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Abstract

In this paper we show that the Stone representation the-
orem for Boolean algebras can be generalized to combi-
natory algebras. In every combinatory algebra there is a
Boolean algebra ofcentral elements(playing the role of
idempotent elements in rings), whose operations are defined
by suitable combinators. Central elements are used to rep-
resent any combinatory algebra as a Boolean product of
directly indecomposable combinatory algebras (i.e., alge-
bras which cannot be decomposed as the Cartesian prod-
uct of two other nontrivial algebras). Central elements are
also used to provide applications of the representation the-
orem to lambda calculus. We show that theindecomposable
semantics(i.e., the semantics of lambda calculus given in
terms of models of lambda calculus, which are directly in-
decomposable as combinatory algebras) includes the con-
tinuous, stable and strongly stable semantics, and the term
models of all semisensible lambda theories. In one of the
main results of the paper we show that the indecomposable
semantics is equationally incomplete, and this incomplete-
ness is as wide as possible: for every recursively enumer-
able lambda theoryT , there is a continuum of lambda the-
ories includingT which are omitted by the indecomposable
semantics.

1. Introduction

The lambda calculus is not a true equational theory since
the variable-binding properties of lambda abstraction pre-
vent variables in lambda calculus from operating as real al-
gebraic variables. Consequently the general methods that
have been developed in universal algebra, for defining the
semantics of an arbitrary algebraic theory for instance, are
not directly applicable. There have been several attempts to

∗ Work partially supported by the Equipe PPS of the University Paris
7-Denis Diderot, and by MIUR Cofin’04 FOLLIA Project.

reformulate the lambda calculus as a purely algebraic the-
ory. The earliest, and best known, algebraic models are the
combinatory algebras of Curry [14] and Schönfinkel [27].
Combinatory algebras have a simple purely equational char-
acterization and were used to provide an intrinsic first-order,
but not equational, characterization of the models of lambda
calculus, as a special class of combinatory algebras called
λ-models [3, Def. 5.2.7].

Topology is at the center of the known approaches to
giving models of the untyped lambda calculus. The first
model, found by Scott in 1969 in the category of alge-
braic lattices, was successfully used to show that all un-
solvableλ-terms can be consistently equated. After Scott,
a large number of mathematical models for lambda calcu-
lus, arising from syntax-free constructions, have been in-
troduced in various categories of domains and were clas-
sified into semantics according to the nature of their rep-
resentable functions, see e.g. [1, 3, 5, 6, 23]. Scott’s con-
tinuous semantics [28] is given in the category whose ob-
jects are complete partial orders and morphisms are Scott
continuous functions. The stable semantics (Berry [8]) and
the strongly stable semantics (Bucciarelli-Ehrhard [10]) are
a strengthening of the continuous semantics, introduced to
capture the notion of “sequential” Scott continuous func-
tion. All these semantics are structurally and equationally
rich [7, 17, 18] in the sense that it is possible to build up
2ℵ0 λ-models in each of them inducing, through the ker-
nel congruence relation of the interpretation function, pair-
wise distinct lambda theories. Nevertheless, the above de-
notational semantics are equationallyincomplete: they do
not match all possible operational semantics of lambda cal-
culus. The problem of the equational incompleteness was
positively solved by Honsell-Ronchi della Rocca [16] for
the continuous semantics and by Bastonero-Gouy [4, 15]
for the stable semantics. In [24, 25] Salibra has shown in a
uniform way that all semantics (including the strongly sta-
ble semantics), which involve monotonicity with respect to
some partial order and have a bottom element, fail to in-
duce a continuum of lambda theories.



Salibra [20, 25, 26] has recently launched a research pro-
gram for exploring lambda calculus and combinatory logic
using techniques of universal algebra. In [20] Lusin and Sal-
ibra have shown that a lattice identity is satisfied by all con-
gruence lattices of combinatory algebras iff it is trivial (i.e,
true in all lattices). As a consequence, it is not possible to
apply to combinatory algebras the nice results developed in
universal algebra (see [12, 21]) in the last thirty years, which
essentially connect lattice identities satisfied by all congru-
ence lattices of algebras in a variety, and Mal’cev condi-
tions (that characterize properties in varieties by the exis-
tence of suitable terms involved in certain identities). Thus
there is a common belief that lambda calculus and combi-
natory logic are algebraically pathological.

