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Abstract. We consider the call-by-value λ-calculus extended with a
may-convergent non-deterministic choice and a must-convergent parallel
composition. Inspired by recent works on the relational semantics of lin-
ear logic and non-idempotent intersection types, we endow this calculus
with a type system based on the so-called Girard’s second translation of
intuitionistic logic into linear logic. We prove that a term is typable if
and only if it is converging, and that its typing tree carries enough infor-
mation to give a bound on the length of its lazy call-by-value reduction.
Moreover, when the typing tree is minimal, such a bound becomes the
exact length of the reduction.

1 Introduction

The intersection type discipline provides logical characterisations of operational
properties of λ-terms, namely of various notions of termination, like head-, weak-
and strong-normalisation (see [1, 2], and [3] as a reference). The basic idea is to
look at types as the set of terms having a given computational property — the
type α ∩ β being the set of those terms enjoying both properties α and β. With
this intuition in mind, the intersection is naturally idempotent (α ∩ α = α).

Another way to understand the intersection type discipline is as a deductive
system for presenting the compact elements of a specific reflexive Scott domain
(see e.g. [4, §3.3]). The set of types assigned to a closed term captures the inter-
pretation of such a term in the associated domain. Intersection types are then
a powerful tool for enlightening the relations between denotational semantics,
syntactical types and computational properties of programs.

Intersection types have been recently revisited in the setting of the relational
semantics Rel of Linear Logic (LL). Rel is a semantics providing a more quanti-
tative interpretation of the λ-calculus than Scott domains. Loosely speaking, the
relational interpretation of a λ-term M not only tells us whether M converges
on an argument, but in case it does, it also provides information on the number
of times M needs to call3 its argument to converge. Just like the intersection
type discipline captures Scott domains, non-idempotent intersection type sys-
tems represent relational models. In this framework the type α1 ∩ · · · ∩ αk may

? Partially supported by grants from DIGITEO and Région Île-de-France.
3 The notion of calling an argument should be made precise by specifying an opera-

tional semantics, which is usually achieved through an evaluating machine.
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be more accurately represented as the finite multiset [α1, . . . , αk]. The lack of
idempotency is the key ingredient to model the resource sensitiveness of Rel —
while in the usual systems M : α ∩ β stands for “M can be used either as data
of type α or as data of type β”, when the intersection is not idempotent the
meaning of M : [α, β] becomes “M will be called once as data of type α and
once as data of type β”. Hence, types should no longer be understood as sets of
terms, but rather as sets of calls to terms.

The first intersection type system based on Rel has been presented in [5],
where de Carvalho introduced system R, a type discipline capturing the re-
lational version of Engeler’s model. More precisely, he proved that system R,
beyond characterising converging terms, carries information on the evaluation
sequence as well — the size of a derivation tree typing a term is a bound on
the number of steps needed to reach a normal form. Similar results are obtained
in [6] for a variant of system R characterising strong normalisation and giving a
bound to the longest β-reduction sequence. More recently, Ehrhard introduced
a non-idempotent intersection type system characterising the convergence in the
call-by-value λ-calculus [7]. Also in this case, the size of a derivation tree bounds
the length of the lazy (i.e. no evaluation under λ’s) call-by-value β-reduction
sequence. Our goal is to extend Ehrhard’s system with non-determinism.

Our starting point is [8], where it is shown that the relational model D of the
call-by-name λ-calculus provides a natural interpretation of both may and must
non-determinism. Since Rel interprets λ-terms as relations, the may-convergent
non-deterministic choice can be expressed in the model as the set-theoretical
union. The must-convergent parallel composition, instead, is interpreted by using
the operation D⊗D( D obtained by combining the mix rule D⊗D( D`D
with the contraction rule D`D( D, this latter holding since the call-by-name
model D has shape ?A for A = DN (⊥. We will show that the same principle
(may-convergence as union of interpretations and must-convergence as mix rule
plus contraction) still works in the call-by-value setting.

Ehrhard’s call-by-value type system is based on the so-called “second Girard’s
translation” of intuitionistic logic into LL [9, 10]. The translation of a type α
is actually given by two mutually defined mappings (α 7→ αv and α 7→ αc)
reflecting the two sorts (values and computations) at the basis of the call-by-
value λ-calculus:

ιv = ι, (α→ β)v = αc ( βc, αc = !αv,

where ι is an atom. Hence, the relational model described by Ehrhard’s typing
system yields a solution to the equation V ' !V ( !V in Rel. Since in this
semantics ( is interpreted by the cartesian product and ! by finite multisets,
a functional type for a value in this system is a pair (p, q) of types for compu-
tations, and a type for a computation is a multiset [α1, . . . , αn] of value types
(representing n calls to a single value that must behave as α1, . . . , αn).

In order to deal with the must non-determinism, namely the parallel composi-
tion, we must add to the translation considered by Ehrhard a further exponential
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level, called here the parallel sort :

ιv = ι, (α→ β)v = αc ( β‖, αc = !αv, α‖ = ?αc. (1)

This translation enjoys the nice property of mapping the call-by-value λ-calculus
into the polarised fragment of LL, as described by Laurent in [11]. Then, our typ-
ing system is describing an object in Rel satisfying the equation V ' !V ( ?!V,
where the ? connective is interpreted by the finite multiset operator. In this
setting a value type is a pair (p, [q1, . . . , qn]) of a computational type p and a
parallel type, that is a multiset of computations q1, . . . , qn. Intuitively, a value
of that type needs a computation of type p to create a parallel composition
of n computations of types q1, . . . , qn, respectively. Notice that, following [8],
the composition of the mix rule and the contraction one yields an operation
?!V ⊗ ?!V ( ?!V which is used to interpret the parallel composition.

To avoid a clumsy notation with multisets of multisets, we prefer to denote
a !-multiset [α1, . . . , αm] (the type of a computation) with the linear logic multi-
plicative conjunction α1⊗· · ·⊗αm, a ?-multiset [q1, . . . , qn] (the type of a parallel
composition of computations) with the multiplicative disjunction q1 ` · · ·` qn,
and finally a pair (p, [q1, . . . , qn]) with the linear implication p( (q1 ` · · ·` qn).
Such a notation stresses the fact that the non-idempotent intersection type sys-
tems issued from Rel are essentially contained in the multiplicative fragment of
LL (modulo the associativity, commutativity and neutrality equivalences).

Contents. Several non-deterministic extensions of the λ-calculus have been
proposed in the literature, both in the call-by-name (e.g. [8, 12]) and in the call-
by-value setting (e.g. [13, 14]). In the present paper we focus on the call-by-value
λ-calculus, first introduced in [15], endowed with two binary operators + and ‖
representing non-deterministic choice and parallel composition, respectively. The
resulting calculus, denoted here Λ+‖, is quite standard and its operational seman-
tics is given in Section 2 through a machine performing lazy call-by-value reduc-
tion. Following [8], we model non-deterministic choice as may non-determinism
and parallel composition as must. This is reflected in our reduction and in our
notion of convergence. Indeed, every time the machine encounters M + N in
active position it actually performs a choice, while encountering M ‖ N it in-
terleaves reductions in M and in N ; finally a term M converges when there is a
reduction of the machine from M to a normal form.

Section 3 is devoted to provide the type discipline for Λ+‖, based on the
multiplicative fragment of LL (as discussed above), and to define a measure | · |
associating a number with every type derivation. Such a measure “extracts” from
the information present in the typing tree of a term, a bound on the length of its
evaluation. In Section 4 we show that our type system satisfies good properties
like subject reduction and expansion. We also prove that the measure associated
with the typing tree of a term decreases by 1 at every reduction step, giving thus
a proof of weak normalisation in ω for typable terms. From these properties it
ensues directly that a term is typable if and only if it converges. Moreover, thanks
to the resource consciousness of our type system, we are able to strengthen such a
result — we prove that, wheneverM converges, there is a type derivation `M : α
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βv-reduction +-reductions ‖-reductions
(λx.M)V →M [V/x] M +N →M

M +N → N
(M ‖ N)P →MP ‖ NP
V (M ‖ N)→ VM ‖ V N

Contextual rules

M →M ′

M ‖ N →M ′ ‖ N

N → N ′

M ‖ N →M ‖ N ′

M →M ′ (∗)

MN →M ′N

M →M ′ (∗)

VM → VM ′

Fig. 1: Reduction semantics for Λ+‖. The condition (∗) stands for “M 6= P ‖ Q”.

(with α satisfying a suitable minimality condition) such that the associated
measure provides the exact number of steps reducing M to a normal form.

Finally, in Section 5 we discuss the properties of the model in Rel underlying
our system. As expected, the interpretation turns out to be adequate, i.e. a term
converges if and only if its interpretation is non-empty. On the other hand such a
model is not fully abstract — there are terms having different interpretations and
that cannot be (semi-)separated using applicative contexts. Our counterexample
does not rely on the presence of + and ‖ .

2 The call-by-value non-deterministic machine

We consider the call-by-value λ-calculus [15], extended with non-deterministic
and parallel operators in the spirit of [8]. The set Λ+‖ of terms and the set
V+‖ of values are defined by mutual induction as follows (where x ranges over
a countable set Var of variables):

Terms: M,N,P,Q ::= V |MN |M +N |M ‖ N Λ+‖
Values: V ::= x | λx.M V+‖

Intuitively, M+N denotes the non-deterministic choice between M and N , while
M ‖ N stands for their parallel composition. Such operators are not required to
be associative nor commutative. As usual, we suppose that application associates
to the left and λ-abstraction to the right. Moreover, to lighten the notation, we
assume that application and λ-abstraction take precedence over + and ‖ .

