ≤ n − 1 and m′i ∈ Hki

(λ~z.Mi
~P ) such that mi = m′ix (for

i = 1, 2). Hence m1x ] m2x ∈ Hmax(k1,k2)+1(λ~z.(M1‖M2)~P ) and we
conclude since m1x]m2x = (m1]m2)x and k = max(k1, k2) + 1 ≤ n.

�

Lemma 3.8. For all M ∈ Λ+‖ we have that for all n ∈ N:

m ∈ Hn(MΩ) head-free ⇒ ∃k ≤ n, ∃m′ ∈ Hk(M) head-free, such that m = m′Ω.

Proof. By induction on n.
If n = 0 then the implication follows trivially, since H0(MΩ) = ∅.
Suppose now that n > 0, then the proof is by cases on the shape of M ≡
λ~z.M ′ ~P .
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• If M ′ ≡ y and `(~z) = 0, then Hn(y ~PΩ) = {[y ~PΩ]}. Hence, the only
m ∈ Hn(MΩ) is [y ~PΩ] which is head-free and the result follows taking
k = n and m′ = [y ~P ].

• If M ′ ≡ y and `(~z) > 0, then we can suppose y /∈ ~z, since other-
wise it is easy to check that Hn(MΩ) contains no head-free multiple
head normal form. In this case, we have: Hn−1(λ~z≥2.y ~P [Ω/z1]) =
{[λ~z≥2.y ~P [Ω/z1]]} = {[λ~z.y ~P ]Ω}. Hence, the only head-free multiple
head normal form in Hn(MΩ) is m = [λ~z.y ~P ]Ω and we conclude since
Hn−1(λ~z.y ~P ) = {[λ~z.y ~P ]} and m = [λ~z.y ~P ] is head-free.

• IfM ′ ≡ (λy.Q) and `(~z) = 0, thenHn((λy.Q)~PΩ) = Hn−1(Q[P1/y]~P≥2Ω).
Now, if there is a head-free multiple head normal form m ∈ Hn(MΩ),
then m also belongs to Hn−1(Q[P1/y]~P≥2Ω). By the inductive hy-
pothesis there exist k′ ≤ n − 1 and m′ ∈ Hk′(Q[P1/y]~P≥2) head-
free such that m = m′Ω. We conclude since Hk′(Q[P1/y]~P≥2) =
Hk′+1((λy.Q)~P ) and k = k′ + 1 ≤ n.

• If M ′ ≡ (λy.Q), `(~z) > 0 and Hn(MΩ) 6= ∅, then we have that n > 2
and

Hn((λ~z.(λy.Q)~P )Ω) = Hn−1(λ~z≥2.(λy.Q[Ω/z1])~P [Ω/z1])
= Hn−2(λ~z≥2.Q[Ω/z1][P1[Ω/z1]/y]~P≥2[Ω/z1])
= Hn−2(λ~z≥2.Q[P1/y][Ω/z1]~P≥2[Ω/z1])
= Hn−1((λ~z.Q[P1/y]~P≥2)Ω).

Now, if there is a head-free multiple head normal form m ∈ Hn(MΩ),
then m also belongs to Hn−1((λ~z.Q[P1/y]~P≥2)Ω) and, by the inductive
hypothesis, there exist k′ ≤ n−1 and m′ ∈ Hk′(λ~z.Q[P1/y]~P≥2) head-
free such that m = m′Ω. Then we conclude since Hk′(λ~z.Q[P1/y]~P ) =
Hk′+1(λ~z.(λy.Q)~P ) and k = k′ + 1 ≤ n.

• IfM ′ ≡M1+M2 and `(~z) = 0, thenHn((M1+M2)~PΩ) = ∪i=1,2Hn−1(Mi
~PΩ).

If there is a head-free multiple head normal form m ∈ Hn(MΩ) then m
belongs to, say, Hn−1(M1

~PΩ) and, by the inductive hypothesis, there
exist k′ ≤ n − 1 and m′ ∈ Hk′(M1

~P ) head-free such that m = m′Ω.
Thus, we conclude since m′ ∈ Hk′+1((M1 +M2)~P ) and k = k′+1 ≤ n.

• If M ′ ≡M1 +M2, `(~z) > 0 and Hn(MΩ) 6= ∅, then we have that n > 2
and

Hn((λ~z.(M1 +M2)~P )Ω) = Hn−1(λ~z≥2.(M1[Ω/z1] +M2[Ω/z1])~P [Ω/z1])
= ∪i=1,2Hn−2(λ~z≥2.Mi[Ω/z1]~P [Ω/z1]).
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Thus if there is a head-free multiple head normal form m ∈ Hn(MΩ)
then m belongs to, say, Hn−2(λ~z≥2.M1[Ω/z1]~P ) = Hn−1((λ~z.M1

~P )Ω)
and by the inductive hypothesis there exist k′ ≤ n − 1 and m′ ∈
Hk′(λ~z.M1

~P ) head-free such that m = m′Ω. Hence, we conclude since
m′ ∈ Hk′+1(λ~z.(M1 +M2)~P ) and k = k′ + 1 ≤ n.