On the contrary, in this paper we show that combina-
tory algebras satisfy interesting algebraic properties. One
of the milestones of modern algebra is the Stone represen-
tation theorem for Boolean algebras, which was generalized
by Peirce to commutative rings with unit and next by Comer
to the class of algebras with Boolean factor congruences
(see [13, 19, 22]). By applying a theorem by Vaggione [30],
we show that Comer’s generalization of Stone representa-
tion theorem holds also for combinatory algebras: any com-
binatory algebra is isomorphic to a weak Boolean product
of directly indecomposable combinatory algebras (i.e., al-
gebras which cannot be decomposed as the Cartesian prod-
uct of two other nontrivial algebras). Another way to ex-
press the representation theorem is in terms of sheaves: any
combinatory algebra is isomorphic to the algebra of global
sections of a sheaf of indecomposable combinatory alge-
bras over a Boolean space.

The proof of the representation theorem for combinatory
algebras is based on the fact that every combinatory alge-
bra hascentral elements, i.e., elements which define a di-
rect decomposition of the algebra as the Cartesian product
of two other combinatory algebras, just like idempotent el-
ements in rings or complemented elements in bounded dis-
tributive lattices. We show that central elements constitute
a Boolean algebra, whose Boolean operations can be de-
fined by suitable combinators. This result highlights a con-
nection between propositional classic logic and combina-
tory logic. What is the real meaning of this flavour of clas-
sic logic within combinatory logic remains to be investi-
gated in the future. What we would like to emphasize here
is that central elements have been shown fundamental in the
application of the representation theorem to lambda calcu-
lus, as it will be explained in the next paragraph.

The representation theorem can be roughly summarized
as follows: the directly indecomposable combinatory alge-
bras are the ‘building blocks’ in the variety of combinatory
algebras. On the other hand, the result of incompleteness
[25], stating that any semantics of lambda calculus given in
terms of partial orderings with a bottom element is incom-

plete, removes the belief that partial orderings are intrin-
sic toλ-models. It would be interesting to find new Carte-
sian closed categories, where the partial orderings play no
role and the reflexive objects are directly indecomposable as
combinatory algebras. In this paper we investigate the class
of all models of lambda calculus, which are directly inde-
composable as combinatory algebras (indecomposable se-
mantics, for short). We show that the indecomposable se-
mantics includes: (i) the continuous semantics; (ii) the sta-
ble and strongly stable semantics restricted to models whose
underlying domain is algebraic; (iii) the term models of all
semisensible lambda theories (theories which do not equate
solvable and unsolvable terms). In one of the main results of
the paper we show that the indecomposable semantics is in-
complete, and this incompleteness is as wide as possible:
for every recursively enumerable lambda theoryT , there is
a continuum of lambda theories includingT which are omit-
ted by the indecomposable semantics.

It is unknown, in general, whether the set of lambda the-
ories, which are representable in a semantics of lambda cal-
culus, is a lattice with respect to the inclusion ordering. In
the last result of the paper we show that the set of lambda
theories representable in the continuous (stable) semantics
is not closed under finite intersection, so that it cannot con-
stitute a sublattice of the lattice of all lambda theories.

The paper is organized as follows. In Section 2 we review
the basic definitions of lambda calculus, combinatory logic
and universal algebra. In particular, we recall the formal
definitions of a model of lambda calculus and of a Boolean
product. The Stone representation theorem for combinatory
algebras is presented in Section 3, where it is also shown
that the central elements of a combinatory algebra constitute
a Boolean algebra, whose operations are defined by suitable
combinators. Section 4 is devoted to the algebraic incom-
pleteness of lambda calculus.

2. Notation and basic definitions

We will generally use the notation of Barendregt’s clas-
sic work [3] for lambda calculus and combinatory logic and
the notation of Burris and Sankappanavar [12] for univer-
sal algebra.

Since this paper spans several fields (logic, algebra, and
computation), which may each have their own vocabularies,
it may be useful to recall some basic terminology.