The α-conversion and the set FV(M) of free variables of M are defined as
usual in λ-calculus [16, §2.1]. A term M is closed whenever FV(M) = ∅.

Given M ∈ Λ+‖ and V ∈ V+‖, we denote by M [V/x] the term obtained by
simultaneously substituting the value V for all free occurrences of x inM , subject
to the usual proviso about renaming bound variables in M to avoid capture of
free variables in V . Hereafter terms are considered up to α-conversion.

Definition 1 (Operational semantics). The operational semantics of Λ+‖ is
given in Figure 1. We denote by →∗ the transitive and reflexive closure of →.

The side condition (∗) on the context rules for the application avoids critical
pairs with the ‖-rules: this is not actually needed but it simplifies some proofs.
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A term M is called a normal form if there is no N ∈ Λ+‖ such that M → N .
In particular, all (parallel compositions of) values are normal forms. Note that
when M is closed then either it is a parallel composition of values or it reduces.

Definition 2. A closed term M ∈ Λ+‖ converges if and only if there exists a
reduction M →∗ V1 ‖ · · · ‖ Vn for some Vi ∈ V+‖.

The intuitive idea underlying the above notion of convergence is the following:

– The non-deterministic choice M +N is treated as may-convergent, either of
the alternatives may be chosen during the reduction and the sum converges
if either M or N does.

– The parallel composition M ‖ N is modelled as must-convergent, the reduc-
tion forks and the parallel composition converges if both M and N do.

Let us provide some examples. We set I = λx.x, ∆ = λx.xx and we denote
by Ω the paradigmatic non-converging term ∆∆, which reduces to itself as
∆ is a value. The reduction is lazy, i.e. it does not reduce under abstractions,
so for example λy.Ω is a normal form. In fact, when considering closed terms,
the parallel compositions of values are exactly the normal forms, thus justifying
Definition 2. We would like to stress that our system is designed in such a
way that a parallel composition of values is not a value. As a consequence,
the term P = λk.∆ ‖ ∆ is not a value, so the term (λx.xIx)P is converging.
Indeed, it reduces to (λx.xIx)(λk.∆) ‖ (λx.xIx)∆ →∗ ∆ ‖ ∆. Notice that, if
we consider P as a value, then (λx.xIx)P would diverge since it would reduce
to P IP →∗ (∆ ‖ I)P →∗ ∆P ‖ P and one can check easily that ∆P diverges.

The presence of the non-deterministic choice + enlightens a typical feature
of the call-by-value λ-calculus: application is bilinear (i.e. it commutes with +)
while abstraction is not linear. Indeed, one can prove that (M+M ′)(N+N ′) and
MN+MN ′+M ′N+M ′N ′ are operationally indistinguishable, while λx.(M+N)
and λx.M + λx.N , in general, are not. For example, take S = λx.(x+ I), S′ =
λx.x + λx.I, EI = λx.I, EΩ = λx.Ω, and F = λb.bEΩ(bEIEΩ)I. Now observe
that FS is converging to the value I, while FS′ diverges. Indeed, remarking that
SEIEΩ reduces non-deterministically to I and to EΩ, we have:

FS SEΩ(SEIEΩ)I (EΩ + I)(SEIEΩ)I

EΩ(SEIEΩ)I

EΩII

EΩEΩI

ΩI

I(SEIEΩ)I

III I

IEΩI Ω

∗

∗

∗ ∗

∗ ∗

while FS′ has two reducts, either F I reducing to ΩI, or FEI reducing to Ω.
Finally, we give two examples mixing + and ‖ . The term (λx.(x ‖ x))(V +V ′)

converges either to V ‖ V or to V ′ ‖ V ′, while the term (λx.(x + x))(V ‖ V ′)
converges to V ‖ V ′, only.
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ax
x : τ ` x : τ

∆i, x : τi `M : αi 1 ≤ i ≤ n
(I n ≥ 0

n⊗
i=1

∆i ` λx.M :

n⊗
i=1

(τi ( αi)

∆ `M :
ķ

i=1

ni⊗
j=1

(τij ( αij) Γi ` N :
ni̧

j=1

τij 1 ≤ i ≤ k

(E
k ≥ 1
ni ≥ 1

∆⊗
k⊗

i=1

Γi `MN :
ķ

i=1

ni̧

j=1

αij

∆ `M : α
+`

∆ `M +N : α

∆ ` N : α
+r

∆ `M +N : α

∆ `M : α1 Γ ` N : α2

‖I
∆⊗ Γ `M ‖ N : α1 ` α2

Fig. 2: Type system: the inference rules.

3 Linear Logic Based Type System

In this section we introduce our type system based on linear logic. The set T
of (parallel) types and the set C of computational types are generated by the
following grammar:

parallel-types: α, β ::= α` β | τ T
computational-types: τ, ρ ::= 1 | τ ⊗ ρ | τ ( α C

For the sake of simplicity, types are considered up to associativity and commuta-
tivity of the tensor ⊗ and the par `. The type 1, which is the only atomic type,
represents the empty tensor and is therefore its neutral element (i.e. τ ⊗ 1 = τ).
Accordingly, we write ⊗n

i=1τi for τ1⊗· · ·⊗τn when n ≥ 1, and for 1 when n = 0.
Similarly, when n ≥ 1, `n

i=1αi stands for α1 ` · · · ` αn. We do not allow the
empty par as it would correspond to an empty sum of terms, that would be
delicate to treat operationally [17]. Note that neither ⊗ nor ` is idempotent.

Definition 3. A context Γ is a total map from Var to C, such that dom(Γ ) =
{x | Γ (x) 6= 1} is finite. The tensor of two contexts Γ and ∆, written Γ ⊗∆, is
defined pointwise.

As a matter of notation, we write x1 : τ1, . . . , xn : τn for the context Γ such that
Γ (xi) = τi and Γ (y) = 1 for all y /∈ ~x. The context mapping all variables to 1 is
denoted by ∅; note that Γ ⊗ ∅ = Γ .

Definition 4.

– The type system for Λ+‖ is defined in Figure 2. Typing judgements are of
the form Γ `M : α; when Γ = ∅ we simply write `M : α. Derivation trees
will be denoted by π.
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– A term M ∈ Λ+‖ is typable if there exist α ∈ T and a context Γ such that
Γ `M : α.

The rules for typing non-deterministic choice and parallel composition reflect
their operational behaviour. Non-deterministic choice is may-convergent, thus it
is enough to ask that one of the terms in a sum is typable; on the other hand
parallel composition is must-convergent, we therefore require that all its compo-
nents are typable. Intuitively, when dealing with closed terms, the ` operator
can be only introduced to type a parallel composition, and gives an account
of the number of its components. In fact, for closed regular λ-terms, the type
system looses the `-level and collapses to the one presented in [7].

The (E rule reflects the distribution of the parallel operator over the appli-
cation. For example, takeM = x ‖ x′ andN = y ‖ y′ in the premises of (E , then
we have k = 2 and n1 = n2 = 2 so that the type of the term MN is a ` of four
types, which is in accordance with (x ‖ x′)(y ‖ y′)→∗ (xy ‖ xy′) ‖ (x′y ‖ x′y′).

Remark 5 For every V ∈ V+‖ we can derive ` V : 1. Indeed, if V is a variable,
then the derivation follows by ax; if V is an abstraction, then it follows by (I

using n = 0. As a simple consequence we get ` V1 ‖ · · · ‖ Vk : 1 ` · · · ` 1
(k times) for all V1, . . . , Vk ∈ V+‖.

Concerning the possible types of values, the next more general lemma holds.

Lemma 6. Let V ∈ V+‖. If ∆ ` V : α then α ∈ C.

Proof. A proof of ∆ ` V : α ends in either a ax or a (I rule. In both cases α
is a computational-type. ut

To help the reader to get familiar with the type system, we provide some
examples of typable and untypable terms.

Example 7. Recall that I = λx.x, ∆ = λx.xx and Ω = ∆∆.

1. ` I :
⊗n

i=1(τi ( τi) and ` λx.I :
⊗n

i=1(1 (
⊗ki

j=1(τij ( τij)).

2. `∆ :
⊗n

i=1((τi ( αi)⊗ τi) ( αi.
3. Ω is not typable. By contradiction, suppose ` Ω : α. By ((E) and (2) there

is a type τ such that ` ∆ : τ ( α and ` ∆ : τ . Let us choose such a τ
with minimal size. Applying (2) to `∆ : τ ( α, we get τ = (τ ′ ( α)⊗ τ ′,
from which one can deduce (see Lemma 9, below) that ` ∆ : τ ′ ( α and
`∆ : τ ′, thus contradicting the minimality of τ .

4. However, ` λx.Ω : 1, so ` λx.Ω + Ω : 1, but λx.Ω ‖ Ω is not typable.
5. From (1) and (4) we get: ` I ‖ λx.Ω : (

⊗n
i=1(τi ( τi)) ` 1.

We now define a measure associating a natural number with every derivation
tree. In Section 4.1 we prove that such a measure decreases along the reduction.
In the next definition we follow the notation of Figure 2, in particular in the
(E-case the parameter ni refers to the arity of the

˙
in the conclusion of πi.
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Definition 8. The measure |π| of a derivation tree π is defined inductively as:

π = ax
S

|π| = 0

π =
π1 · · · πn

(I
S

|π| =
∑n

i=1 |πi|

π =
π0 π1 . . . πk

(E
k ≥ 1
ni ≥ 1S

|π| =
∑k

i=0 |πi|+ (
∑k

i=1 2ni)− 1

π =
π′

+`
S

or π =
π′

+r
S

|π| = |π′|+ 1

π =
π1 π2

‖I
S

|π| = |π1|+ |π2|

Hereafter, we may slightly abuse the notation and write π = Γ ` M : α to
refer to a derivation tree π ending by the sequent Γ `M : α.

