
Constructing differential categories and deconstructing

categories of games

Jim Lairda,1, Giulio Manzonettob,2, Guy McCuskera

aDepartment of Computer Science, University of Bath, Bath, BA2 7AY, UK
bRadboud University, Intelligent Systems, Nijmegen, The Netherlands

Abstract

Differential categories were introduced by Blute, Cockett and Seely to ax-
iomatize categorically Ehrhard and Regnier’s syntactic differential operator.
We present an abstract construction that takes a symmetric monoidal cate-
gory and yields a differential category, and show how this construction may
be applied to categories of games. In one instance, we recover the category
previously used to give a fully abstract model of a nondeterministic imper-
ative language. The construction exposes the differential structure already
present in this model, and shows how the differential combinator may be
encoded in the imperative language. A second instance corresponds to a new
differential cartesian category of games. We give a model of a simply-typed
resource calculus, Resource PCF, in this category and show that it possesses
the finite definability property. Comparison with a semantics based on Buc-
ciarelli, Ehrhard and Manzonetto’s relational model reveals that the latter
also possesses this property and is fully abstract.

Keywords: differential categories, game semantics, full abstraction

1. Introduction

An important aim in studying higher-order computation is to understand
and control the way resources are used. One way to do this is by studying
calculi designed to capture resource usage, and their denotational models.

Email addresses: jiml@cs.bath.ac.uk (Jim Laird), g.manzonetto@cs.ru.nl
(Giulio Manzonetto), g.a.mccusker@bath.ac.uk (Guy McCusker)

1Research supported in part by UK EPSRC grant EP/HO23097.
2Research supported in part by NWO Project 612.000.936 CALMOC.

Preprint submitted to Information and Computation 15 July 2011

Two such calculi — the differential λ-calculus [1] of Ehrhard and Regnier
and the resource calculus introduced by Tranquilli [2], inspired by the work
of Boudol [3], are fundamentally related at the semantic level [4]: both may
be interpreted using the notion of differential category introduced by Blute,
Cockett and Seely [5]. In this paper, we study these concepts on both abstract
and concrete levels. We give a construction of a differential category from
any symmetric monoidal category, and use it to investigate the structure
of newly discovered differential categories, relate them to existing examples,
and to prove full abstraction results for Resource PCF, a typed programming
language based on the resource calculus.

A potential source of differential categories, although not investigated
hitherto, is game semantics : resource usage is represented rather explicitly
in games and strategies. Indeed, we show that an existing games model of Ide-
alized Algol with non-determinism, introduced by Harmer and McCusker [6]
contains a differential Cartesian operator [7], and may therefore be used to
interpret Resource PCF, although this interpretation contains non-definable
(“junk”) finitary elements.

We then present the construction which we shall use to analyze differential
categories. Its key step takes a symmetric monoidal category with countable
biproducts, embeds it in its Karoubi envelope (idempotent splitting) and then
constructs the cofree cocommutative comonoid on this category (by taking a
sum of symmetric tensor powers) and a differential operator on the Kleisli
category of the corresponding comonad. Since biproducts may be added
to any category by free constructions, we have a way of embedding any
symmetric monoidal (closed) category in a Cartesian (closed) differential
category.

Although this construction is somewhat elaborate, it provides a useful
tool for analyzing and relating more directly presented models. For example,
applying it to the terminal (one object, one morphism) SMCC yields the key
example of a differential category (and model of resource calculus [4]) based
on the finite-multiset comonad on the category of sets and relations. We also
show that our differential category of games embeds in one constructed from
a simple symmetric monoidal category of games. By refining the strategies in
these games to eliminate history sensitive behaviour, we obtain a constraint
on strategies (∼-closure) in our directly presented model of Resource PCF
which corresponds to finite definability. Another useful observation is that
any functor of symmetric monoidal categories lifts to one between the dif-
ferential categories constructed from them. In particular, from the terminal

2

functor we derive a functor from our category of games and ∼-closed strate-
gies into the relational model which is shown to be full. From this we may
deduce that the relational model of Resource PCF is fully abstract.

Related Works. This article is an extended version of [8]. We build and
analyze differential categories as a semantic framework for Resource PCF, a
programming language based on the resource calculus. The resource calculus
has been recently studied from a syntactic point of view by Pagani and Tran-
quilli [9] for confluence results, by Manzonetto and Pagani for separability
results [10] and by Pagani and Ronchi della Rocca [11] for results about solv-
ability. This calculus is also strongly linked with the differential λ-calculus
[1]; in that context Ehrhard and Regnier studied the relationships between
Böhm trees, Taylor expansion and linear head reduction [12, 13].

Monoidal and Cartesian differential categories have been introduced by
Blute, Cockett and Seely in [5, 7]. Subsequently Bucciarelli, Ehrhard and
Manzonetto proposed the notion of Cartesian closed differential category,
proved that such categories are sound models of the simply typed resource
calculus [4] and studied a concrete example. Other examples of such cate-
gories have been given by Blute, Ehrhard and Tasson in [14] and by Carraro,
Ehrhard and Salibra in [15].

In the present paper we provide a general method for turning a symmetric
monoidal category into a differential category. Our construction of an expo-
nential modality is a special case of the one proposed by Melliès, Tabareau
and Tasson in [16]. Our additional contributions are the observations that,
under certain circumstances, the equalizers required to build symmetric ten-
sor powers can be obtained by splitting idempotents, and that the resulting
model possesses differential structure.

Outline. In Section 2 we fix some categorical notations and recall the ba-
sic definitions concerning monoidal and Cartesian differential categories. In
Section 3 we introduce Resource PCF, together with its operational and
denotational semantics. Section 4 presents a direct description of Harmer
and McCusker’s differential category of games G⊗. Section 5 is devoted
to provide the categorical construction for turning any symmetric monoidal
category into a differential category. In Section 6 we apply the construction
to recover and analyze the category G⊗, that will be then refined in Sec-
tion 7. Finally, in Section 8 we use our construction to compare the games
model with the relational model, and prove that the relational model is fully
abstract for Resource PCF.

3

2. Differential Categories

Differential categories were introduced by Blute, Cockett and Seely to
formalize derivatives categorically. The authors started from monoidal cate-
gories [5], then extended the notion to Cartesian ones [7]; a further generaliza-
tion to Cartesian closed categories has been made in [4] to model differential
and resource λ-calculi.

Throughout this paper we will be working with categories whose hom-sets
are endowed with the structure of a commutative monoid (+, 0). Terminology
for the various kinds of categorical structure we encounter varies widely, the
adjective “additive” being particularly overloaded, so we will take care to
define all our terminology as we go along.

Let us fix some notation. We write the identity map on an object A as
idA or simply A. Composition is written using infix ; in diagram order. We
use 〈f, g〉 to denote the pairing of maps f : A → B and g : A → C, and
π0, π1 for the corresponding projections. In Cartesian closed category we
denote the exponential object by A⇒ B and the curry of f : A×B → C by
Λ(f) : A → (B ⇒ C). We write Λ−(−) for the inverse of Λ(−). We elide
all associativity and unit isomorphisms associated with monoidal categories.

2.1. (Monoidal) Differential Categories

Let C be a commutative-monoid-enriched symmetric monoidal category:
this means that it is a symmetric monoidal category, and that composition
and tensor preserve the commutative monoid structure on hom-sets, so that

(f + g);h = f ;h+ g;h, k; (f + g) = k; f + k; g, f ; 0 = 0 = 0; f,

(f + g)⊗ h = f ⊗ h+ g ⊗ h, f ⊗ 0 = 0.

A coalgebra modality on C is a comonad (!, δ, ε) such that each object !A is
equipped with a comonoid structure

∆A : !A −→ !A⊗ !A, eA : !A −→ I

In addition to the associativity and unit equations for the comonoid, it should
be the case that δ is a morphism of comonoids, that is,

δA; e!A = eA and δA; ∆!A = ∆A; δA ⊗ δA.

Given such a structure, a differential combinator is a family of maps DA,B :
C(!A,B)→ C(A⊗ !A,B), natural in A and B and respecting the commuta-
tive monoid structure of the hom-sets, satisfying the following four axioms.

