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Abstract. We study the semantics of a resource-sensitive extension of the lambda calcu-
lus in a canonical reflexive object of a category of sets and relations, a relational version of
Scott’s original model of the pure lambda calculus. This calculus is related to Boudol’s re-
source calculus and is derived from Ehrhard and Regnier’s differential extension of Linear
Logic and of the lambda calculus. We extend it with new constructions, to be under-
stood as implementing a very simple exception mechanism, and with a “must” parallel
composition. These new operations allow to associate a context of this calculus with any
point of the model and to prove full abstraction for the finite sub-calculus where ordinary
lambda calculus application is not allowed. The result is then extended to the full calculus
by means of a Taylor Expansion formula. As an intermediate result we prove that the
exception mechanism is not essential in the finite sub-calculus.

1. Introduction

In concurrent calculi like CCS [23], guarded processes are resources that can be used only
once by other processes. This fundamental linearity of resources leads naturally to non-
determinism, since several agents (senders and receivers) can interact on the same channel.
In general, various synchronization scenarios are possible, giving rise to different behaviours.
On the other hand in the λ-calculus [1], a function (receiver) can duplicate its argument
(sender) arbitrarily. Thanks to this asymmetry, the λ-calculus enjoys a strong determinism
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(namely, the Church-Rosser Theorem), but for the same reason it lacks any form of control
on resource handling.

Resource Lambda Calculi. Resource λ-calculi stem from an attempt to combine
the functionality of the λ-calculus and the resource-sensitivity of process calculi. Boudol
has been the first to design a resource-conscious functional programming language, the
resource λ-calculus [4], extending the usual one along two directions. First, a function
is not necessarily applied to a single argument, but can also be applied to a multiset of
arguments called resources. Second, a resource can be either linear (it must be used exactly
once) or reusable (it can be used ad libitum). In this context, the evaluation of a function
applied to a multiset of resources gives rise to several possible choices, corresponding to the
different possibilities of distributing the resources in the multiset among the occurrences of
the formal parameter. From the viewpoint of concurrent programming, this was a natural
step to take since one of the main features of this programming setting is the consumption
of resources which cannot be copied. Milner’s π-calculus [24] features this phenomenon in
great generality, and Boudol’s calculus keeps track of it in a functional setting.

Together with Regnier, Ehrhard observed that this idea of resource consumption can be
understood as resulting from a differential extension of λ-calculus (and of Linear Logic) [11].
Instead of considering two kinds of resources, they defined two kinds of applications: the
ordinary application and a linear one. In a simply typed setting, linear application of a
term M : A → B to a multiset made of n terms N1, . . . , Nn : A, combined with ordinary
application to a term N : A, corresponds to computing M (n)(N)(N1, . . . , Nn), where M (n)

is the n-th derivative of M which is of type A → (An → B) and associates a symmetric
n-linear map with any element of A. The symmetry of this multilinear map corresponds to
Schwarz’s Theorem and is implemented in the resource λ-calculus by the use of multisets for
representing linear applications. A notable advantage of this approach is that it allows to
apply powerful methods from differential calculus in the context of λ-calculus. For instance,
iterated differentiation yields very naturally a Taylor expansion formula, which consists in
expanding the ordinary application into several linear applications of the differential λ-
calculus. More precisely, if M : A → B and N : A are λ-terms, then the Taylor expansion
of MN is given by

(MN)◦ =

∞∑
n=0

1

n!
M (n)(0)(N, . . . , N︸ ︷︷ ︸

n times

)

in analogy with the standard Taylor formula of the entire functions. The Taylor expansion
has been studied in [14] where the authors relate it to the Böhm tree of a λ-term, giving
the intuition that the former is a resource conscious improvement of the latter.

The main difference between Boudol’s resource λ-calculus and Ehrhard and Regnier’s
differential λ-calculus is that the first is lazy — this means that in many cases linear substi-
tutions must be delayed. To that effect, the calculus features a linear explicit substitution
mechanism. Moreover, it implements a fixed reduction strategy similar to linear head re-
duction. Therefore, Boudol’s calculus is not an extension of the ordinary λ-calculus. Also,
the resource λ-calculus is rather affine than linear, since depletable resources cannot be du-
plicated but can be erased. Another difference lies in the respective origins of these calculi:
the resource λ-calculus originates from syntactical considerations related to the theory of
concurrent processes, while the differential one arises from denotational models of linear
logic where the existence of differential operations has been observed. These models are
based on the well-known relational model of Linear Logic [17], and the interpretation of the
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new differential constructions is as natural and simple as the interpretation of the ordinary
Linear Logic constructions.

In this paper we work with a resource-sensitive λ-calculus because our techniques de-
pend on the linear logic structure underlying the calculus and on the presence of a Taylor
expansion formula. Two main syntaxes have been proposed for the differential λ-calculus:
Ehrhard and Regnier’s original one [11], simplified by Vaux in [31], and Tranquilli’s resource
calculus of [30] whose syntax is close to Boudol’s one. These calculi share a common se-
mantical backbone as well as similar connections with differential Linear Logic and proof
nets. We adopt roughly Tranquilli’s syntax and call our calculus ∂λ-calculus. To avoid
the problem of handling the coefficients introduced by the Taylor formula we conveniently
suppose that the formal sum in the calculus is idempotent; this amounts to saying that we
only check whether a term appears in a result, not how many times it appears. This is very
reasonable when studying convergency properties since M +M converges exactly when M
does.

Full Abstraction. A natural open problem when a new calculus is introduced is
to characterize when two programs are operationally equivalent, namely when one can be
replaced by the other in every context without noticing any difference with respect to a given
observational equivalence. In this paper we prove a full abstraction result (a semantical
characterization of operational equivalence) for the ∂λ-calculus in the spirit of [5]. As in
that paper, we extend the language with a convergence testing mechanism. Implicitly, this
extension already appears in [10], in a differential linear logic setting: it corresponds to the
0-ary tensor and par cells. To implement the corresponding extension of the λ-calculus, we
introduce two sorts of expressions: the terms (variable, application, abstraction, “throw”
τ̄(V ) where V is a test) and the tests (empty test, parallel composition of tests and “catch”
τ(M) where M is a term). Parallel composition allows to combine tests in such a way that
the combination succeeds if and only if each test succeeds. Outcomes of tests (convergence
or divergence) are the only observations allowed in our calculus, and the corresponding
contextual equivalence and preorder on terms constitute our main object of study.

This extended ∂λ-calculus, that we call ∂λ-calculus with tests, has a natural denota-
tional interpretation in a model of the pure λ-calculus introduced by Bucciarelli, Ehrhard
and Manzonetto in [8], which is indeed a denotational model of the differential pure nets
of [10] as one can check easily. This model is a reflexive object D in the Kleisli category of
the linear logic model of sets and relations where !X is the set of all finite multisets over
X. An element of D can be described as a finite tree which alternates two kinds of layers:
multiplicative layers where subtrees are indexed by natural numbers and exponential layers
where subtrees are organized as non-empty multisets. To be more precise, `−? (negative)
pairs of layers alternate with ⊗−! (positive) pairs, respecting a strict polarity discipline
very much in the spirit of Ludics [18]. The empty positive multiplicative tree corresponds
to the empty tensor cell and the negative one to the empty par cell. The corresponding
constructions τ , τ̄ are therefore quite easy to interpret.

We use this logical interpretation to turn the elements of D into ∂λ-calculus terms with
tests. More precisely, with each element α of D, we associate a test α+L·M with a hole L·M for
a term, and we show that α belongs to the interpretation of a (closed) term M iff the test
α+LMM converges. From this fact, we derive a full abstraction result for the fragment of the
∂λ-calculus with tests in which all ordinary applications are trivial, that we call ∂0λ-calculus
with tests. To extend this result to the ∂λ-calculus with tests, we use the Taylor formula
introduced in [11] which allows to turn any ordinary application into a sum of infinitely
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many linear applications of all possible arities. One exploits then the fact that the Taylor
formula holds in the model, as well as a simulation lemma which relates head reduction of
a term with head reduction of its Taylor expansion.

Contributions. In Section 2 we provide the abstract categorical framework which is
needed to interpret the ∂λ-calculus and its extension with tests. The syntax and opera-
tional semantics of the ∂0λ-calculus with tests (which is the promotion-free fragment) are
presented in Section 3, while its relational model D is described concretely in Section 4.
The definability of the elements of D in the ∂0λ-calculus with tests is the main conceptual
contribution of this paper — it shows that, in this setting, the standard syntax versus se-
mantics dichotomy is essentially meaningless. From definability it follows easily that the
relational model is fully abstract for the ∂0λ-calculus with tests, as shown in Section 5. This
result is analyzed further in Section 6, where it is proved that in the absence of promotion
the test operators do not add any discriminatory power to the contexts, thus showing that
D is also fully abstract for the ∂0λ-calculus without tests.

We then focus on the full ∂λ-calculus with tests. Section 7 is devoted to present its
syntax, operational semantics and relational semantics. In Section 8 we consider the use
of the Taylor expansion to reduce the full abstraction problem to its “∂0λ” version as an
original and promising reduction technique.

2. Categorical semantics of linear logic

Before introducing the syntax of our resource λ-calculus with tests, we describe the general
categorical structures needed to interpret this calculus. Our goal here is to give general
motivations for our syntactic constructs. In the sequel, we consider a particular model,
based on the category of sets and relations, and it is not hard to check that this particular
category is an instance of the general setting we present here. In Section 4, we shall present
this relational interpretation concretely in order to avoid the admittedly heavy categorical
formalism.

Our main reference for categorical models of linear logic (LL) is [22]. We denote by N
the set of natural numbers.

Let C be a Seely category. We recall briefly that such a structure consists of a category C,
whose morphisms should be thought of as linear maps, equipped with a symmetric monoidal
structure for which it is closed and ∗-autonomous with respect to a dualizing object ⊥. The
monoidal product, called tensor product, is denoted as ⊗, the linear function space object
from X to Y is denoted as X ( Y , the composition of morphisms in C is simply denoted
as juxtaposition. We use ev ∈ C((X ( Y ) ⊗ X,Y ) for the linear evaluation morphism and
cur(f) ∈ C(Z,X ( Y ) for the “linear currying” of a morphism f ∈ C(Z ⊗ X,Y ). The dual
object X ( ⊥ is denoted as X⊥.

We also assume that C is cartesian, with a cartesian product denoted as & and a terminal
object >. By ∗-autonomy, this implies that C is also cocartesian; we use ⊕ for the coproduct
and 0 for the initial object. In any cartesian and cocartesian category, there is a canonical
morphism a ∈ C(0,>) and a canonical natural transformation aX,Y ∈ C(X⊕Y,X&Y ). One
says that the category is additive if these morphisms are isomorphisms. In that case, each
homset C(X,Y ) is equipped with a structure of commutative monoid, and all operations
defined so far (composition, tensor product, linear currying) are linear with respect to this
structure.
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If C has cartesian products of all countable families (Xi)i∈I of objects, we say that it
is countably cartesian, and in that case, C is also countably cocartesian. If the canonical
morphism a(Xi)i∈I ∈ C(

⊕
i∈I Xi,

˘
i∈I Xi) is an isomorphism, we say that C is countably

additive. In that case, homsets have countable sums and composition as well as all monoidal
operations commute with these sums.

Last, we assume that C is equipped with an endofunctor ! which has a structure of
comonad (unit dX ∈ C(!X,X) called dereliction, multiplication pX ∈ C(!X, !!X) called
digging). Moreover, this functor must be equipped with a monoidal structure which turns
it into a symmetric monoidal functor from the symmetric monoidal category (C,&) to the
symmetric monoidal category (C,⊗): the corresponding isomorphisms m : !> → 1 and
mX,Y : !(X & Y )→ !X ⊗ !Y are often called Seely isomorphisms. The following diagram is
moreover required to be commutative.

!X ⊗ !Y
mX,Y //

pX⊗pY

��

!(X & Y )

pX&Y
��

!!(X & Y )

!〈!π1,!π2〉��
!!X ⊗ !!Y

m!X,!Y // !(!X & !Y )

Using this monoidal structure, we can equip the ! functor with a lax symmetric monoidal
structure from the symmetric monoidal category (SMC) (C, 1,⊗) to itself. In other words,
one can define a morphism µ : 1 → !1 and a natural transformation µX,Y : !X ⊗ !Y →
!(X ⊗ Y ) which satisfy compatibility conditions with respect to the structure isomorphisms
of the SMC (C, 1,⊗). Given an object X of C and k ∈ N, this allows to define a morphism

µ(k) : (!X)⊗k → !(X⊗k) which is essential in the interpretation of λ-terms.

2.1. Structural natural transformations. Using these structures, we can define a weak-
ening natural transformation wX ∈ C(!X, 1) and a contraction natural transformation
cX ∈ C(!X, !X ⊗ !X) as follows. Since > is terminal, there is a canonical morphism
tX ∈ C(X,>) and we set wX = m !tX . Similarly, we have a diagonal natural transformation
∆X ∈ C(X,X &X) and we set cX = mX,X !∆X .

This contraction morphism cX : !X → !X ⊗ !X is associative, and therefore can be

generalized to a unique morphism c
(n)
X : !X → (!X)⊗n. We have c

(0)
X = wX , c

(1)
X = Id!X and

c
(2)
X = cX .

More generally we can define a morphism c
(k,n)
X : (!X)⊗k → ((!X)⊗k)⊗n for the gener-

alized contraction morphism which is defined as the following composition

(!X)⊗k
(c

(n)
X )⊗k

// ((!X)⊗n)⊗k
σ // ((!X)⊗k)⊗n

where σ is the obvious isomorphism, defined using associativity and symmetry of ⊗.

Similarly, we define a generalized weakening morphism w
(k)
X as the composition

(!X)⊗k
(wX)⊗k

// (1)⊗k
λ // 1

where λ is the unique canonical isomorphism induced by the monoidal structure.
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As usual the (co)Kleisli category C! of the comonad ! is defined as the category that has
the same objects as C and C!(X,Y ) = C(!X,Y ), with composition denoted as ◦ and defined
using the comonad. One can prove C! is cartesian closed, with & as cartesian product and
!X ( Y as function space object: this is a categorical version of Girard’s translation of
intuitionistic logic into linear logic.

Given f ∈ C((!X)⊗k, Y ), it is standard to define f ! ∈ C((!X)⊗k, !Y ), this operation is
usually called promotion in linear logic. This morphism is defined as the following compo-
sition:

(!X)⊗k
(pX)⊗k

// (!!X)⊗k
µ
(k)
X // !((!X)⊗k)

!f // !Y

2.2. Differential LL models. The notion of categorical model recalled above allows to
interpret standard classical linear logic. If one wishes to interpret differential constructs as
well (in the spirit of the differential λ-calculus or of differential linear logic), more structure
and hypotheses are required. Basically, we need that:

• the cartesian and cocartesian category C is additive, and
• the model is equipped with a codereliction natural transformation dX ∈ C(X, !X)

such that dX dX = IdX .

More conditions are required if one wants to interpret the full differential λ-calculus of [11] or
full differential linear logic as presented in e.g. [26]: these conditions represent a categorical
axiomatization of the usual chain rule of calculus and are well explained in [15]. When these
conditions, that we give explicitely now, hold, we say that the chain rule holds in C.

The first condition is the following commutation.

X ⊗ !Y
dX⊗!Y //

X⊗dY
��

!X ⊗ !Y

µX,Y

��
X ⊗ Y

dX⊗Y // !(X ⊗ Y )

It would be interesting to know if this condition can be reduced to a more primitive one,
involving dX and the isomorphism m (of course, one can replace µ by its expression in terms
of m in the diagram above, so that this diagram is actually a condition on m, but we would
like to find a simpler and more elegant commuting diagram involving m).

Last we have to provide a commutation relating dX and pX . We have of course d!X dX :
X → !!X. Also, µ1 : 1 → !1 and therefore !wX µ1 : 1 → !!X. Keeping implicit the
isomorphism X ⊗ 1 ' X, we get (d!X dX) ⊗ (!wX µ1) : X → !!X ⊗ !!X, and we require the
following diagram to commute:

X
dX //

(d!X dX)⊗(!wX µ1)

��

!X

pX

��
!!X ⊗ !!X

c!X // !!X

If C is a weak differential LL model, we can define a coweakening morphism wX ∈
C(1, !X) and a cocontraction morphism cX ∈ C(!X ⊗ !X, !X) as we did for wX and cX .

Similarly we also define c
(n)
X ∈ C((!X)⊗n, !X). Due to the naturality of dX we have wX dX =
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0 and cX dX = dX ⊗ wX + wX ⊗ dX . We also define d
(n)
X = d⊗nX c

(n)
X ∈ C(!X,X⊗n) and

d
(n)
X = c

(n)
X d

⊗n
X ∈ C(X⊗n, !X).

2.3. The Taylor formula. Let C be a weak differential LL model which is countably
additive. Remember that each homset C(X,Y ) is endowed with a canonical structure of
commutative monoid in which countable families are summable. We assume moreover that
these monoids are idempotent. This means that, if f ∈ C(X,Y ), then f + f = f .

We say that the Taylor formula holds in C if, for any morphism f ∈ C(X,Y ), we have

!f =
∞∑
n=0

d
(n)
Y f⊗n d

(n)
X

Remark 2.1. If the idempotency condition does not hold, one has to require the homsets
to have a rig structure over the non-negative real numbers, and the Taylor condition must

be written in the more familiar way !f =
∑∞

n=0
1
n!d

(n)
Y f⊗n d

(n)
X . To give a precise meaning

to this kind of expressions, we need of course more structure on homsets: they need to have
some completeness properties, typically expressible in topological terms.