• If M ′ ≡ M1‖M2 and `(~z) = 0 then m ∈ Hn((M1‖M2)~PΩ), implies
that there exists mi ∈ Hn−1(Mi

~PΩ) (for i = 1, 2) such that m =
m1 ]m2. Of course, if m is head-free then also m1,m2 are. Thus, by
the inductive hypothesis, there exist k1, k2 ≤ n−1 and m′i ∈ Hki

(Mi
~P )

head-free such that mi = m′iΩ (for i = 1, 2). Hence m1Ω ] m2Ω ∈
Hmax(k1,k2)+1((M1‖M2)~P ) and we conclude since m1Ω]m2Ω = (m1]
m2)Ω and k = max(k1, k2) + 1 ≤ n.

• If M ′ ≡M1‖M2 and `(~z) > 0, then we have Hn((λ~z.(M1‖M2)~P )Ω) =
Hn−1(λ~z≥2.(M1[Ω/z1]‖M2[Ω/z1])~P [Ω/z1]). Now, if m ∈ Hn(MΩ)
then n > 2 and there exists mi ∈ Hn−2(λ~z≥2.Mi[Ω/z1]~P [Ω/z1]) =
Hn−1((λ~z.Mi

~P )Ω) (for i = 1, 2) such that m = m1 ]m2. Of course, if
m is head-free then also m1,m2 are. By the inductive hypothesis there
exist k1, k2 ≤ n− 1 and m′i ∈ Hki

(λ~z.Mi
~P ) head-free such that mi =

m′iΩ (for i = 1, 2). Hence m1Ω]m2Ω ∈ Hmax(k1,k2)+1(λ~z.(M1‖M2)~P )
and we conclude since m1Ω]m2Ω = (m1]m2)Ω and k = max(k1, k2)+
1 ≤ n.

�

Lemma 3.9. For all M,N ∈ Λ+‖ and for all n ∈ N if m ∈ Hn(M) is
head-free, then mN ∈ Hn+1(MN).

Proof. The proof is done by induction on n ∈ N.
If n = 0 then there is no m ∈ H0(M) and the implication is trivially satisfied.
If n > 0 then the proof is done by cases on the shape of M ≡ λ~z.M ′ ~P .

• If M ′ ≡ y and `(~z) = 0, then Hn(M) = {[y ~P ]}. Since [y ~P ] is head-free
we have to check that [y ~P ]N ∈ Hn+1(MN), and this follows since
Hn+1(MN) = {[y ~PN ]}, by definition.

• If M ′ ≡ y and `(~z) > 0, then Hn(M) = {[λ~z.y ~P ]}. If y ∈ ~z, then
Hn(M) does not contain any head-free multiple head normal form
and the implication trivially holds. Otherwise, if y /∈ ~z, then [λ~z.y ~P ]
is head-free and we have to check that [λ~z.y ~P ]N ∈ Hn+1(MN). This
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follows since [λ~z.y ~P ]N = [λ~z≥2.y ~P [N/z1]] and Hn+1((λ~z.y ~P )N) =
Hn(λ~z≥2.y ~P [N/z1]) = {[λ~z≥2.y ~P [N/z1]]}.

• If M ′ ≡ λy.Q and there exists a head-free multiple head normal
form m ∈ Hn(M) = Hn−1(λ~z.Q[P1/y]~P≥2) then, by the inductive
hypothesis, we have mN ∈ Hn((λ~z.Q[P1/y]~P≥2)N). If `(~z) = 0 we
conclude since Hn+1(((λy.Q)~P )N) = Hn(Q[P1/y]~P≥2N). Otherwise,
when `(~z) > 0, we have:

Hn+1((λ~z.(λy.Q)~P )N) = Hn(λ~z≥2.(λy.Q[N/z1])~P [N/z1])
= Hn−1(λ~z≥2.Q[N/z1][P1[N/z1]/y])~P≥2[N/z1])
= Hn−1(λ~z≥2.Q[P1/y][N/z1])~P≥2[N/z1])
= Hn((λ~z.Q[P1/y]~P≥2)N).

• If M ′ ≡ M1 + M2, then Hn(M) = Hn−1(λ~z.M1
~P ) ∪ Hn−1(λ~z.M2

~P ).
Thus, if there is a head-free m ∈ Hn(M) then m belongs to, say,
Hn−1(λ~z.M1

~P ) and by the inductive hypothesis we getmN ∈ Hn((λ~z.M1
~P )N).