4

• D(eA) = 0,

• D(∆; f ⊗ g) = (A ⊗ ∆); (D(f) ⊗ g) + (A ⊗ ∆);∼=; (f ⊗ D(g)) where
f : !A→ B, g : !A→ C and ∼= is the appropriate symmetry map,

• D(εA; f) = (A⊗ eA); f , for f : A→ B,

• D(δA; !f ; g) = (A ⊗ ∆A); (D(f) ⊗ (δA; !f));D(g) for f : !A → B and
g : !B → C.

Definition 2.1. A differential category is a commutative-monoid-enriched
symmetric monoidal category with a coalgebra modality and a differential
combinator.

When the coalgebra modality is a linear exponential comonad, its Kleisli
category is a Cartesian differential category, whose definition we recall in the
next subsection.

2.2. Cartesian (Closed) Differential Categories

A category is left-additive if precomposition by any map preserves the
commutative monoid structure, that is,

f ; 0 = 0, f ; (g + h) = (f ; g) + (f ;h).

In such a category, a map f is called additive if postcomposition by f this
map also preserves the commutative monoid structure. A Cartesian left-
additive category is a left-additive category with finite products, such that
all projections are additive, and if f : A → B and g : A → C are additive,
so is 〈f, g〉 : A→ B × C.

Definition 2.2. A Cartesian differential category is a Cartesian left-additive
category equipped with a family of operators D×A,B : C(A,B)→ C(A×A,B)
which preserve the commutative monoid structure on hom-sets and satisfy:

• 〈h+ k, v〉;D×(f) = 〈h, v〉;D×(f) + 〈k, v〉;D×(f),

• D×(idA) = π0, D×(π0) = π0; π0 and D×(π1) = π0; π1,

• D×(〈f, g〉) = 〈D×(f), D×(g)〉,

• D×(f ; g) = 〈D×(f), π1; f〉;D×(g),

5

• 〈g, 0, h, k〉;D×(D×(f)) = 〈g, k〉;D×(f),

• 〈0, h, g, k〉;D×(D×(f)) = 〈0, g, h, k〉;D×(D×(f)).

Definition 2.3. A Cartesian-closed differential category is a Cartesian dif-
ferential category with closed structure, such that the operation of curry-
ing preserves the commutative monoid structure on hom-sets and for all
f : C × A→ B, we have:

D×(Λ(f)) = Λ(〈π0 × 0A, π1 × idA〉;D×(f)) : C × C → (A⇒ B).

The leading examples of such categories, studied in [4], are Ehrhard’s
category of finiteness spaces, and the category MRel of “multiset relations”,
which is the Kleisli category for the finite-multiset comonad on the category
Rel of sets and relations.

3. Resource PCF and its Models

We now describe Resource PCF, a simply typed resource calculus which
incorporates the constants of PCF, making it a prototypical resource-sensitive
programming language. As the name suggests, the fundamental ideas behind
this calculus are those from the resource λ-calculus [2] and PCF [17]. The
operational semantics of Resource PCF will be described through linear head
reduction [18]; an equivalent presentation more in the style of [9] would also
be possible.

3.1. Resource PCF: its Syntax and Operational Semantics

Resource PCF has two syntactic categories: terms, that appear in func-
tional position, and bags, that appear in argument position and represent
finite multisets of resources. A resource can be either linear (it must be used
exactly once) or reusable (it can be used ad libitum) and in the latter case is
decorated with a “!” superscript.

Definition 3.1. Figure 1(a) gives the grammar generating the set Λr of
terms, the set Λ(!) of resources, and the set Λb of bags, together with their
typical meta-variables.

We denote by [] the empty bag, and by P1] P2 the union of bags P1, P2.
Terms of the shape succn(zero) are denoted by n. The α-conversion and the

6

Syntax of Resource PCF

Λr: M,N ::= x | λx.M |MP | ifz(M,M,M) | terms
| Fix(M) | succ(M) | pred(M) | zero

Λ(!): M (!), N (!) ::= M |M ! resources

Λb: P ::= [M
(!)
1 , . . . ,M

(!)
n] bags

(a) Grammar of terms, resources and bags.

Typing Rules

x1 : A1, . . . , xn : An ` xi : Ai
(var) Γ `M : A→ B Γ ` P : A

Γ `MP : B
(app)

Γ, x : A `M : B

Γ ` λx.M : A→ B
(lam)

Γ ` [] : A
([])

Γ `M : A Γ ` P : A

Γ ` [M (!)]] P : A
(bag)

Γ ` N : nat Γ `Mi : A (for i = 1, 2)

Γ ` ifz(N,M1,M2) : A
(ifz) Γ `M : A→ A

Γ ` Fix(M) : A
(fix)

Γ ` zero : nat
(zero)

Γ `M : nat
Γ ` pred(M) : nat

(prec) Γ `M : nat
Γ ` succ(M) : nat

(succ)

(b) Typing rules for terms and bags.

Figure 1: Syntax and type system of Resource PCF.

set fv(M) of free variables of M are defined as usual in λ-calculus. A term
M is closed if it does not contain any free variable, i.e. fv(M) = ∅.

Hereafter we consider terms and bags up to α-equivalence.
Types are generated by the following grammar

A,B ::= nat | A→ B.

Environments Γ are finite lists x1 : A1; · · · ;xn : An assigning types to
variables, so that x : A ∈ Γ and x : B ∈ Γ entails A = B. The domain of an
environment Γ is defined by dom(Γ) = {x | x : A ∈ Γ}.

Typing rules are defined in Figure 1(b), yielding a collection of typed
terms-in-context Γ ` M : A. In the rule (lam) we suppose without loss of

7

Contexts:

CL−M ::= L−M | λx.C | CP |M([C]] P) |M([C !]] P) | Fix(C) |
| pred(C) | succ(C) | ifz(C,M,N) | ifz(M,C,N) | ifz(M,N,C)

Evaluation contexts:

EL−M ::= L−M | EP | λx.E | pred(E) | succ(E) | ifz(E,M,N)

Let contexts:
F L−M ::= L−M | (λx.F)P

(a) Arbitrary contexts, evaluation contexts, let contexts.

Linear head reduction:

ELF Lλx.E ′LxMM(P] [N])M→ ELF Lλx.E ′LNMMP M
ELF Lλx.E ′LxMM(P] [N !])M→ ELF Lλx.E ′LNMM(P] [N !])M
ELF Lλx.nM[N !

1, . . . , N
!
k]M→ ELF LnMM for some k ≥ 0,

ELifz(zero,M,N)M→ ELMM ELifz(succ(n),M,N)M→ ELNM
ELpred(succ(n))M→ ELnM ELFix(M)M→ ELM [Fix(M)!]M

(b) Operational semantics via linear head reduction.

Figure 2: Operational semantics of Resource PCF.

generality that x /∈ dom(Γ). Notice that the bags are homogeneously typed,
that is, all resources in a bag must have the same type.

Operational semantics. The operational semantics is defined in Figure 2
via linear head reduction, whose definition requires the notions of let- and
evaluation- contexts. The three kinds of contexts we consider are defined
in Figure 2(a). In general a context is a term having a single occurrence of
a “hole” inside (formally, an algebraic variable) denoted by L−M. Given a
context CL−M and a term M we write CLMM for result of substituting M for
the hole L−M in C, possibly with captures of free variables. For example, if
CL−M = λx.L−M and M = λy.x[y] then CLMM = λxy.x[y]. Arbitrary contexts
will be considered only in Theorem 8.4. An evaluation context is a context
having the hole in head position, while a let context is a context having the
shape of nested redexes.

8

Intuitively, linear head reduction exploits evaluation- and let- contexts to
fetch the redex corresponding to the variable occurring in linear head posi-
tion. Then this occurrence is replaced nondeterministically by some resource
in the corresponding bag; if the resource is linear it is then removed from the
bag, otherwise it is kept to be possibly used again later. When a constant n
occupies the linear head position, we can get rid of the lambda abstraction
and the bag, provided that it only contains reusable resources.

Notice that at every step only one of the rules in Figure 2(b) can be
applied, therefore the choice of the redex to contract is deterministic. The
reduction is however nondeterministic because of the presence of several re-
sources in the bags.

Definition 3.2. A closed term M of ground type converges, written M⇓, if
M reduces to k for some k ∈ ω. The term M diverges, written M⇑ otherwise.

We now give some examples of converging and diverging reductions. Re-
mark that in the approach of [2] the “mismatch” between the amount of
resources expected by a program and the actual amount present in the bag
is modelled by a reduction to 0 (the empty program), while in our system
the corresponding reduction is blocked.