The measure of a derivation only depends on its rules of type (E , +` and
+r. These are in fact the kinds of rules that can type a redex (βv and ‖ redexes
are typed by (E rules, + redexes by +`, +r rules). Each occurrence of a +` or
+r rule counts for one, because a +-reduction does not create new rules in the
derivation typing the contractum (see the proof of Theorem 11 for more details).
An occurrence of a (E counts for the number of “active” connectives appearing
in the principal premise, i.e. the number of the connectives that are underlined
in the left-most premise of the (E rule in Figure 2, indeed

k∑
i=1

ni︸ ︷︷ ︸
(’s

+

k∑
i=1

(ni − 1)︸ ︷︷ ︸
⊗’s

+ (k − 1)︸ ︷︷ ︸
`’s

= (

k∑
i=1

2ni)− 1.

Such a weight is needed since the ‖-reduction creates two new (E rules in the
derivation typing the contractum. The measure decreases however, since the sum
of the weight of the two new rules is less than the weight of the eliminated rule.

For example, let us consider the derivation tree π in Figure 3, which types
the ‖-redex ∆(I ‖ λxy.Ω) with 1`1, and has three (E rules — one of weight 1
in each subtree π1, π2, and one of weight 3 giving the conclusion, so that |π| = 5.
Now, the (E-rule ending π splits into two (E-rules in the derivation tree π′

typing the contractum of ∆(I ‖ λxy.Ω), namely π′ = `∆I ‖∆(λxy.Ω) : 1`1.
However, |π′| = |π|−1 since the number of the active connectives of the (E-rule
concluding π is greater than the sum of the number of the active connectives of
its “residuals” in π′.

Finally, note that the term ∆(I ‖ λxy.Ω) reduces to the value I ‖ λy.Ω in
5 = |π| steps. As we will show in Theorem 13 this does not happen by chance.



Call-by-Value Non-determinism in a Linear Logic Type Discipline 9

π =

π1 = x : τ ` xx : 1 π2 = x : τ ` xx : 1
(I

`∆ : (τ ( 1)⊗ (τ ( 1)

` I : τ ` λxy.Ω : τ
‖I

` I ‖ λxy.Ω : τ ` τ
(E

`∆(I ‖ λxy.Ω) : 1 ` 1

π′ =

π1 = x : τ ` xx : 1
(I

`∆ : τ ( 1 ` I : τ
(E

`∆I : 1

π2 = x : τ ` xx : 1
(I

`∆ : τ ( 1 ` λxy.Ω : τ
(E

`∆(λxy.Ω) : 1
‖I

∆I ‖∆(λxy.Ω) : 1 ` 1

Fig. 3: Derivation trees typing, respectively, the ‖-redex ∆(I ‖ λxy.Ω) and its
contractum ∆I ‖∆(λxy.Ω), taking τ = (1 ( 1) = (1 ( 1)⊗ 1.

4 Properties of the Type System

We prove that the set of types assigned to a term is invariant under →, in a
non-deterministic setting. More precisely, Theorem 11 states that if N is the
contractum of a {βv, ‖}-redex in M , then any type of M is a type of N , and if N
and N ′ are the two possible contracta of a +-redex in M , then any type of M is
either a type of N or of N ′ (subject reduction). On the other hand Theorem 12
shows the converse, namely that whenever M → N , any type of N is a type
of M (subject expansion). Moreover, the two theorems combined prove that the
measure associated with the typing tree of a term decreases (resp. increases) of
exactly one unit at each typed step of reduction (resp. expansion). This is typical
of non-idempotent intersection type systems, as discussed in the introduction.
As a consequence, any typable term M is normalising and the measure of specific
derivation trees of M gives the length of a converging reduction sequence.

4.1 Subject reduction

In order to prove subject reduction we first need some preliminary lemmas. Their
proofs are lengthy but not difficult, therefore we write explicitly only the most
interesting cases — the remaining cases can be found in Appendix A.1.

Lemma 9. We have that π = ∆ ` V :
⊗n

i=1 τi if and only if ∆ =
⊗n

i=1∆i and
πi = ∆i ` V : τi for all i = 1, . . . , n. Moreover, |π| =

∑n
i=1 |πi|.

Proof. We only prove (⇒), the other direction being similar. Since V is a value,
the last rule of π is either ax or (I . The first case is trivial. In the second
case, V = λx.M and the premises of the (I -rule are m ≥ n, say π′j = ∆j , x :

ρj ` M : αj for j ≤ m, and τ1 =
⊗m1

j=1 ρj ( αj and ∆1 =
⊗m1

j=1∆j , . . . ,

τn =
⊗mn

j=mn−1+1 ρj ( αj and ∆n =
⊗mn

j=mn−1+1∆j , with m1 + · · ·+mn = m.
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Notice |π| =
∑m

j=1 |π′j |. Then, for every i ≤ n, a (I -rule with premises

π′mi−1+1, . . . , π
′
mi

yields πi = ∆i ` λx.M : τi, with |πi| =
∑mi

j=mi−1+1 |π′i|,
therefore |π| =

∑n
i=1 |πi|. ut

Lemma 10 (Substitution lemma). If π1 = ∆,x : τ ` M : α and π2 = Γ `
V : τ , then there is π3 = ∆⊗ Γ `M [V/x] : α. Moreover |π3| = |π1|+ |π2|.

Proof. By structural induction on M . We only treat the most interesting case,
namely M = NP . In this case, the last rule of π1 is a (E-rule with k + 1
premises, say π0

1 = ∆0, x : τ0 ` N :
˙k

i=1

⊗ni

j=1(ρij ( αij), and for i =

1, . . . , k, πi
1 = ∆i, x : τi ` P :

˙ni

j=1 ρij , where ∆ =
⊗k

i=0∆i, τ =
⊗k

i=0 τi,

α =
˙k

i=1

˙ni

j=1 αij and |π1| =
∑k

i=0 |πi
1| + (

∑k
i=1 2ni) − 1. By Lemma 9, we

can split π2 into k + 1 derivations πi
2 = Γi ` V : τi, for i = 0, . . . , k, such

that Γ =
⊗k

i=0 Γi and |π2| =
∑k

i=0 |πi
2|. By the induction hypothesis, there are

π0
3 = ∆0⊗Γ0 ` N [V/x] :

˙k
i=1

⊗ni

j=1(ρij ( αij), with |π0
3 | = |π0

1 |+ |π0
2 |, and for

i = 1, . . . , k, πi
3 = ∆i ⊗ Γi ` P [V/x] :

˙ni

j=1 ρij , with |πi
3| = |πi

1| + |πi
2|. Hence,

by rule (E , we have

π3 = (∆0 ⊗ Γ0)⊗
k⊗

i=1

(∆i ⊗ Γi) ` N [V/x]P [V/x] :
ķ

i=1

ni̧

j=1

αij

Notice that (∆0⊗Γ0)⊗
⊗k

i=1(∆i⊗Γi) = ∆⊗Γ and N [V/x]P [V/x] = (NP )[V/x].

Moreover, |π3| =
∑k

i=0 |πi
3|+ (

∑k
i=1 2ni)− 1 =

∑k
i=0(|πi

1|+ |πi
2|) +(

∑k
i=1 2ni)−

1 = (
∑k

i=0 |πi
1|+ (

∑k
i=1 2ni)− 1) +

∑k
i=0 |πi

2| = |π1|+ |π2|. ut

We now prove the subject reduction property, which ensures that the type is
preserved during reduction, while the measure of the typing is strictly decreasing.

As a matter of terminology, we say that a term M reduces to a term N using
+-reductions, if M → N is derivable as a direct consequence of a +-reduction
and (possibly) some contextual rules. In the following proof, given a set S, we
denote by ]S its cardinality.

Theorem 11 (Subject reduction). Let π = ∆ `M : α.
If M → N without using +-reductions, then there is π′ = ∆ ` N : α.
If M → N1 and M → N2 using +-reductions, then there is π′ such as either
π′ = ∆ ` N1 : α or π′ = ∆ ` N2 : α.
Moreover, in both cases we have |π′| = |π| − 1.

Proof. We proceed by induction on the length of the derivation of M → N . We
only treat the most interesting cases.

– (λx.M ′)V → M ′[V/x]. Then, the last rule of π is a (E-rule with k + 1

premises, say π0 = ∆′ ` λx.M ′ :
˙k

i=1

⊗ni

j=1(ρij ( αij) and for every

i = 1, . . . , k, πi = Γi ` V :
˙ni

j=1 ρij , with moreover ∆ = ∆′ ⊗
⊗k

i=1 Γi,

α =
˙k

i=1

˙ni

j=1 αij , and |π| =
∑k

i=0 |πi| + (
∑k

i=1 2ni) − 1. However, since
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Lemma 6 entails that k = n1 = 1 we get |π| = |π0| + |π1| + 1. In addition,
the only possibility for π0 is to come from π′0 = ∆′, x : ρ ` M ′ : α, where
|π0| = |π′0|. By Lemma 10, π′ = ∆′ ⊗ Γ ` M ′[V/x] : α, where |π′| =
|π′0|+ |π1| = |π0|+ |π1| = |π| − 1. We conclude since ∆′ ⊗ Γ = ∆.