2.1. The untyped lambda calculus

Λ and Λo are, respectively, the set ofλ-terms and of
closedλ-terms. Concerning specificλ-terms we set:

I ≡ λx.x;T ≡ λxy.x;F ≡ λxy.y; Ω ≡ (λx.xx)(λx.xx).



A more traditional notation forT is K (when not viewed as
a boolean).

We will denoteαβ-conversion byλβ. A lambda theory
is a congruence onΛ (with respect to the operators of ab-
straction and application) which containsλβ; it can also
be seen as a (specific) set of equations betweenλ-terms.
The set of all lambda theories is naturally equipped with a
structure of complete lattice, hereafter denoted byλT , with
meet defined as set theoretical intersection. The join of two
lambda theoriesT andS is the least equivalence relation in-
cludingT ∪S. It is clear thatλβ is the least element ofλT ,
while the inconsistent lambda theoryΛ × Λ is the top ele-
ment ofλT .

The lambda theory generated (or axiomatized) by a set of
equations is the least lambda theory containing it. As a mat-
ter of notation,T ` M = N stands forM = N ∈ T ; this
is also written asM =T N . A lambda theoryT is consis-
tent if there exists at least an equationM = N such that
T 6` M = N .

Solvableλ-terms can be characterized as follows: aλ-
termM is solvable if, and only if, it has ahead normal form,
that is,M =λβ λx1 . . . xn.yM1 . . .Mk for somen, k ≥ 0
andλ-termsM1, . . . ,Mk. M ∈ Λ is unsolvableif it is not
solvable.
H is the lambda theory generated by equating all the un-

solvableλ-terms, whileH∗ is the unique maximal consis-
tent lambda theory such thatH ⊆ H∗. A lambda theoryT
is calledsemisensible[3, Def. 4.1.7(iii)] if T 6` M = N
wheneverM is solvable andN is unsolvable.T is semisen-
sible iff T ⊆ H∗. A lambda theoryT is sensibleif H ⊆ T
(see Section 10.2 and Section 16.2 in [3]).

2.2. Combinatory algebra

An applicative structureis an algebra with a distin-
guished2-ary function symbol which we callapplication.
We may write it infix ass · t, or even drop it entirely and
write st. As usual, application associates to the left;stu
means(st)u.

Scḧonfinkel and Curry discovered that a particularly sim-
ple applicative structure has tremendous expressive power
[27, 14]: acombinatory algebraC is an applicative struc-
ture for a signature with two constantsk ands, such that
kxy = x andsxyz = xz(yz) for all x, y, andz. See else-
where [14] for a full treatment.

Call k and s the basic combinators. In the equational
language of combinatory algebras the derived combinators
i and1 are defined asi ≡ skk and1 ≡ s(ki). It is not hard
to verify that every combinatory algebra satisfies the identi-
tiesix = x and1xy = xy.

We say thatc ∈ C representsa functionf : C → C
(and thatf is representable) if cz = f(z) for all z ∈ C. Call
c, d ∈ C extensionally equalwhen they represent the same

function inC. For examplec and1c are always extension-
ally equal. (We use1 below to select a canonical represen-
tative inside a class of extensionally equivalent elements.)

For each variablex we define a transformationλx∗ of
the set of combinatory terms as follows:λx∗.x = i. Let t
be a combinatory term different fromx. If x does not occur
in t, defineλx∗.t = kt. Otherwise,t must be of the formrs
wheres andr are combinatory terms, at least one of which
containsx; in this case defineλx∗.t = s(λx∗.r)(λx∗.s). It
is well known thatx does not occur inλx∗.t and that, for
every combinatory algebraC and combinatory termu, we
have:

C |= (λx∗.t)u = t[x := u],

where the combinatory termt[x := u] is obtained by sub-
stitutingu for x in t.