Example 3.3. Let I = λz.z. It is easy to check that the following terms are
well typed.

(i) (λxy.x[y])[I][3] ⇓. By applying the first rule in Figure 2(b)3 we get
(λxy.x[y])[I][3] → (λxy.I[y])[][3]. By applying the first rule again4 this
reduces to (λxy.(λz.y)[])[][3] and then to (λxy.(λz.3)[])[][]. We can then
apply the third rule three times and get 3 as result.

(ii) (λxy.y)[I][3!]⇑. Intuitively, this term diverges because the linear re-
source I cannot be erased. Formally, one can reduce (λxy.y)[I][3!] →
(λxy.3)[I][3!]→ (λx.3)[I] which is blocked since no rule is applicable.

(iii) (λx.x[3])[]⇑. Indeed the term in functional position is waiting for a
resource, while it is applied to the empty bag.

3.2. Denotational Semantics of Resource PCF

Resource PCF can be interpreted in any cpo-enriched Cartesian closed
differential category having a weak natural number object. The interpreta-

3With EL−M = L−M[3], F L−M = L−M and E′L−M = λy.L−M[y].
4With EL−M = (λxy.L−M)[][3] and F L−M = E′L−M = L−M.

9

tions of the constants and constructors of PCF are standard, leaving only
the application, which is treated as follows, as in [4].

In every Cartesian closed differential category it is possible to define an
operator ? on morphisms

f : C × A→ B g : C → A

f ? g : C × A→ B

by setting f ? g := 〈〈0C , g ◦ π0〉, id〉;D×(f).
The operator f ? g can be seen as the semantic counterpart of differential

substitution; the type is not modified because f ? g may still depend on A.
Intuitively, such an operator is obtained by force-feeding the second argument
A of f with one copy of the result of g. Indeed f ? g can be decomposed as:

C × A A× (C × A) (C × A)× (C × A)

B

〈π0; g, idC×A〉 〈〈0C , idA〉, idC×A〉

D×(f)
f ? g

where 〈〈0C , idA〉, idC×A〉;D×(f) represents the partial derivative of f in its
A component (cf. [7, p. 49]).

The interpretation [[M]]Γ : [[Γ]] → [[A]] of Γ ` M : A is defined as usual,
except for the case of application where we set:

[[M [~L, ~N !]]]Γ = 〈id,
∑n

i=1[[Ni]]Γ〉; ((· · · (Λ−([[M]]Γ) ? [[L1]]Γ) · · ·) ? [[L`]]Γ).

It is easy to check that this definition is independent from the enumeration
of the resources in the bag, as expected.

4. A Cartesian Closed Differential Category of Games

In this section we recall the definition of the category of games introduced
in [6, 19], and show that it is a Cartesian closed differential category.

4.1. Arenas and Strategies

An arena A is a finite bipartite forest over two sets of moves, MP
A and

MO
A , with edge relation `. We say that a move is enabled by its parent in

the forest, and that root moves are initial. A QA-arena is an arena equipped

10

with a labelling function that labels each move as a question (Q) or answer
(A), such that every answer is the child of a question.

A justified sequence is a sequence of moves s, alternately from MO
A and

MP
A , together with a (partial) pointer function such that every occurrence m

of a non-initial move in s points to an earlier occurrence n of its parent; in
this case we say that n justifies m; the transitive closure of this relation is
called hereditary justification.

Given a justified sequence s, the player view psq is defined as follows.

pεq = ε
ps · nq = n if n is an initial O-move
ps · nq = psq · n if n is a P-move

ps ·m · t · nq = psq ·m · n if n is an O-move justified by m

A justified sequence satisfies P-visibility if, for every prefix sm with m a P-
move, the justifier of m appears in psq. The player view of a sequence that
satisfies P-visibility is always itself a justified sequence.

Given a justified sequence s, we say that an answer-move occurrence a
answers the question occurrence q that justifies it. A justified sequence s
satisfies P-well-bracketing if, for every prefix s′a with a an answer move by
P , the question that a answers is the rightmost O-question in the view ps′q;
call this the pending question at s′.

The notions of opponent view, O-visibility and O-well-bracketing are de-
fined dually.

A justified sequence is complete if every question is answered exactly once;
we write comp(A) for the set of complete justified sequences of A.

Lemma 4.1. If s is a complete justified sequence that satisfies P-visibility
(resp. O-visibility), then s satisfies P-well-bracketing (resp. O-well-bracketing).

Proof. A simple analysis of views shows that, if q is an O-question that is
answered when some later O-question q′ is pending, then when q′ is answered,
again a later O-question is pending. There can therefore be no O-question
that is answered when it is not pending, because s is finite.

A sequence is well-opened if it contains exactly one initial O-move. A
strategy for an arena A is a set of complete sequences in which O plays first,
satisfying P-visibility (and, by Lemma 4.1, P-bracketing). Given a strategy
σ, wv(σ) is the set of sequences in σ that are well-opened and satisfy O-
visibility.

11

Given arenas A and B, we write A]B for the arena arising as the disjoint
union of A and B, and A⊥ for the arena A with O and P-moves interchanged.

4.2. Categories of Games

We can define a category G in which objects are arenas whose roots are
all O-moves, and morphisms A → B are strategies on the arena A⊥] B.
Composition of strategies is the usual “parallel composition plus hiding”
construction, and identities are copycat strategies. As proved in [6, 19], this
category is monoidal closed: disjoint union of arenas gives a tensor product,
with unit I the empty arena, and exponentials are given by the arena A(B,
which consists of the arena B with a copy of A⊥ attached below each initial
move; duplication of A⊥ is required to maintain the forest structure.

Every object of G can be endowed with a comonoid structure as follows.
The comultiplication ∆A : A→ A]A consists of the copycat strategy which
interleaves play in the two copies of A on the right to produce the play on the
left, and the counit is the strategy {ε} : A→ I. The subcategory of comonoid
homomorphisms is a Cartesian closed category G⊗. These maps are those
whose choice of move at any stage depends only on the current thread, that is,
the subsequence of moves hereditarily justified by the initial O-move currently
in view; it follows that such strategies are completely determined by the well-
opened plays they contain.

The programming language Erratic Idealized Algol (EIA) is an applied
typed λ-calculus over base types comm, nat and var, with an appropriate
stock of constants making it a higher-order imperative programming lan-
guage with local state, consisting of variables (of type var) in which natural
numbers can be stored. Typical constants are those for arithmetic and recur-
sion as in PCF; imperative programming constants such as assign : var→
nat→ comm, which encodes the assignment operator x := n, deref : var→
nat which allows variable lookup, and new : (var → comm) → comm which
encodes local variable declaration. The constants include an erratic choice
operator or : comm → comm → comm which encodes nondeterministic choice.
We equip the language with an operational semantics based on the may-
converge predicate ⇓.

As shown in [19], this programming language can be given denotational
semantics in the category G⊗. The base types are interpreted as simple
arenas, for instance [[nat]] is the arena with one opponent question q enabling
ω-many player-answers 0, 1, 2, . . .; [[comm]] is similar, having a single initial
opponent question run and a single player-answer done. The interpretation

12

of the imperative programming constants is as in the standard games model
of Idealized Algol from [20], and the erratic choice operator is interpreted by
union of strategies.

Theorem 4.2 (Full abstraction [19]). The model of EIA in G⊗ is sound,
and moreover, for any type A:

• if s is a complete well-opened play of [[A]] satisfying visibility, there is
a closed term M of type A such that wv([[M]]) = {s};

• terms M,N : A are contextually equivalent if and only if wv([[M]]) =
wv([[N]]).

We now exhibit the differential structure that G⊗ possesses.

Definition 4.3. Let s be a complete, well-opened play in A⊥] B which
contains at least one initial A-move. Say that a complete play s′ in A⊥]
A⊥]B is a derivative of s if

∆; {s′} = {s}

(where ∆ is the suitable diagonal) and s′ contains one initial move in the left
occurrence of A⊥.

The definition says that s′ is obtained from s by labelling one initial
A⊥-move occurring in s, along with all moves hereditarily justified by it, as
appearing in the left-hand occurrence of A⊥; the remaining A⊥-moves are
relabelled to appear in the right-hand occurrence.