Remark 2.2. If the chain rule holds in C, the Taylor condition reduces to the particular case

of identity morphisms: one has just to require that !IdX =
∑∞

n=0 d
(n)
X d

(n)
X (in the idempotent

setting).

2.4. Models of the pure differential λ-calculus. A model of the pure differential λ-
calculus of [11] or of the ∂λ-calculus to be introduced below, is simply a reflexive object
in C!, where C is a model of differential linear logic in which the chain rule holds. More
precisely, it consists of such a category C and of a triple (U, app, lam) where U is an object
of C and app ∈ C(U, !U ( U) and lam ∈ C(!U ( U,U) satisfy app ◦ lam = Id!U(U in C. It
is crucial to take app and lam in the “linear” category C and not in C!.

In the present paper, we concentrate on the case where U satisfies a stronger condition.
We assume that C is countably cartesian, and, given an object X, we denote as XN the
cartesian product

˘
i∈NXi where Xi = X for each i ∈ N. We consider an object U of C

together with an isomorphism ϕ ∈ C(U, (!UN)
⊥

). We have clearly (!UN)
⊥ ' (!(U & UN))

⊥
,

hence (!UN)
⊥ ' (!U ⊗ !UN)

⊥
by the Seely isomorphism and therefore (!UN)

⊥ ' !U (

(!UN)
⊥

by ∗-autonomy of C. Using ϕ, we get finally that U ' !U ( U and we define app
and lam using this isomorphism.

We also assume that C is a model of the MIX rule of linear logic (see [16]). This means

that ⊥ is equipped with a structure of commutative monoid in the SMC C. We use mix(n)

to denote the corresponding morphism ⊥⊗n → ⊥ so that in particular mix(0) : 1 → ⊥ and
mix(1) = Id⊥.

The interpretation of the calculi presented in this paper is based on the following tool-
box. The first constructions we give deal with “terms”, which are represented here by
morphisms (!U)⊗k → U (the number k ∈ N corresponds intuitively to the number of
variables on which the term depends).

• Given a family of terms f1, . . . , fn : (!U)⊗k → U , we can define a morphism

[f1, . . . , fn] : (!U)⊗k → !U as [f1, . . . , fn] = d
(n)
U ◦ (f1 ⊗ · · · ⊗ fn) ◦ c

(k,n)
U (a

morphism of this type will be called a “bag”).
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• Let f : (!U)⊗k → U be a further term. Remember that we have defined the
promotion of f , which is a bag f ! : (!U)⊗k → !U . Therefore we can define

([f1, . . . , fn] ⊗ f !) ◦ c(k,2)
U : (!U)⊗k → !U ⊗ !U and we introduce a new bag

[f1, . . . , fn, f
!] = cU ◦ ([f1, . . . , fn] ⊗ f !) ◦ c(k,2)

U : (!U)⊗k → !U .

• Let f : (!U)⊗k → U and g : (!U)⊗k → !U . Then app ◦ f : (!U)⊗k → (!U ( U)

and hence ((app ◦ f) ⊗ g) ◦ c(k,2)
U : (!U)⊗k → (!U ( U) ⊗ U . Finally we define the

application of f to g as the term f g = ev ◦ ((app ◦ f) ⊗ g) ◦ c(k,2)
U : (!U)⊗k → U .

• Let f : (!U)⊗k ⊗ !U → U , we define the abstraction of f (with respect to its last
parameter) as the term λ(f) = lam ◦ cur(f) : (!U)⊗k → U .

A “test” (with k variables) is a morphism (!U)⊗k → ⊥. Here we present the categorical
constructions required for dealing with such tests.

• Let h1, . . . , hn : (!U)⊗k → ⊥ be tests. Then we can define their parallel composition,
using the mix structure of ⊥, as the test

(h1 | · · · | hn) = mix(n) ◦ (h1 ⊗ · · · ⊗ hn) ◦ c(k,n)
U : (!U)⊗k → ⊥ .

• Let f : (!U)⊗k → U be a term. We have ϕ ◦ f : (!U)⊗k → (!UN)
⊥

and hence we can
define a test τ(f) = wUN

⊥ ◦ ϕ ◦ f : (!U)⊗k → ⊥ since wUN : 1→ !UN and 1⊥ = ⊥.
• Last, let h : (!U)⊗k → ⊥ be a test. We have wUN

⊥ ◦ h : (!U)⊗k → (!UN)
⊥

since
wUN : !UN → 1, and hence τ̄(h) = ϕ−1 ◦ wUN

⊥ ◦ h : (!U)⊗k → U is a term.

3. The ∂0λ-Calculus with Tests

The definition of the ∂0λ-calculus with tests requires some preliminary notations that we
give below.

3.1. Sets and modules. We denote by N the set of natural numbers and by 1 an arbitrary
singleton set. Given a set S, we write P(S) (resp. Pf(S)) for the set of all (resp. all finite)
subsets of S. Given k ∈ N, we denote by Sk the set of all permutations of {1, . . . , k}.

Let 2 be the semiring {0, 1} with 1+1 = 1 and multiplication defined in the obvious way.
For any set S, we write 2〈S〉 for the free 2-module generated by S, so that 2〈S〉 ∼= Pf(S)
with addition corresponding to union, and scalar multiplication defined in the obvious way.
However we prefer to keep the algebraic notations for elements of 2〈S〉, hence set unions
will be denoted by + and the empty set by 0.

3.2. Multisets. Let S be a set. A multiset a over S can be defined as an unordered list
a = [α1, α2, . . .] with repetitions such that αi ∈ S for all indices i. The multiplicity of α in
a is the number of occurrences of α in a and is denoted by a(α). A multiset a is called finite
if it is a finite list; we denote by #a its cardinality. We writeMf(S) for the set of all finite
multisets over S. Given two multisets a = [α1, α2, . . .] and b = [β1, β2, . . .] the multiset union
of a, b is defined by a ] b = [α1, β1, α2, β2, . . .]; summing up, N〈S〉 ∼= Mf(S). Given two

finite sequences of multisets ~a,~b of the same length n we define ~a]~b = (a1] b1, . . . , an] bn).
Given a strict order > on S, the multiset ordering [2, Def. A.6.2] is the smallest transitive
relation >m onMf(S) such that (∀β ∈ b. α > β)⇒ (a] [α] >m a] b), for all α ∈ S and all
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The ∂0λ-calculus with tests

Λτ̄ : M,N,L,H ::= x | λx.M |MP | τ̄(V ) terms

Λb: P,Q ::= [L1, . . . , Lk] bags

Λτ : V,W ::= τ [L1, . . . , Lk] tests

Λe: A,B ::= M | V | P expressions

M,N,L,H ∈ 2〈Λτ̄ 〉 sums of terms

P,Q ∈ 2〈Λb〉 sums of bags

V,W ∈ 2〈Λτ 〉 sums of tests

A,B ∈ 2〈Λe〉 := 2〈Λτ 〉 ∪ 2〈Λτ̄ 〉 ∪ 2〈Λb〉 sums of expr.

(a) Grammar of terms, bags, tests, expressions, sums.

‖ni=1 Vi := V1| · · · |Vn, (in particular ‖0i=1 Vi := ε)

(b) Notation on parallel composition of tests.

Figure 1: Syntax and notations of ∂0λ-calculus with tests.

a, b ∈ Mf(S). Equivalently, a >m b if and only if a 6= b and for every element γ ∈ S such
that b(γ) > a(γ), there exists an element δ ∈ S, such that δ > γ and a(δ) > b(δ).

We now introduce the ∂0λ-calculus with tests which is the promotion-free fragment of
the ∂λ-calculus with tests we will present in Section 7.

3.3. Syntax. The ∂0λ-calculus with tests has four syntactic categories: terms that are in
functional position, bags that are in argument position and represent multisets of linear
resources, tests that are “corked” multisets of terms having only two possible outcomes and
finite formal sums representing all possible results of a computation. Expressions are either
terms, bags or tests and will be used to state results holding for all categories.

Definition 3.1. The formal grammars defining terms, bags, tests and sums are given in
Figure 1(a).

Terms are the real protagonists of the ∂0λ-calculus with tests. The term λx.M repre-
sents the λ-abstraction of the variable x in the term M and MP the application of a term
M to a bag P of linear resources. Thus, in (λx.M)P , each resource in P is available exactly
once for λx.M and if the number of occurrences of x in M “disagrees” with the cardinality
of P then the result is 0 (see later, when sums of expressions are introduced). The operator
τ̄(·) will be discussed later on, after the notion of test is explained.

As usual we assume that application associates to the left and lambda abstraction to the
right. Therefore we will write λx1 . . . xn.MP1 · · ·Pk for λx1.(· · · (λxn.(· · · (MP1) · · ·Pk)) · · · ).
Moreover, the notation MP∼n will stand for MP · · ·P (n times).

Notation 3.2. Concerning specific terms, we set

I := λx.x, T := λxy.x, F := λxy.y, D := λx.x[x],

Ξn1,...,nm := λx1 . . . xm.I[x1]∼n1 · · · [xm]∼nm , for all n1, . . . , nm ∈ N,
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where the symbol ‘:=’ denotes definitional equality.

Tests are multisets of terms, the “τ” being a tag for distinguishing them from bags.
Intuitively, they are expressions that can produce two results: either success, represented
by ε, or failure, represented by 0.

Throughout the paper, we will enforce the distinction between bags and tests by using
systematically the following notational conventions.

Notation 3.3. For bags, we use the usual multiset notation:

• [] is the empty bag,
• P ] P ′ is the union of bags.

For tests we write:

• ε for the empty multiset,
• V |W for the multiset union of V and W .

In other words, ε = τ [] and τ [L1, . . . , Lk] | τ [Lk+1, . . . , Ln] = τ [L1, . . . , Ln]. Other notations
on parallel composition of tests are introduced in Figure 1(b).

The test V |W represents the (must-)parallel composition of V and W (i.e., V |W suc-
ceeds if both V and W succeed and the order of evaluation is inessential). We prefer to
use the parallel notation as syntactic sugar in order to avoid both the explicit treatment of
associativity and commutativity axioms (plus neutrality of ε). This is perfectly coherent
with the implementation of bags as multisets of terms.

The operator τ̄(·) allows to build a term out of a test: intuitively, the term τ̄(V ) may
be thought of as V preceded by an infinite sequence of dummy λ-abstractions. Dually,
the “cork construction” τ [L1, . . . , Lk] may be thought of as an operator applying to all its
arguments an infinite sequence of empty bags. This suggests in particular that it is sound
to reduce τ [τ̄(V )] to V .

Hence the term τ̄(V ) raises an exception encapsulating V and the test τ [L1, . . . , Lk]
catches the exception possibly raised by, say, Li and replaces Li by the multiset of terms
encapsulated in that exception. The context of the exception is thrown away by the dummy
abstractions of τ̄ and the dummy applications of τ . A test needs to catch an exception in
order to succeed; for instance, τ [M ] fails as soon as M is a τ̄ -free, closed term.

Sums. Remember from Subsection 3.1 that 2〈Λτ̄ 〉 (resp. 2〈Λτ 〉, 2〈Λb〉) denotes the set
of finite formal sums of terms (resp. tests, bags) with an idempotent sum. We also set
2〈Λe〉 := 2〈Λτ 〉 ∪2〈Λτ̄ 〉 ∪2〈Λb〉. This is an abuse of notation as 2〈Λe〉 here does not denote
the 2-module generated over Λτ ∪ Λτ̄ ∪ Λb, but rather the union of the three 2-modules;
this means that sums should be taken only in the same sort. The typical metavariables to
denote sums are given in Figure 1(a).

The α-equivalence relation and the set FV(A) of free variables of A are defined as usual,
like in the ordinary λ-calculus [1]. Hereafter, (sums of) expressions are considered up to
α-equivalence.

Because of the absence of promotion the number of linear resources that a term λx.M
is expecting is just the number of occurrences of x in M (the degree of x in M).

Definition 3.4. Let A ∈ Λe. The degree of x in A, written degx(A), is the number of free
occurrences of x in A and is defined by induction as follows:

• degx(x) = 1,
• degx(y) = 0, for x 6= y,
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Extended Syntax

λx.(
∑

iMi) =
∑

i λx.Mi M(
∑

i Pi) =
∑

iMPi (
∑

iMi)P =
∑

iMiP

τ̄(
∑

i Vi) =
∑

i τ̄(Vi) (
∑

i Pi) ] P =
∑

i Pi ] P [
∑

i Li] =
∑

i[Li]

τ [
∑

iMi] =
∑

i τ [Mi] (
∑

i Vi) | V =
∑

i Vi | V

(a) Notation on 2〈Λe〉.

Linear Substitution

y〈N/x〉 =

{
N if y = x,

0 otherwise,

[L1, . . . , Lk]〈N/x〉 = Σk
i=1[L1, . . . , Li〈N/x〉 . . . , Lk],

τ [L1, . . . , Lk]〈N/x〉 = Σk
i=1τ [L1, . . . , Li〈N/x〉, . . . , Lk],

(MP )〈N/x〉 = M〈N/x〉P +M(P 〈N/x〉),
τ̄(V )〈N/x〉 = τ̄(V 〈N/x〉),

(λy.M)〈N/x〉 = λy.M〈N/x〉.
(b) Definition of linear substitution. In the abstraction case we assume wlog x 6= y.

Figure 2: Notations on sums and definition of linear substitution.

• degx(λy.M) = degx(M), where we assume wlog x 6= y,
• degx(MP ) = degx(M) + degx(P ),
• degx(τ̄(V )) = degx(V ),

• degx([L1, . . . , Lk]) =
∑k

i=1 degx(Li),

• degx(τ [L1, . . . , Lk]) =
∑k

i=1 degx(Li).

3.4. Two Kinds of Substitutions. In this subsection we introduce two kinds of substi-
tutions: the usual λ-calculus substitution and a linear one, which is proper to differential
and resource calculi (see [4, 11, 30]).

In order to proceed, we first need to introduce some notational conventions concerning
the sums. Indeed the grammar for terms and tests does not include any sums, so they may
arise only on the “surface”. For instance, I+I is a legal sum of expressions, while λx.(x+x)
cannot be generated using the grammar of Figure 1(a).

Convention 3.5. As a syntactic sugar – and not as actual syntax – we extend all the
constructors to sums by multilinearity, setting for instance

(
∑

iMi)(
∑

j Pj) :=
∑

i,jMiPj ,

in such a way that the equations in Figure 2(a) hold.

This kind of meta-syntactic notation is discussed thoroughly in [14].

Remark 3.6. In the particular case of empty sums, we get λx.0 := 0, M0 := 0, 0P := 0,
τ [0] := 0, τ̄(0) := 0, V |0 := 0, [0] := 0 and 0 ] P := 0. Therefore 0 annihilates any term,
bag or test (but not the sums).
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We now give some examples of this extended (meta-)syntax.

Example 3.7. We have:

1. λxy.(x+ y) := λxy.x+ λxy.y := T + F,
2. λx.(x+ x) := λx.x+ λx.x := I + I = I by sum idempotency,
3. (x1 + x2)[y] := x1[y] + x2[y],
4. x[y1 + y2] := x([y1] + [y2]) := x[y1] + x[y2], therefore:
5. (x1 + x2)[y1 + y2] := x1[y1] + x1[y2] + x2[y1] + x2[y2].

In the following two definitions we make an essential use of the extended syntax. We
recall that an operator F (−) is extended by linearity by setting F (Σixi) = ΣiF (xi).

Definition 3.8 (Substitution). Let A ∈ Λe and N ∈ Λτ̄ . The (capture-free) substitution
of N for x in A, denoted by A{N/x}, is defined as usual. Accordingly, A{N/x} denotes an
expression of the extended syntax. Finally, we extend this operation to sums as in A{N/x}
by linearity in A.

Definition 3.9 (Linear Substitution). The linear (capture-free) substitution of N for x in
A, denoted by A〈N/x〉, is defined in Figure 2(b). The expression A〈N/x〉 belongs to the
extended syntax. We extend this operation to sums as in A〈N/x〉 by linearity in A, as we
did for usual substitution.

Roughly speaking, the linear substitution A〈N/x〉 replaces exactly one free occurrence
of x in A with the term N . If there is no occurrence of x in A then the result is 0. In
presence of multiple occurrences, all possible choices are made and the result is the sum of
terms corresponding to them.

Remark 3.10. Observe that A〈N/x〉 is linear in A and in N, whereas A{N/x} is linear in
A but not in N.

We now give some examples of linear and classic substitution.

Example 3.11. Let A ∈ Λe and M,N ∈ Λτ̄ .

1. If A is closed, then A〈M/x〉 = 0,
2. (λy.y[y][x])〈I/x〉 = λy.y[y][I],
3. (λy.y[x][x])〈I/x〉 = λy.y[I][x] + λy.y[x][I],
4. (λy.y[x][x]){I/x} = λy.y[I][I],
5. (x[x]){(y + z)/x} = y[y] + y[z] + z[y] + z[z].

Linear substitutions commute in the sense expressed by the next theorem, whose proof
is rather classic and thus omitted.