2.3. Lambda model

The axioms of an elementary subclass of combinatory
algebras, calledλ-modelsor models of the lambda calcu-
lus, were expressly chosen to make coherent the definition
of interpretation ofλ-terms (see [3, Def. 5.2.7]). LetC be
a λ-model and let̄c be a new symbol for eachc ∈ C. Ex-
tend the language of the lambda calculus by addingc̄ as a
new constant symbol for eachc ∈ C. Let Λo(C) be the set
of closedλ-terms with constants fromC. The interpretation
of terms inΛo(C) with elements ofC can be defined by in-
duction as follows (for allM,N ∈ Λo(C) andc ∈ C):

|c̄| = c; |(MN)| = |M | |N |; |λx.M | = 1m,

wherem ∈ C is any element representing the following
functionf : C → C:

f(c) = |M [x := c̄]|, for all c ∈ C.

TheMeyer-Scott axiomis the most important axiom in the
definition of aλ-model. In the first-order language of com-
binatory algebras it takes the following form

∀x∀y(∀z(xz = yz) ⇒ 1x = 1y).

The combinator1 becomes an inner choice operator, that
makes coherent the interpretation of an abstractionλ-term.

Eachλ-modelM induces a lambda theory, denoted here
by Th(M), and calledthe equational theory ofM. Thus,
M = N ∈ Th(M) if, and only if, M,N have the same
interpretation inM.

The term modelMT of a lambda theoryT (see [3,
Def. 5.2.11]) consists of the set of the equivalence classes
of λ-terms modulo the lambda theoryT together with the
operation of application on the equivalence classes. By [3,
Cor. 5.2.13(ii)]MT is aλ-model which induces the lambda
theoryT .

We define various notions of representability of theories
in classes of models.



Definition 1 Given a lambda theoryT ,

• A λ-modelM is a modelof T if T ⊆ Th(M).

• A λ-model M represents (or induces)T if
T = Th(M).

Definition 2 Given a classC of λ-models and a lambda
theoryT ,

1. C representsT if there is someM ∈ C representing
T .

2. C omitsT if there is noM∈ C representingT .

3. C is completefor the setS ⊆ λT of lambda theories
if C represents all elements ofS.

4. C is incompleteif it omits a consistent lambda theory.

2.4. Algebra

A congruenceθ on an algebraA is an equivalence re-
lation which is compatible with respect to the basic opera-
tion of the algebra. Write ConA for the set of congruences
of A. This has a natural complete lattice structure by inclu-
sion of sets (consideringθ as a subset ofA×A, so the meet
is just set-intersection).

θ is trivial if it is the top or bottom element in the natu-
ral inclusion ordering; write these∇A (equal toA×A) and
∆A (equal to{(a, a) | a ∈ A}) respectively. Also, given
a, b ∈ A write θ(a, b) for the least congruence relatinga
andb.

Given two congruencesσ and τ on the algebraA, we
can form therelative product:

τ ◦ σ = {(a, c) | aσbτc, for someb ∈ A}.

This is a compatible relation onA, but not necessarily a
congruence.

An algebraA is simplewhen its only congruences are
∆A and∇A.

An algebraA is asubdirect productof the algebras(Bi :
i ∈ I) if there exists an embeddingf of A into the direct
productΠi∈IBi such that the projectionπi ◦ f : A → Bi

is onto for everyi ∈ I. We writeA ≤ Πi∈IBi if A is a
subdirect product of the algebras(Bi : i ∈ I).

Call a nonempty classK of algebras of the same sim-
ilarity type avariety if it is closed under subalgebras, ho-
momorphic images and direct products. By Birkhoff’s the-
orem (see [21]) a class of algebras is a variety if, and only
if, it is an equational class (that is, it is axiomatized by a set
of equations).

2.5. Factor congruence

Call θ a factor congruencewhen there exists another
congruenceθ such thatθ ∩ θ = ∆A and∇A = θ ◦ θ. In

this case callθ andθ a pair of complementary factor con-
gruences.

It is easy to see thatA has a pair(θ, θ) of complemen-
tary factor congruences precisely when it is isomorphic to
B × C (with B isomorphic toA/θ andC isomorphic to
A/θ).

So factor congruences are another way of saying ‘this al-
gebra is a direct product of simpler algebras’.

The set of factor congruences ofA is not, in general, a
sublattice ofConA. ∆A and∇A are thetrivial factor con-
gruences, corresponding toA ∼= 1×A; of course,1 is iso-
morphic toA/∇A andA is isomorphic toA/∆A.