Example 4.4. For instance the following play

s : N⊥] N
q

q
0
q
1

1

13

has two derivatives:

s′1 : N⊥] N⊥] N
q

q
1

q
0

1

s′2 : N⊥] N⊥] N
q

q
1

q
0

1

We then define D×(σ) as the strategy whose well-opened plays are

{s′ ∈ comp(A⊥] A⊥]B) | s′ is a derivative of some well-opened s ∈ σ}.

We can verify directly that this makes G⊗ a Cartesian closed differential
category; later we will see that this follows from a general construction.
Because of the definability property of the model of EIA, it is reasonable to
expect that the differential operator is programmable in EIA, and indeed it
is. For terms of type A → nat we can define the differential operator as
follows (using appropriate syntactic sugar).

λf : A→ nat.λa : A.λa′ : A.
new b := true

new y := f((if b then (b := false; a) else a′) or a′) in
if ¬b then y else diverge

In any converging execution of this code, the argument a is supplied to f
exactly once, though the choice of which call to f ’s argument receives a is
made nondeterministically; all other calls to f ’s argument receive a′.

5. Constructing Differential Categories

We now describe a construction of models of intuitionistic linear logic
that are also differential categories (Figure 3). The main ingredient is the
construction of a category which possesses a comonad delivering cofree co-
commutative comonoids; we begin with this step, before describing some
preliminary steps that can readily construct appropriate categories.

5.1. Building differential categories through Karoubi envelope

Let C be a symmetric monoidal category. For any object A of C, write
A⊗n to denote the n-fold tensor power of A. The symmetric tensor power
An, if it exists, is the equaliser of the diagram

14

Symmetric monoidal (closed) category C

sup-lattice enrichment + countable biproducts

Differential category K(C)

sup-lattice enrichment (+ storage modality)

Karoubi envelope

Cartesian (closed) differential category K!(C)

cpo-enrichment

Kleisli

Figure 3: The main construction.

A⊗n A⊗n
... n! permutations

consisting of all n! permutations from A⊗n to itself.
We begin by establishing circumstances under which the Karoubi envelope

(idempotent splitting) K(C) possesses such equalizers. Recall that K(C) has
as its objects pairs (A, f) where A is an object of C and f : A → A is an
idempotent, and as its maps (A, f)→ (B, g), those maps h : A→ B from C
such that

h = f ;h; g

equivalently f ;h = h = h; g. This category inherits the monoidal structure
from C.

Suppose that each hom-set in C is equipped with an n-ary sum operator
Σn for each natural number n; that is, for any multiset S containing n maps
f1, . . . , fn : A→ B we can form the sum

∑
n S; and that each n-ary operator

is commutative and idempotent, and composition preserves these sums.

Lemma 5.1. Let (A, f) be any object of K(C), and let G be any subgroup
of the group of automorphisms of (A, f) of finite cardinality n. Then the
following diagram is an equalizer.

15

(A, f) (A, f)
... every g ∈ G(A, f ;

∑
nG)

f ;
∑

nG

Proof. Routine calculation verifies that f ;
∑

nG is indeed an idempotent
so that (A, f ;

∑
nG) is a well-defined object of K(C), and that f ;

∑
nG

is a map of the appropriate type. That f ;
∑

nG; g = f ;
∑

nG; g′ for any
g, g′ ∈ G follows from the fact that composition preserves sums and that
postcomposition with any g ∈ G maps the set G onto itself, because G is a
group. Let h : (A′, f ′) → (A, f) be any map such that h; g = h; g′ for all
g, g′ ∈ G. Then each h; g = h, so h; f ;

∑
nG = h;

∑
nG =

∑
n[h; g | g ∈

G] =
∑

n[h, . . . , h] = h. So h factors through f ;
∑

nG via h itself, and this
factorization is necessarily unique.

We can now readily construct symmetric tensor powers inK(C) as follows.
Given an object A of C, define ΘA,n : A⊗n → A⊗n to be the sum of the
n! permutation maps, which of course form a group. The above lemma
specializes to the following.

Corollary 5.2. For any object (A, f) of K(C), the following diagram is an
equalizer.

(A⊗n, f⊗n) (A⊗n, f⊗n)
... n! permutations(A⊗n, f⊗n; ΘA,n)

f⊗n; ΘA,n

Moreover, these equalizer diagrams are preserved by tensor products.

One consequence of this is that there are maps (A, f)m+n → (A, f)m ⊗
(A, f)n whose underlying maps are given by f⊗m+n; ΘA,m+n, which are equal-
izers of the evident subgroup of m! × n! permutations on A⊗m+n that map
the first m components onto themselves.

These symmetric tensor powers will allow us to construct a coalgebra
modality on K(C) as the free commutative comonoid, provided we have
countable products and that the monoidal structure distributes over them.

Recall that a commutative comonoid in a symmetric monoidal category
is an object A together with maps ∆ : A→ A⊗ A and e : A→ I satisfying
the obvious commutativity, associativity and unit diagrams; morphisms of
comonoids are morphisms between the underlying objects that preserve the
comonoid structure. Let K⊗(C) be the category of commutative comonoids
and comonoid morphisms in K(C).

16

Lemma 5.3. The forgetful functor U :K⊗(C) → K(C) has a right adjoint,
whose action on objects takes (A, f) to the product

∏
n∈ω(A, f)n, which we

call !(A, f).

Proof. For any m and n, we have the map

πm+n; f⊗m+n; ΘA,m+n : !(A, f) −→ (A, f)m ⊗ (A, f)n.

Tupling all these gives us a map !(A, f) →
∏

m,n(A, f)m ⊗ (A, f)n, and by
distributivity of tensor over product, this gives a map ∆ : !(A, f)→ !(A, f)⊗
!(A, f). We also have the map π0 : !(A, f)→ I. It can readily be verified that
these maps give !(A, f) the structure of a comonoid. Moreover, it is the free
comonoid on (A, f): if (B, g) is any commutative comonoid and α : (B, g)→
(A, f) any morphism, we construct a comonoid morphism α† : (B, g) →
!(A, f) as follows. The comultiplication ∆n : (B, g)→ (B, g)⊗n equalizes all
permutations, so the composition ∆n;α⊗n does too, yielding a map (B, g)→
(A, f)n. Tupling all these maps gives us the required comonoid map α†, and
it is easily checked that this is the unique map such that α†; π1 = α.

Composing these two adjoint functors yields a comonad (!, δ, ε) on K(C).

Lemma 5.4. The comonad (!, δ, ε) is a coalgebra modality. In fact, it is a
linear exponential comonad (also known as a storage modality).

Proof. Showing that we have a coalgebra modality amounts to demonstrating
that δ is a morphism of comonoids. In fact much more is true: it is routine to
check that the forgetful functor U : K⊗(C)→ K(C) satisfies the conditions of
Beck’s monadicity theorem, which implies that the category of coalgebras is
isomorphic to K⊗(C). Therefore (!, δ, ε) is a linear exponential comonad.

The fact that the cofree commutative comonoid provides a linear expo-
nential comonad is attributed to Lafont. The construction of this comonad
along the lines given above follows the recipe in [16]; our main contribution at
this stage is the use of the Karoubi envelope and sum structure on hom-sets
to generate a category possessing the required equalizers.

Now suppose that, in addition to the n-ary sum operators in each hom-
set, C is enriched over commutative monoids (+, 0). In this situation we
can construct a differential operator on K(C), making it into a differential
category.

17

The differential operator is given by precomposition with the deriving
transformation d : (A, f)⊗ !(A, f) → !(A, f) defined as follows. For each n,
the map f⊗n+1; ΘA,n+1 in C gives us a morphism

f⊗n+1; ΘA,n+1 : (A, f)⊗ (A, f)n → (A, f)n+1

and hence we obtain maps ∼=; πn; f⊗n+1; ΘA,n+1 : (A, f)⊗ !(A, f)→ (A, f)n+1

where ∼= is the distributivity map. Tupling all these gives us a morphism
(A, f) ⊗ !(A, f) →

∏
n(A, f)n+1, and finally pairing this with 0 : (A, f) ⊗

!(A, f)→ I gives the required map.
We have taken care in the development above to separate the n-ary sums

needed to produce the symmetric tensors from the sums provided by commu-
tative monoid enrichment. This is because we have in mind certain models,
not considered in the present paper, in which these sums are indeed differ-
ent (but related); in particular, the commutative monoid structure need not
be idempotent while the n-ary sums must be. For the present paper, we
focus on a special case of the development above, in which C is enriched
over sup-lattices, that is, idempotent commutative monoids with all sums.
The consequences of our constructions in such cases can be summarized as
follows.