Theorem 3.12 (Schwarz’s Theorem, cf. [11]). For A ∈ 2〈Λe〉, M,N ∈ 2〈Λτ̄ 〉 and y /∈
FV(M) ∪ FV(N) we have:

A〈M/y〉〈N/x〉 = A〈N/x〉〈M/y〉+ A〈M〈N/x〉/y〉.
In particular, if x /∈ FV(M) the two substitutions commute.
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Reduction Semantics

(λx.M)P →β M〈P/x〉{0/x}, τ̄(V )P →τ̄

{
τ̄(V ) if P = [],

0 otherwise,

τ [λx.M ]|V →τ τ [M{0/x}]|V , τ [τ̄(V )]|W →γ V |W .

(a) Reduction rules. In the (β) rule we assume wlog x 6∈ FV(P ).

Context Closure

M R M
λx.M R λx.M lam

M R M
MP R MP appl P R P

MP R MP
appr

M R M
[M ] ] P R [M] ] P linres

V R W
τ̄(V ) R τ̄(W)

taubar
M R M

τ [M ]|V R τ [M]|V tau

A R A
A+ B R A + B sum

(b) Context closure of a relation R ⊆ Λe × 2〈Λe〉.

Figure 3: Operational Semantics.

Notation 3.13.

• Given a bag P = [L1, . . . , Lk] and x /∈ FV(P ) we set A〈P/x〉 := A〈L1/x〉 · · · 〈Lk/x〉.
• Given bags P1, . . . , Pn and ~x /∈ FV(~P ) we set A〈~P/~x〉 := A〈P1/x1〉 · · · 〈Pn/xn〉.

In particular, A〈[]/x〉 = A.

The above notation A〈P/x〉 makes sense because, by Theorem 3.12, the expression
A〈L1/x〉 · · · 〈Lk/x〉 is actually independent from the enumeration of L1, . . . , Lk in P . More-
over recall that we use α-equivalence, so that bound variables can be renamed in order to
avoid capture of free variables during substitution.

3.5. The Operational Semantics. In this section we are going to introduce the reduction
rules defining the operational semantics of the ∂0λ-calculus with tests.

Definition 3.14. The reduction semantics of the ∂0λ-calculus with tests is generated by
the rules in Figure 3(a).

The reduction preserves the sort of an expression in the sense that terms rewrite to
(sums of) terms and tests to (sums of) tests.

The left side of a reduction rule in Figure 3(a) is called a redex while the right side is
its contractum. Redexes are classified, depending on their kind, as follows.

Definition 3.15.

• A term-redex is any term of the form (λx.M)P or τ̄(V )P .
• A test-redex is any test of the form τ [λx.M ]|V or τ [τ̄(V )]|W .

The following remark gives a more explicit characterization of a β-contractum. Re-
member that the degree of x in M has been defined in Definition 3.4.
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Remark 3.16. If M has k free occurrences of x (represented by x1, . . . , xk) then we have

M〈L1/x〉 · · · 〈Lk/x〉{0/x} = Σσ∈Sk
M{Lσ(1)/x

1, . . . , Lσ(k)/x
k};

if degx(M) 6= k, then M〈L1/x〉 · · · 〈Lk/x〉{0/x} = 0.

From Remark 3.16 it is clear that, because of the presence of linear substitution, the
β-reduction is a relation from terms to sums of terms, namely →β ⊆ Λτ̄ × 2〈Λτ̄ 〉.

Definition 3.17.

1. The contextual closure of a relation R ⊆ Λe × 2〈Λe〉 is the smallest relation in 2〈Λe〉 ×
2〈Λe〉 containing R and respecting the rules of Figure 3(b).

2. The reduction → ⊆ 2〈Λe〉 × 2〈Λe〉 is the contextual closure of →β ∪ →τ̄ ∪ →τ ∪ →γ.
3. The multistep reduction � ⊆ 2〈Λe〉 × 2〈Λe〉 is the transitive and reflexive closure of
→.

We now provide some examples of reduction. Note that parallel composition is treated
asynchronously, indeed V → V entails V |W → V|W .

Example 3.18.

1. D[I,F]→β I[F] + F[I]→β F + F[I]→β F,
2. τ [D[D,D]]→β τ [D[D]]→β 0,
3. τ [I[τ̄(ε)],T[τ̄(ε)]]→β τ [τ̄(ε),T[τ̄(ε)]]→β τ [τ̄(ε), λx.τ̄(ε)]→τ τ [τ̄(ε), τ̄(ε)]→γ τ [τ̄(ε)]→γ

ε,
4. Ξn1,...,nm [I, . . . , I︸ ︷︷ ︸

n1

] · · · [I, . . . , I︸ ︷︷ ︸
nm

]�β I, for all n1, . . . , nm ∈ N.

Definition 3.19. An expression A is in normal form if there is no B such that A→ B. A
sum of expressions A is in normal form if all its summands are in normal form.

From Definition 3.19 we have that 0 is in normal form.
The following lemma gives an explicit characterization of terms in normal form.

Lemma 3.20. If a term M ∈ Λτ̄ is in normal form then

1. either M = λ~x.yP1 · · ·Pn for some n ≥ 0 and each Pi is a bag of terms in normal form,
2. or M = λ~x.τ̄(‖ni=1 τ [yiPi,1 · · ·Pi,ki ]) where n ≥ 0, ki ≥ 0 and each Pi,j is a bag of terms

in normal form.

3.6. Operational properties. In this subsection we show that the ∂0λ-calculus enjoys
Church-Rosser and strong normalization, even in the untyped version of the calculus.

The proof of strong normalization is purely combinatorial, based on a measure given in
the following definition.

Definition 3.21. The size of an expression A, written size(A), is defined by induction as
follows:

• size(x) = 1,
• size(λy.M) = size(M) + 1,
• size(MP ) = size(M) + size(P ) + 1,
• size(τ̄(V )) = size(V ) + 1,

• size([L1, . . . , Lk]) =
∑k

i=1 size(Li) + 1,

• size(τ [L1, . . . , Lk]) =
∑k

i=1 size(Li) + 1.
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The size of a sum of expressions A = A1 + · · ·+Ak, written sizem(A), is the multiset of the
sizes of the summands of A, namely sizem(A) = [size(A1), . . . , size(Ak)].

The intuition behind strong normalization is that sizem(A) becomes smaller by replacing
one (or more) of its elements by an arbitrary number of smaller elements, i.e., w.r.t. the
multiset ordering >m induced on Mf(N) by the usual order > of N.

Theorem 3.22. The ∂0λ-calculus with tests is strongly normalizing and Church-Rosser.

Proof. The fact that there are no infinite reduction chains is trivial, since every reduction
step decreases the size of an expression. In other words A→ B entails sizem(A) >m sizem(B).

For the Church-Rosser property just check local confluence and conclude by Newman’s
lemma.

The following lemma formalizes our intuition behind the behaviour of the cork τ(·). As
a corollary we get that a closed test can only reduce either to ε or to 0.

Lemma 3.23. For any closed term M , either τ [M ]� ε or τ [M ]� 0.

Proof. As ∂0λ-calculus with tests is strongly normalizing, we have that M � Σk
i=1Mi, where

each Mi is a closed normal form. If k = 0 then τ [M ]� 0 since τ [0] = 0. Otherwise for each
Mi there are two possibilities:

• Mi = λ~x.xjP1 · · ·Pn with xj ∈ ~x and n ≥ 0. Then τ [Mi]� τ [(xjP1 · · ·Pn){0/~x}] =
τ [0] = 0.
• Mi = λ~x.τ̄(‖nj=1 τ [xjPj,1 · · ·Pj,kj ]) with n ≥ 0 and xj ∈ ~x. If n = 0 then we

have ‖nj=1 τ [xjPj,1 · · ·Pj,kj ] = ε and τ [λ~x.τ̄(ε)] � τ [τ̄(ε)] → ε. If n > 0 then

τ [Mi]� τ [τ̄(‖nj=1 τ [0Pj,1{0/~x} · · ·Pj,kj{0/~x}])] = 0.

We conclude since τ [M ]� Σk
i=1τ [Mi], and this latter expression reduces to a finite (possibly

empty) sum of ε’s, which is thus equal either to 0 or to ε.

Corollary 3.24. If V is a closed test then either V � ε or V � 0.

Therefore, it makes sense to define the convergence of a test as follows.

Definition 3.25. A test V converges if and only if V � ε.

It is easy to check that a test V can converge only if it is closed; indeed, a free variable
x occurring in V cannot be erased during the reduction.

3.7. Operational Pre-order. A term-context DL·M is a term having one occurrence of a
hole, denoted by L·M, appearing in term-position; a test-context CL·M is a test having one
occurrence of a hole, still appearing in term-position.

Definition 3.26. Term-contexts DL·M and test-contexts CL·M are defined by the following
grammar:

DL·M ::= L·M | λx.D | DP |M [D, ~L] | τ̄(C)

CL·M ::= τ [D, ~L]

The set of term-contexts is denoted by Λτ̄L·M and the set of test-contexts by ΛτL·M.

Given M ∈ Λτ̄ we indicate by CLMM the test resulting by blindly replacing M for the
hole (allowing capture of free variables) in CL·M. Similarly, given a term-context DL·M, DLMM
denotes the term obtained by blindly substituting M for the hole in DL·M.
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Example 3.27.

1. Let DL·M := λxy.L·M, then DLx[x][y]M = λxy.x[x][y],
2. let DL·M := L·M[τ̄(ε), I], then DLDM = D[τ̄(ε), I],→ τ̄(ε)[I] + I[τ̄(ε)]→β I[τ̄(ε)]→β τ̄(ε),
3. the simplest test context is CL·M := τ [L·M], we have CLIM = τ [I]→τ τ [x{0/x}] = 0,
4. let CL·M := τ [(λx.L·M)[τ̄(ε)]] then CLxM = τ [I[τ̄(ε)]]→ τ [τ̄(ε)]→ ε.

We say that a test-context CL·M (resp. a term-context DL·M) is closed if it contains no
free variable; it is closing M if CLMM (resp. DLMM) is closed.

Definition 3.28. The operational pre-order vτO on the ∂0λ-calculus with tests is defined
as follows (for all M,N ∈ Λτ̄ ):

M vτO N ⇔ ∀CL·M ∈ ΛτL·M closing M,N (CLMM� ε ⇒ CLNM� ε).

We set M ≈τO N iff M vτO N and N vτO M .

This coincides with a standard idea of operational preorder. The restriction of ob-
servations to test-contexts deserves however a discussion. First, note that tests provide a
canonical notion of observation since – by design – they either converge (to ε) or reduce
to 0. Hence, the choice of test-convergence as the basic observation in our calculus is very
natural.

A second motivation comes a posteriori. Indeed, as we will prove in Section 6 (The-
orem 6.14), for test-free terms M,N we have M vτO N exactly when, for all test-free
term-contexts DL·M, DLMM is solvable entails DLNM is solvable (the notion of solvability for
test-free terms is given in Definition 6.2).

4. A Relational Semantics

This section is devoted to build a relational model D of ∂0λ-calculus with tests, that has
been first introduced in [8] as a model of the ordinary λ-calculus.

We first give a sketchy presentation of the Cartesian closed category where D lives.
We recall that the definitions and notations concerning multisets have been introduced in
Subsection 3.2.

4.1. The Category MRel. The category MRel is the co-Kleisli category for the finite-
multiset comonad on the category Rel of sets and relations.

This category can be described directly as follows:

• The objects of MRel are all the sets.
• A morphism from S to T is a relation fromMf(S) to T ; in other words, MRel(S, T ) =
P(Mf(S)× T ).
• The identity of S is the relation IdS = {([α], α) | α ∈ S} : S → S.
• The composition of s : S → T and t : T → U is defined by:

t ◦ s = {(a, β) | ∃k ∈ N, ∃(a1, α1), . . . , (ak, αk) ∈ s such that
a = a1 ] . . . ] ak and ([α1, . . . , αk], β) ∈ t }.

Given two sets S, T , we denote by S & T their disjoint union ({1} × S) ∪ ({2} × T ).
Hereafter we adopt the following convention.

Convention 4.1. We consider the canonical bijection betweenMf(S)×Mf(T ) andMf(S&
T ) as an equality. Therefore, we will still denote by (a1, a2) the corresponding element of
Mf(S & T ).



FULL ABSTRACTION FOR RESOURCE CALCULI 17

Theorem 4.2. The category MRel is a Cartesian closed category.

Proof. The terminal object 1 is the empty set ∅, and the unique element of MRel(S, ∅) is
the empty relation.

Given two sets S and T , their categorical product in MRel is their disjoint union S&T
and the corresponding projections are given by:

π1 = {([(1, α)], α) | α ∈ S} : S & T → S,

π2 = {([(2, α)], α) | α ∈ T} : S & T → T.

It is easy to check that this is actually the categorical product of S and T in MRel;
given s : U → S and t : U → T , the corresponding morphism 〈s, t〉 : U → S&T is given by:

〈s, t〉 = {(a, (1, α)) | (a, α) ∈ s} ∪ {(b, (2, β)) | (b, β) ∈ t} .
Given two objects S and T , the exponential object [S⇒T ] isMf(S)×T and the evaluation
morphism is given by:

evST = {(([(a, β)], a), β) | a ∈Mf(S) and β ∈ T} : [S⇒T ] & S → T .

Again, it is easy to check that in this way we defined an exponentiation. Indeed, given any
set U and any morphism s : U &S → T , there is exactly one morphism Λ(s) : U → [S⇒T ]
such that:

evST ◦ (Λ(s)× IdS) = s.

which is Λ(s) = {(a, (b, β)) | ((a, b), β) ∈ s}.

As shown in [20], MRel is actually a Cartesian closed differential category [3]. It is not
difficult to check that it is moreover an instance of the categorical framework presented in
Section 2.

4.2. An Extensional Reflexive Object. We build a reflexive object D, which is exten-
sional in the sense that D ∼= [D⇒D]. The elements of D are infinite sequences of multisets,
that are quasi-finite in the following sense.

Definition 4.3. An infinite sequence α = (a1, a2, . . . ) of multisets is quasi-finite if ai = []
holds for all but a finite number of indices i.

Given a set S, we denote by Mf(S)(ω) the set of all quasi-finite N-indexed sequences
of finite multisets over S.

Definition 4.4. We build a family of sets (Dn)n∈N as follows:

• D0 = ∅,
• Dn+1 =Mf(Dn)(ω).

Since the operation mapping a set S into Mf(S)(ω) is monotonic with respect to inclusion1

and D0 ⊆ D1, we have Dn ⊆ Dn+1 for all n ∈ N. Finally, we set D =
⋃
n∈NDn.

To define an isomorphism between D and Mf(D) × D just note that every element
α = (a1, a2, a3, . . .) ∈ D stands for the pair (a1, (a2, a3, . . .)) and vice versa. From this
simple remark, it follows that D ∼= [D⇒D] (we have a canonical bijection between these
two sets, and therefore an isomorphism in MRel).

1 This means that S ⊆ S′ entails Mf(S)(ω) ⊆Mf(S
′)(ω).
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Notation 4.5. Given α = (a1, a2, a3, . . .) ∈ D and a ∈ Mf(D), we write a :: α for the
element (a, a1, a2, a3, . . .) ∈ D. We denote by ∗ the element ([], [], . . . , [], . . .) ∈ D.

Remark that [] :: ∗ = ∗.

4.3. Interpreting the ∂0λ-calculus with tests. We now define the interpretation of an
expression A of the ∂0λ-calculus with tests in the model D. As usual, an expression A will
be interpreted by a morphism of the category MRel.

For all terms M , bags P , tests Q and repetition-free sequences ~x, ~y, ~z respectively
containing the free variables of M,P,Q, we define by mutual induction the interpretations
JMK~x : Dn → D, JP K~y : Dm →Mf(D) and JQK~z : Dk → 1 (1 is a singleton set and n,m, k

are the lengths of ~x, ~y, ~z) as follows2:

• JxiK~x = {(([], . . . , [], [α], [], . . . , []), α) | α ∈ D}, where [α] stands in i-th position, and
~x = x1, . . . , xi, . . . , xn,
• Jλy.MK~x = {(~a, b ::α) | ((~a, b), α) ∈ JMK~x,y}, where we suppose wlog that y /∈ ~x,
• JMP K~x = {(~a1 ] ~a2, α) | ∃b ∈Mf(D) (~a1, b ::α) ∈ JMK~x, (~a2, b) ∈ JP K~x},
• Jτ̄(V )K~x = {(~a, ∗) | ~a ∈ JV K~x},
• J[L1, . . . , Lk]K~y = {(]ki=1~ai, [β1, . . . , βk]) | (~ai, βi) ∈ JLiK~y, 1 ≤ i ≤ k},
• Jτ [M ]K~z = {~a | (~a, ∗) ∈ JMK~z},
• JV1|V2K~z = {~a1 ] ~a2 | ~a1 ∈ JV1K~z,~a2 ∈ JV2K~z},
• JεK~z = {([], . . . , [])}.

In particular J[]K~x = {([], . . . , [])} ∈ Mf(D)n+1.

The interpretation is then extended to the elements of 2〈Λe〉 by setting JΣk
i=1AiK~x =

∪ki=1JAiK~x.

Remark 4.6. Since every test V is of the form τ [L1, . . . , Lk] we might define its inter-
pretation directly by setting JV K~x = {]ki=1~ai | (~ai, ∗) ∈ JLiK~x, 1 ≤ i ≤ k}. Closed terms
(resp. tests, bags) are interpreted by relations between the singleton Mf(∅) and D (resp. 1,
Mf(D)), we denote them plainly as subsets of D (resp. 1, Mf(D)).