If `(~z) = 0 we conclude since Hn+1((M1 + M2)~PN) = Hn(M1
~PN) ∪

Hn(M2
~PN). Suppose now `(~z) > 0. We conclude since

Hn+1(MN) = Hn(λ~z≥2.(M1[N/z1] +M2[N/z1])~P [N/z1])
= ∪i=1,2Hn−1(λ~z≥2.Mi[N/z1]~P [N/z1])
= ∪i=1,2Hn((λ~z.Mi

~P )N).

• If M ′ ≡ M1‖M2 and m ∈ Hn(M), then there is mi ∈ Hn−1(λ~z.Mi
~P )

(for i = 1, 2) such that m = m1 ] m2. Of course, if m is head-free
then also m1,m2 are. By the inductive hypothesis we have miN ∈
Hn(λ~z.Mi

~PN) (for i = 1, 2). Now, if `(~z) = 0, then it is straight-
forward to check that (m1 ] m2)N ∈ Hn+1(MN) once noticed that
m1N ]m2N = (m1 ]m2)N . If `(~z) > 0, we conclude since

Hn+1(MN) = Hn+1((λ~z.(M1‖M2)~P )N)
= Hn(λ~z≥2.(M1[N/z1]‖M2[N/z1])~P [N/z1])
= {m1 ]m2 | mi ∈ Hn−1(λ~z≥2.Mi[N/z1]~P [N/z1]) for i = 1, 2}
= {m1 ]m2 | mi ∈ Hn(((λ~z.Mi)~P )N) for i = 1, 2}.

�

We are now able to provide the complete proof of Proposition 3.3 (pre-
viously announced at page 17).

Proposition 3.3. Let M ∈ Λ+‖ and x ∈ Var, then we have that:
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(i) if Mx ∈ N then M ∈ N ,

(ii) if MΩ ∈ N1 then M ∈ N1,

(iii) if M ∈ N1 then MN ∈ N1 for all N ∈ Λ+‖.

Proof. (i) If Mx ∈ N then there exists a multiset m ∈ H(Mx). By defini-
tion of H(−) we have that m ∈ Hn(Mx) for some n ∈ N. By Lemma 3.7 we
know that there exists m′ ∈ Hk(M) for some k ≤ n and hence that H(M)
is non-empty. We conclude that M ∈ N .
(ii) If MΩ ∈ N1 then there is m ∈ H(M) head-free. By definition of H(−)
we have that m ∈ Hn(MΩ) for some n. Then by Lemma 3.8 there exists
m′ head-free such that m′ ∈ Hk(M) for some k ≤ n. We conclude that
M ∈ N1.
(iii) If M ∈ N1 then there exists m ∈ H(M) head-free. By definition of
H(−) we have that m ∈ Hn(M) for some n. From Lemma 3.9 we have that
mN ∈ Hn+1(MN) for all N ∈ Λ+‖ and hence that mN ∈ H(MN). We
conclude since, if m is head-free, then also mN is. �

4. A Relational Model of λ+‖-calculus

Exploiting the existence of countable products in MRel we have shown in
[6] that the reflexive object D = (D,A, λ) built in Section 1.4 can be turned
into a λ-model [2, Def. 5.2.1]. This was not clear before, since the object D
does not have enough points (see [2, Prop. 5.5.7(ii)]). The underlying set of
the λ-model associated with D by our construction is the set of “finitary”
morphisms in MRel(DVar, D), where DVar is the Var-indexed categorical
product of countably many copies of D.

4.1. Finitary Morphisms in MRel
The morphisms in MRel(DVar, D) are sets of pairs whose first projection

is a finite multiset of elements in DVar, and whose second projection is an
element of D. Since categorical products in MRel are disjoint unions, a
typical such pair is of the form:

([(x1, σ
1
1), . . . , (x1, σ

n1
1 ), . . . , (xk, σ1

k), . . . , (xk, σ
nk
k )], σ)

where k, n1, . . . , nk ∈ N, x1, . . . , xk ∈ Var and σ1
1, . . . , σ

nk
k , σ ∈ D.

Notation 4.1. Given m ∈Mf (DVar) and x ∈ Var, we set mx = [σ | (x, σ) ∈
m] ∈Mf (D) and m−x = [(y, σ) ∈ m | y 6= x] ∈Mf (DVar).
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In general, given an object U of a ccc C, we say that a morphism f ∈
C(UVar, U) is “finitary” if there exist a finite subset I ⊆ Var and a morphism
fI ∈ C(U I , U) such that f = fI ◦ΠVar

I (see [6, Sec. 3.1]). Intuitively, a
morphism f is finitary if it only depends on a finite number of arguments.
Working in MRel it is more convenient to take the following equivalent
definition.

Definition 4.2. A morphism r ∈MRel(DVar, D) is finitary if there exists
a finite set I of variables such that for all (m,σ) ∈ r and x ∈ Var we have
that mx 6= [] entails x ∈ I.