Theorem 5.5. Let C be a sup-lattice-enriched symmetric monoidal cate-
gory with countable distributive products. With the structure described above,
K(C) is a sup-lattice-enriched differential category, and the Kleisli category
K!(C) a cpo-enriched Cartesian differential category. If C is monoidal closed
(in the sup-lattice-enriched sense) then K!(C) is a cpo-enriched Cartesian-
closed differential category.

Proof. That the differential operator satisfies the required equations to make
K(C) a differential category is lengthy but straightforward to check. Sup-
lattice enrichment follows directly from that of C. The fact that K!(C) is
Cartesian differential follows from Proposition 3.2.1 of [7]. The Cartesian
closure of K!(C) is a well-known fact about linear exponential comonads.
For the cpo-enrichment, it is enough to observe that the passage from α :
!(A, f)→ (B, g) to α† : !(A, f)→ !(B, g) preserves directed suprema.

Even when C is not monoidal closed, it is still possible to arrive at a
Cartesian closed differential category when there are enough exponentials:
if C has all exponentials A (R for some fixed object R, then the full

18

subcategory of K!(C) consisting of such R-exponentials is Cartesian closed,
and also possesses a weak distributive coproduct structure, the “lifted sum”
Σi∈IAi = (

∏
i∈I(!Ai (R)) (R. In particular,

∏
n∈ω R (R is a weak

natural numbers object.

Remark. As is well known, in a commutative-monoid-enriched category, ev-
ery product A × B is in fact a biproduct, that is, it is also a coproduct and
the canonical map

[〈idA, 0〉, 〈0, idB〉] : A⊕B → A×B

is an isomorphism. Similarly, every coproduct is a biproduct; and terminal
and initial objects coincide. In the presence of sup-lattice enrichment, this
extends to infinite products, so our countable products are in fact countable
biproducts.

5.2. Sup-lattice enrichment and biproducts via free constructions

To apply the construction above, we need a sup-lattice enriched sym-
metric monoidal category with countable distributive biproducts. Such cat-
egories can readily be manufactured via a series of free constructions.

Beginning with a symmetric monoidal category, one can construct its sup-
lattice-completion as the category with the same objects, but whose maps
A → B are sets of maps in the original category (cf. [21] VIII.2 exercise 5).
This is a sup-lattice enriched category, with joins of maps given by unions,
and monoidal structure inherited from the original category; closed structure
is also inherited, if it exists. We denote the sup-lattice completion of a
category C by C+.

Given a sup-lattice-enriched symmetric monoidal category, its biproduct
completion (cf. [21] VIII.2 exercise 6) has as objects indexed sets {Ai | i ∈ I}
of objects in the original category, and as morphisms {Ai | i ∈ I} → {Bj |
j ∈ J} matrices of morphisms, that is, for each i, j, a morphism Ai → Bj.
Composition is (potentially infinite) matrix multiplication; the infinite sums
required for composition are the reason we require sup-lattice enrichment.
The biproduct of a set of objects is given by the disjoint union of families.
We write BP(C) for the biproduct completion of a category C.

We will be interested in some categories which arise by performing these
two constructions in sequence. Given a category C, we denote by FamRel(C)
the category whose objects are families {Ai | i ∈ I} of objects of C, and
whose morphisms {Ai | i ∈ I} → {Bj | j ∈ J} are given by sets of triples

19

1

1+

BP(1+) ∼= FamRel(1) ∼= Rel

K(Rel)

MRel ↪→ K!(Rel)

sup-lattice comp.

Biproduct comp.

FamRel(−)

Karoubi envelope

Kleisli

Figure 4: Reconstructing MRel from the terminal SMCC 1.

(i, j, f) where i ∈ I, j ∈ J and f : Ai → Bj in C. Note that for a given i and
j there may be no such triples in a morphism, or one, or many. It is easy to
check that FamRel(C) is isomorphic to the category BP(C+).

Example 5.6. A simple but central example begins with the terminal cate-
gory 1 (Figure 4). Indeed FamRel(1) is the category Rel of sets and rela-
tions. On the image of Rel in K(Rel), ! is the finite-multiset comonad, and
we therefore find MRel embedded in K!(Rel) as a sub-Cartesian-differential-
category.

6. Analysis of G⊗

In this section we apply some of the constructions developed above to
reconstruct G⊗ and discover its differential structure as an instance of our
construction. We begin by defining a new category EG of exhausting games,
to which we will apply our constructions, eventually arriving at a Cartesian
closed differential category containing G⊗ as a subcategory. We then in-
troduce a refined category of exhausting games, EG∼, and again apply our
constructions to obtain a model of Resource PCF with the finite definability
property.

Given a finite arena A, a path is a non-repeating enumeration of all moves,
respecting the order given by the edge relation in the arena — that is, a
traversal of the forest — such that the first move is by O and moves alternate
polarity thereafter. Note that every move in a path has a unique justifier
earlier in the path. An exhausting strategy on A is a set of even-length paths
that satisfy P-visibility; if A has an odd number of moves, the only strategy
is the empty set.

20

Definition 6.1. The category EG has finite O-rooted arenas as objects and
exhausting strategies on A⊥]B as maps from A to B, with composition and
identities as usual.

Again, disjoint union of arenas gives a monoidal structure; and if B has
a single root, then the arena A (B is an exponential, so EG has all R-
exponentials, where R is the arena with a single move belonging to O.

It is clear that EG is sup-lattice enriched: unions of strategies are strate-
gies, and composition preserves unions. We may therefore form its biproduct
completion to obtain the structure we require to construct a differential cate-
gory as in Subsection 5.2. We write K(BP(EG)) for the differential category
so constructed, and K!(BP(EG)) for its Kleisli category, which is a Carte-
sian differential category. The full subcategory of R-exponentials is Cartesian
closed and has a weak natural numbers object. We shall now show how to
recover G⊗ as a subcategory of this.

Let A be any QA-arena, and consider a non-repeating (justified) sequence
s of pairs (a, n) where a is a move of A and n is a natural number. Taking
left projection on such a sequence gives a justified sequence in A, which we
call ŝ; we say that s is a tagging of ŝ, and write tcomp(A) for the set of all
taggings of complete well-opened plays in A.

Let s ∈ tcomp(A) be a tagging of the complete play ŝ. We can define
an arena ‖s‖ whose moves are the elements of s and whose edge relation is
precisely the justification structure of s. Thus s becomes a path of ‖s‖. If t is
a tagged sequence such that t̂ = ŝ, we can define a morphism φs,t : ‖s‖ → ‖t‖
by

φs,t = {u ∈ ‖s‖⊥] ‖t‖ | û ∈ idA}.
Note that it is possible for distinct taggings s, t of ŝ to give rise to the

same arena ‖s‖ = ‖t‖. In this case, φs,t is an idempotent on this arena.
Similarly, given taggings s1, s2, s3 of the same complete play ŝ, we have

φs1,s2 ;φs2,s3 = φs1,s3 .

Let A∗ be the set of arenas {‖s‖ | s ∈ tcomp(A)}. Considering this set as
a (self-indexed) family, it is an object on the biproduct completion of EG.
We define an endomorphism φA : A∗ → A∗ in BP(EG) as the “matrix” with
entries given by

(φA)‖s‖,‖t‖ =

{
φs′,t′ , if there exist s′, t′ such that ‖s‖ = ‖s′‖, ‖t‖ = ‖t′‖ and ŝ′ = t̂′

∅, otherwise.

21

By the above considerations, this is well-defined and idempotent, so (A∗, φA)
is an object of K(BP(EG)).

We now define a functor from G to K(BP(EG)) whose action on objects
takes an arena A to !(A∗, φA). In order to describe the action on morphisms,
we first analyse what a f : !(A∗, φA)→ !(B∗, φB) looks like.