The following are examples of interpretations.

Example 4.7.

1. Jτ̄(ε)K = {∗},
2. JIK = {[α] ::α | α ∈ D},
3. JDK = {[[α] :: β, α] :: β | α, β ∈ D},
4. JD[I]K = ∅. Indeed the elements of J[I]K can never match [[α] :: β, α] because they are

singleton multisets.

Convention 4.8. Hereafter, whenever we write JAK~x we suppose that ~x is a repetition-free
list of variables of length n containing FV(A). Moreover, we will sometimes silently use the
fact JMK~x,y = {((~a, []), α) | (~a, α) ∈ JMK~x} whenever y /∈ FV(M).

Clearly the interpretation is monotonic, in the sense expressed by the following lemma.

Lemma 4.9. For any test-context CL·M (resp. term-context DL·M) with free variables ~y, if
JMK~x ⊆ JNK~x then JCLMMK~x,~y ⊆ JCLNMK~x,~y (resp. JDLMMK~x,~y ⊆ JDLNMK~x,~y).

2Since Mf(S & T ) ∼= Mf(S) × Mf(T ) we have, up to isomorphism, JMK~x ⊆ Mf(D)n × D, JP K~y ⊆
Mf(D)m+1 and JQK~z ⊆Mf(D)k × 1 ∼=Mf(D)k.



FULL ABSTRACTION FOR RESOURCE CALCULI 19

Proof. By a straightforward mutual induction on CL·M, DL·M.

The following substitution lemmas are needed for proving the invariance of the inter-
pretation under reduction. The proofs are lengthy but not difficult, and are provided in
Appendix A.

Lemma 4.10 (Linear Substitution Lemma). Let M ∈ Λτ̄ , V ∈ Λτ and P = [L1, . . . , Lk] ∈
Λb such that degy(M) = degy(V ) = k. We have:

(i) (~a, α) ∈ JM〈P/y〉K~x iff there exist (~ai, βi) ∈ JLiK~x (for 1 ≤ i ≤ k) and ~a0 ∈ Mf(D)n

such that ((~a0, [β1, . . . , βk]), α) ∈ JMK~x,y and ]ki=0~ai = ~a.
(ii) ~a ∈ JV 〈P/y〉K~x iff there exist (~ai, βi) ∈ JLiK~x (for 1 ≤ i ≤ k) and ~a0 ∈ Mf(D)n such

that (~a0, [β1, . . . , βk]) ∈ JV K~x,y and ]ki=0~ai = ~a.

Lemma 4.11 (Regular Substitution Lemma). Let M ∈ Λτ̄ , V ∈ Λτ and N ∈ 2〈Λτ̄ 〉. We
have:

(i) (~a, α) ∈ JM{N/y}K~x iff ∃k ∈ N, ∃β1, . . . , βk ∈ D, ∃~a0, . . . ,~ak ∈ Mf(D)n such that
(~ai, βi) ∈ JNK~x (for 1 ≤ i ≤ k), ((~a0, [β1, . . . , βk]), α) ∈ JMK~x,y and ~a = ]kj=0~aj,

(ii) ~a ∈ JV {N/y}K~x iff ∃k ∈ N, ∃β1, . . . , βk ∈ D, ∃~a0, . . . ,~ak ∈Mf(D)n such that (~ai, βi) ∈
JNK~x (for 1 ≤ i ≤ k) and (~a0, [β1, . . . , βk]) ∈ JV K~x,y and ~a = ]kj=0~aj.

The substitution lemmas above generalize straightforwardly to sums. Although Lem-
ma 4.11 is stated in full generality, for the ∂0λ-calculus with tests is only useful for N = 0.
We keep this formulation since it is closer to the one needed in Section 7 for the full ∂λ-
calculus with tests.

Theorem 4.12. D is a model of the ∂0λ-calculus with tests, i.e., if A� B then JAK~x = JBK~x.

Proof. It is easy to check that the interpretation is contextual. The fact that the semantics
is invariant under reduction follows from Lemmas 4.10 and 4.11.

5. Full Abstraction for ∂0λ-Calculus with Tests

A model is equationally fully abstract if the equivalence induced on terms by their inter-
pretations is exactly ≈τO; it is inequationally fully abstract if the induced preorder is vτO.
Obviously, every inequationally fully abstract model is also equationally fully abstract.

In this section we prove that D is inequationally fully abstract for the ∂0λ-calculus with
tests (Theorem 5.11), i.e., that JMK~x ⊆ JNK~x if and only if M vτO N .

5.1. Building Separating Test-Contexts. We are going to associate a test-context α+L·M
with each element α ∈ D, the idea being that – for every closed term M – we have α ∈ JMK
if and only if α+LMM converges.

Definition 5.1. Let α ∈ D. The rank of α, written rk(α), is the least n ∈ N such that
α ∈ Dn+1; the length of α, written `(α), is 0 if α = ∗, and it is the unique r such that
α = a1 :: · · · ::ar ::∗ with ar 6= [], otherwise.

Note that if α = a1 :: · · · ::ar ::∗ then for all 1 ≤ i ≤ r and αi ∈ ai we have rk(α) > rk(αi).
Hence rk(α) = 0 entails α = ∗ and the following definition is well-founded.

Definition 5.2. For α ∈ D of the form α = [α1,1, . . . , α1,k1 ] :: · · · :: [αr,1, . . . , αr,kr ] :: ∗ with
`(α) = r, define by mutual induction a closed term α– and a test-context α+L·M as follows:
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• α– = λx1 . . . xr.τ̄(‖ri=1 ((αi,1)+LxiM| · · · |(αi,ki)+LxiM)),
• α+L·M = τ [L·M[(α1,1)–, . . . , (α1,k1)–] · · · [(αr,1)–, . . . , (αr,kr)–]].

Given a = [α1, . . . , αk] we set a– = [α–
1, . . . , α

–
k].

Example 5.3. We have:

1. ∗– = τ̄(ε) (as the empty parallel composition is equal to ε),
2. ∗+L·M = τ [L·M], hence:
3. ([∗] ::∗)+L·M = τ [L·M[τ̄(ε)]].

The next lemma, along with its corollaries, shows the interplay between the elements of
D and the terms/tests of Definition 5.2. It provides the main motivation for our extension
of the ∂0λ-calculus.

Lemma 5.4. Let α ∈ D. Then:

(i) Jα–K = {α},
(ii) Jα+LxMKx = {[α]}.

Proof. The points (i) and (ii) are proved simultaneously by induction on rk(α). We write
IH(i) and IH(ii) for the induction hypotheses concerning (i) and (ii), respectively.

If rk(α) = 0 then α = ∗, hence J∗–K = Jτ̄(ε)K = {∗} and J∗+LxMKx = Jτ [x]Kx = {[∗]}.
If rk(α) > 0 and `(α) = r, we have α = a1 :: · · · :: ar :: ∗ with ai = [αi,1, . . . , αi,ki ] for

1 ≤ i ≤ r.
We prove (i). Remember that by definition Jα–K = Jλy1 . . . yr.τ̄(‖ri=1‖

ki
j=1 (αi,j)

+LyiM)K.
So we have β ∈ Jα–K if and only if β = b1 :: · · · ::br ::∗ and for all 1 ≤ i ≤ r, 1 ≤ j ≤ ki there

is ~di,j ∈ J(αi,j)+LyiMK~y such that ~b = ]ri=1 ]
ki
j=1

~di,j . By IH(ii) we have ~di,j ∈ J(αi,j)+LyiMK~y
iff ~di,j = (~[], [αi,j ], ~[]) where [αi,j ] appears in i-th position. Therefore ]kij=1

~di,j = (~[], ai, ~[])
and bi = ai for every index i. Thus β = α.

We prove (ii). By definition we have Jα+LxMKx = Jτ [xa–
1 · · · a–

r ]Kx. Therefore c ∈
Jα+LxMKx if and only if there are bi = [βi,1, . . . , βi,ki ], c0, ci,1, . . . , ci,ki ∈ Mf(D) (for 1 ≤
i ≤ r) such that (c0, b1 :: · · · :: br :: ∗) ∈ JxKx, (ci,j , βi,j) ∈ J(αi,j)–Kx (for all 1 ≤ i ≤ r and

1 ≤ j ≤ ki) and c = c0] (]ri=1]
ki
j=1 ci,j). As, by IH(i), J(αi,j)–Kx = {([], αi,j)} we get ci,j = []

and βi,j = αi,j . Thus c = c0, α = b1 :: · · · :: br ::∗ and from this it follows that (c, α) ∈ JxKx.
We conclude that c = [α].

Corollary 5.5. Jα+LMMK~x = {~c | (~c, α) ∈ JMK~x}.

Proof. By Lemma 5.4(ii) we have that Jα+LyMK~x,y = {([], . . . , [], [α])}. As α+L·M does not
have outer λ-abstractions we have α+LMM = α+LyM〈[M ]/y〉. We then apply Lemma 4.10 to
conclude.

Corollary 5.6. All finite subsets of D are definable.

Proof. By Lemma 5.4(i), for every finite set u = {α1, . . . , αk} we have Jα–
1 + · · ·+α–

kK = u.

Lemma 5.4 reveals the behaviour of a test-context α+L·M when applied to a term β–.

Corollary 5.7. Let α, β ∈ D. If α = β then α+Lβ–M� ε, otherwise α+Lβ–M� 0.

Proof. By Lemma 5.4, Jα+Lβ–MK = {()} ⊆ Mf(D)0 if α = β, ∅ otherwise. By Corollary 3.24,
we know that α+Lβ–M reduces either to ε or to 0. The result follows by soundness (Theo-
rem 4.12).
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5.2. (In)equational Full Abstraction. In this subsection, we show that the operational
preorder vτO (see Definition 3.28) coincides with the inclusion of interpretations in D. We
first need a couple of preliminary results.

Recall from Definition 5.2 that, given a = [α1, . . . , αk], a
– denotes the bag [α–

1, . . . , α
–
k].

Lemma 5.8. Let V ∈ Λτ , FV(V ) ⊆ ~x and ~a ∈ Mf(D)n where n is the length of ~x. Then
~a ∈ JV K~x if and only if JV 〈~a–/~x〉K 6= ∅ and degxi(V ) = #ai.

Proof. The result follows by applying n times (one for each variable in ~x) Lemma 4.10 and
Corollary 5.5.

Remark 5.9. For M ∈ Λτ̄ we have (α+LMM)〈~a–/~x〉 = α+LM〈~a–/~x〉M.

The ensuing proposition is the key argument for proving that the model D is inequa-
tionally fully abstract.

Proposition 5.10. Let M ∈ Λτ̄ , ~x ⊇ FV(M), α ∈ D and ~a ∈ Mf(D). The following are
equivalent:

(i) (~a, α) ∈ JMK~x,
(ii) α+LM〈~a–/~x〉M� ε.

Proof. We have the following chain of equivalences:

(~a, α) ∈ JMK~x ⇔ ~a ∈ Jα+LMMK~x, by Corollary 5.5,
⇔ Jα+LM〈~a–/~x〉MK 6= ∅ and degxi(M) = #ai, by Lemma 5.8, using Remark 5.9,
⇔ α+LM〈~a–/~x〉M� ε, by Corollary 3.24, i.e. the fact that closed tests can only reduce

to either ε or 0, and Theorem 4.12, i.e. the soundness of the model.

We are now able to prove the main result of the section.

Theorem 5.11. D is inequationally fully abstract for the ∂0λ-calculus with tests (for all
M,N ∈ Λτ̄ ):

JMK~x ⊆ JNK~x ⇔M vτO N

Proof. (⇒) Assume that JMK~x ⊆ JNK~x, and let CL·M be a test-context closing both M and
N and such that CLMM � ε. By Theorem 4.12, JCLMMK = JεK = {()}. By monotonicity
of the interpretation we get JCLMMK ⊆ JCLNMK, thus JCLNMK 6= ∅. By Corollary 3.24 this
entails that CLNM� ε.

(⇐) Suppose, by the way of contradiction, that M vτO N holds but there is an element
(~a, α) ∈ JMK~x − JNK~x. Then the test-context CL·M = α+L(λ~x.L·M)~a–M is such that CLMM �
α+LM〈~a–/~x〉M� ε and CLNM 6� ε by Proposition 5.10, which is a contradiction.

Corollary 5.12. D is equationally fully abstract for the ∂0λ-calculus with tests.

The reader who is only interested in the extension of Theorem 5.11 (and of its corollary)
to the full ∂λ-calculus with tests can skip safely the next section.

6. Full Abstraction for ∂0λ-Calculus without Tests

In this section we are going to prove that tests do not add any discriminatory power to
the contexts already present in the ∂0λ-calculus. This means that whenever there is a
test-context CL·M separating two test-free terms M,N (sending, say, M to ε and N to 0)
there exists also a term-context DL·M that is still able to separate M from N , without using



22 BUCCIARELLI ET AL.

the operators τ and τ̄ . (As we will discuss in Section 9, this is not the case for the full
∂λ-calculus with tests.)

From this syntactic result and the full abstraction for the ∂0λ-calculus with tests (Theo-
rem 5.11) we conclude that the model D is also inequationally fully abstract for its test-free
fragment (Theorem 6.14, below).

6.1. The ∂0λ-Calculus (Without Tests). The ∂0λ-calculus is a restriction of the ∂0λ-
calculus with tests presented in Section 3. The restriction is obtained by erasing from the
syntax the constructors τ and τ̄ and the corresponding reduction rules, i.e. (τ), (τ̄) and (γ).
In other words the tests are no longer part of the language and →β is the only reduction
rule of the system.

This description is enough to completely characterize the system — for a more detailed
description, see [13, 14].

Notation 6.1. We write Λr (resp. 2〈Λr〉) for the set of (resp. finite sums of) terms of the
∂0λ-calculus. The set of all (term-)contexts of the ∂0λ-calculus will be denoted by ΛrL·M.

We still write M,N,L,H for terms in Λr, M,N,L,H for sums of terms in 2〈Λr〉, P,Q
for bags and DL·M for contexts. This will not create confusion because we will always specify
the set they belong to.

In order to properly define the operational pre-order in this setting, we first need to
introduce the notion of solvable term.

6.2. Solvability in the ∂0λ-Calculus. In λ-calculus [1] a term M is solvable whenever
there exist suitable arguments that, once supplied to M , make it reduce to the identity —
this means that M it is able to interact operationally with the environment.

In resource calculi solvability has been thoroughly studied by Pagani and Ronchi Della
Rocca in [27, 28]. Their work needs to be adapted because of the absence of promotion in
our system. For the ∂0λ-calculus the good notion of solvable term is the following.

Definition 6.2. A term M ∈ Λr is solvable if there is a term-context DL·M such that
DLMM�β I. We say that M is unsolvable otherwise.

Reading [27, 28] one may wonder why in the previous definition we do not ask more
generally that DLMM �β I + N for some N ∈ 2〈Λr〉. This is due to the fact that in our
∂0λ-calculus the two definitions are equivalent, as shown in the next lemma. (So we choose
the easier formulation.)

Lemma 6.3. Let M ∈ Λr be a closed term. If M �β I + M for some M ∈ 2〈Λr〉, then

there exists a sequence ~P of closed bags such that M ~P �β I.

Proof. Suppose M closed such that M �β I + M. Then M is also closed and normalizes
to a sum M′ = Σj=1λ~yj .M

′
j such that each M ′j is not an abstraction itself. Now, if M′ = I

then we are done as M �β I + M �β I + I = I. Otherwise, let h be the maximum

among the lengths of the sequences ~yj . Then M′[I]∼h is again a sum of closed terms and
normalizes to a sum M′′ of closed abstraction terms whose size is strictly smaller than M′.
The reason is that for each summand (λ~yj .M

′
j)[I]∼h which does not reduce to 0, M ′j must

contain exactly one occurrence of each variable in ~yj . Hence M ′j〈[I]/~yj〉{0/~yj} has the same

size as (λ~yj .M
′
j) but it reduces (via contraction of the I that has replaced the head variable
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of M ′j) to a term having a strictly smaller size, unless λ~yj .M
′
j ≡ I. Iterating this reasoning

for at most a number of times equal to k = size(M)+1 one obtains that either M[I]∼k �β 0

or M[I]∼k �β I.

Therefore M [I]∼k �β I[I]∼k + M[I]∼k �β I, as desired.

As in [27, 28] we are going to characterize solvability from both a syntactic and a
semantic point of view (Theorem 6.5).

Proposition 6.4. Let M ∈ Λr and let FV(M) = ~x. If M reduces to a normal form different

from 0, then there are two sequences ~P , ~P ′ of closed bags such that:

(M ~P )〈~P ′/~x〉{0/~x}�β I + M, for some M ∈ 2〈Λr〉.

Proof. By induction on the size of M . Let ~x = x1, . . . , xn and suppose that M �β

λy1 . . . ym.yQ1 · · ·Qq +M where m, q ∈ N, Qi = [Mi,1, . . . ,Mi,ki ] for all 1 ≤ i ≤ q, each Mi,j

is in normal form for every 1 ≤ j ≤ ki and M ∈ 2〈Λr〉. For the sake of simplicity, assume
y = yh for some 1 ≤ h ≤ m (the proof is analogous when y ∈ ~x).