We denote by MRelf (DVar, D) the set of all finitary morphisms.

4.2. The Model
From [6, Thm. 1] we know that (MRelf (DVar, D), •), where • is defined

as usual by r1 • r2 = eval ◦ 〈A ◦r1, r2〉, can be endowed with a structure of
λ-model.

In order to interpret λ+‖-terms as finitary morphisms of MRel we are
going to define on MRel(DVar, D) two binary operations of sum and ag-
gregation for modelling non-deterministic choice and parallel composition,
respectively, and to prove that MRelf (DVar, D) is closed under these oper-
ations.

Definition 4.3. Let r1, r2 ∈MRel(DVar, D), then:

• the sum of r1 and r2 is defined by r1 ⊕ r2 = r1 ∪ r2.

• the aggregation of r1 and r2 is defined by

r1 � r2 = {(m1 ]m2, σ1]̄σ2) | ∃(mi, σi) ∈ ri, for i = 1, 2}.

Proposition 4.4. The set MRelf (DVar, D) is closed under sum and aggre-
gation.

Proof. Straightforward. In both cases, the union of the finite sets of
variables I1 and I2 given by the finiteness of the arguments of the operation,
is a witness of the finiteness of the result. �

Composition is right-distributive over sum and aggregation.

Proposition 4.5. Let r, s ∈ MRel(DVar, D) and t ∈ MRel(DVar, DVar),
then:
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- (r ⊕ s) ◦ t = (r ◦ t)⊕ (s ◦ t),

- (r � s) ◦ t = (r ◦ t)� (s ◦ t).

Proof. Straightforward. �

The units of the operations ⊕ and � are 0 = ∅ and 1 = {([], ?)}, respec-
tively; (MRelf (DVar, D),⊕, 0) and (MRelf (DVar, D),�, 1) are commuta-
tive monoids. Moreover, 0 annihilates � and aggregation distributes over
sum. Summing up, the following proposition gives an overview of the al-
gebraic properties of MRelf (DVar, D) equipped with application, sum and
aggregation.

Proposition 4.6.

- (MRelf (DVar, D),⊕,�, 0, 1) is a commutative semiring.

- • is right-distributive over ⊕ and �.

- ⊕ is idempotent (whereas � is not).

Proof. Straightforward. �

4.3. The Absolute Interpretation
Before going through the formal definition of the interpretation of λ+‖-

terms, we present a short digression on the nature of such an interpretation.
In our framework, the λ+‖-terms will be interpreted as morphisms in

MRelf (DVar, D), i.e., as subsets of Mf (DVar) × D. The occurrence of a
particular pair

([(x1, σ
1
1), . . . , (x1, σ

n1
1 ), . . . , (xk, σ1

k), . . . , (xk, σ
nk
k )], σ)

in the interpretation of a term M may be read as “in an environment ρ
such that ρ(xi) = [σ1

i , . . . , σ
ni
i ] (for all i = 1, . . . , k) the interpretation [M ]ρ

contains σ”.
Hence, here there is no need of providing explicitly an environment to

the interpretation function as classically done for λ-models [2, Def. 5.2.1(ii)]
because the whole information is coded inside the elements of the λ-model
itself.

On the other hand, the categorical interpretation of a term M is usu-
ally defined with respect to a finite list of variables, containing the free
variables of M [2, Def. 5.5.3(vii)]. Intuitively, our interpretation is defined
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with respect to the list of all variables, encompassing then all categorical
interpretations.

These considerations lead us to the definition of an interpretation func-
tion

[− ] : Λ+‖ →MRelf (DVar, D)

that we call the absolute interpretation7 of λ+‖-terms:

• [x] = πVar
x , for x ∈ Var,

• [M1M2] = eval ◦〈A ◦ [M1], [M2]〉,

• [λx.M ] = λ ◦Λ([M ] ◦ηx),

• [M1 +M2] = [M1]⊕ [M2],

• [M1‖M2] = [M1]� [M2],

where ηx ∈ MRel(DVar &D,DVar) is defined componentwise, for y ∈ Var,
by:

πVar
y ◦ηx =

{
π2 if x ≡ y,
πVar
y ◦π1 if x 6≡ y.

In what follows, we will use the inductive characterization of the inter-
pretation of (some) λ+‖-terms provided by the proposition below:

Proposition 4.7.

(i) [x] = {([(x, σ)], σ) | σ ∈ D},

(ii) [MN ] = {(m0]m1]. . .]mk, σ) | ∃k ≥ 0, (m0, [τ1, . . . , τk] :: σ) ∈ [M ],
(mi, τi) ∈ [N ] for 1 ≤ i ≤ k},

(iii) [λx.M ] = {(m−x,mx :: σ) | (m,σ) ∈ [M ]}.