Since !(A∗, φA) =
⊕

n∈ω(A∗, φA)n, such a map is given by a collection of
maps

fm,n : (A∗, φA)m → (B∗, φB)n

for m,n ∈ ω. Each fm,n consists of a matrix of morphisms of type

‖s1‖ ⊗ · · · ⊗ ‖sm‖ → ‖t1‖ ⊗ · · · ⊗ ‖tn‖

in G, where each si ∈ tcomp(A) and tj ∈ tcomp(B); and this matrix must be
invariant under composition with φA, φB, and permutations of the tensors.

We can therefore regard a map f : !(A∗, φA) → !(B∗, φB) as a set of
complete plays in arenas as above, closed under permutation and retagging.
That is, suppose f contains some play

u ∈ ‖s1‖ ⊗ · · · ⊗ ‖sm‖ → ‖t1‖ ⊗ · · · ⊗ ‖tn‖.

Let s′i and t′j be retaggings of the si and tj, and α and β permutations of
{1, . . . ,m} and {1, . . . , n} respectively. Permuting and retagging moves of u
yields a play

u′ ∈ ‖s′α(1)‖ ⊗ · · · ⊗ ‖s′α(m)‖ → ‖t′β(1)‖ ⊗ · · · ⊗ ‖t′β(n)‖

and the invariance of f under composition with idempotents says exactly
that this u′ is also in f .

Given a play u in such an f , untagging each component yields a play û of
(A⊗m)⊥]B⊗n which contains exactly one initial move in each A- and each B-
component. Identifying these components (essentially a further untagging)
yields a play in A⊥] B with m initial A-moves and n initial B-moves. By
abuse of notation we will also write û for this further untagging. We are now
able to define our functor from G to K(BP(EG)):

Definition 6.2. The functor Φ : G → K(BP(EG)) maps an arena A to
!(A∗, φA) and a morphism σ : A → B to the map Φ(σ) whose plays in the
arena ‖s1‖ ⊗ · · · ⊗ ‖sm‖ → ‖t1‖ ⊗ · · · ⊗ ‖tn‖ are those u such that û ∈ σ.

Lemma 6.3. Φ is a well-defined, full and faithful functor G→ K(BP(EG)).

22

Proof. For well-definedness, we must show that Φ(σ) is indeed closed under
permutation and retagging; but by definition Φ(σ) includes all possible tag-
gings and permutations of the plays of σ. Likewise, the identity on !(A∗, φA)
consists of the appropriate idempotent, which contains all plays that untag
to plays of the identity, which is by definition Φ(idA). It is straightforward
to verify that Φ preserves composition.

To see that Φ is faithful, note that if σ, τ : A → B with σ 6= τ , then
(wlog) σ contains a complete play u 6∈ τ . But then any tagging of u lies in
Φ(σ) and not in Φ(τ), so Φ(σ) 6= Φ(τ).

Finally, to see that Φ is full, let f : !(A∗, φA) → !(B∗, φB) be any map.
Untagging all of the plays in f gives a set of complete plays in A⊥]B which
is therefore a morphism σ : A → B in G. We claim that f = Φ(σ). By
definition Φ(σ) contains all plays that untag to plays in σ, so f ⊆ Φ(σ). Now
consider any u ∈ Φ(σ). By definition of σ, the untagging û ∈ σ is equal to
v̂ for some v ∈ f . There must be a retagging of v that yields u. But f is
closed under retaggings, so u ∈ f and Φ(σ) ⊆ f as required.

Given arenas A and B, the object ((A] B)∗, φA]B) is the product of
(A∗, φA) and (B∗, φB) inK(BP(EG)). Since ! is a linear exponential comonad,
we have the “Girard isomorphism” between Φ(A]B) = !((A∗, φA)×(B∗, φB))
and !(A∗, φA)⊗ !(B∗, φB) = Φ(A)⊗Φ(B). It is routine to verify the following:

Lemma 6.4. The above isomorphism makes Φ into a strong monoidal func-
tor.

We now show that Φ restricts to a functor G⊗ → K!(BP(EG)). Re-
call that G⊗ is defined as the subcategory of G consisting of the comonoid
homomorphisms, and that K!(BP(EG)) is the category of comonoid homo-
morphisms on free !-coalgebras in K(BP(EG)).

Proposition 6.5. The functor Φ preserves and reflects comonoid homomor-
phisms. That is, a map σ is a comonoid homomorphism in EG if and only
if Φ(σ) is a comonoid homomorphism in K(BP(EG)). Φ therefore restricts
to a full and faithful product-preserving functor from G⊗ to K!(BP(EG)).

Proof. We write ∆A : A → A] A for the comonoid multiplication in EG.
Straightforward calculation establishes that the composite

!(A∗, φA) = Φ(A) Φ(A] A) Φ(A)⊗ Φ(A) = !(A∗, φA)⊗ !(A∗, φA)
Φ(∆A) ∼=

23

is the comultiplication map of !(A∗, φA).
Let σ : A→ B be a map in EG. Observe that the outer rectangle of the

diagram

Φ(A) Φ(B)

Φ(A] A) Φ(B]B)

Φ(A)⊗ Φ(A) Φ(B)⊗ Φ(B)

Φ(σ)

Φ(∆A) Φ(∆B)

Φ(σ] σ)

∼= ∼=

Φ(σ)⊗ Φ(σ)

commutes if and only if the upper square commutes (the lower square com-
mutes by naturality of the monoidal isomorphism). Therefore σ preserves
comultiplication if and only if Φ(σ) does. A similar argument shows that σ
preserves the counit of the comonoid structure if and only if Φ(σ) does.

7. Some Refined Categories of Games

The functor Φ exhibits G⊗ as a full subcategory of the Cartesian differ-
ential category K(BP(EG)). Thus G⊗ is rich enough to interpret Resource
PCF. Indeed, it is richer, as the model of EIA demonstrates, and for this
reason the model of Resource PCF in G⊗ is far from being fully abstract.
We now develop a model of Resource PCF which possesses the finite defin-
ability property, by applying our general construction to a refined category
of exhausting games.

Let A be any arena. We define an equivalence relation ∼ on the paths of
A as the smallest equivalence relation such that

s · o · p · o′ · p′ · t ∼ s · o′ · p′ · o · p · t

where o, o′ are O-moves and p, p′ are P-moves. We call a path safe if,
whenever s = s′ · o · p · o′ · p′ · t and o justifies p′, p justifies o′. The ∼ relation
captures a notion of causal independence similar to that of Melliès [22], and
allows us to refine our games model to obtain definability for Resource PCF.

24

A ∼-strategy σ on an arena A is a set of safe paths that is ∼-closed, that
is, if s ∈ σ and s ∼ t then t ∈ σ. A ∼-strategy σ is deterministic if it is
non-empty, and the longest common prefix of any s, t ∈ σ has even length.

Lemma 7.1. If σ is a ∼-strategy and s ∈ σ then s satisfies P-visibility.

Proof. Let s = s1 · p · s2, for some P-move p. By permuting moves we can
find s′1 · p · s′2 ∼ s such that s′1 = ps1q. The justifier of p must appear in
s′1 = ps1q.

Given a path s in an arena A, write s̃ for the equivalence class of s
under ∼.

Lemma 7.2. For any safe path s of A, s̃ is a deterministic ∼-strategy, and
any deterministic ∼-strategy is of the form s̃ for some safe path s.

Proof. That each s̃ is a deterministic ∼-strategy is clear: it is a ∼-closed
set of safe paths by definition, and deterministic because if s ∼ t then the
successor of every O-move in s is the same as that of the same move in t.

Conversely, let σ be a deterministic ∼-strategy. We will show that σ is
history-free, that is, that there is a function f from the O-moves of A to
the P-moves such that for every s = s1 · o · p · s2 in σ, p = f(o). It then
follows that σ is the ∼-closure of any s ∈ σ, that is, any safe path of the
form o1 · f(o1) · · · on · f(on) Note that such a function f must necessarily be
a bijection.

We show simultaneously that every O-move has the same successor in
every s ∈ σ and that every P-move has the same predecessor in every s ∈ σ,
by induction on the position of the earliest occurrence of a move in any s ∈ σ.

The only moves that can appear as the first move are the roots of A. Let
o be any root. If s = s1 · o · p · s2 ∈ σ and also t = t1 · o · p′ · t2 ∈ σ, by
∼-closure we also have o · p · s1s2 ∈ σ and o · p′ · t1t2 ∈ σ, so by determinacy
p = p′. Similarly, the only moves that can appear as the second move are the
immediate descendants of the root. Let p be such a move, appearing as the
successor of some root o in some s ∈ σ. By the above, p is the successor of
o in every s ∈ σ, and therefore cannot appear as the successor of a different
move.