By induction hypothesis, for all 1 ≤ i ≤ q and 1 ≤ j ≤ ki there are sequences
~Pi,j , ~P

′
i,j ,

~P ′′i,j of closed bags such that Mi,j
~Pi,j〈~P ′i,j/~y〉〈~P ′′i,j/~x〉{0/~y, ~x}�β I +Mi,j for some

Mi,j ∈ 2〈Λr〉. In the following, we will denote by σi,j the substitution 〈~P ′i,j/~y〉〈~P ′′i,j/~x〉{0/~y, ~x}.
We start by defining the closed term H that will be plugged in head position:

H = λz1 . . . zq.Ξk1,...,kq [z1
~P1,1, . . . , z1

~P1,k1 ] · · · [zq ~Pq,1, . . . , zq ~Pq,kq ].

In the rest of the proof we shorten Ξk1,...,kq to Ξ. In addition, we set:

Q′k = ]qi=1 ]
ki
j=1 P

′
i,j,k for all 1 ≤ k ≤ m

Q′′k = ]qi=1 ]
ki
j=1 P

′′
i,j,k for all 1 ≤ k ≤ n

We now prove that (MQ′1 · · ·Q′h−1(Q′h ] [H])Q′h+1 · · ·Q′m)〈 ~Q′′/~x〉{0/~x} �β I + M. In the
reduction path we will only focus on the term reducing to I by collecting all the others into
generic M’s. Indeed, we have:

(MQ′1 · · ·Q′h−1(Q′h ] [H])Q′h+1 · · ·Q′m)〈 ~Q′′/~x〉{0/~x}�β

((λy1 . . . ym.yQ1 · · ·Qq)Q′1 · · ·Q′h−1(Q′h ] [H])Q′h+1 · · ·Q′m)〈 ~Q′′/~x〉{0/~x}+ M1 �β

(HQ1 · · ·Qq)〈 ~Q′/~y〉〈 ~Q′′/~x〉{0/~y, ~x}+ M2 �β

(Ξ[M1,1
~P1,1, . . . ,M1,k1

~P1,k1 ] · · · [Mq,1
~Pq,1, . . . ,Mq,kq

~Pq,kq ])〈 ~Q′/~y〉〈 ~Q′′/~x〉{0/~y, ~x}+ M3 �β

Ξ[M1,1
~P1,1σ1,1, . . . ,M1,k1

~P1,k1σ1,k1 ] · · · [Mq,1
~Pq,1σq,1, . . . ,Mq,kq

~Pq,kqσq,kq ] + M4

By induction hypothesis, this reduces to Ξ[I, . . . , I︸ ︷︷ ︸
k1

] · · · [I, . . . , I︸ ︷︷ ︸
kq

]+M5 �β I+M for M := M5

(see Example 3.18(4)).

Note that in the statement above M must be closed because M ~P 〈~P ′/~x〉{0/~x} is.

Theorem 6.5. Let M ∈ Λr, then the following three sentences are equivalent.

(i) M is solvable,
(ii) M �β N + N for some N in normal form and N ∈ 2〈Λr〉,

(iii) JMK~x 6= ∅.
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Proof. (i⇒ ii) Suppose by contradiction that there is no normal N such that M �β N +N
for some N ∈ 2〈Λr〉. Since the ∂0λ-calculus is strongly normalizing, the only possibility is
that M �β 0. Therefore, for every term-context DL·M we would have DLMM�β DL0M = 0.
This is a contradiction since the calculus is Church-Rosser and by hypothesis there should
be a term-context DL·M such that DLMM�β I.

(ii⇒ i) LetM �β N+N and ~x = FV(M). By Proposition 6.4 there are sequences ~P , ~P ′

of closed bags such that M ~P 〈~P ′/~x〉{0/~x} �β I + M for some M ∈ 2〈Λr〉. By Lemma 6.3

there is a sequence ~P ′′ of closed bags such that M ~P 〈~P ′/~x〉{0/~x}~P ′′ �β I. It is then enough

to set DL·M = (λ~x.L·M~P )~P ′ ~P ′′ to have DLMM�β I.
(ii ⇒ iii) By Theorem 4.12 JMK~x = JNK~x ∪ JNK~x for ~x = x1, . . . , xn ⊆ FV(M). We

now prove, by structural induction on N , that JNK~x 6= ∅ for all N in normal form. Let
N = λz1 . . . zm.yP1 · · ·Pp where p ≥ 0 and each Pi = [Li,1, . . . , Li,ki ] contains all normal
terms. For the sake of simplicity we assume y = zh ∈ ~z (the proof is analogous for y ∈ ~x).

Base case p = 0. Trivial since for all α ∈ D we have ((~[], [α], ~[]), α) ∈ JNK~x where [α]
occurs in h-th position.

Induction case p > 0. By induction hypothesis, there exist (~ci,j , βi,j) ∈ JLi,jK~x,~z for
each 1 ≤ i ≤ p and 1 ≤ j ≤ kp. Let bi = [βi,1, . . . , βi,ki ] for every 1 ≤ i ≤ p and

~a0 = (~[], [b1 :: · · · :: bp :: α], ~[]) ∈ Mf(D)n+m where the only non-empty multiset is in n + h

position. Then (~a0, b1 :: · · · :: bp :: α) ∈ JzhK~x,~z and (~ai, bi) ∈ JPiK~x,~z for ~ai = ]kij=1~ci,j . It

follows that (~a0 ]~a1 ] · · · ]~ap, α) ∈ JzhP1 · · ·PpK~x,~z. We conclude since JzhP1 · · ·PpK~x,~z 6= ∅
if and only if Jλz1 . . . zm.zhP1 · · ·PpK~x 6= ∅.

(iii ⇒ ii) Suppose that M �β 0. Then by Theorem 4.12 we have JMK~x = J0K~x = ∅,
which is a contradiction.

Definition 6.6. The operational pre-order vO on the ∂0λ-calculus is defined as follows
(for all M,N ∈ Λr):

M vO N ⇔ ∀DL·M ∈ ΛrL·M closing M,N(DLMM is solvable ⇒ DLNM is solvable).

We set M ≈O N if and only if M vO N and N vO M .

Let us consider the restriction of the preorder vO (see Definition 3.28) to the terms
of the ∂0λ-calculus (without tests). Theorem 5.11 shows that for all terms M,N of the
∂0λ-calculus (without tests) we have JMK~x ⊆ JNK~x ⇔ M vτO N . Later in this section
(Theorem 6.14) we will prove that JMK~x ⊆ JNK~x ⇔ M vO N . Hence the preorder vO
coincides, on the test-free language, with vτO. This is an a fortiori justification of Definition
6.6, which was anyway supported by the intuition that solvable ∂0λ-terms are a kind of
arenas over which the solvability game can be successfully played and simulated by the
throw/catch game of the test constructions.

6.3. Full Abstraction via Test Expansion. As mentioned in Section 3, the term τ̄(V )
roughly corresponds to V preceded by an infinite sequence of dummy λ-abstractions; dually,
the test τ [L1]| · · · |τ [Lk] corresponds to providing each Li with an infinite sequence of empty
bags. (This is also clear from the reduction rules (τ) and (τ̄).) In this section we show that
the infinite nature of these sequences is not essential in the ∂0λ-calculus. Roughly speaking,
one can find an n such that λx1 . . . xn.V has the same behaviour of τ̄(V ) and ni’s such that
each Li[]

∼ni has the same behaviour of τ [Li]. The parallel composition V = V1| · · · |Vk can
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be simulated in the ∂0λ-calculus by M = λx.x[V1, . . . , Vk] in the sense that V converges iff
each Vi converges and, similarly, M is solvable iff each Vi is solvable.

We then define a test-expansion (Definition 6.10), from terms of the ∂0λ-calculus with
tests to test-free terms, formalizing this intuition. In order to expand the correct number
of times the occurrences of τ̄ and of the elements of a test, we first need to “name” each
occurrence in a different way. For this reason we label such occurrences with pairwise
distinct indices.

Definition 6.7. A labelled expression A is an expression of the ∂0λ-calculus with tests such
that every occurrence of a τ̄ and every element of a test have been decorated with distinct
natural numbers (called indices). We denote by (Λτ̄ )lab, (Λb)lab, (Λτ )lab, (Λe)lab, (ΛτL·M)

lab the

set of labelled terms, labelled bags, labelled tests, labelled expressions, labelled term-contexts,
respectively.

Let A ∈ 2〈(Λe)lab〉 be a sum of labelled expressions. We write Ã for its underlying

expression; in other words Ã is obtained stripping off all indices from A. We write dom(A)
for the set of indices occurring in A. Note that the domains of two summands A,A′ ∈ A
may have a non-empty intersection.

Example 6.8.

1. M = λxy.τ̄1(τ [(I)2, (x)3, (y[τ̄5(τ [])])4]) is a labelled term. Its domain is dom(M) =

{1, 2, 3, 4, 5} and its underlying term is M̃ = λxy.τ̄(τ [I, x, y[τ̄(τ [])]]).
2. I is a labelled term because it does not contain any occurrence of τ nor τ̄ . In this case

we have dom(I) = ∅ and Ĩ = I.
3. λx.τ̄1(τ [(x)2, (x)3, (I)1]) is not a labelled term, because the labels of τ̄ and of I are both 1

(they are not distinct).
4. V = τ [(I)2, (D)5, (τ̄7(τ [(I)11]))13] is a labelled test. Its domain is dom(V ) = {2, 5, 7, 11, 13}

and its underlying test is Ṽ = τ [I,D, τ̄(τ [I]))].
5. P = [λx.τ̄1(τ [(x)2]),D] is a labelled bag. Its domain is dom(P ) = {1, 2} and its under-

lying bag is P̃ = [λx.τ̄(τ [x]),D].
6. M = λx.τ̄3(τ [(x)1]) + λx.τ̄3(τ [(x)1, (x)2]) is a sum of labelled terms. Its domain is

dom(M) = {1, 2, 3} and its underlying sum of terms is M̃ = λx.τ̄(τ [x]) + λx.τ̄(τ [x, x]).

From (2) we note that Ã = A for all test-free labelled expressions. From (5) we note
that in a labelled bag the labels actually occur within its elements.

Definition 6.9. The reduction semantics for labelled expressions is inherited straightfor-
wardly from the ∂0λ-calculus with tests. In the β-rule, the terms are substituted together
with their indices.

Since there is no duplication during the reduction, if A is a labelled expression reducing
to A then A is a sum of labelled expressions (that is, all the indices occurring within each
A ∈ A are pairwise distinct).

Definition 6.10. Let A ∈ (Λe)lab be a labelled expression and ` be a function from N to
N. The `-expansion A` of A is an expression of the ∂0λ-calculus without tests, defined by
induction on A as follows:

x` = x, (λx.M)` = λx.M `, (MP )` = M `P `,

[L1, . . . , Lk]
` = [L`1, . . . , L

`
k], τ̄i(V )` = λx1 . . . x`(i).V

` where ~x /∈ FV(V `),

(τ [(L1)i1 , . . . , (Lk)ik ])` = λx.x[L`1[]∼`(i1), . . . , L`k[]
∼`(ik)] where x /∈ FV(~L`).
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In particular ε` = λx.x[] for all `. This is extended to sums by setting (
∑

iAi)
` =

∑
iA

`
i

and to contexts by setting L·M` = L·M.

Obviously, for all test-free labelled expressions A we have A = A` for all `.

Remark 6.11.

1. For all labelled test-contexts CL·M ∈ (ΛτL·M)
lab and labelled terms M ∈ (Λτ̄ )lab we have

(CLMM)` = C`LM `M for any `,

2. For all labelled expressions A ∈ (Λe)lab, if �̀dom(A) = `′�dom(A) then A` = A`
′

for any
`, `′.

3. In general, A → B does not entail A` �β B
`. For instance, let A = (τ [(τ̄1[ε])2, (I)3])

and B = τ [(I)3]; obviously A→γ B while, if `0 is the constant function with value 0, we

have A`0 = λx.x[λz.z[], I], B`0 = λx.x[I] and A`0 6�β B
`0.

The proofs of the following lemmas are given in the technical Appendix A.

Lemma 6.12. Let V ∈ 2〈(Λτ )lab〉 be a sum of labelled closed tests. If V � ε then there

exists a map ` : N→ N such that V(`+k) is solvable for all k ∈ N.

Lemma 6.13. Let V ∈ 2〈(Λτ )lab〉 be a sum of labelled closed tests. If V � 0 then there

exists a natural number k such that V(`+k) � 0 for all ` : N→ N.

We are now ready to state and prove the main theorem of this section, from which
immediately follows the equational full abstraction result for the ∂0λ-calculus.

Theorem 6.14. D is inequationally fully abstract for the ∂0λ-calculus (for all M,N ∈ Λr):

JMK~x ⊆ JNK~x ⇔M vO N

Proof. (⇒) Assume that JMK~x ⊆ JNK~x, and let DL·M ∈ ΛrL·M be a context closing both M

and N and such that DLMM is solvable. From the characterization of solvability given
in Theorem 6.5 we have DLMM � M ′ + M for some M ′ ∈ Λr in normal form and M ∈
2〈Λr〉. By Theorem 4.12, JDLMMK = JM ′K ∪ JMK which is different from ∅ by Theorem 6.5.
By monotonicity of the interpretation we get JDLMMK ⊆ JDLNMK, thus JDLNMK 6= ∅. By
Theorem 6.5 this entails that DLNM is solvable too.

(⇐) Suppose, by the way of contradiction, that M vO N holds but there is an element
(~a, α) ∈ JMK~x − JNK~x. By Proposition 5.10 the test-context CL·M = α+L(λ~x.L·M)~a–M is such
that CLMM � α+LM〈~a–/~x〉M � ε and CLNM 6� ε (therefore CLNM � 0 by Lemma 3.23).

Let C ′L·M ∈ (ΛrL·M)
lab such that C̃ ′L·M = CL·M. By Lemma 6.12 there exists ` such that

(C ′LMM)(`+k′) is solvable for every k′ ∈ N. By Lemma 6.13 there exists k ∈ N such that

(C ′LNM)(`+k) is unsolvable. From Remark 6.11(1) we get (C ′LMM)(`+k) = C ′(`+k)LM (`+k)M
and (C ′LNM)(`+k) = C ′(`+k)LN (`+k)M. Since M,N are test-free we have M (`+k) = M and

N (`+k) = N . We conclude because we found a term-context C ′(`+k) such that C ′(`+k)LMM
is solvable and C ′(`+k)LNM is unsolvable, which is a contradiction.

Corollary 6.15. D is equationally fully abstract for the ∂0λ-calculus.

Remark 6.16. A direct proof of Corollary 6.15 might be obtained exploiting a corollary of
the Böhm Theorem for the ∂λ-calculus proved in [21]. We preferred to provide this proof
based on test-expansion because it clarifies the behaviours of our test operators and works
also in the inequational case.
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The ∂λ-calculus with tests

Λτ̄! : M,N,L,H ::= x | λx.M |MP | τ̄(V ) terms

Λb! : P,Q ::= [L1, . . . , Lk,M!] bags

Λτ! : V,W ::= τ [L1, . . . , Lk] tests

Λe! : A,B ::= M | V | P expressions

M,N,L,H ∈ 2〈Λτ̄! 〉 sums of terms

P,Q ∈ 2〈Λb! 〉 sums of bags

V,W ∈ 2〈Λτ! 〉 sums of tests

A,B ∈ 2〈Λe! 〉 := 2〈Λτ! 〉 ∪ 2〈Λτ̄! 〉 ∪ 2〈Λb! 〉 sums of expr.

(a) Grammar of terms, bags, tests, expressions, sums.

Linear Substitution (New Rule)

[L1, . . , Lk,N!]〈N/x〉 = Σk
i=1[L1, . . , Li〈N/x〉, . . , Lk,N!] + [L1, . . , Lk,N〈N/x〉,N!] .

(b) Linear Substitution.

Reduction Semantics (New Rules)

(λx.M)[L1, . . , Lk,N!]→β M〈[L1, . . , Lk]/x〉{N/x},

τ̄(V )[L1, . . . , Lk,N!]→τ̄

{
τ̄(V ) if k = 0,
0 otherwise.

(c) Reduction rules. In the (β) rule we assume wlog x 6∈ FV([L1, . . . , Lk]).

Figure 4: Syntax and notations of ∂λ-calculus with tests.

The rest of the paper is devoted to extend the full abstraction results of Subsection 5.2
to the ∂λ-calculus with tests. The main ingredients will be the head reduction introduced
in Subsection 7.5 and the Taylor expansion we define in Subsection 8.1.

7. The ∂λ-Calculus with Tests

The ∂λ-calculus with tests is an extension of the ∂0λ-calculus with tests with a promotion
operator available on resources. In this calculus a resource can be linear (it must be used
exactly once) or not (it can be used ad libitum) and in the latter case it is decorated with
a “!” superscript.

7.1. Syntax. The grammar generating the terms, the tests and the expressions of the ∂λ-
calculus with tests, is given in Figure 4(a). Note that such grammar is equal to the one for
the ∂0λ-calculus with tests (in particular tests are still plain multisets of linear resources),
except for the rule concerning bags which becomes:

P ::= [L1, . . . , Lk,N!] bags
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where N is a finite sum of terms of this new syntax. We write Λτ̄! for the set of terms

generated by this new grammar, Λτ! for the set of tests, Λb! for the set of bags, Λe! for the
set of expressions.