Proof. Simple calculations based on the definitions of Section 1. �

We show now the soundness of the interpretation with respect to β-
conversion, which relies on the following lemma.

7See [17, Sec. 2.3.2] (and cf. [22]) for more details on the relations among the absolute,
algebraic and categorical interpretations, and on how the former allows to recover the
others.
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Lemma 4.8. If M,N ∈ Λ+‖ and x ∈ Var, then [M [N/x]] = [M ] ◦ ηx ◦
〈Id, [N ]〉.

Proof. By structural induction on M . The cases M ≡ M1 + M2 and
M ≡M1‖M2 are settled by using Proposition 4.5. For the other cases, one
can use Proposition 4.7 and the following characterization of ηx ◦〈Id, [N ]〉 ∈
MRel(DVar, DVar):

ηx ◦〈Id, [N ]〉 = {([(y, σ)], (y, σ)) | σ ∈ D, y 6≡ x} ∪
{(m, (x, σ)) | (m,σ) ∈ [N ]}.

�

Lemma 4.9. (Soundness) For all M,N ∈ Λ+‖ and x ∈ Var, we have
[(λx.M)N ] = [M [N/x]].

Proof.

[(λx.M)N ] = eval ◦〈A ◦λ ◦Λ([M ] ◦ηx), [N ]〉 by def.
= eval ◦〈Λ([M ] ◦ηx), [N ]〉 by A ◦λ = Id
= [M ] ◦ηx ◦〈Id, [N ]〉 by (βcat)
= [M [N/x]] by Lemma 4.8

.

�

We aim to prove that our model is sensible w.r.t. the operational se-
mantics: a λ+‖-term M has a non-empty interpretation if, and only if, M
is solvable.

We start showing that the interpretation of every solvable term is non-
empty (for the converse we will adapt Krivine’s realizability method [15],
see Section 5). This is an immediate corollary of the following propositions
stating that the interpretation of a λ+‖-term includes the union of the in-
terpretations of its multiple head normal forms and that the interpretation
of any head normal form is non-empty.

Proposition 4.10. For all M ∈ Λ+‖, we have (
⊕

m∈H(M)(
⊙

N∈m [N ])) ⊆
[M ].

Proof. It is enough to show that (
⊕

m∈Hn(M)(
⊙

N∈m [N ])) ⊆ [M ] holds
for all n ∈ N; we prove it by induction on n. The case n = 0 is trivial. The
proof of the inductive step goes by case analysis on the head subterm M ′ of
M ≡ λ~z.M ′ ~P .

28



• The case M ′ ≡ x is trivial, and the case M ′ ≡ λy.Q is settled by
Lemma 4.9.

• If M ′ ≡ Q1‖Q2, we start by observing that [M ] = [λ~z.Q1
~P ] �

[λ~z.Q2
~P ]. This is an easy consequence of the right distributivity

of • over � (Proposition 4.6) and of the fact that, by Proposition
4.7(iii), we have [λ~x.(R1‖R2)] = [λ~x.R1] � [λ~x.R2], for all ~x ∈ Var
and R1, R2 ∈ Λ+‖. Then, we can conclude by the inductive hypothesis.

• The case M ′ ≡ Q1 + Q2 is similar, and simpler, once noted that
[M ] = [λ~z.Q1

~P ]⊕ [λ~z.Q2
~P ] (again, by Proposition 4.6 and Proposi-

tion 4.7(iii)).

�

We now show that every basic head normal form has a non-empty inter-
pretation.

Proposition 4.11. For all x, ~y ∈ Var and ~Q ∈ Λ+‖ we have [λ~y.x ~Q] 6= ∅.

Proof. By Proposition 4.7(iii), it is sufficient to prove that, for all x ∈ Var
and ~Q ∈ Λ+‖, we have [x~Q] 6= ∅. To conclude, it is easy to show by induction
on k that ([(x, ?)], ?) ∈ [xQ1 . . . Qk]. �

Theorem 4.12. For all M ∈ Λ+‖, if H(M) 6= ∅ then [M ] 6= ∅.

Proof. Let [N1, . . . , Nk] ∈ H(M). By Proposition 4.10,
⊙

1≤i≤k [Ni] ⊆
[M ], and by Proposition 4.11 [Ni] 6= ∅ for 1 ≤ i ≤ k. We conclude that
∅ 6=

⊙
1≤i≤k [Ni] ⊆ [M ]. �

5. Saturated Sets and the Realizability Argument

In this section, we generalize Krivine’s realizability technique [15] to
λ+‖-calculus and we use it for proving that λ+‖-terms having a non-empty
interpretation are all solvable. For notations and terminology, we mainly
follow [3].