Call A directly indecomposablewhenFCA has two el-
ements (∆A and∇A).

Clearly, a simple algebra is directly indecomposable,
though there are algebras which are directly indecompos-
able but not simple (they just have congruences which do
not split the algebra up neatly as a Cartesian product).

It is useful to characterize factor congruences in terms
of algebra homomorphisms satisfying certain equalities (the
next step will be to express the equalities in the equational
language of the algebra itself).

A decomposition operation (see [21, Def. 4.32]) for an
algebraA is an algebra homomorphismf : A2 → A such
that

f(x, x) = x; f(f(x, y), z) = f(x, z) = f(x, f(y, z)).

By [21, Thm. 4.33] there exists a bijective correspondence
between pairs of complementary factor congruences and de-
composition operations, and thus between decomposition
operations and factorizationsA ∼= B×C.

By this intuition we see that the binary relationsθ andθ
defined by

x θ y iff f(x, y) = y; x θ y iff f(x, y) = x,

are a pair of complementary factor congruences, and con-
versely we see that for every pairθ andθ of complementary
factor congruences, the mapf defined by

f(x, y) = u iff x θ u θ y, (1)

is a decomposition operation. Notice that for anyx andy
there is just one elementu such thatx θ u θ y.

The reader can easily verify these facts for themselves,
or find proofs elsewhere [21].

An algebra hasBoolean factor congruencesif the factor
congruences form a Boolean sublattice of the congruence
lattice. Most known examples of varieties in which all al-
gebras have Boolean factor congruences are those withfac-
torable congruences, that is, varieties in which every con-
gruenceθ on A × B is a product congruenceθ1 × θ2 of
two congruencesθ1 ∈ ConA andθ2 ∈ ConB. Recall that
(b, c) θ1 × θ2 (b′, c′) iff b θ1 b′ andc θ2 c′.



2.6. Boolean product

The Boolean product construction (see [12, Chapter IV])
provides a method for translating numerous fascinating
properties of Boolean algebras into other varieties of alge-
bras. Actually the construction that we call “Boolean prod-
uct” has been known for several years as “the algebra of
global sections of sheaves of algebras over Boolean spaces”
(see [13, 19]); however the definition of the latter was un-
necessarily involved. We recall that a Boolean space is a
compact, Hausdorff and totally disconnected topological
space.

A weak Boolean productof an indexed family(Ai : i ∈
I) of algebras is a subdirect productA ≤ Πi∈IAi, whereI
can be endowed with a Boolean space topology so that

(i) the set{i ∈ I : ai = bi} is open for alla, b ∈ A, and

(ii) if a, b ∈ A andN is a clopen subset ofI, then the ele-
mentc, defined byci = ai for everyi ∈ N andci = bi

for everyi ∈ I −N , belongs toA.

A Boolean productis just a weak Boolean product such that
the set{i ∈ I : ai = bi} is clopen for alla, b ∈ A.

3. The Stone representation theorem for com-
binatory algebras

The axioms characterizing the variety of combinatory al-
gebras are suggested by an analysis of recursive processes,
not by logic (as for Boolean algebras and Heyting algebras)
or by algebra (as for groups and rings). Combinatory al-
gebras are never commutative, associative, finite and recur-
sive, so that there is a common belief that these algebras are
algebraically pathological.

On the contrary, in this section we show that combi-
natory algebras satisfy interesting algebraic properties: the
Stone representation theorem for Boolean algebras admits a
generalization to combinatory algebras.

3.1. Stone and Peirce

The Stone representation theorem for Boolean rings (the
observation that Boolean algebras could be regarded as
rings is due to Stone) admits a generalization, due to Peirce,
to commutative rings with unit (see [22] and [19, Chapter
V]). To make the reader familiar with the argument, we give
in this subsection an outline of Peirce construction.

Let A = (A,+, ·, 0, 1) be a commutative ring with unit,
and letE(A) = {a ∈ A : a · a = a} be the set of idempo-
tent elements ofA. We define a structure of Boolean alge-
bra onE(A) as follows, for alla, b ∈ E(A):

• a ∧ b = a · b;
• a ∨ b = a + b− (a · b);

• a− = 1− a.