Now consider any non-root O-move o and any path s ∈ σ. By definition
of ∼, s is ∼-related to a sequence of the form

o1 · p1 · · · ok · pk · ok+1 · · ·

25

where o = ok+1, each oi is the predecessor of pi in s, and each pi enables oi+1;
that is to say, the prefix of this sequence up to o has the form of a P-view.
We claim that this P-view is the same in every s ∈ σ.

The predecessor pk of o in this view is its ancestor in A, which is unique
and therefore the same in each s. Since pk must occur before o in every s,
the inductive hypothesis applies, so pk’s predecessor ok is the same in each s.
Applying this argument repeatedly shows that the view is the same in every
s.

Therefore every s ∈ σ is related by ∼ to a sequence with the same prefix
up to and including o. Since σ is deterministic, the successor of o must be the
same in every case, as required. That each P-move has a unique predecessor
is established in the same way.

We can now build two categories:

• EG∼ has O-rooted arenas as objects and deterministic ∼-strategies on
A⊥]B as maps A→ B;

• EG+
∼ has the same objects, but its maps A → B are arbitrary ∼-

strategies on A⊥]B.

EG+
∼ is therefore the subcategory of EG consisting of ∼-closed strategies.
We are ready to construct a Cartesian differential category, starting with

EG∼. The first step is to take its sup-lattice completion; a consequence of
Lemma 7.2 is that this is exactly EG+

∼, justifying our choice of nomenclature.

Lemma 7.3. EG+
∼ is the sup-lattice completion of EG∼.

Nevertheless, it is convenient to take the first two steps of the construction
together, working with FamRel(EG∼).

Our construction gives us a comonad ! on K(FamRel(EG∼)), such that
the Kleisli category K!(FamRel(EG∼)) is a Cartesian differential category.
Though EG∼ is not monoidal closed, it has all R-exponentials, so the full
subcategory of K!(FamRel(EG∼)) comprising the arenas with a single root
is a Cartesian closed differential category.

As before, we may give a direct definition of a category of games which is
a sub-Cartesian-closed-differential-category of this one. Let G∼ be the sub-
category of G consisting of ∼-closed strategies. Again taking the subcategory
of comonoid homomorphisms, we arrive at a Cartesian closed differential cat-
egory G⊗∼. Just as in Section 6, we can define a full and faithful functor from

26

G⊗∼ into K!(FamRel(EG∼)) which preserves the Cartesian closed differential
structure.

8. Analysing Models of Resource PCF

Our constructions show that each of K!(FamRel(EG∼)), K!(BP(EG))
and K!(FamRel(1)) is a cpo-enriched differential Cartesian category with
enough exponentials to interpret Resource PCF; and indeed we have identi-
fied full subcategories G⊗, G⊗∼ and MRel which are cpo-enriched Cartesian
closed differential categories containing all the objects needed to interpret
Resource PCF soundly. However, for G⊗∼ and MRel, there is more to be
said.

Consider those arenas for which there exists a Q/A-labelling such that
every question enables a unique answer — this is a constraint on the shapes
of the trees, rather than additional structure. We write EGQA

∼ for the full
subcategory of EG∼ consisting of such arenas, and note that G⊗∼ embeds in
K!(FamRel(EGQA

∼)) by construction.

Lemma 8.1. For every such arena, the set of safe paths is non-empty.

Proof. We construct a safe path by induction on partial paths. Begin with
any root node. Having constructed a partial path s, consider the pending
question in s. If it enables any questions that do not appear in s, extend s
with one of them. Otherwise, extend s with the unique answer of the pending
question. If there is no pending question, extend s with any question enabled
by one of the answers in the P-view of s, if one exists, or an unplayed root
node, if one exists. If no such moves exist, s is a safe path.

Corollary 8.2. The unique functor > : EGQA
∼ → 1 is full. (This amounts

to the fact that the set of safe paths of A⊥]B is non-empty.)

This full functor extends through our constructions to a full functor from
K!(FamRel(EGQA

∼)) to K!(FamRel(1)). Moreover, the only idempotents
we make use of in the Karoubi envelope have the form

∑
f∈G f where G

is some group of automorphisms. In the case of Rel, these idempotents
are equivalence relations, and an object (A,') in K(Rel) is isomorphic to
(A/ ',=). The part of the Karoubi envelope that is used in our constructions
is therefore equivalent to Rel itself, with the comonad being the usual finite-
multiset comonad, and the Kleisli category being MRel. We therefore obtain
a full functor from G⊗∼ to MRel which preserves all the relevant structure.

27

This functor may be described concretely as follows. Given a complete
justified sequence s on a QA-arena, write |s| for the underlying multiset of
moves of s, partially ordered by the justification relation. The functor sends
an arena A to the set of all such pomsets, which we call the positions of
A. If s is a well-opened complete justified sequence on A⊥] B, |s| is a
pair consisting of a multiset of positions of A and a position of B. The
functor sends a map A→ B to the set of positions of its sequences. This is
essentially the “time-forgetting” map of [23], which here is functorial because
of ∼-closure.

Theorem 8.3. The models of Resource PCF in G⊗∼ and MRel have the finite
definability property: every finite element of the model is the denotation of
some term of Resource PCF.

Proof. For G⊗∼, we show that the ∼-closure of any finite set of complete
plays is the denotation of some term of Resource PCF. By ∼-closure, we
can restrict our attention to plays satisfying visibility and bracketing. The
argument is then a straightforward induction on the length of such plays,
following the steps in the definability proof for the innocent strategy model
of PCF [24].

Definability for MRel follows from the fullness of the positional collapse
of G⊗∼ onto MRel.

Theorem 8.4. The model of Resource PCF in MRel is fully abstract, that
is, for any terms M and N , [[M]] ⊆ [[N]] if and only if whenever CLMM ⇓ for
some context C, we also have CLNM ⇓.

Proof. As usual, soundness of the model together with the monotonicity of
all the constructs in its semantics if [[M]] ⊆ [[N]] and CLMM ⇓, we also have
CLNM ⇓. For the converse, let M and N be closed terms of type A such that
[[M]] 6⊆ [[N]]. There must be some a ∈ [[M]] \ [[N]]. By finite definability, the
relation {(a, 0)} : A→ nat is the denotation of some term x : A ` CLxM : nat.
Therefore [[CLMM]] = [[zero]] while [[CLNM]] = ∅, so CLMM ⇓ but CLNM 6⇓.

We remark that the above argument does not transfer to G⊗∼, because the
game-semantic equivalent of {(a, 0)} would not in general be ∼-closed, and
indeed this model is not fully abstract, for similar reasons to the failure of full
abstraction of the innocent strategy model of PCF [24]. For instance, the
model contains strategies for both left-to-right and right-to-left evaluation
of the addition function, but no ∼-closed strategy (and no Resource PCF
context) can distinguish these.

28

9. Conclusions

We have presented a construction of differential categories, along with
several examples. The construction allows us not only to construct new
differential categories, but also to recover some previously known ones, and
further, to analyse the structure and properties they possess; in particular,
a full abstraction result for the relational model of Resource PCF follows
directly from a definability result on the games model. There are several
refinements and other directions in which this work can be developed.

9.1. Further examples of differential categories

The relational model allows unconstrained creation and destruction of
resources: for any set A, and element a ∈ A there are relations a : I →
A = {(∗, a)} and a : A → I = {(a, ∗)}. Thus the definability and full
abstraction results for the relational model depend on the ability to write
programs in Resource PCF which can consume any inessential resources by
testing their arguments and ignoring the results, which is less straightforward
in the differential λ-calculus itself.

A simple refinement of the relational model starts from the observation
that there is a simple construction of a differential category from any com-
mutative monoid, (M,�, e). Applying the FamRel construction to M (as a
discrete symmetric monoidal category) yields a category in which:

• Objects are pairs (X, f), where X is a set and f : X →M is a function
determining a “weight” in M for each element in X.

• Morphisms from (X, f) to (Y, g) are relations R : X → Y such that
(x, y) ∈ R implies f(x) = g(y).