The saturation of a set S of terms expresses the fact that S is closed
under weak head expansions. For the pure λ-calculus, this amounts to the
well known condition of being closed under weak head β-expansion. For the
extension of the λ-calculus we are dealing with, three cases of weak head
expansions, corresponding to the possible shapes of the head term, must be
considered.
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Definition 5.1. A set S ⊆ Λ+‖ is saturated if the following conditions
hold:

• if M [N/x]~P ∈ S then (λx.M)N ~P ∈ S,

• if (MQ‖NQ)~P ∈ S then (M‖N)Q~P ∈ S,

• if M ~P ∈ S and N ∈ Λ+‖ then (M +N)~P ∈ S.

We recall that the sets N0,N1 and N have been defined in Section 3. It
is easy to check that N is saturated, whilst N0 is not. In the realizability
argument, only saturated sets included within N0 and N will be considered.

Definition 5.2. The set Sath of small saturated subsets of Λ+‖ is defined
by:

Sath = {S ⊆ Λ+‖ | S is saturated and N0 ⊆ S ⊆ N}.

Given A,B ⊆ Λ+‖, we define A → B = {M ∈ Λ+‖ | (∀N ∈ A) MN ∈
B}. The operator → is contravariant in its first argument and covariant
in its second one, in other words, A → B ⊆ A′ → B′ for all A′ ⊆ A and
B ⊆ B′.

Lemma 5.3. N0 ⊆ Λ+‖ → N0 ⊆ N0 → N ⊆ N .

Proof. The first inclusion follows by definition, the second one is a conse-
quence of the contravariance/covariance of the arrow. For the third one, it
is enough to prove that, for all M ∈ Λ+‖ and x ∈ Var, H(Mx) 6= ∅ entails
H(M) 6= ∅; this holds by Proposition 3.3(i). �

The set Sath enjoys the following closure properties.

Lemma 5.4. The set Sath is closed under the arrow operator, finite unions,
finite intersections, and under the map F : S 7→ (Λ+‖ → S).

Proof. Given two sets S1, S2 ∈ Sath, it is straightforward to check that
S1 ∩ S2, S1 ∪ S2 ∈ Sath and that S1 → S2 and Λ+‖ → S2 are saturated.
The inclusions N0 ⊆ S1 → S2 ⊆ N and N0 ⊆ Λ+‖ → S2 ⊆ N follow easily
from Lemma 5.3 and contravariance/covariance of the arrow. �

We are going to define a function (−)• : D → Sath, satisfying (m ::
σ)• = m• → σ•, where, for a multiset m of elements of D, m• =

⋂
α∈m α

•

and, in particular, []• = Λ+‖. Since ? = [] :: ?, the set ?• must be a fixpoint
of the function F : S 7→ (Λ+‖ → S). We now show that N1 is one of such
fixpoints.
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Proposition 5.5. N1 ∈ Sath and N1 = Λ+‖ → N1.

Proof. The saturation of N1 and the fact that N0 ⊆ N1 ⊆ N are both
trivial. We now prove that N1 = Λ+‖ → N1. Let M ∈ Λ+‖ → N1. Since
MΩ ∈ N1, we get by Proposition 3.3(ii) that M ∈ N1. Conversely, let
M ∈ N1 and N ∈ Λ+‖. We conclude since, by Proposition 3.3(iii), we get
MN ∈ N1. �

Observe that any element σ ∈ D may be written in a unique way as
σ = σ1 :: · · · :: σn :: ?, with n ≥ 0 and σn 6= [] (and of course σ1, . . . , σn
have ranks strictly smaller than that of σ). This is called the standard
decomposition of σ.

Definition 5.6. Given σ ∈ D, we define (σ)• ∈ Sath by induction on
the rank k of σ. If k = 0, then σ• = ?• = N1. If k > 0 then σ• =
σ•1 → · · · → σ•n → N1, where σ1 :: · · · :: σn :: ? is the standard decomposition
of σ.

Note that if m 6= [] or σ 6= ?, then the standard decomposition of m :: σ is
m :: σ1 :: · · · :: σn :: ?, where σ1 :: · · · :: σn :: ? is the standard decomposition
of σ. Hence, (m :: σ)• = m• → σ• holds in general, since ([] :: ?)• = ?• =
N1 = Λ+‖ → N1.

We show now that the definition of (−)• fits well with parallel composi-
tion.

Lemma 5.7. Let M,N ∈ Λ+‖, σ = (σ1, σ2, . . .), τ = (τ1, τ2, . . .) ∈ D and
ρ = σ]̄τ . If M ∈ σ• and N ∈ τ•, then M‖N ∈ ρ•.

Proof. Let ρn :: · · · :: ρ1 :: ? be the standard decomposition of ρ. We have
to show that M‖N ∈ ρ•n → · · · → ρ•1 → N1. We prove it by induction on n.