– Let V (M ‖ N) → VM ‖ V N . Then π = ∆ ⊗
⊗k

i=1 Γi ` V (M ‖ N) :˙k
i=1

˙ni

j=1 αij ends in a (E rule having as premises π0 = ∆ ` V :˙k
i=1

⊗ni

j=1(ρij ( αij) and, for i = 1, . . . , k, πi = Γj ` M ‖ N :
˙ni

j=1 ρij .

Thus, we have |π| =
∑k

j=0 |πi|+(
∑k

i=1 2ni)−1. However, by Lemma 6, k = 1,
so we omit the index i where it is not needed, and |π| = |π0|+ |π1|+ 2n− 1.
Then π1

1 = Γ1 ` M :
˙

j∈S ρj and π2
1 = Γ2 ` N :

˙
j∈S̄ ρj , where

Γ = Γ1⊗Γ2, ∅ 6= S ( {1, . . . , k} and S̄ = {1, . . . , k}\S with |π1| = |π1
1 |+|π2

1 |.
By Lemma 9, we can split π0 into two derivations, πS

0 =
⊗

j∈S ∆j ` V :⊗
j∈S(ρj ( αj) and πS̄

0 =
⊗

j∈S̄ ∆j ` V :
⊗

j∈S(ρj ( αj), with |πS
0 | +

|πS̄
0 | = |π0|. By rule (E , we have π1 =

⊗
j∈S ∆j ⊗Γ1 ` VM :

˙
j∈S αj and

π2 =
⊗

j∈S̄ ∆j⊗Γ2 ` V N :
˙

j∈S̄ αj , where |π1| = |πS
0 |+ |π1

1 |+2]S−1, and

|π2| = |πS̄
0 | + |π2

1 | + 2]S̄ − 1. By rule ‖I , π′ =
⊗n

j=1∆i ⊗ Γ1 ⊗ Γ2 ` VM ‖
V N :

˙n
j=1 αj , where |π′| = |π1| + |π2| = (|πS

0 | + |π1
1 | + 2]S − 1) + (|πS̄

0 | +
|π2

1 |+2]S̄−1) = |π0|+ |π1|+2]S+2]S̄−2 = |π0|+ |π1|+2n−2 = |π|−1. ut

4.2 Subject Expansion

The proof of the fact that our system enjoys subject expansion follows by
straightforward induction, once one has proved the commutation of abstraction
with abstraction, application, non-deterministic choice and parallel composition.

We refer to Appendix A.2 for a detailed proof.

Theorem 12 (Subject expansion). If M → N and π = ∆ ` N : α, then
there is π′ = ∆ `M : α, such that |π′| = |π|+ 1.

Proof. By induction on the length of the derivation of M → N , splitting into
cases depending on its last rule. We only consider the most interesting case,
i.e. (λx.M ′)V → M ′[V/x] where M ′ = PQ. One first needs to establish, by
induction on π, a claim about the commutation of abstraction with application.

Claim. If π = ∆ ` ((λx.P )V )((λx.Q)V ) : α, where the last rule of π is a (E

rule having k + 1 premises, then there exists π′ = ∆ ` (λx.PQ)V : α such that
|π′| = |π| − k.

By definition we have N = (PQ)[V/x] = P [V/x]Q[V/x]. So, π = ∆ ` N : α

ends in a (E-rule with k+1 premises π0 = ∆′ ` P [V/x] :
˙k

i=1

⊗ni

j=1 (τij ( αij)

and πi = Γi ` Q[V/x] :
˙ni

j=1 τij for i = 1, . . . , k, with ∆ = ∆′ ⊗
⊗k

i=1 Γi,

α =
˙k

i=1

˙ni

j=1 αij and |π| =
∑k

i=0 πi + (
∑k

i=1 2ni) − 1. Then, by the in-

duction hypothesis, we get π′0 = ∆′ ` (λx.P )V :
˙k

i=1

⊗ni

j=1(τij ( αij),

and π′i = Γi ` (λx.Q)V :
˙ni

j=1 τij , with |π′i| = |πi| + 1. Hence by rule (E
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we obtain π′′ = ∆′ ⊗
⊗k

i=1 Γi ` ((λx.P )V )((λx.Q)V ) :
˙k

i=1

˙ni

j=1 αij , with

|π′′| =
∑k

i=0 |π′i|+(
∑k

i=1 2ni)−1. By the above claim, we get π′ = ∆′⊗
⊗k

i=1 Γi `
(λx.PQ)V :

˙k
i=1

˙ni

j=1 αij such that |π′| = |π′′| − k = |π|+ 1. ut

4.3 Convergence

From our “quantitative” versions of subject reduction and subject expansion
one easily obtains that our type system captures exactly the weakly normalising
terms, and that the size |π| of a derivation tree π = ` M : α decreases along
the reduction of M . However, when α satisfies in addition a suitable minimality
condition (namely the fact that α is of shape 1` · · ·` 1), then we can be more
precise and say that there exists a reduction from M to a normal form, having
length exactly |π|.

In the following `k1, with k > 0, stands for 1 ` · · ·` 1 (k times).

Theorem 13. Let M be a closed term, and k > 0. There is a typing tree π for
` M : `k1 iff there are values V1, . . . , Vk and a reduction M →∗ V1 ‖ · · · ‖ Vk
of length |π|.

Proof. (⇒) Suppose π = ` M : `k1. We proceed by induction on |π|. If
M = V1 ‖ · · · ‖ Vk′ , then π must start with a tree of k′ − 1 rules ‖, and then k′

rules (I with conclusion, respectively, ` V1 : 1, . . . , ` Vk′ : 1. We then have
k = k′, and M trivially converges to V1 ‖ · · · ‖ Vk′ in |π| = 0 steps.

Otherwise, since M is closed, there exists N such that M → N . By The-
orem 11, such an N can be chosen in such a way π′ = ` N : `k1, with
|π′| = |π| − 1. From the induction hypothesis we know that N converges in
|π′| steps to V1 ‖ · · · ‖ Vk. Therefore, M converges in |π′| + 1 = |π| steps to
V1 ‖ · · · ‖ Vk.

(⇐) Suppose that M →∗ V1 ‖ · · · ‖ Vk. By Remark 5, there is π = ` V1 ‖
· · · ‖ Vk : `k1 and |π| = 0. Therefore, by the subject expansion (Theorem 12)
there is π′ = ` M : `k1 and |π′| is equal to the length of the reduction M →∗
V1 ‖ · · · ‖ Vk. ut

Corollary 14. Let M be closed, then M is typable if and only if M converges.

5 Adequacy and (Lack of) Full Abstraction

The choice of presenting a model through a type discipline or a reflexive object
is more a matter of taste rather than a technical decision. (Compare for instance
the type system of [18] and the interpretation of [8]). The model V associated
with our type system lives in the category Rel of sets and relations (refer to [7]
for more details) and is defined by V =

⋃
n∈N Vn, with

V0 = ∅, Vn+1 =Mf(Vn)×Mf(Mf(Vn)),

where Mf(X) denotes the set of finite multisets over a set X. In fact, Mf(X)
interprets in Rel the exponentials !X and ?X, whilst the cartesian product is
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the linear implication (, so that V is the minimal solution of the equation V '
!V ( ?!V. Recalling Equation 1 in the introduction, this means that the object
V represents “value types”, while computational types C will be represented by
elements of C = !V = Mf(V) and parallel-types T as elements of T = ?C =
Mf(C). This intuition can be formalized by defining two injections (·)◦ : T→ T
and (·)• : C→ C by mutual induction, as follows: τ◦ = [τ•], (α` β)◦ = α◦ ] β◦,
1• = [], (τ ⊗ ρ)• = τ• ] ρ• and (τ ( α)• = [(τ•, α◦)].

It is beyond the scope of the present paper to give the explicit inductive
definition of the interpretation of terms. For our purpose it is enough to know
that such an interpretation can be characterised (up to isomorphism) as follows.

Definition 15. The interpretation of a closed term M is defined by [M ] = {α |
`M : α} ⊆ T.

The interpretations of terms are naturally ordered by set-theoretical inclu-
sion; an interesting problem is to determine whether there is a relationship be-
tween this ordering and the following observational preorder on terms.

Definition 16 (Observational preorder). Let M,N ∈ Λ+‖ be closed. We set

M v N iff for all closed terms ~P , M ~P converges implies that N ~P converges.

A model is called adequate if [M ] ⊆ [N ] entails M v N ; it is called fully
abstract if in addition the converse holds.

The adequacy of the model V follows easily from Theorem 13 and the mono-
tonicity of the interpretation.

Corollary 17 (Adequacy). For all M,N closed, if [M ] ⊆ [N ] then M v N .

On the contrary, V is not fully abstract. This is due to the fact that the call-
by-value λ-calculus admits the creation of an ‘ogre’ that is able to ‘eat’ any finite
sequence of arguments and converge, constituting then a top of the call-by-value
observational preorder. Following [13], we define the ogre as Y? = ∆?∆? where
∆? = λxy.xx. The ogre Y? converges since Y? → λy.Y? and remains convergent
when applied to every sequence of values, by discarding them one at time.

Lemma 18. For all closed terms M we have M v Y?.

Proof. Given a term M and a sequence ~P = P1 · · ·Pk of closed terms it is easy
to check that M ~P can converge only when ~P converges. In that case we have
Y? ~P →∗ (λy.Y?)(V1 ‖ · · · ‖ Vn)P2 · · ·Pk →∗ Y?P2 · · ·Pk ‖ · · · ‖ Y?P2 · · ·Pk →∗
λy.Y? ‖ · · · ‖ λy.Y?. Therefore Y? is maximal with respect to v. ut

On the other hand, we have the following characterisation of [Y?].