It should be clear that from now on bags are no more plain multisets of terms: they
are compound objects, consisting of a multiset of terms [L1, . . . , Lk] and a sum of terms
N, denoted as [L1, . . . , Lk,N!]. We shall deal with them as if they were multisets, defining
union by [L1, . . . , Lk,N!] ] [Lk+1, . . . , Ln,M!] := [L1, . . . , Ln, (N + M)!]. This operation is
commutative, associative and has [0!] as neutral element.

Remark 7.1. The ∂0λ-calculus with tests is the sub-calculus of the ∂λ-calculus with tests
in which all bags have the shape [L1, . . . , Lk, 0

!], and this identification is compatible with
the reduction rules.

As in the ∂0λ-calculus with tests, we extend this syntax by multilinearity to sums of
expressions with the only exception that the bag [L1, . . . , Lk, (N + M)!] is not required to
be equal to [L1, . . . , Lk,N!] + [L1, . . . , Lk,M!]. The intuition is that in the first expression
N+M can be used several times and each time one can choose non-deterministically N or M,
whereas in the second expression one has to choose once and for all one of the summands,
and then use it as many times as needed.

7.2. Substitutions. Linear substitution is denoted and defined as in the ∂0λ-calculus with
tests (Figure 2(b)), except of course for bags, where we use the rule of Figure 4(b). Linear
substitution is extended to sums, as in A〈N/x〉, by bilinearity in both A and N.

Remark 7.2. In the !-free case, that is when N = 0, the above definitions and notations
agree with those introduced in Subsection 3.4, because in that case we have

[L1, . . . , Lk,N〈N/x〉,N!] = 0,

since 0〈N/x〉 = 0.

We also define the regular substitution A{N/x} for the ∂λ-calculus with tests, by simply
replacing each occurrence of x in the expression A with N — in that way we get an expression
of the extended syntax, since N is a sum in general. This operation is then extended to
sums, as in A{N/x}, by linearity in A.

Example 7.3.

1. (y[x!])〈z/x〉 = y[z, x!],
2. (y[x, 0!])〈z/x〉 = y[z, 0!],
3. (y[(x+ z)!])〈z/x〉 = z[z, (x+ z)!],
4. (y[x, x!])〈z/x〉 = y[z, x!] + y[x, z, x!],
5. (x[x!])〈y/x〉〈z/x〉 = y[z, x!] + z[y, x!] + x[y, z, x!],
6. (x[x!])〈(y + z)/x〉 = y[x!] + z[x!] + x[y, x!] + x[z, x!],
7. (y[x, x!]){(y + z)/x} = y[y, (y + z)!] + y[z, (y + z)!],
8. (x[x!]){(y + z)/x} = y[(y + z)!] + z[(y + z)!],
9. (x[x, x!]){(y + z)/x} = y[y, (y + z)!] + y[z, (y + z)!] + z[y, (y + z)!] + z[z, (y + z)!].

A Schwarz Theorem, analogous to Theorem 3.12, holds for the ∂λ-calculus with tests.
Hence, given a sum of expressions A and a bag P = [L1, . . . , Lk] with x /∈ FV(P ), it still
makes sense to set A〈P/x〉 := A〈L1/x〉 · · · 〈Lk/x〉 because this expression does not depend
on the enumeration of L1, . . . , Lk in P . In particular A〈[]/x〉 = A.
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7.3. Operational semantics. The reduction rules of ∂λ-calculus extend those of the ∂0λ-
calculus with tests in the sense that they are equivalent on !-free expressions.

Definition 7.4. The rules (τ) and (γ) are exactly the same as the corresponding rules of
the ∂0λ-calculus, while the β-reduction and τ̄ -reduction are rephrased as in Figure 4(c).

The ∂λ-calculus with tests is still Church-Rosser (just adapt the proof in [29]), while
it is no more strongly normalizing. For instance the term Ω := ∆[∆!], for ∆ := λx.x[x!],
has an infinite reduction chain, just like the paradigmatic homonymous unsolvable λ-term.
Indeed, the usual λ-calculus can be embedded into the ∂λ-calculus with tests by translating
every application MN into M [N !].

Remark 7.5. Reductions in the ∂λ-calculus with tests may be tricky, due to the combination
of linear and non linear resources and substitutions. For instance, we can obtain eight Ω-
like terms of the ∂λ-calculus with tests, of the form M [N (!)] where M,N ∈ {D,∆} and (!)
denotes the optional presence of the promotion. Not surprisingly all these terms, except for
Ω, reduce to 0. E.g., D[∆!]→β ∆[∆]→β ∆[∆, 0!]→β ∆[0!] + 0[∆, 0!]→β 0.

Here are some other examples of reductions, involving tests.

Example 7.6.

(1) (λx.τ̄(ε)[x!])[I, 0!]→β τ̄(ε)[x!]〈[I]/x〉{0/x} = τ̄(ε)[I, 0!]→τ̄ 0,

(2) (λx.τ̄(ε)[x!])[I, 0!]→τ̄ (λx.τ̄(ε))[I, 0!]→β τ̄(ε)〈[I]/x〉{0/x} = 0,

(3) (λx.τ̄(ε)[x!])[I!]→β τ̄(ε)[x!]{I/x} = τ̄(ε)[I!]→τ̄ τ̄(ε),

(4) (λx.τ̄(ε)[x!])[I!]→τ̄ (λx.τ̄(ε))[I!]→β τ̄(ε){I/x} = τ̄(ε).

In this framework a test-context CL·M (resp. term-context DL·M) is a test (resp. term) of
the ∂λ-calculus with tests having a single occurrence of its hole, appearing in term-position.

Definition 7.7. Term-contexts DL·M and test-contexts CL·M are defined by the following
grammar:

DL·M ::= L·M | λx.D | DP |M [D, ~L,N!] |M [~L, (D + N)!] | τ̄(C)

CL·M ::= τ [D, ~L]

The set of term-contexts is denoted by Λτ̄ !
L·M and the set of test-contexts is denoted by Λτ !

L·M.

Definition 7.8. A test V converges, notation V ↓, if there exists a (possibly empty) sum V
such that V � ε+ V.

Convergence should not be confused with normalization. Note that Definition 7.8 is
the natural extension of Definition 3.25; in presence of promotion, ε and 0 are not the only
possible “outcomes” of closed tests because there are looping terms that may never interact
with an outer cork τ [·]. That case represents “failure”, i.e., a scenario where there is no
possible sequence of choices (among summands of terms resulting from reduction) leading
to the positive test ε.

Definition 7.9. The operational pre-order vτ !
O on the ∂λ-calculus with tests is defined by:

M vτ !
O N ⇔ ∀CL·M ∈ Λτ !

L·M closing M,N (CLMM↓ ⇒ CLNM↓).

We then set M ≈τ !
O N iff M vτ !

O N and N vτ !
O M .
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7.4. Relational semantics. The ∂λ-calculus with tests can be interpreted into D by ex-
tending the interpretation of the ∂0λ-calculus with tests given in Subsection 4.3 as follows:

J[L1, . . . , Lk,N!]K~x = {(]k+m
r=1 ~ar, [β1, . . . , βk+m]) | (~aj , βj) ∈ JLjK~x, 1 ≤ j ≤ k and

(~ai, βi) ∈ JNK~x, k < i ≤ k +m, m ≥ 0}.
The following are examples of interpretations. As shown in (4) below, interpreting the non

linear resource N! in P = [~L,N!] boils down to choosing an arbitrary number of elements of
JNK, whereas exactly one element of each JLiK is required.

Example 7.10.

1. J∆K = {([a :: α] ] a) :: α | a ∈Mf(D), α ∈ D}.
2. JΩK = ∅. Indeed, α ∈ JΩK iff there exist k > 0 and α1, . . . , αk ∈ J∆K such that

[α1, . . . , αk] :: α ∈ J∆K. We prove by induction on k that this is never satisfied. If
k = 1 then by (1) [α1] :: α ∈ J∆K entails α1 = [] :: α and it is easy to check that
α1 /∈ J∆K. Otherwise, if k > 1, [α1, . . . , αk] ::α ∈ J∆K and each αi ∈ J∆K then, for some
j, αj = [α1, . . . , αj−1, αj+1, . . . , αk] ::α ∈ J∆K and we are done by induction hypothesis.

3. JD[I!]K = {[γ] :: γ | γ ∈ D} since [α] :: β, α ∈ JIK entails β = α = [γ] :: γ, for some
γ ∈ D; conversely, for any γ ∈ D, both [γ] :: γ and [[γ] :: γ] :: [γ] :: γ belong to JIK.

4. J[D, I!]K = {[[[α] :: β, α] :: β, [α1] :: α1, . . . , [αk] :: αk]] | α, β, α1, . . . , αk ∈ D for k ∈ N}.

The comparison between JDK (Example 4.7(3)) and J∆K (item (1)) gives a grasp on the
semantic counterpart of non-linearity.

It is easy to check that both the linear and the classic substitution lemmas generalize
to this context. While we can keep the same statement for Lemma 4.11, Lemma 4.10 must
be rephrased as follows (indeed, degx(M),degx(V ) are undefined when M,V contain non
linear resources).

Lemma 7.11 (Linear Substitution Lemma). Let M,L1, . . . , Lk ∈ Λτ̄! , Q ∈ Λτ! and P =
[L1, . . . , Lk] (with y 6∈ FV(P )). Then we have:

(i) ((~a, b), α) ∈ JM〈P/y〉K~x,y iff there exist (~ai, βi) ∈ JLiK~x (for i = 1, . . . , k) and ~a0 ∈
Mf(D)n and b ∈Mf(D) such that ((~a0, [β1, . . . , βk] ] b), α) ∈ JMK~x,y and ]ki=0~ai = ~a.

(ii) (~a, b) ∈ JQ〈P/y〉K~x,y iff there exist (~ai, βi) ∈ JLiK~x (for i = 1, . . . , k) and ~a0 ∈Mf(D)n

and b ∈Mf(D) such that (~a0, [β1, . . . , βk] ] b) ∈ JQK~x,y and ]ki=0~ai = ~a.

From these lemmas it ensues that D is also a model of the ∂λ-calculus with tests.

Theorem 7.12. D is a model of ∂λ-calculus with tests.

7.5. Head Reduction. We now provide a notion of head reduction for the ∂λ-calculus
with tests. Intuitively, head reduction is obtained by reducing a head redex, that is a
redex occurring in head position in an expression A. The main interest of introducing this
reduction strategy is that it “behaves well” with respect to Taylor expansion in the sense
of Proposition 8.6.

The definition of term- and test-redexes is inherited from Definition 3.15. Among these
redexes we distinguish those that are in “head” position.

Definition 7.13. A head redex is defined inductively as follows:

- every test-redex V is a head redex,

- a term-redex H is a head redex in both the term λ~y.H ~P and the test τ [H ~P ]|V .
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Definition 7.14. We say that A→ B is a step of head reduction if B is obtained from A
by contracting a head redex. If A→ B is a step of head reduction then also A+A→ B+A
is.

One-step head reduction is denoted by →h, while �h indicates its reflexive and transi-
tive closure.

Remark 7.15. Unlike in ordinary λ-calculus, an expression A may have more than one
head redex, hence there may be more than one head reduction step starting from A.

Head reduction induces a notion of head normal form on (sums of) expressions.

Definition 7.16. An expression A is in head normal form ( hnf, for short) if there is no B
such that A→h B; a sum A is in hnf if each summand is in hnf.

This notion of head normal form differs from that given by Pagani and Ronchi Della
Rocca in [28]. We keep this name because their definition captures the notion of “outer-
normal form” rather than that of head normal form, and in fact they changed terminology
in [27].

The following lemma gives a characterization of terms and tests in head normal form.

Lemma 7.17.

(i) A term M is in head normal form if and only if either M := λ~x.y ~P or M := λ~x.τ̄(V ).

(ii) A test V is in head normal form if and only if V := τ [x1
~P1, . . . , xn ~Pn] for n ≥ 0.

Proof. By a simple inspection of the shape of head redexes (Definition 7.13).

The following two lemmas concern reduction properties of promotion-free closed tests.

Lemma 7.18. Let V ∈ Λτ . If V is closed and V 6= ε then it has a head redex (hence,
V →h V for some V).

Proof. By structural induction on V . It suffices to consider the case V = τ [M ]. We
then proceed by cases on the structure of M (which must be closed). If M = λx.N
then V head reduces using (τ). If M is an application then it must be written either as
M = (λy.N)P1 · · ·Pk or as M = τ̄ [W ]P1 · · ·Pk (in both cases k ≥ 1) and hence V head
reduces using either (β) or (τ̄), respectively. If M = τ̄(W ) then V head reduces using (γ).

Lemma 7.19. If V ∈ Λτ is closed then V � ε (resp. V � 0) if and only if V �h ε (resp.
V �h 0).

Proof. (⇒) Suppose, by contradiction, that V � ε but V 6�h ε. By confluence (Theo-
rem 3.22), we cannot have V �h 0. Thus, since V ∈ Λτ is strongly normalizing, the only
way to have V 6�h ε is that V �h V where V 6= ε, 0 is in hnf. This is impossible by
Lemma 7.18.

An analogous proof shows that V � 0 entails V �h 0.
(⇐) Trivial since �h ⊆ �.

Remark 7.20. One should be careful when trying to extend the above result to terms M ∈
Λτ̄ . For instance, it is false that M � 0 if and only if M �h 0 as shown by this easy
counterexample: the term M := λx.x[I[]] is in hnf but M →β λx.x[0] = 0.

Head reduction will play an essential role in the next section.



32 BUCCIARELLI ET AL.

x◦ = {x},
(λx.M)◦ = {λx.M ′ |M ′ ∈M◦},

(MP )◦ = {M ′P ′ |M ′ ∈M◦, P ′ ∈ P ◦},
(τ̄(V ))◦ = {τ̄(V ′) | V ′ ∈ V ◦}

(τ [M1, . . . ,Mk])
◦ = {τ [M ′1, . . . ,M

′
k] |M ′i ∈M◦i , for 1 ≤ i ≤ k},

[L1, . . . , Lk,N!]◦ = {[L′1, . . . , L′k] ] P | L′i ∈ L◦i , for 1 ≤ i ≤ k, P ∈Mf(N◦)},
(Σk

i=1Ai)
◦ = ∪ki=1A

◦
i .

Figure 5: The Taylor expansion A◦ of A ∈ 2〈Λe! 〉.

8. Full Abstraction via Taylor Expansion

In this section we are going to define the Taylor expansion of terms and tests of the ∂λ-
calculus with tests. We will then use this expansion, combined with head-reduction, to
generalize the full abstraction results obtained in Subsection 5.2 to the framework of ∂λ-
calculus with tests.

8.1. Taylor Expansion. The (full) Taylor expansion was first introduced in [11, 12], in
the context of λ-calculus. The Taylor expansion M◦ of an ordinary λ-term M gives an
infinite formal linear combination of terms (equivalently, a set of terms) of the ∂0λ-calculus.
In the case of ordinary application it looks like:

(MN)◦ =
∞∑
n=0

1

n!
M [N, . . . , N︸ ︷︷ ︸

n times

]

in accordance with the intended meaning and the denotational semantics of application in
the resource calculus. In the syntax of Ehrhard-Regnier’s differential λ-calculus the above
formula looks like

∑∞
n=0

1
n!M

(n)(0)(N, . . . , N), hence the connection with analytical Taylor
expansion is evident.

Following [21], we extend the definition of Taylor expansion from ordinary λ-terms to
expressions of the ∂λ-calculus with tests. Since in our context the sum is idempotent, the
coefficients disappear and our Taylor expansion corresponds to the support of the actual
Taylor expansion.

As the set 2〈Λe〉∞ of possibly infinite formal sums of expressions is isomorphic to P(Λe),
in the following we feel free of using sets instead of sums.

Definition 8.1. Let A ∈ 2〈Λe! 〉. The (full) Taylor expansion of A is the set A◦ ⊆ Λe which
is defined (by structural induction on A) in Figure 5.

The following are examples of Taylor expansion of terms and tests.

Example 8.2.

1. (λx.x[x!])◦ = {λx.x[x, . . . , x︸ ︷︷ ︸
n

] | n ≥ 0},

2. (τ [λx.x[x, x!]])◦ = {τ [λx.x[x, . . . , x︸ ︷︷ ︸
n

]] | n > 0},

3. (x[(z[y!])!])◦ = (x[(z[] + z[y, y!])!])◦ = {x[

k︷ ︸︸ ︷
z[y, . . . , y︸ ︷︷ ︸

n1

], . . . , z[y, . . . , y︸ ︷︷ ︸
nk

]] | k, n1, . . . , nk ≥ 0}.
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In (1) and (2) we see that the Taylor expansion of an expression A can be infinite. In
(3) we have an example of two different terms sharing the same Taylor expansion.

Convention 8.3. To lighten the notations, we will adopt for infinite sets of expressions
the same abbreviations as introduced for finite sums in Subsection 3.4 (including those for
substitutions).

For instance, if X,Y ⊆ Λτ̄ then λx.X denotes the set {λx.M ′ |M ′ ∈ X} and X〈Y/x〉 =
∪M∈X,N∈YM〈N/x〉.

In [20] it is proved that the Taylor formula holds in MRel. This property entails that
Taylor expansion preserves the meaning of an expression in D, as expressed in the next
theorem.

Theorem 8.4. JAK~x = ∪A∈A◦JAK~x, for all A ∈ 2〈Λe! 〉.

Proof. By adapting the proof in [20] of the analogous theorem for the differential λ-calculus.