If n = 0, then σ = τ = ρ = ?. Hence, we conclude since ?• = N1 and N1

is closed under parallel composition.
If n > 0, then we have to show that, for all Q ∈ ρ•n, (M‖N)Q ∈ (ρ′)•

where ρ′ = ρn−1 :: · · · :: ρ1 :: ?. Since M ∈ σ•1 and N ∈ τ•1 , we have that
MQ ∈ (σ′)• and NQ ∈ (τ ′)•, where σ′ = (σ2, σ3, . . .) and τ ′ = (τ2, τ3, . . .)•.
Moreover, ρ′ = σ′]̄τ ′ and the standard decomposition of ρ′ is strictly shorter
than that of ρ. By the inductive hypothesis, we get MQ‖NQ ∈ (ρ′)•. By
saturation of (ρ′)•, we conclude that (M‖N)Q ∈ (ρ′)•, and henceM‖N ∈ ρ•.

�

We are now able to prove the main lemma, which constitutes the key
tool in the realizability argument.
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Definition 5.8. A substitution s = {(x1, N1), . . . , (xk, Nk)} is adequate for
a multiset m ∈Mf (DVar) if:

• mx 6= [] implies x ∈ {x1, . . . , xk}, for all x ∈ Var,

• Ni ∈ m•xi
for all 1 ≤ i ≤ k.

Observe that, if a substitution is adequate for some multisetm ∈Mf (DVar),
then it is adequate for all submultisets of m.

Lemma 5.9. Let M ∈ Λ+‖, (m,σ) ∈ [M ] and s be a substitution. If s is
adequate for m, then Ms ∈ σ•.

Proof. By structural induction on M .

• If M ≡ x, then m = [(x, σ)] by Proposition 4.7(i). If s is adequate
for m, then (x,N) ∈ s for some N ∈ [σ]•. Hence, we have that
Ms = N ∈ [σ]• = σ•.

• IfM ≡ PQ, then by Proposition 4.7(ii), we havem = m0]m1]. . .]mk

for some k ≥ 0, and τ1, . . . , τk ∈ D such that (m0, [τ1, . . . , τk] :: σ) ∈
[P ] and (mi, τi) ∈ [Q] for 1 ≤ i ≤ k. Observe now that, if s is
adequate for m then it is also adequate for m0,m1, . . . ,mk, since they
are all multisubsets of m. By the inductive hypothesis we have that:

- Ps ∈ ([τ1, . . . , τk] :: σ)• = [τ1, . . . , τk]• → σ•,
- Qs ∈ τ•1 , . . . , Qs ∈ τ•k , which implies that Qs ∈ [τ1, . . . , τk]•.

Hence, we can conclude that (PQ)s ∈ σ•.

• If M ≡ λx.P , then by Proposition 4.7(iii), we have that m = m′−x
and σ = m′x :: σ′ for some (m′, σ′) ∈ [P ]. Let s be an adequate
substitution for m′−x and Q ∈ (m′x)•. Since M is considered up to
α-conversion, we can suppose without loss of generality that x does
not occur in s. It is clear that s′ = s ∪ {(x,Q)} is adequate for m′

and hence, by the inductive hypothesis, we get Ps′ ∈ (σ′)•. Now
we have that Ps′ = (Ps)[Q/x] ∈ (σ′)• because x does not appear
in s. Since (σ′)• is saturated and (λx.Ps) = (λx.P )s we have that
(λx.P )sQ ∈ (σ′)•. From the arbitrariness of Q ∈ (m′x)• we conclude
that (λx.P )s ∈ (m′x)• → (σ′)• = (m′x :: σ′)•.

• If M ≡ P +Q, then (m,σ) belongs to, say, [P ]. Now, if s is adequate
for m, then we get by the inductive hypothesis that Ps ∈ σ• and we
conclude, by saturation of σ•, that (P +Q)s ∈ σ•.
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• If M ≡ P‖Q, then m = m1 ]m2 and σ = σ1]̄σ2 with (m1, σ1) ∈ [P ]
and (m2, σ2) ∈ [Q]. If s is adequate for m then it is also adequate
for m1,m2 and, from the inductive hypothesis and Lemma 5.7, we
conclude that (P‖Q)s ∈ (σ1]̄σ2)•.

�

Theorem 5.10. For all M ∈ Λ+‖, if [M ] 6= ∅ then M ∈ N .

Proof. Let (m,σ) ∈ [M ]. The substitution sId = {(x, x) | mx 6= []} is ad-
equate for m (note that Var ⊂ N0), and MsId = M . Hence, by Lemma 5.9,
we conclude that M ∈ σ• ⊆ N . �

By Theorem 4.12 and Theorem 5.10 we finally get our main result.

Theorem 5.11. For all M ∈ Λ+‖, H(M) 6= ∅ ⇔ [M ] 6= ∅.