Lemma 19. α ∈ [Y?] iff α =
⊗n

i=0(1 ( αi) with n ≥ 0 and αi ∈ [Y?] for all
i ≤ n. In particular, we have that [I] 6⊆ [Y?].
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Proof. The crucial point is to remark that Y? → λy.Y?, so by Theorem 11 and 12,
we get [Y?] = [λy.Y?]. Therefore we have the following chain of equivalences:

α ∈ [Y?] iff α ∈ [λy.Y?]

iff α = ⊗n
i=0(τi ( αi) ∈ [λy.Y?] by Lemma 6, n ≥ 0

iff α = ⊗n
i=0(τi ( αi) and ∀i, τi ( αi ∈ [λy.Y?] by Lemma 9

iff α = ⊗n
i=0(τi ( αi) and ∀i, τi = 1 and αi ∈ [Y?] since y /∈ FV(Y?).

We have that [I] 6⊆ [Y?] as, for instance, (1 ( 1) ( (1 ( 1) ∈ [I] \ [Y?]. ut

Summing up, get that I v Y?, while [I] 6⊆ [Y?].

6 Conclusion and future work

We introduced a call-by-value non-deterministic λ-calculus with a type system
ensuring convergence. We proved that such a type system gives a bound on the
length of the lazy call-by-value reduction sequences, which is the exact length
when the typing is minimal. Finally, we show that the relational model V cap-
turing our type system is adequate, but not fully abstract.

As our counterexample to full abstraction contains no non-deterministic op-
erators, it also holds for the standard call-by-value λ-calculus and the relational
model described in [7]. This is a notable difference with the call-by-name case,
where the relational model is proven to be fully abstract for the pure call-by-name
λ-calculus [19], while other counterexamples (see [8, 20]) break full abstraction
in presence of may or must non-deterministic operators. An open problem is to
find a relational model fully abstract for the call-by-value λ-calculus.

Various fully abstract models of may and must non-determinism are known in
the setting of Scott domain based semantics and idempotent intersection types.
In particular, for the call-by-value case we mention [13, 14]. Comparing these
models and type systems with the ones issued from the relational semantics is a
research direction started in [7] with some notable results. It would be interesting
to reach a better understanding of the role played by intersection idempotency
in the question of full abstraction.

Another axis of research is to generalize our approach to study the conver-
gence in (call-by-name and call-by-value) λ-calculi with richer algebraic struc-
tures than simply may/must non-deterministic operators, such as [21, 17]. In
these calculi the choice operator is enriched with a weight, i.e. sums of terms are
of the form α.M + β.N , where α, β are scalars from a given semiring, ponder-
ing the choice. We would like to design type systems characterizing convergence
properties in these systems. First steps have been done in [22, 23].

Acknowledgements. We wish to thank Thomas Ehrhard and Simona Ronchi
Della Rocca for interesting discussions.
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A Technical Appendix

This appendix is devoted to provide the full details of the proofs sketched in the
main text of the paper.

A.1 Omitted proofs in Section 4.1

Lemma 9. We have that π = ∆ ` V :
⊗n

i=1 τi if and only if ∆ =
⊗n

i=1∆i and
πi = ∆i ` V : τi for all i = 1, . . . , n. Moreover, |π| =

∑n
i=1 |πi|.

Proof.

(⇒) Let π = ∆ ` V :
⊗n

i=1 τi. We split into cases:
– V = x. Then ∆ = x :

⊗n
i=1 τi =

⊗n
i=1∆i with ∆i = x : τi. By rule ax

we have πi = x : τi ` x : τi. Moreover, for all i we have |πi| = |π| = 0 =∑n
i=1 |πi|.

– V = λx.M . Given in the main text of the paper.
(⇐)

n = 0. Then ∆ = ∅ and |π| = 0. We split into subcases:

– V = x, then only possibility is ` x : 1 =
⊗0

i=1 τi.

– V = λx.M , then the only possibility is ` λx.M : 1 =
⊗0

i=1(τi (
αi).

n > 0. Let πi = ∆i ` V : τi for i = 1, . . . , n. We split into subcases:
– V = x. Then ∆i = x : τi. By rule ax, π = x :

⊗n
i=1 τj ` x :

⊗n
i=1 τi.

Notice that |π| = 0 =
∑n

i=1 |πi|.
– V = λx.M . Then we have ∆i =

⊗ni

j=1 Γij , τi =
⊗ni

j=1(ρij (
αij) and for j = 1, . . . , ni, πij = Γij , x : ρij ` M : αij , with
|πi| =

∑ni

j=1 |πij |. Hence, by rule (I , π =
⊗n

i=1

⊗ni

j=1 Γij ` λx.M :⊗n
i=1

⊗ni

j=1(ρij ( αij). Notice that
⊗n

i=1

⊗ni

j=1 Γij =
⊗n

i=1∆i and⊗n
i=1

⊗ni

j=1(ρij ( αij) =
⊗n

i=1 τi. Therefore |π| =
∑n

i=1

∑ni

j=1 |πij | =∑n
i=1 |πi|. ut

Lemma 10 (Substitution lemma). If π1 = ∆,x : τ `M : α and π2 = Γ ` V : τ ,
then π3 = ∆⊗ Γ `M [V/x] : α. Moreover |π3| = |π1|+ |π2|.

Proof. We proceed by structural induction on M .

– M = x, then ∆ = ∅, α = τ and |π1| = 0. Notice that ∆ ⊗ Γ = Γ and
M [V/x] = V . In addition, |π3| = |π2| = |π1|+ |π2|.

– M = z 6= x, then ∆ = z : α, τ = 1 and |π1| = 0. Since τ = 1, by Lemma 9,
we have Γ = ∅ and |π2| = 0, so ∆⊗Γ = z : α. As M [V/x] = z, we get by rule
ax that z : α ` z : α. Concerning the measure we have |π3| = 0 = |π1|+ |π2|.

– M = λy.N , where y 6= x. Then, the last rule of π1 is a (I -rule with n ≥ 0
premises πi = ∆i, x : τi, y : ρi ` N : αi, for i ≤ n and α =

⊗n
i=1(ρi ( αi),

∆ =
⊗n

i=1∆i and τ =
⊗n

i=1 τi.
In the case n = 0, we have π1 = ` λz.N : 1, π2 = ` V : 1 and both |π1| and
|π2| are 0. Then, π3 is simply an instance of a (I -rule with no premise.
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Otherwise, by Lemma 9 we can split π2 into n derivations πi
2 = Γi ` V : τi for

i ≤ n and Γ =
⊗n

i=1 Γi, |π2| =
∑n

i=1 |πi
2|. By the induction hypothesis, there

exists a derivation πi
3 = Γi⊗∆i, y : ρi ` N [V/x] : αi, with |πi

3| = |πi
1|+ |πi

2|.
Hence by a (I -rule, we have

π3 =

n⊗
i=1

(Γi ⊗∆i) ` λy.N [V/x] :

n⊗
i=1

(ρi ( αi).

Notice that
⊗n

i=1(Γi ⊗ ∆i) = Γ ⊗ ∆ and (λy.N)[V/x] = λy.N [V/x]. In
addition, |π3| =

∑n
i=1 |πi

3| =
∑n

i=1(|πi
1|+ |πi

2|) = |π1|+ |π2|.
– M = NP . Given in the main text of the paper.
– M = M1 +M2. Then either π′1 = ∆,x : τ `M1 : α or π′1 = ∆,x : τ `M2 : α

with |π1| = |π′1|+ 1, then by the induction hypothesis, either π′3 = ∆⊗ Γ `
M1[V/x] : α or π′3 = ∆⊗Γ `M2[V/x] : α with |π′3| = |π′1|+ |π2|. In any case,
using either +` or +r, we can derive π3 = ∆⊗ Γ `M1[V/x] +M2[V/x] : α.
Notice that M1[V/x] + M2[V/x] = (M1 + M2)[V/x] and |π3| = |π′3| + 1 =
|π′1|+ |π2|+ 1 = |π1|+ |π2|.

– M = M1 ‖ M2. Then ∆ = ∆1 ⊗ ∆2, τ = τ1 ⊗ τ2 and α = α1 ` α2,
with π11 = ∆1, x : τ1 ` M1 : α1 and π12 = ∆2, x : τ2 ` M2 : α2, where
|π1| = |π11|+ |π12|. Also π2 = Γ ` V : τ1 ⊗ τ2, so by Lemma 9, Γ = Γ1 ⊗ Γ2

with π21 = Γ1 ` V : τ1 and π22 = Γ2 ` V : τ2, where |π2| = |π21|+ |π22|. By
the induction hypothesis π31 = ∆1⊗Γ1 `M1[V/x] : α1 and π32 = ∆2⊗Γ2 `
M2[V/x] : α2, where |π31| = |π11|+ |π21| and |π32| = |π12|+ |π22|. Hence, by
rule ‖I , π3 = ∆1⊗Γ1⊗∆2⊗Γ2 `M1[V/x] ‖M2[V/x] : α1 `α2. Notice that
∆1 ⊗ Γ1 ⊗∆2 ⊗ Γ2 = ∆⊗ Γ and M1[V/x] ‖M2[V/x] = (M1 ‖M2)[V/x]. In
addition, |π3| = |π31|+ |π32| = |π11|+ |π21|+ |π12|+ |π22| = |π1|+ |π2|. ut

Theorem 11 (Subject reduction). Let π = ∆ `M : α.
If M → N using any but +-reductions, then π′ = ∆ ` N : α.
If M → N1 and M → N2 using +-reductions, then either π′ = ∆ ` N1 : α or
π′ = ∆ ` N2 : α.
Moreover, |π′| = |π| − 1

Proof. We proceed by induction on the reduction relation. βv, + and ‖ reductions
are given in the main text of the paper. The remaining cases are the following.