We now need the following technical lemma stating the commutation of Taylor expan-
sion with respect to ordinary and linear substitutions. The proof is lengthy but not difficult
and is provided in Appendix A. For the sake of readability, in the next statements we use
sums and unions interchangeably.

Lemma 8.5. Let A ∈ Λe! , N ∈ Λτ̄! and N ∈ 2〈Λτ̄! 〉. Then, for x /∈ FV(N) ∪ FV(N):

(i) (A〈N/x〉)◦ = A◦〈N◦/x〉,
(ii) (A{N/x})◦ =

⋃
P∈Mf(N◦)A

◦〈P/x〉{0/x}.

The next proposition is devoted to show how Taylor expansion interacts with head-
reduction. To ease the formulation of the next proposition we assimilate 2〈Λe! 〉 to Pf(Λ

e
! ).

Proposition 8.6. Let A ∈ Λe! and let A′ ∈ A◦ be such that A′ →h B′, for some B′. Then
there exists B such that A→h B and B′ ⊆ B◦.

Proof. The idea is that the syntactic tree of A has the same structure as that of A′ and we
can define a surjective mapping of the redexes of A′ into those of A.

We only treat the case A′ = λ~x.H ′P ′1 · · ·P ′p where H ′ = (λy.M ′)P ′ is a head-redex.
From A′ ∈ A◦ we get A = λ~x.HP1 · · ·Pp for some H such that H ′ ∈ H◦. Hence, supposing

wlog P ′ = [~L′, ~N ′], we have that H = (λy.M)[~L,N!] where M ′ ∈ M◦, the lengths of
~L′ and ~L coincide, L′i ∈ L◦i for all i and [ ~N ′] ∈ Mf(N◦). We now know that H ′ →h

M ′〈[~L′]/y〉〈[ ~N ′]/y〉{0/y} and H →h M〈[~L]/y〉{N/y}. By Lemma 8.5, (M〈[~L]/y〉{N/y})◦ =

∪P∈Mf(N◦)M
◦〈[~L◦]/y〉〈P/y〉{0/y} ⊇M〈P ′/y〉{0/y}.

We can conclude that λ~x.M ′〈P ′/y〉{0/y}P ′1 · · ·P ′p ⊆ (λ~x.M〈[~L]/y〉{N/y}P1 · · ·Pp)◦.
All other cases are simpler.

Remark 8.7. The above proposition is false for regular β-reduction. E.g., take A :=
x[(I[y])!] and A′ := x[I[y], I[y]] ∈ A◦, then A′ →β x[y, I[y]] and A →β x[y!] but x[y, I[y]] /∈
(x[y!])◦.

Corollary 8.8. Let A,B′ ∈ 2〈Λe! 〉. If A′ ⊆ A◦ and A′ →h B′ then there exists B such that
A→h B and B′ ⊆ B◦.
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Corollary 8.9. Let V ∈ Λτ! be a closed test. If there exists a V ′ ∈ V ◦ such that V ′ � ε,
then V ↓.

Proof. Suppose that there exists V ′ ∈ V ◦ such that V ′ � ε. By Lemma 7.19 there is a
head-reduction chain of the form V ′ →h V′1 →h · · · →h V′n = ε. By iterated application of
Corollary 8.8 there are tests Vi (for i = 1, . . . , n) such that V →h V1 →h · · · →h Vn with
V′i ⊆ V◦i . We conclude since ε ∈ V◦n is only possible when ε ∈ Vn.

8.2. Full Abstraction for the ∂λ-Calculus with Tests. We are now going to prove
that the relational model D is inequationally fully abstract for the ∂λ-calculus with tests.

Lemma 8.10. Given A ∈ Λe! and M ∈ Λτ̄! we have:

(i) (α+LMM)◦ = α+LM◦M, for all α ∈ D,
(ii) (A〈a–/x〉)◦ = A◦〈a–/x〉, for all a ∈Mf(D).

Proof. Easy, as α+L·M and a– are !-free, and the Taylor expansion (·)◦ behaves like the
identity on !-free expressions.

Proposition 8.11. Let M ∈ Λτ̄! , ~x ⊇ FV(M), α ∈ D and ~a ∈ Mf(D). Then the following
statements are equivalent:

(i) (~a, α) ∈ JMK~x,
(ii) α+LM〈~a–/~x〉M↓.

Proof. (i ⇒ ii) Suppose (~a, α) ∈ JMK~x, then by Theorem 8.4 there is an M ′ ∈ M◦ such
that (~a, α) ∈ JM ′K~x. Applying Proposition 5.10 we know that α+LM ′〈~a–/~x〉M � ε. Now,
since α+LM ′〈~a–/~x〉M ∈ (α+LM〈~a–/~x〉M)◦ (by Lemma 8.10), we can apply Corollary 8.9 and
get α+LM〈~a–/~x〉M↓.

(ii ⇒ i) Suppose that α+LM〈~a–/~x〉M � ε + V, for some V; then Jα+LM〈~a–/~x〉MK~x 6= ∅.
Hence, by Theorem 8.4, there is a closed test V ∈ (α+LM〈~a–/~x〉M)◦ such that JV K 6= ∅. By
Lemma 8.10 V = α+LM ′〈~a–/~x〉M for some M ′ ∈ M◦ and since its interpretation is non-
empty we have V � ε. By applying Proposition 5.10 we get (~a, α) ∈ JM ′K~x ⊆ JMK~x (by
Theorem 8.4).

Theorem 8.12. D is inequationally fully abstract for the ∂λ-calculus with tests (for all
M,N ∈ Λτ̄! ):

JMK~x ⊆ JNK~x ⇔M vτ !
O N.

Proof. (⇒) Suppose that JMK~x ⊆ JNK~x and there is a test-context CL·M (closing M,N) such
that CLMM↓. Since CLMM� ε+V, for some V, we have JCLMMK 6= ∅. Thus, by monotonicity
of the interpretation we get JCLMMK ⊆ JCLNMK = J(CLNM)◦K 6= ∅. By Corollary 3.24 there is
V ∈ (CLNM)◦ such that V � ε and we conclude that CLNM↓ by applying Proposition 8.11.

(⇐) Suppose by contradiction that M vτ !
O N , but there is an (~a, α) ∈ JMK~x − JNK~x.

By Proposition 8.11 α+LM〈~a–/~x〉M↓ and since M vτ !
O N we have α+LN〈~a–/~x〉M↓. Again, by

Proposition 8.11 (~a, α) ∈ JNK~x. Contradiction.
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Corollary 8.13. D is equationally fully abstract for the ∂λ-calculus with tests.

9. Conclusions and Further Works

In this paper we defined the interpretation of several resource calculi into the relational
model D and characterized the equality induced on the terms from an operational point
of view. The analogous question for untyped λ-calculus was addressed in [19], where it is
shown that the λ-theory induced by D is H?, therefore D is fully abstract for λ-calculus.

In the first result of our paper we proved that the model D is also (in)equationally
fully abstract for the ∂0λ-calculus with tests. Such a proof is simplified by the absence of
promotion in the calculus, which allows us to work in a strongly normalizing framework.
The interest of this proof is that it generalizes along two directions.

The first direction aims to get rid of the tests, while remaining in the promotion-free
fragment of the calculus. To extend this result to the ∂0λ-calculus without tests we defined
the test-expansion — a translation from tests to terms replacing every occurrence of a test
operator τ, τ̄ by a suitable number of empty applications or dummy lambda abstraction. By
applying this translation to a test-context separating two terms, we obtain a term-context
having the same discriminatory power. This is not surprising since everything is finite in
the ∂0λ-calculus (finite sums, finite reduction chains) therefore the infinitary nature of our
test operators can be simulated by terms whose size is big enough.

The second direction aims to extend the full abstraction result to the ∂λ-calculus with
tests (and promotion available on resources). The main contribution of the paper is to show
that this generalization can be done just by combining the properties of the head reduction
and of the Taylor Expansion.

It is worth to notice that the test expansion method cannot be applied in presence of
promotion because D is not fully abstract for the ∂λ-calculus; in other words the tests are
necessary to obtain the last result. This has been recently showed by Breuvart [6], who
exhibited two terms of the ∂λ-calculus being observationally equivalent, but having different
interpretations in D. The idea of the counterexample is to build, using fixpoint combinators,
a term M reducing (eventually) to an infinite sum of terms whose head variable is preceded
by an increasing number of lambda abstractions. This term is annihilated by the context
τ [L·M[τ̄(ε)]] because the operator τ “eats” all the lambda abstractions and substitutes the
head-variable of each component of the sum by 0, while we know that the same context
sends I to ε. The author then proved that no context of the ∂λ-calculus can simulate this
behaviour.

The following table summarizes all these results. The definition of v!
O is analogous to

vO with the definition of may-solvable given in [28]; the definition of � is the usual one
given in [25].

Calculus Operational Preorder D is fully abstract

∂λ-calculus with tests vτ !
O yes (Thm. 8.12 )

∂0λ-calculus with tests vτO yes (Thm. 5.11)
∂λ-calculus v!

O no [6]
∂0λ-calculus vO yes (Thm. 6.14)
λ-calculus � yes (equationally) [19]

Breuvart’s counterexample raises the problem of finding a model that is actually fully
abstract for the ∂λ-calculus without tests.
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Question 9.1. Is there a fully abstract model of ∂λ-calculus living in the relational seman-
tics?

It is known that the structure of the underlying Cartesian closed category may effect
the theories of all models living in it. For instance in [20] it is shown that terms having the
same Taylor expansion are equated in all models living in MRel. It is therefore possible
that Question 9.1 admits a negative answer. If this is the case, then the following question
becomes interesting.

Question 9.2. Is it possible to find a new comonad T , such that the (co)Kliesli RelT
contains a fully abstract model of ∂λ-calculus?

Indeed, the comonadMf(−) of finite multisets is not the only one that leads to models
of ∂λ-calculus. For instance it has been shown by Carraro, Ehrhard and Salibra in [9] that
one can consider exponential functors with infinite multiplicities. However, their models
do not even validate the Taylor expansion, therefore are not suitable to solve Question 9.2.
The challenge is to find other kinds of comonads.
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Appendix A. Technical Appendix

This technical appendix is devoted to give the proofs of some results in the paper. The
following is an equivalent but slightly more compact version of the linear substitution lemma.

Lemma A.1 (Lemma 4.10, Linear Substitution Lemma). Let M ∈ Λτ̄ , Q ∈ Λτ and P ∈ Λb.
Then we have:

(i) (~a, α) ∈ JM〈P/y〉K~x if and only if ∃d ∈Mf(D), ∃~b,~c ∈Mf(D)n such that ((~b, d), α) ∈
JMK~x,y, (~c, d) ∈ JP K~x, ~a = ~b ] ~c, and #d = #P = degy(M).

(ii) ~a ∈ JQ〈P/y〉K~x if and only if ∃d ∈ Mf(D), ∃~b,~c ∈ Mf(D)n such that (~b, d) ∈ JQK~x,y,

(~c, d) ∈ JP K~x, ~a = ~b ] ~c, and #d = #P = degy(Q).

Proof. The points (i) and (ii) are proved by mutual induction on M and Q.
(i) We only treat the case M = N0[N1, . . . , Nh].

(⇒) First, let us call P the set of all sequences ~P ′ = (P ′0, . . . , P
′
h) of bags such that P ′0]

· · ·]P ′h = P and #P ′j = degy(Nj) for all j = 0, . . . , h. Also, note that by definition of linear

substitution we have (N0[N1, . . . , Nh])〈P/y〉 = Σ ~P ′∈PN0〈P ′0/y〉[N1〈P ′1/y〉, . . . , Nh〈P ′h/y〉].
Hence, by definition of interpretation, we have that (~a, α) ∈ JM〈P/y〉K~x iff there exist
~P ′ ∈ P, α1, . . . , αh ∈ D, ~a0, . . . ,~ah ∈Mf(D)n such that (~a0, [α1, . . . , αh] ::α) ∈ JN0〈P ′0/y〉K~x,
(~aj , αj) ∈ JNj〈P ′j/y〉K~x (for 1 ≤ j ≤ h), and ~a = ]hi=0~ai. Now by applying the induction

hypothesis (i) we obtain that:

• ∃d0 ∈ Mf(D), ∃~b0,~c0 ∈ Mf(D)n such that ((~c0, d0), [α1, . . . , αh] :: α) ∈ JN0K~x,y,
(~b0, d0) ∈ JP ′0K~x, ~a0 = ~b0 ] ~c0, and #d0 = #P ′0.

• ∀j = 1, . . . , k, ∃dj ∈ Mf(D), ∃~bj ,~cj ∈ Mf(D)n such that ((~cj , dj), αj) ∈ JNjK~x,y,
(~bj , dj) ∈ JP ′jK~x, ~aj = ~bj ] ~cj , and #dj = #P ′j .

Now let ~c = ]hj=0~cj ,
~b = ]hj=0

~bj , and d = ]hj=0dj . It is easy to see that ((~c, d), [α1, . . . , αh] ::

α) ∈ JMK~x,y, (~b, d) ∈ JP K~x, and ~a = ~b ] ~c. This concludes the proof of the (⇒) implication.

(⇐) Suppose that ∃d ∈ Mf(D), ∃~b,~c ∈ Mf(D)n such that ((~c, d), α) ∈ JMK~x,y, (~b, d) ∈
JP K~x and ~b ] ~c = ~a. Now we observe that by the definition of interpretation

• ∃d0, . . . , dh ∈ Mf(D), ∃~c0, . . . ,~ch ∈ Mf(D)n such that ((~c0, d0), [α1, . . . , αh] :: α) ∈
JN0K~x,y, ((~cj , dj), αj) ∈ JNjK~x,y (for 1 ≤ j ≤ h), ]hj=0~cj = ~c, and ]hj=0dj = d, and

#dj = degy(Nj) (for 1≤j≤h).

• ∃P ′0, . . . , P ′h ∈ Λb, ∃~b0, . . . ,~bh ∈ Mf(D)n such that ]hj=0P
′
j = P , ]hj=0

~bj = ~b, #P ′j =

degy(Nj) (for j = 0, . . . , h), and (~bj , dj) ∈ JP ′jK~x (for j = 0, . . . , h).

Note that #dj = #P ′j (for 1 ≤ j ≤ h). Now let ~aj = ~bj ] ~cj (for j = 0, . . . , h). Then

by the induction hypothesis (i) we have that (~a0, [α1, . . . , αh] :: α) ∈ JN0〈P ′0/y〉K~x and
(~aj , αj) ∈ JNj〈P ′j/y〉K~x (for 1 ≤ j ≤ h), and finally observing that ~a = ]hj=0~aj , we can

conclude that (~a, α) ∈ JN0〈P ′0/y〉[N1〈P ′1/y〉, . . . , Nh〈P ′h/y〉]K~x ⊆ JM〈P/y〉K~x.
(ii) We just consider the case Q = τ [N ]. By definition of interpretation we have

Jτ [N〈P/y〉]K~x = {~a | (~a, ∗) ∈ JN〈P/y〉K~x}. Hence applying the induction hypothesis (i)

and the fact that τ [N ]〈P/y〉 = τ [N〈P/y〉] we conclude that Jτ [N ]〈P/y〉K~x = {~a ]~b | ∃d ∈
Mf(D), #d = #P = degy(Q), (~b, d) ∈ JP K~x, ((~a, d)) ∈ Jτ [N ]K~x,y}.
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Lemma A.2 (Lemma 4.11, Regular Substitution Lemma). Let M ∈ Λτ̄ , Q ∈ Λτ and
N ∈ 2〈Λτ̄ 〉. We have:

(i) (~a, α) ∈ JM{N/y}K~x iff ∃β1, . . . , βk ∈ D, k = degy(M), ∃~a0, . . . ,~ak ∈ Mf(D)n such

that (~ai, βi) ∈ JNK~x (for 1 ≤ i ≤ k), ((~a0, [β1, . . . , βk]), α) ∈ JMK~x,y and ~a = ]kj=0~aj,

(ii) ~a ∈ JQ{N/y}K~x iff ∃β1, . . . , βk ∈ D, k = degy(Q), ∃~a0, . . . ,~ak ∈ Mf(D)n such that

(~ai, βi) ∈ JNK~x (for 1 ≤ i ≤ k) and (~a0, [β1, . . . , βk]) ∈ JQK~x,y and ~a = ]kj=0~aj.

Proof. The items (i) and (ii) are proved by mutual induction on M and Q.
(i) We only treat the case M = N0[N1, . . . , Nh].
(⇒) Suppose that (~a, α) ∈ JM{N/y}K~x. By definition of classic substitution we have

(N0[N1, . . . , Nh]){N/y} = N0{N/y}[N1{N/y}, . . . , Nh{N/y}]. Hence, by definition, (~a, α) ∈
JN0{N/y}[N1{N/y}, . . . , Nh{N/y}]K~x if and only if there exist α1, . . . , αh ∈ D, ~a0, . . . ,~ah ∈
Mf(D)n such that (~a0, [α1, . . . , αh] ::α) ∈ JN0{N/y}K~x, (~aj , αj) ∈ JNj{N/y}K~x for 1 ≤ j ≤ h,

and ~a = ]hi=0~ai.
By applying the induction hypothesis (i) we obtain that

• ∃δ0,1, . . . , δ0,`0 ∈ D for `0 = degy(N0), ∃~b0,1, . . . ,~b0,`0 ,~c0 ∈ Mf(D)n such that

((~c0, [δ0,1, . . . , δ0,`0 ]), [α1, . . . , αh] ::α) ∈ JN0K~x,y, (~b0,i, δ0,i) ∈ JNK~x, (for 1 ≤ i ≤ `0),

(]`0i=1
~b0,i) ] ~c0 = ~a0, and

• ∀j = 1, . . . , k, ∃δj,1, . . . , δj,`j ∈ Mf(D), `j = degy(Nj), ∃~bj ,~cj ∈ Mf(D)n such that

((~cj , [δj,1, . . . , δj,`j ]), αj) ∈ JNjK~x,y, (~bj,i, δj,i) ∈ JNK~x, (for 1 ≤ i ≤ `j), (]kji=1
~bj,i)]~cj =

~aj .