The symmetric monoidal structure on FamRel(M) is given by (X, f) ⊗
(Y, g) = (X × Y, λ〈x, y〉.f(x) � g(y)). FamRel(M) has symmetric tensor
powers: (A, f)n = (An, fn), where An is the set of unordered n-tuples over
A and fn{x1, . . . , xn} =

⊙n
i=1 f(xi). Since the union of disjoint sets is a

biproduct (as in Rel) the free cocommutative comonoid on (A, f) is the set
of the finite multisets on A, with the weight of each multiset being the sum
of the weight of its members.

If M is an abelian group then FamRel(M) is compact closed, and hence
symmetric monoidal closed, with (A, f) ((B, g) = (A×B, λ〈x, y〉.f(x)−1�
g(y)).

29

Weighting with values in M allows the creation and destruction of re-
sources to be controlled — the relations a : I → A and a : A → I are
morphisms only if a has weight zero. If we take M to be the integers (the
free abelian group), so that objects in FamRel(Int) are signed multisets,
we can capture one aspect of our games models — the quantity of resources
(moves) to be consumed — but not the order in which this occurs, via the
strong monoidal functor from EG into Int which sends each arena A to the
difference between the numbers of Opponent and Player moves in A: the
existence of an even length path on A→ B entails that the O/P differences
of A and B are equal. This lifts to a functor of differential categories: since
any arena for which there exists a Q/A labelling has a difference of zero, for
G⊗, and G⊗∼ this is equivalent to projection into MRel.

It would be interesting to explore examples of this kind in more detail, to
develop a range of models that explicitly capture resource usage in various
ways and understand the connections between them.

9.2. Further directions

For the examples in this paper, our construction has made the simplifying
assumption that the formal sums used to define symmetric tensor powers in
the Karoubi envelope are given by the same commutative monoid enrichment
required for a differential category, although the properties required of them
are distinct: idempotency in the first case, and associativity (and a unit) in
the second. As we have hinted, we are interested in models in which they
are not the same, although in any category enriched with both such struc-
tures, the idempotent n-ary sum must be a division by n of the commutative
monoid, in a formal sense. We believe this allows the Taylor expansion of
morphisms in a differential category to be made precise, and leads to some
more “quantitative” models of resource use. It also suggests an extension of
the syntax of the differential λ-calculus to include such a notion of division.

In this paper, we have confined our attention to the interpretation of
typed differentials: specifically, resource PCF. Further work is required to
investigate the requirements on a symmetric monoidal category to construct
a model of the untyped differential λ-calculus, and the relationship of that
model to the underlying category. In particular, the reflexive objects in our
categories of games remain to be studied.

Evidently, there is a wide variety of symmetric monoidal categories to
which our construction of free cocommutative comonoids and differential
categories may be applied: we have barely scratched the surface. Studying

30

some of these should bring further understanding of the differential operator,
and its potential applications: for example, SMCs with analytical properties
such as metric spaces. One intriguing observation is that the construction
of the Fock space of a Hilbert space, and its creation and annihilation oper-
ators appears to correspond to our construction of the free cocommutative
comonoid, and its differential operator. Can the syntax and semantics of
the differential λ-calculus be used to describe quantum mechanics and its
relationship with computation?

References

[1] T. Ehrhard, L. Regnier, The differential lambda-calculus, Theor. Com-
put. Sci. 309 (2003) 1–41.

[2] P. Tranquilli, Intuitionistic differential nets and lambda-calculus, The-
oretical Computer Science In Press, Corrected Proof (2010) –.

[3] G. Boudol, The lambda-calculus with multiplicities (abstract), in:
E. Best (Ed.), CONCUR, volume 715 of Lecture Notes in Computer
Science, Springer, 1993, pp. 1–6.

[4] A. Bucciarelli, T. Ehrhard, G. Manzonetto, Categorical models for sim-
ply typed resource calculi, Electronic Notes in Theoretical Computer
Science 265 (2010) 213 – 230. Proceedings of the 26th Conference on the
Mathematical Foundations of Programming Semantics (MFPS 2010).

[5] R. F. Blute, J. R. B. Cockett, R. A. G. Seely, Differential categories,
Mathematical. Structures in Comp. Sci. 16 (2006) 1049–1083.

[6] R. Harmer, G. McCusker, A fully abstract game semantics for finite
nondeterminism, in: Proceedings, Fourteenth Annual IEEE Symposium
on Logic in Computer Science, IEEE Computer Society Press, 1999, pp.
422 – 430.

[7] R. F. Blute, J. R. B. Cockett, R. A. G. Seely, Cartesian differential
categories, Theory and Applications of Categories 22 (2009) 622–672.

[8] J. Laird, G. Manzonetto, G. McCusker, Constructing differential cat-
egories and deconstructing categories of games, in: L. Aceto, M. Hen-
zinger, J. Sgall (Eds.), ICALP (2), volume 6756 of Lecture Notes in
Computer Science, Springer, 2011, pp. 186–197.

31

[9] M. Pagani, P. Tranquilli, Parallel reduction in resource lambda-calculus,
in: Z. Hu (Ed.), Programming Languages and Systems, 7th Asian Sym-
posium, APLAS 2009. Proceedings, volume 5904 of Lecture Notes in
Computer Science, Springer, 2009, pp. 226–242.

[10] G. Manzonetto, M. Pagani, Böhm’s theorem for resource lambda calcu-
lus through Taylor expansion, in: C.-H. L. Ong (Ed.), TLCA, volume
6690 of Lecture Notes in Computer Science, Springer, 2011, pp. 153–168.

[11] M. Pagani, S. R. D. Rocca, Linearity, non-determinism and solvability,
Fundam. Inform. 103 (2010) 173–202.

[12] T. Ehrhard, L. Regnier, Uniformity and the Taylor expansion of ordi-
nary lambda-terms, Theor. Comput. Sci. 403 (2008) 347–372.

[13] T. Ehrhard, L. Regnier, Böhm trees, Krivine’s machine and the Taylor
expansion of lambda-terms, in: A. Beckmann, U. Berger, B. Löwe, J. V.
Tucker (Eds.), CiE, volume 3988 of Lecture Notes in Computer Science,
Springer, 2006, pp. 186–197.

[14] R. Blute, T. Ehrhard, C. Tasson, A convenient differential category,
CoRR abs/1006.3140 (2010).

[15] A. Carraro, T. Ehrhard, A. Salibra, Exponentials with infinite multi-
plicities, in: A. Dawar, H. Veith (Eds.), CSL, volume 6247 of Lecture
Notes in Computer Science, Springer, 2010, pp. 170–184.

[16] P.-A. Melliès, N. Tabareau, C. Tasson, An explicit formula for the
free exponential modality of linear logic, in: S. Albers, A. Marchetti-
Spaccamela, Y. Matias, S. Nikoletseas, W. Thomas (Eds.), Automata,
Languages and Programming, volume 5556 of Lecture Notes in Com-
puter Science, Springer Berlin / Heidelberg, 2009, pp. 247–260.

[17] G. D. Plotkin, LCF considered as a programming language, Theor.
Comput. Sci. 5 (1977) 223–255.

[18] V. Danos, L. Regnier, Head Linear Reduction, Technical Report, Uni-
versité Paris 7 and Université Aix-Marseille 2, 2004.

[19] R. Harmer, Games and full abstraction for nondeterministic languages,
Ph.D. thesis, University of London, 1999.

32

[20] S. Abramsky, G. McCusker, Linearity, sharing and state: a fully abstract
game semantics for Idealized Algol with active expressions, in: P. W.
O’Hearn, R. D. Tennent (Eds.), Algol-like Languages, Birkhaüser, 1997,
pp. 297–329 of volume 2.

[21] S. Mac Lane, Categories for the Working Mathematician, Springer-
Verlag, Berlin, 1971.

[22] P.-A. Melliès, Asynchronous games 2: the true concurrency of innocence,
Theor. Comput. Sci. 358 (2006) 200–228.

[23] P. Baillot, V. Danos, T. Ehrhard, L. Regnier, Timeless games, in:
M. Nielsen, W. Thomas (Eds.), Computer Science Logic: 11th Inter-
national Workshop Proceedings, Lecture Notes in Computer Science,
Springer-Verlag, 1998, pp. 56–77.

[24] J. M. E. Hyland, C.-H. L. Ong, On full abstraction for PCF: I, II and
III, Information and Computation 162 (2000) 285–408.

33