– Let M1 + M2 → M1 and M1 + M2 → M2. Then, the last rule of π =
∆ ` M1 + M2 : α, is either π′ = ∆ ` M1 : α or π′ = ∆ ` M2 : α, with
|π′| = |π| − 1.

– Let (M ‖ N)P → MP ‖ NP . The last rule of π is a (E-rule with k + 1

premises, say π0 = ∆1 ⊗ ∆2 ` M ‖ N :
˙k

i=1

⊗ni

j=1(ρij ( αij) and for

i = 1, . . . , k, πi = Γi ` P :
˙ni

j=1 ρij , such that π = ∆1 ⊗ ∆2 ⊗
⊗k

i=1 Γi `
(M ‖ N)P :

˙k
i=1

˙ni

j=1 αij and |π| =
∑k

i=0 |πi|+(
∑k

i=1 2ni)−1. Moreover,

the last rule of π0 is a ‖I -rule with two premises, say π1
0 = ∆1 ` M :˙

i∈S
⊗ni

j=1(ρij ( αij) and π2
0 = ∆2 ` N :

˙
i∈S̄

⊗ni

j=1(ρij ( αij) where

∅ 6= S ( {1, . . . , k} and S̄ = {1, . . . , k} \ S, with |π0| = |π1
0 | + |π2

0 |. By
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rule (E , we have π1 = ∆1 ⊗
⊗

i∈S Γi ` MP :
˙

i∈S
˙ni

j=1 αij and π2 =

∆2 ⊗
⊗

i∈S̄ Γi ` NP :
˙

i∈S̄
˙ni

j=1 αij , where |π1| = |π1
0 | +

∑
i∈S |πi| +

(
∑

i∈S 2ni) − 1 and |π2| = |π2
0 | +

∑
i∈S̄ |πi| + (

∑
i∈S̄ 2ni) − 1. Then by rule

‖I , π′ = ∆1⊗∆2⊗
⊗k

i=1 Γi `MP ‖ NP :
˙k

i=1

˙ni

j=1 αij , with |π′| = |π1|+
|π2| = |π1

0 |+
∑

i∈S |πi|+(
∑

i∈S 2ni)−1+ |π2
0 |+

∑
i∈S̄ |πi|+(

∑
i∈S̄ 2ni)−1 =∑k

i=0 |πi|+ (
∑k

i=1 2ni)− 2 = |π| − 1.

– Let M ‖ N → M ′ ‖ N as a consequence of M → M ′. Then we have π =
∆1 ⊗∆2 `M ‖ N : α1 ` α2 with π1 = ∆1 `M : α1 and π2 = ∆2 ` N : α2,
and where |π| = |π1|+ |π2|. Cases:

• Let M →M using any but +-reductions. Then by the induction hypoth-
esis, π′1 = ∆1 `M ′ : α1, with |π′1| = |π1|−1. By rule ‖I , π′ = ∆1⊗∆2 `
M ′ ‖ N : α1 ` α2, with |π′| = |π′1|+ |π2| = |π1| − 1 + |π2| = |π| − 1.

• Let M → M1 and M → M2 using +-reductions, and so M ‖ N →
M1 ‖ N and M ‖ N → M2 ‖ N using +-reductions. By the induction
hypothesis either π′1 = ∆1 ` M1 : α1 or π′1 = ∆1 ` M2 : α1, with
|π′1| = |π1| − 1. Then by rule ‖I either π′ = ∆1⊗∆2 `M1 ‖ N : α1 `α2

or π′ = ∆1 ⊗ ∆2 ` M2 ‖ N : α1 ` α2, with |π′| = |π′1| + |π2| =
|π1| − 1 + |π2| = |π| − 1.

– Let M ‖ N →M ‖ N ′ as a consequence of N → N ′. Analogous to previous
case.

– Let PQ → P ′Q, where P is not a parallel composition, as a consequence
of P → P ′ using any but +-reductions. Then π = ∆ ⊗

⊗k
i=1 Γi ` PQ :˙k

i=1

˙ni

j=1 αij with π0 = ∆ ` P :
˙k

i=1

⊗ni

j=1(ρij ( αij) and for i =

1, . . . , k, πi = Γi ` Q :
˙ni

j=1 ρij , where |π| =
∑k

i=0 |πi| + (2
∑k

i=1 ni) − 1.

By the induction hypothesis π′0 = ∆ ` P ′ :
˙k

i=1

⊗ni

j=1(ρij ( αij) with

|π′0| = |π0|−1. Then by rule (E , π′ = ∆⊗
⊗k

i=1 Γi ` P ′Q :
˙k

i=1

˙ni

j=1 αij

with |π′| = |π′0|+
∑k

i=1 |πi|+(2
∑k

i=1 ni)−1
∑k

i=0 |πi|−1+(2
∑k

i=1 ni)−1 =
|π| − 1.

– Let PQ → P1Q and PQ → P2Q as a consequence of P → P1 and P →
P2 using +-reductions. Then π = ∆ ⊗

⊗k
j=1 Γj ` PQ :

˙k
i=1

˙ni

j=1 αij ,

with π0 = ∆ ` P :
˙k

i=1

⊗ni

j=1(ρij ( αij) and for i = 1, . . . , k, πi =

Γi ` Q :
˙ni

j=1 ρij , so |π| =
∑k

i=0 |πi| + (2
∑k

i=1 ni) − 1. By the induction

hypothesis either π′0 = ∆ ` P1 :
˙k

i=1

⊗ni

j=1(ρij ( αij) or π′0 = ∆ ` P2 :˙k
i=1

⊗ni

j=1(ρij ( αij) with |π′0| = |π0| − 1. Hence, by rule (E , we have

either π′ = ∆ ⊗
⊗k

i=1 Γj ` P1Q :
˙k

i=1

˙ni

j=1 αij or π′ = ∆ ⊗
⊗k

i=1 Γi `
P2Q :

˙k
i=1

˙ni

j=1 αij where |π′| = |π′0| +
∑k

i=1 |πi| + (2
∑k

i=1 ni) − 1 =∑k
i=0 |πi| − 1 + (2

∑k
i=1 ni)− 1 = |π| − 1.

– Let V P → V P ′ as a consequence of P → P ′ using any but +-reductions.
Then π = ∆ ⊗

⊗k
i=1 Γj ` V P :

˙k
i=1

˙ni

j=1 αij with π0 = ∆ ` V :˙k
i=1

⊗ni

j=1(ρij ( αij) and for i = 1, . . . , k, πi = Γi ` P :
˙ni

j=1 ρij ,

where |π| =
∑k

i=0 |πi| + (2
∑k

i=1 ni) − 1. However, by Lemma 6, k = 1, so
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we omit the index i when not needed, and |π| = |π0|+ |π1|+ 2n− 1. By the
induction hypothesis, π′1 = Γ ` P ′ :

˙n
j=1 ρj , with |π′1| = |π1| − 1. Then by

rule (E , π′ = ∆ ⊗ Γ ` V P ′ :
˙n

j=1 αj where |π′| = |π0| + |π′1| + 2n − 1 =
|π0|+ |π1| − 1 + 2n− 1 = |π| − 1.

– Let V P → V P1 and V P → V P2 as a consequence of P → P1 and P → P2

using +-reductions. Then π = ∆ ⊗
⊗k

i=1 Γi ` V P :
˙k

i=1

˙ni

j=1 αij , with

π0 = ∆ ` V :
˙k

i=1

⊗ni

j=1(ρij ( αij) and for i = 1, . . . , k πi = Γi `
P :

˙ni

j=1 ρij . So, |π| =
∑k

i=0 |πi|+ (2
∑k

i=1 ni)− 1. However, by Lemma 6,
k = 1, so we omit the index i when not needed, and |π| = |π0|+ |π1|+2n−1.
By the induction hypothesis, either π′1 = Γ ` P1 :

˙n
j=1 ρj or π′1 = Γ `

P2 :
˙n

j=1 ρj , with |π′1| = |π1| − 1. Hence by rule (E , we have either

π′ = ∆ ⊗ Γ ` V P1 :
˙n

j=1 αj or π′ = ∆ ⊗ Γ ` V P2 :
˙n

j=1 αj , where
|π′| = |π0|+ |π′1|+ 2n− 1 = |π0|+ |π1| − 1 + 2n− 1 = |π| − 1. ut

A.2 The Proof of Subject Expansion

As mentioned in Section 4.2, to prove that the subject expansion holds, we
first need some technical lemmas stating the commutation of abstraction with
abstraction, application, non-deterministic choice and parallel composition.

In the following proofs we silently use the fact that the type of a value must
be a computational-type (Lemma 6) to simplify our derivation trees.

Lemma 20 (Abstraction commutation). If π = ∆ ` λy.(λx.M)V :
⊗n

i=1(ρi (
αi) and y /∈ FV(V ), then there exists π′ = ∆ ` (λx.λy.M)V :

⊗n
i=1(ρi ( αi)

such that |π′| = |π| − n+ 1.