Now let ~c = ]hj=0~cj ,
~b = ]hj=0]

`j
i=1
~bj,i, k = Σh

j=0`j and [β1, . . . , βk] = ]hj=0[δj,1, . . . , δj,`j ].

It is easy to see that ((~c, [β1, . . . , βk]), α) ∈ JMK~x,y and ~a = ~b ] ~c. This concludes the proof
of the right implication.

(⇐) Suppose that ∃β1, . . . , βk ∈ D, ∃~b1, . . . ,~bk,~c ∈ Mf(D)n, k = degy(M), such that

((~c, [β1, . . . , βk]), α) ∈ JMK~x,y, (~bi, βi) ∈ JNK~x (for 1 ≤ i ≤ k), and (]ki=1bi) ] ~c = ~a. Now we
observe that by definition of interpretation

• ∃α1, . . . , αh ∈ D, ∃(~c0, d0), . . . , (~ch, dh) ∈Mf(D)n+1 such that ((~c0, d0), [α1, . . . , αh] ::
α) ∈ JN0K~x,y, ((~cj , dj), αj) ∈ JNjK~x,y (for 1 ≤ j ≤ h), ]hj=0(~cj , dj) = (~c, [β1, . . . , βk]),

and #dj = degy(Nj) (for 0 ≤ j ≤ h).

We focus for a moment on the fact that (~bi, βi) ∈ JNK~x (for 1 ≤ i ≤ k) and ]hj=0dj =

[β1, . . . , βk]. Thus there exists a way of partitioning the set {1, . . . , k} into h + 1 subsets
X0, . . . , Xh in such a way that for all j = 0, . . . , h each i ∈ Xj is such that βi ∈ dj . Then

we let ~ej = ]i∈Xj
~bi.

Now let ~aj = ~ej ] ~cj (for j = 0, . . . , h). Then by induction hypothesis (i) we have that
(~a0, [α1, . . . , αh] :: α) ∈ JN0{N/y}K~x and (~aj , αj) ∈ JNj{N/y}K~x (for 1 ≤ j ≤ h). Finally

observing that ~a = ]hj=0~aj , we conclude (~a, α) ∈ JN0{N/y}[N1{N/y}, . . . , Nh{N/y}]K~x =

JM{N/y}K~x.
(ii) We just consider the case Q = τ [M ]. By definition of interpretation we have

Jτ [M{N/y}]K~x = {~a | (~a, ∗) ∈ JM{N/y}K~x}. Hence applying the induction hypothesis (i)

and the fact that τ [M ]{N/y} = τ [M{N/y}] we conclude that Jτ [M ]{N/y}K~x = {~a](]ki=1
~bi) |

∃β1, . . . , βk ∈ D, k = degy(M), (~bi, βi) ∈ JNK~x (1 ≤ i ≤ k), ((~a, [β1, . . . , βk])) ∈ Jτ [M ]K~x,y}.
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Let ` be a function from N to N. Given a natural number k ∈ N we write `[n := k] for
the map `′ which coincides with `, except on n, where `′ takes the value k. We let (` + k)
denote the function `′ defined by `′(x) = `(x) + k.

In the following proofs we write A�n
h B if A reduces to B in n steps of head reduction,

which is introduced in Section 7.5 for the full ∂λ-calculus with tests.

Lemma A.3. (Lemma 6.12) Let V ∈ 2〈(Λτ )lab〉 be a sum of labelled closed tests. If V� ε

then there exists a map ` : N→ N such that V(`+k) is solvable for all k ∈ N.

Proof. In the proof we use the characterization of solvable given in Theorem 6.5(ii). We
proceed by induction on the length n of a head reduction V �h ε (by Lemma 7.19). For
the sake of simplicity we assume that in the sum V we first reduce a component that head
reduces to ε (only when V = ε+ W we start reducing within W).

Case n = 0. Then V = ε and V` = λx.x[] independently from `.
Case n > 0. We have V→h V′ �n−1

h ε. The proof is divided into sub-cases depending
on the redex that is contracted.

Subcase V = τ [(τ̄j(ε))i, (~L)~r] and V′ = τ [(~L)~r]. By induction hypothesis there is `′

such that V′(`′+k) = λz.z[~L(`′+k)[]∼`
′(~r)+k] is solvable for all k. From this it follows that

~L(`′+k)[]∼`
′(~r)+k are solvable for all k. It is enough to take ` = `′[i := 0][j := 0] to have

V(`+k) = λz.z[(λx1 . . . xk.λy.y[])[]∼k, ~L(`+k)[]∼`
′(~r)+k] � λz.z[λy.y[], ~L(`+k)[]∼`(~r)+k] that is

solvable because ~L(`+k) = ~L(`′+k) by Remark 6.11(2) and `(~r) = `′(~r).

Subcase V = τ [(τ̄j(V ))i, (~L)~r] where V = τ [( ~M)~m] 6= ε, and V′ = τ [( ~M)~m, (~L)~r]. By

induction hypothesis there is `′ such that V′(`′+k) = λz.z[ ~M (`′+k)[]∼`
′(~m)+k, ~L(`′+k)[]∼`

′(~r)+k]

is solvable for all k. From this it follows that ~M (`′+k)[]∼`
′(~m)+k and ~L(`′+k)[]∼`

′(~r)+k are
solvable for all k. It is enough to take ` = `′[i := 0][j := 0] to have

V(`+k) = λz.z[(λx1 . . . xk.λy.y[ ~M (`+k)[]∼`(~m)+k])[]∼k, ~L(`+k)[]∼`(~r)+k]

� λz.z[λy.y[ ~M (`+k)[]∼`(~m)+k], ~L(`+k)[]∼`(~r)+k]

that is solvable because `′(~m) = `(~m), `′(~r) = `(~r) and, by Remark 6.11(2), ~M (`+k) =
~M (`′+k) and ~L(`+k) = ~L(`′+k).

Subcase V = τ [(λx.M)i, (~L)~r] and V′ = τ [(M{0/x})i, (~L)~r]. Since V′ converges, we
have x /∈ FV(M) and M{0/x} = M . By induction hypothesis there is a map `′ such

that, for all k, V′(`′+k) = λz.z[M (`′+k)[]∼`
′(i)+k, ~L(`′+k)[]∼`

′(~r)+k] is solvable. It is enough to

take ` = `′[i := `′(i) + 1] to have V(`+k) = λz.z[(λx.M (`+k))[]∼`(i)+k+1, ~L(`+k)[]∼`(~r)+k] →
λz.z[M (`+k)[]∼`(i)+k, ~L[]∼`(~r)+k] that is solvable for all k by Remark 6.11(2) and `(~r) = `′(~r).

Subcase V = τ [(τ̄j(V )[]~P )i, (~L)~r] and V′ = τ [(τ̄j(V )~P )i, (~L)~r]. By induction hypothesis
there exists `′ such that, for all k, the term

V′(`
′+k) = λz.z[(λx1 . . . x`′(j)+k.V

(`′+k))~P (`′+k)[]∼`
′(i)+k, ~L(`′+k)[]∼`

′(~r)+k] is solvable.

For ` = `′[j := `′(j) + 1] we have

V(`+k) = λz.z[(λx1 . . . x`′(j)+k+1.V
(`+k))[]~P (`+k)[]∼`(i)+k, ~L(`+k)[]`(~r)+k]

→β λz.z[(λx2 . . . x`′(j)+k+1.V
(`+k))~P (`+k)[]∼`(i)+k, ~L(`+k)[]`(~r)+k]

=α λz.z[(λx1 . . . x`′(j)+k.V
(`+k))~P (`+k)[]∼`(i)+k, ~L(`+k)[]`(~r)+k]

We conclude by Remark 6.11(2) and since `(~r) = `′(~r).
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Subcase V = τ [((λx.M)Q~P )i, (~L)~r] and V′ = τ [(M〈Q/x〉{0/x}~P )i, (~L)~r]. By IH, there

is ` such that V′(`+k) = λz.z[M (`+k)〈Q(`+k)/x〉{0/x}~P (`+k)[]∼`(i)+k, ~L(`+k)[]∼`(~r)+k] is solv-
able for all k. We conclude because

V(`+k) = λz.z[(λx.M (`+k))Q(`+k) ~P (`+k)[]∼`(i)+k, ~L(`+k)[]∼`(~r)+k]→β V′(`+k).

Subcase V = V1 + W and V′ = V1 + W with V1 →h V1 �m
h ε for some m < n. By

induction hypothesis there is `′ such that V(`′+k)
1 is solvable for all k. From the previous

case analysis, there exists an ` such that, for all k, V
(`+k)

1 is solvable if and only if V(`′+k)
1

is solvable. Then V(`+k) is solvable for all k, regardless the behaviour of W(`+k).
Subcase V = ε+ W and V′ = ε+ W′ with W→h W′. Trivial.

Lemma A.4. (Lemma 6.13) Let V ∈ 2〈(Λτ )lab〉 be a sum of labelled closed tests. If V� 0

then there exists a natural number k such that V(`+k) � 0 for all ` : N→ N.

Proof. We proceed by induction on the length n of a head reduction V�h 0 (by Lemma 7.19).
Case n = 0. Then V = 0 and 0` = 0 independently from `.
Case n > 0. We have V→h V′ �n−1

h 0. For the sake of simplicity we assume that in a
test we always reduce a component head reducing to 0. The proof is divided into subcases.

Subcase V = τ [(τ̄j(V ))i, (~L)~r] where V = τ [( ~M)~m] and V′ = τ [( ~M)~m, (~L)~r]. By induc-

tion hypothesis there is k such that V′(`+k) = λz.z[ ~M (`+k)[]∼`(~m)+k, ~L(`+k)[]∼`(~r)+k] �β 0

for all `. Then either one of the M (`+k)[]∼`(~m)+k or one of the ~L(`+k)[]∼`(~r)+k reduces to 0.
From this it follows that, for all `, we have

V(`+k) = λz.z[(λx1 . . . x`(j)+k.λy.y[ ~M (`+k)[]∼`(~m)+k])[]∼`(i)+k, ~L(`+k)[]∼`(~r)+k]�β 0.

Subcase V = τ [(λx.M)i, (~L)~r] and V′ = τ [(M{0/x})i, (~L)~r]. By induction hypothesis

there is k such that V′(`+k) = λz.z[(M{0/x})(`+k)[]∼`(i)+k, ~L(`+k)[]∼`(~r)+k] �β 0 for all `.
For k′ = k + 1 we have

V(`+k′) = λz.z[(λx.M (`+k′))[]∼`(i)+k
′
, ~L(`+k′)[]∼`(~r)+k

′
]

→β λz.z[(M{0/x})(`+k′)[]∼`(i)+k, ~L(`+k′)[]∼`(~r)+k
′
].

If x ∈ FV(M) then V(`+k′) := 0 and we are done. Otherwise, when x /∈ FV(M), we

have V(`+k′) = λz.z[M (`′+k)[]∼`
′(i)+k, ~L(`′+k)[]∼`

′(~r)+k] where `′ = (`+ 1)[i := `(i)], therefore

V(`+k′) �β 0 for all `.

Subcase V = τ [(τ̄j(V )P ~P )i, (~L)~r] with P 6= [] and V′ = 0. For every k > 1, we have

V(`+k) = λz.z[(λx1 . . . x`(j)+k.V
(`+k))P (`+k) ~P (`+k)[]∼`(i)+k, ~L(`+k)[]∼`(~r)+k]

�β λz.z[(λx2 . . . x`(j)+k.V
(`+k)〈P (`+k)/x〉{0/x})~P (`+k)[]∼`(i)+k, ~L(`+k)[]∼`(~r)+k].

This is equal to 0 since, by definition of (`+ k)-expansion, x1 /∈ FV(V (`+k)).

Subcase V = τ [(τ̄j(V )[]~P )i, (~L)~r] and V′ = τ [(τ̄j(V )~P )i, (~L)~r]. By induction hypothesis
there exists k such that, for all `, we have

V′(`+k) = λz.z[(λx1 . . . x`(j)+k.V
(`+k))~P (`+k)[]∼`(i)+k, ~L(`+k)]�β 0.

For k′ = k + 1 we have

V(`+k′) = λz.z[(λx1 . . . x`(j)+k′ .V
(`+k′))[]~P (`+k′)[]∼`(i)+k

′
, ~L(`+k′)[]∼`(~r)+k

′
]

�β λz.z[(λx2 . . . x`(j)+k′ .V
(`+k′))~P (`+k′)[]∼`(i)+k

′
, ~L(`+k′)[]∼`(~r)+k

′
]

= λz.z[(λx1 . . . x`′(j)+k.V
(`′+k))~P (`′+k)[]∼`

′(i)+k, ~L(`′+k)[]∼`
′(~r)+k]
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where `′ = (`+ 1)[j := `(j)].

Subcase V = τ [((λx.M)P ~P ′)i, (~L)~r] and V′ = τ [(M〈P/x〉{0/x}~P ′)i, (~L)~r]. Now, if
degx(M) 6= #P then V′ = 0 and we are done. Otherwise, by induction hypothesis, there is
k such that, for all `, we have

V′(`+k) = λz.z[M (`+k)〈P (`+k)/x〉{0/x}~P ′(`+k)[]∼`(i)+k, ~L(`+k)[]∼`(~r)+k]�β 0.

This case follows since V(`+k) = λz.z[(λx.M (`+k))P (`+k) ~P ′(`+k)[]∼`(i)+k, ~L(`+k)[]∼`(~r)+k] →
V′(`+k).

Subcase V = V1 + W and V′ = V1 + W with V1 →h V′1. By induction hypothesis

there is k′ such that V′(`+k′) = V(`+k′)
1 + W(`+k′) �β 0 for all `. From the previous case

analysis we get a k ≥ k′ such that V `+k
1 �β 0. We conclude since V`+k = V `+k

1 + W`+k =

V `+k
1 + W(`+k−k′)+k′ �β 0.

Lemma A.5. (Lemma 8.5) Let A ∈ Λe! , N ∈ Λτ̄! and N ∈ 2〈Λτ̄! 〉. Then:

(i) (A〈N/x〉)◦ = A◦〈N◦/x〉,
(ii) (A{N/x})◦ =

⋃
P∈Mf(N◦)A

◦〈P/x〉{0/x}.

Proof. (i) By structural induction on A. We only treat the case A = M [~L,N!]. Observe
that

A◦ = ∪P ′∈Mf(N◦)M
◦([~L◦] ] P ′)

By definition of linear substitution we have

(A〈N/x〉)◦
= (M〈N/x〉[~L,N!])◦∪
∪ki=1(M [L1, . . , Li〈N/x〉, . . , Lk,N!])◦∪
∪ (M [~L,N〈N/x〉,N!])◦

= ∪P∈Mf(N◦)(M〈N/x〉)
◦([~L◦] ] P )∪

∪P ′∈Mf(N◦) ∪
k
i=1 M

◦([L◦1, . . , (Li〈N/x〉)◦, . . , L◦k] ] P ′)∪
∪P ′′∈Mf(N◦)M

◦([~L◦, (N〈N/x〉)◦] ] P ′′)
= ∪P∈Mf(N◦)M

◦〈N◦/x〉([~L◦] ] P )∪
∪P ′∈Mf(N◦) ∪

k
i=1 M

◦([L◦1, . . , L
◦
i 〈N◦/x〉, . . , L◦k] ] P ′)∪

∪P ′′∈Mf(N◦)M
◦([~L◦,N◦〈N◦/x〉] ] P ′′)

by induction hypothesis,

= ∪P∈Mf(N◦)(M
◦([~L◦] ] P ))〈N◦/x〉

= A◦〈N◦/x〉
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(ii) By structural induction on A. Also here we only treat one case, namely A =

M [~L,M!] (where #[~L] = k). In such a case we have

∪P∈Mf(N◦)A
◦〈P/x〉{0/x}

= ∪P ′∈Mf(M◦) ∪P∈Mf(N◦) (M◦([ ~L◦] ] P ′))〈P/x〉{0/x}
= ∪P ′∈Mf(M◦)∪P0,P1,P2∈Mf(N◦)

M◦〈P0/x〉{0/x}([~L◦]〈P1/x〉{0/x} ] P ′〈P2/x〉{0/x})
= ∪P ′∈Mf((M{N/x})◦)(M{N/x})

◦(([~L]{N/x})◦ ] P ′)
by induction hypothesis, using the fact that
∪P ′∈Mf(M◦) ∪P2∈Mf(N◦) P

′〈P2/x〉{0/x} is equal to
Mf(∪P∈Mf(N◦)M

◦〈P/x〉{0/x})
= (M{N/x}[~L{N/x},M{N/x}!])◦
= (A{N/x})◦
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