6. Adequacy and Full Abstraction

Results like Theorem 5.11 are often called “adequacy theorems”. This
can be a bit misleading if one consider that the notions of adequacy, and
full abstraction, are relative to a given operational preorder on terms. So
far, we have proved that the interpretation of a term is non-empty if and
only if the term is solvable. Now, given a notion of solvability, we address
the issue of the adequacy of the denotational interpretation with respect to
the canonical contextual preorder, defined below.

Definition 6.1. (Contextual preorder) Given M,N ∈ Λ+‖, we write M vo
N if for all contexts C〈−〉, H(C〈M〉]) 6= ∅ entails H(C〈N〉) 6= ∅.

Then, adequacy, as expressed in Corollary 6.2, is an easy consequence of
Theorem 5.11 and of monotonicity of the denotational interpretation with
respect to the operation consisting in putting a term in a context.

Corollary 6.2. For all M,N ∈ Λ+‖, if [M ] ⊆ [N ] then M vo N .

The converse, namely the implication M vo N ⇒ [M ] ⊆ [N ], is the
other half of full abstraction, and does not hold here. Consider for instance
the terms I and I‖I, and let us start showing that [I] 6⊆ [I‖I]. By definition,
we have that [I] = {([], [σ] :: σ | σ ∈ D} and [I‖I] = [I]� [I] = {([], [σ, σ] ::
(σ]σ)) | σ ∈ D}. Clearly, [I] 6⊆ [I‖I].
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It remains to show that I vo I‖I. Instead of trying a syntactical “tour
de force” for proving this quite intuitive statement, we can advocate the
existence (in the folklore) of adequate models of λ+‖-calculus where the
aggregation monad interpreting the parallel operator ‖ is idempotent. This
is the case, for instance, of the model presented in [9], but this argument is
weakeaned by the fact that operational semantics, and hence the operational
preorders, are not exactly the same in the two frameworks. On the other
hand, getting an idempotent version of ‖ out of the relational framework is
not easy: the replacement of multisets by sets and multi-unions by unions
simply does not provide a model.

In a forthcoming paper [12], an adequate interpretation of λ+‖-calculus
endowed with an idempotent operator ‖ will be provided. Moreover, the
model presented there can be seen as the “extensional collapse” of our model.

Hence, I vo I‖I since in that particular adequate model [I] = [I‖I].

7. Related Works

The extension of λ-calculus with parallel and non-deterministic features
has been the subject of a wealth of research works, some of which are cited in
the introduction of the present one. Among those works, the papers [9] and
[10], by Dezani-Ciancaglini, De Liguoro and Piperno have to be mentioned
here, since they deal with exactly the language λ+‖-calculus, focussing on
the relation between its operational and denotational semantics.

Nevertheless, in [10], the λ+‖-calculus is endowed with a lazy operational
semantics. This means that the corresponding operational preorder is in-
comparable with ours. For instance, in their semantics, the term Ω is strictly
smaller than λx.Ω, which is a normal form.

On the other hand, several notions of solvability have been examined in
[9]; one of them, arising from the head rewriting relation →h

pn, is similar to
ours.

To be precise, the roles of + and ‖ are switched in their framework with
respect to ours: parallel composition behaves like a disjunction, and non-
deterministic choice as a conjunction. The reduction rules are the same,
except for the one concerning parallel composition which is synchronous
(Ω||I is a normal form). A term is solvable if all its head reductions termi-
nate. Altogether, a term M turns out to be solvable in our framework if,
and only if, the term obtained by switching + and ‖ in M is solvable in the
sense of [9].

The issue of full abstraction with respect to the canonical contextual
preorder associated with solvability is left open in [9].

34



8. Conclusions and Further Work

We have defined a relational model D of a fairly standard parallel and
non-deterministic extension of the pure untyped λ-calculus, equipped with
a notion of observation given by a generalized form of head-normalization.

We have proved that the model D is adequate for the canonical contex-
tual preorder.

Nevertheless, we have also shown that the full abstraction fails since, for
instance, I and I‖I are not separable, but their interpretations are different.

As suggested by the counterexample, the next step towards full abstrac-
tion should be to enrich the syntax of the language by some “resource sen-
sitive” operators, to increase the discriminating power of contexts.

An alternative approach to obtain a full abstraction result would con-
sist in keeping the language and its operational semantics unchanged, and
providing a model with less discriminating power. To begin with, parallel
compositon should be interpreted by an idempotent operation. The al-
ready mentioned model presented in [12] is actually a good candidate for
providing a fully abstract interpretation of λ+‖-calculus endowed with the
observational preorder vo.

Finally, we already know from [17, Sec. 3.3] that the theory induced
on the pure untyped λ-calculus by our model D is H∗ (just as the theory
induced by Scott’s D∞); it would be interesting to generalize such a result to
the extended setting, as a step in the study and classification of λ+‖-theories,
and models.
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