Proof. If ∆ ` λy.(λx.M)V :
⊗n

i=1(ρi ( αi), then we have ∆ =
⊗n

i=1(∆i ⊗ Γi),
with the following π derivation (since y /∈ FV(V )):

πi = ∆i, y : τi, x : ρi `M : αi
(I

∆i, y : τi ` λx.M : ρi ( αi π′i = Γi ` V : ρi
(E

∆i ⊗ Γi, y : τi ` (λx.M)V : αi i = 1, . . . , n
(In⊗

i=1

(∆i ⊗ Γi) ` λy.(λx.M)V :

n⊗
i=1

(τi ( αi)

So |π| =
∑n

i=1(|πi|+ |π′i|+ 1) =
∑n

i=1 |πi|+
∑n

i=1 |π′i|+ n.
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Using the same premises πi and π′i, we can derive π′:

∆i, y : τi, x : ρi `M : αi i = 1, . . . , n
(In⊗

i=1

∆i, x :

n⊗
i=1

ρi ` λy.M :

n⊗
i=1

(τi ( αi)

(In⊗
i=1

∆i ` λx.λy.M : (

n⊗
i=1

ρi) (
n⊗

i=1

(τi ( αi)

Γi ` V : ρi i = 1, . . . , n
===================== Lemma 9

n⊗
i=1

Γi ` V :

n⊗
i=1

ρi

(En⊗
i=1

∆i ⊗
n⊗

i=1

Γi ` (λx.λy.M)V :

n⊗
i=1

(τi ( αi)

Where |π′| =
∑n

i=1 |πi|+
∑n

i=1 |π′i|+ 1 = |π| − n+ 1.
We conclude since, by commutativity of the tensor,

⊗n
i=1∆i ⊗

⊗n
i=1 Γi =⊗n

i=1(∆i ⊗ Γi). ut

Lemma 21 (Application commutation). If π = ∆ ` ((λx.M)V )((λx.N)V ) :
α, where the last rule of π is a (E rule having k+ 1 premises, then there exists
π′ = ∆ ` (λx.MN)V : α such that |π′| = |π| − k.

Proof. If ∆ ` ((λx.M)V )((λx.N)V ) : α then we have that ∆ = ∆1 ⊗ ∆2 ⊗⊗k
i=1(Γi ⊗ Γ ′i ) and α =

˙k
i=1

˙ni

j=1 αij , with the following derivation π.

π1 π2i i = 1, . . . , k
(E

∆1 ⊗∆2 ⊗
k⊗

i=1

(Γi ⊗ Γ ′i ) ` ((λx.M)V )((λx.N)V ) :
ķ

i=1

ni̧

j=1

αij

where π1 is given by:

π11 = ∆1, x : ρ1 `M :
ķ

i=1

ni⊗
j=1

(τij ( αij)

(I

∆1 ` λx.M : ρ1 (
ķ

i=1

ni⊗
j=1

(τij ( αij) π12 = ∆2 ` V : ρ1

(E

∆1 ⊗∆2 ` (λx.M)V :
ķ

i=1

ni⊗
j=1

(τij ( αij)

and π2i, for i = 1, . . . , k, is given by:

π1
2i = Γi, x : ρ2i ` N :

ni̧

j=1

τij

(I

Γi ` λx.N : ρ2i (
ni̧

j=1

τij π2
2i = Γ ′i ` V : ρ2j

(E

Γi ⊗ Γ ′i ` (λx.N)V :
ni̧

j=1

τij
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So, |π| = |π1| +
∑k

i=1 |π2i| + (
∑k

i=1 2ni) − 1 = |π11| + |π12| + 1 +
∑k

i=1(|π1
2i| +

|π2
2i|+ 1) + (

∑k
i=1 2ni)− 1.

Using the same premises, we can derive, first π′1:

π11 π1
2i i = 1, . . . , k

(E

∆1 ⊗
k⊗

i=1

Γi, x : ρ1 ⊗
k⊗

i=1

ρ2i `MN :
ķ

i=1

ni̧

j=1

αij

(I

∆1 ⊗
k⊗

i=1

Γi ` λx.MN : (ρ1 ⊗
k⊗

i=1

ρ2i) (
ķ

i=1

ni̧

j=1

αij

Second, by Lemma 9, we have π′2 = ∆2 ⊗
⊗k

i=1 Γ
′
i ` V : ρ1 ⊗

⊗k
i=1 ρ2i. So, we

get:

π′ =

π′1 π′2
(E

∆1 ⊗
k⊗

i=1

Γi ⊗∆2 ⊗
k⊗

i=1

Γ ′i ` (λx.MN)V :
ķ

i=1

ni̧

j=1

αij

Hence |π′| = |π′1|+ |π′2|+ 1 = |π11|+
∑k

i=1 |π1
2i|+ (

∑k
i=1 2ni)− 1 +

∑k
i=1 |π2

2i|+
|π12| = |π| − k.

We conclude since ∆1⊗
⊗k

i=1 Γi⊗∆2⊗
⊗k

i=1 Γ
′
i = ∆1⊗∆2⊗

⊗k
i=1(Γi⊗Γ ′i ). ut

Lemma 22 (Sum commutation). If π = ∆ ` (λx.M1)V + (λx.M2)V : α,
then there exists π′ = ∆ ` (λx.(M1 +M2))V : α such that |π′| = |π|.

Proof. If ∆ ` (λx.M1)V +(λx.M2)V : α then we have the following π derivation
(for ∆ = ∆′ ⊗ Γ )

π1 = ∆′, x : τ `Mi : α
(I

∆′ ` λx.Mi : τ ( α π2 = Γ ` V : τ
(E

∆′ ⊗ Γ ` (λx.Mi)V : α i = 1 or 2
+` or +r

∆′ ⊗ Γ ` (λx.M1)V + (λx.M2)V : α

Then |π| = |π1|+ |π2|+ 2.
So, using the same premises, we can derive π′ as follows

π1
+` or +r

∆′, x : τ `M1 +M2 : α
(I

∆′ ` λx.(M1 +M2) : τ ( α π2
(E

∆′1 ⊗ Γ ` (λx.(M1 +M2))V : α

with |π′| = |π|. ut

Lemma 23 (Parallel commutation). If π = ∆ ` (λx.M1)V ‖ (λx.M2)V : α,
then there exists π′ = ∆ ` (λx.(M1 ‖M2))V : α such that |π′| = |π| − 1.



22 Alejandro Dı́az-Caro, Giulio Manzonetto, and Michele Pagani

Proof. If ∆ ` (λx.M1)V ‖ (λx.M2)V : α then we have ∆ = ∆1 ⊗ Γ1 ⊗∆2 ⊗ Γ2

and α = α1 ` α2, with the following π derivation.

πi1 = ∆i, x : τi `Mi : αi
(I

∆h ` λx.Mi : τi ( αi πi2 = Γi ` V : τi
(E

∆i ⊗ Γi ` (λx.Mi)V : αi i = 1, 2
‖I

∆1 ⊗ Γ1 ⊗∆2 ⊗ Γ2 ` (λx.M1)V ‖ (λx.M2)V : α1 ` α2

|π| = |π11|+ |π12|+ 1 + |π21|+ |π22|+ 1

So, using the same premises, we can derive π′ as follows

π11 π21
‖I

∆1 ⊗∆2, x : τ1 ⊗ τ2 `M1 ‖M2 : α1 ` α2
(I

∆1 ⊗∆2 ` λx.(M1 ‖M2) : τ1 ⊗ τ2 ( α1 ` α2

π12 π22
================ Lemma 9
Γ1 ⊗ Γ2 ` V : τ1 ⊗ τ2

(E
∆1 ⊗∆2 ⊗ Γ1 ⊗ Γ2 ` (λx.(M1 ‖M2))V : α1 ` α2

Hence |π′| = |π11|+ |π21|+ |π12|+ |π22|+ 1 = |π| − 1.

We conclude as ∆1 ⊗ Γ1 ⊗∆2 ⊗ Γ2 = ∆1 ⊗∆2 ⊗ Γ1 ⊗ Γ2. ut

Theorem 12 (Subject expansion). If M → N and π = ∆ ` N : α, then there
is π′ = ∆ `M : α, such that |π′| = |π|+ 1.

Proof. We proceed by induction on the length of the derivation of M → N . We
split into cases, depending on its last rule.

– (λx.M ′)V →M ′[V/x]. We proceed by structural induction on M ′.

• M ′ = x. Then x[V/x] = V and π = ∆ ` V : α where, by Lemma 6, α
is a computational-type. Since ` λx.x : α ( α can be inferred from a
derivation of measure 0, we can define π′ = ∆ ` (λx.x)V : α as a rule
(E with the derivation of ` λx.x : α ( α and π as premises. Notice
that |π′| = |π|+ 1.

• M ′ = y for some y 6= x. Then y[V/x] = y and ∆ = y : α. Notice that in
this case π is an ax rule, so its measure is 0. Now, y : α ` λx.y : 1 ( α
and, since ` V : 1 by Remark 5, we derive π′ = y : α ` (λx.y)V : α
using the rule (E . Remark |π′| = 1.

• M ′ = λy.P for some y 6= x. Then N = λy.P [V/x] is also an abstraction
and so π = ∆ ` N : α ends in a (I -rule with n ≥ 0 premises πi =
∆i, y : τi ` P [V/x] : αi, for i = 1, . . . , n and α =

⊗n
i=1(τi ( αi),

∆ =
⊗n

i=1∆i and |π| =
∑

i |πi|. By the induction hypothesis (in case
n = 0 we do not need this passage), we get π′i = ∆i, y : τi ` (λx.P )V : αi,
with |π′i| = |πi|+ 1, for each i. By rule (I , we derive π′′ =

⊗n
i=1∆i `

λy.((λx.P )V ) :
⊗n

i=1(τi ( αi), such that |π′′| = |π| + n Finally, by
Lemma 20, we obtain π′ =

⊗n
i=1∆i ` (λx.λy.P )V :

⊗n
i=1(τi ( αi)

with |π′| = |π′′| − n+ 1 = |π|+ 1.
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• M ′ = PQ. By definition we have N = (PQ)[V/x] = P [V/x]Q[V/x]. So,
π = ∆ ` N : α ends in a (E-rule with k + 1 premises π0 = ∆′ `
P [V/x] :

˙k
i=1

⊗ni

j=1(τij ( αij) and πi = Γi ` Q[V/x] :
˙ni

j=1 τij

for i = 1, . . . , k, with ∆ = ∆′ ⊗
⊗k

i=1 Γi, α =
˙k

i=1

˙ni

j=1 αij and

|π| =
∑k

i=0 πi + (
∑k

i=1 2ni) − 1. Then, by the induction hypothesis,

we get π′0 = ∆′ ` (λx.P )V :
˙k

i=1

⊗ni

j=1(τij ( αij), and π′i = Γi `
(λx.Q)V :

˙ni

j=1 τij , with |π′i| = |πi| + 1. Hence by rule (E we obtain

π′′ = ∆′⊗
⊗k

i=1 Γi ` ((λx.P )V )((λx.Q)V ) :
˙k

i=1

˙ni

j=1 αij , with |π′′| =∑k
i=0 |π′i|+ (

∑k
i=1 2ni)− 1. By Lemma 21, we get π′ = ∆′ ⊗

⊗k
i=1 Γi `

(λx.PQ)V :
˙k

i=1

˙ni

j=1 αij such that |π′| = |π′′| − k = |π|+ 1.
• M ′ = P +Q. Now, by definition we have N = (P +Q)[V/x] = P [V/x] +
Q[V/x]. Then either π1 = ∆ ` P [V/x] : α or π1 = ∆ ` Q[V/x] : α, with
|π1| = |π| − 1. Hence by the induction hypothesis, there exists either
π′1 = ∆ ` (λx.P )V : α or π′1 = ∆ ` (λx.Q)V : α with |π′1| = |π1| + 1.
In both cases, either by rule +` or +r, we get π2 = ∆ ` (λx.P )V +
(λx.Q)V : α, which entails, by Lemma 22, π′ = ∆ ` (λx.(P +Q))V : α
with |π′| = |π|+ 1.

• M ′ = P ‖ Q. By definition N = (P ‖ Q)[V/x] = P [V/x] ‖ Q[V/x], so
π = ∆ ` N : α ends in a ‖I rule with premises π1 = ∆1 ` P [V/x] : α1

and π2 = ∆2 ` Q[V/x] : α2, with ∆ = ∆1 ⊗∆2, α = α1 ` α2 and |π| =
|π1|+ |π2|. By the induction hypothesis, we get π′1 = ∆1 ` (λx.P )V : α1

and π′2 = ∆2 ` (λx.Q)V : α2. Therefore, by applying the rule ‖I to π′1
and π′2, we derive π3 = ∆1 ⊗∆2 ` (λx.P )V ‖ (λx.Q)V : α1 ` α2 such
that |π3| = |π′1| + |π′2| = |π1| + 1 + |π2| + 1 = |π| + 2. From Lemma 23,
we get π′ = ∆1 ⊗∆2 ` (λx.(P ‖ Q))V : α1 ` α2 with |π′| = |π|+ 1.

– P+Q→ P , with ∆ ` P : α. Then, by rule +` we get ∆ ` P+Q : α. Checking
the measure is trivial. Symmetrically we deduce the case P +Q→ Q

– (Q1 ‖ Q2)P → Q1P ‖ Q2P . Then, π = ∆ ` N : α ends in a rule ‖I
with two premises π1 = ∆1 ` Q1P : α1 and π2 = ∆2 ` Q2P : α2, such
that ∆ = ∆1 ⊗ ∆2, α = α1 ` α2 and |π| = |π1| + |π2|. Moreover, the last
rule of πh, for h = 1, 2, is a (E rule with kh + 1 premises, say πh0 =
Γh0 ` Qh :

˙kh

i=1

⊗nh1

j=1(τhij ( αhij), for every i = 1, . . . , kh, πhi = Γhi `
P :

˙nhi

j=1 τhij , where ∆h =
⊗kh

i=0 Γhi, αh =
˙kh

i=1

˙nhi

j=1 αhij . Notice that

|πh| =
∑kh

i=0 |πhi|+ (
∑kh

i=1 2nhi)− 1.
By applying the rule ‖I to π10 and π20, we get a derivation π30 = Γ10 ⊗
Γ20 ` Q1 ‖ Q2 : (

˙k1

i=1

⊗n1i

j=1(τ1ij ( α1ij)) ` (
˙k2

i=1

⊗n2i

j=1(τ2ij ( α2ij)).

Therefore, by rule (E , we have the derivation π′ = Γ10⊗Γ20⊗ (
⊗k1

i=1 Γ1i⊗⊗k2

i=1 Γ2i) ` (Q1 ‖ Q2)P : (
˙k1

i=1

˙n1i

j=1 α1ij) ` (
˙k2

i=1

˙n2i

j=1 α2ij). Notice

that |π′| =
∑k1

i=0 |π1i|+
∑k2

i=0 |π2i|+ (
∑k1

i=0 2ni +
∑k2

i=0 2ni)− 1 = |π| − 1.
– V (P1 ‖ P2) → V P1 ‖ V P2. Then, π = ∆ ` N : α ends in a rule ‖I with

two premises π1 = ∆1 ` V P1 : α1 and π2 = ∆2 ` V P2 : α2, such that ∆ =
∆1⊗∆2, α = α1`α2 and |π| = |π1|+|π2|. As in the previous case, for h = 1, 2,
πh ends is a (E rule. Since V is a value, it can have only a computational
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type (Lemma 6), and so the last (E rule of πh has exactly two premises,
say πh0 = Γh0 ` V :

⊗nh

j=1(τhj ( αhj) and πh1 = Γh1 ` Ph :
˙nh

j=1 τhj ,

where ∆h = Γh0 ⊗ Γh1, αh =
˙nh

j=1 αhj , and |πh| = |πh0|+ |πh1|+ 2nh − 1.
The derivation π′ is obtained in three steps. First, we apply the rule ‖I to
π11 and π21, getting a derivation of Γ11 ⊗ Γ21 ` P1 ‖ P2 : (

˙n1

j=1 τ1j) `
(
˙n2

j=1 τ2j). Then, by Lemma 9, we get Γ10 ⊗ Γ20 ` V : (
⊗n1

j=1(τ1j (
α1j))⊗ (

⊗n2

j=1(τ2j ( α2j)). Finally, we achieve π′ by applying a rule (E to
the previous two. Notice that |π′| = |π10|+|π20|+|π11|+|π22|+2(n1+n2)−1 =
|π|+ 1.

– P ‖ Q → P ′ ‖ Q as a consequence of P → P ′. Then, ∆ = ∆1 ⊗ ∆2 and
α = α1 ` α2, with π1 = ∆1 ` P ′ : α1 and π2 = ∆2 ` Q : α2, where
|π| = |π1|+ |π2|. By the induction hypothesis we get π′1 = ∆1 ` P : α1, with
|π′1| = |π1| + 1 and by rule ‖I we derive π′ = ∆1 ⊗ ∆2 ` P ‖ Q : α1 ` α2

with |π′| = |π′1|+ |π2| = |π1|+ 1 + |π2| = |π|+ 1. The case P ‖ Q→ P ‖ Q′
is obtained by a symmetrical reasoning.

– PQ → P ′Q, where P is not a parallel composition, as a consequence of
P → P ′. Then ∆ = ∆′ ⊗

⊗k
i=1 Γi and α =

˙k
i=1

˙ni

j=1 αij , where π0 =

∆′ ` P ′ :
˙k

i=1

⊗ni

j=1(τij ( αij), and for i = 1, . . . , k we have π1 = Γi ` Q :˙ni

j=1 τij , where |π| =
∑k

i=0 |πi|+(
∑k

i=1 2ni)−1. By the induction hypothesis

we get π′0 = ∆′ ` P :
˙k

i=1

⊗ni

j=1(τij ( αij) with |π′0| = |π0| + 1. Hence

by rule (E we conclude π′ = ∆′ ⊗
⊗k

i=1 Γi ` PQ :
˙k

i=1

˙ni

j=1 αij , with

|π′| = |π′0|+
∑k

i=1 |πi|+ (
∑k

i=1 2ni)− 1 =
∑k

i=0 |πi|+ (
∑k

i=1 2ni) = |π|+ 1.
– V P → V P ′, where P is not a parallel composition, as a consequence of
P → P ′. Then we have ∆ = ∆′⊗Γ and α =

˙n
i=1 αi, where (using Lemma 6)

π0 = ∆′ ` V :
⊗n

i=1(τi ( αi) and π1 = Γ ` P ′ :
˙n

i=1 τi, with |π| = |π0|+
|π1|+2n−1. Now, by the induction hypothesis, we get π′1 = Γ ` P :

˙n
i=1 τi

with |π′1| = |π1|+1, and hence by rule (E , we conclude π′ = ∆′⊗Γ ` V P :˙n
i=1 αi, where |π′| = |π0|+ |π′1|+ 2n− 1 = |π0|+ |π1|+ 2n = |π|+ 1. ut