Then it is possible to show that every idempotent element
a 6= 0, 1 defines a pairθ(a, 1), θ(a, 0) of nontrivial com-
plementary factor congruences, whereθ(a, 1) is the least
congruence containing the pair(a, 1) and similarly for the
other congruenceθ(a, 0). In other words, the ringA can
be decomposed in a non trivial way asA = A/θ(a, 1) ×
A/θ(a, 0). If E(A) = {0, 1}, thenA is directly indecom-
posable. Then the Peirce theorem for commutative rings
with unit can be stated as follows: every commutative ring
with unit is isomorphic to a Boolean product of directly in-
decomposable rings. IfA is a Boolean ring, then we get the
Stone representation theorem for Boolean algebras, because
the ring of truth values is the unique directly indecompos-
able Boolean ring.

The remaining part of this section is devoted to the proof
of the representation theorem for combinatory algebras.

3.2. The Boolean algebra of central elements

Combinatory logic and lambda calculus internalise many
important things (computability theory, for example). ‘To
be directly decomposable’ is another internalisable prop-
erty of these formalisms, as it will be shown in this sub-
section.

As a matter of notation, lett ≡ λxy∗.x andf ≡ λxy∗.y,
whereλxy∗ is defined in Section 2.2.

The combinatorst and f correspond to the constants0
and1 in a commutative ring with unit, while, as it will be
shown below, the so-called central elements of a combina-
tory algebra correspond to idempotent elements in a ring.
Central elements in universal algebra were introduced by
Vaggione in [31] and were used, among the other things,
to investigate the closure of varieties of algebras under
Boolean products.

Definition 3 Let A be a combinatory algebra. We say an
elemente ∈ A is centralwhen it satisfies the following
equations, for allx, y, z, t ∈ A:

(i) exx = x.

(ii) e(exy)z = exz = ex(eyz).

(iii) e(xy)(zt) = exz(eyt).

(iv) e = etf .

The set of central elements ofA will be denoted byE(A).
Every combinatory algebra admits at least two central el-

ements, namely the combinatorst andf. Now we show that
central elements, as idempotent elements in a ring, decom-
pose a combinatory algebraA as a Cartesian product: if
e ∈ E(A), thenA = A/θ(e, t) × A/θ(e, f). This will
be shown in the next proposition via decomposition oper-
ators. The use of decomposition operators to characterize
central elements is new.



Fix some combinatory algebra.

Proposition 4 There is a (natural) bijective correspon-
dence between central elements and decomposition opera-
tors.

Proof. Given a central elemente we obtain a decomposition
operator by takingfe(x, y) = exy. It is a simple exercise
to show that axioms (i)-(iii) of a central element makefe a
decomposition operator.

Conversely, given a decomposition operatorf , we have
to show that the elementf(t, f) is central. From Section 2.5
we have thatf(t, f) is the unique elementu satisfying
t θ u θ f , whereθ andθ are the pair of complementary fac-
tor congruences associated with the decomposition operator
f . Then, from the property of congruence ofθ andθ it fol-
lows, for allx, y:

txy θ f(t, f)xy θ fxy,

that implies
x θ f(t, f)xy θ y.

Since by definitionf(x, y) is the unique element satisfying

x θ f(x, y) θ y,

then we obtain

f(x, y) = f(t, f)xy (2)

Finally, the identities definingf as decomposition operator
makef(t, f) a central element.

It is easy to verify that these correspondences form the
two sides of a bijection. Ife is central, then the central ele-
mentfe(t, f) is equal toe, becausefe(t, f) = etf = e by
(iv). If f is a decomposition operator, then by (2) we have
thatff(t,f)(x, y) = f(t, f)xy = f(x, y) for all x, y.

For every central elemente, we denote respectively by
fe and by(θe, θe) the decomposition operator and the pair
of complementary factor congruences determined bye.

Corollary 5 If e is central, then we have:

1. x θe exy θe y;

2. x θe y iff exy = y; x θe y iff exy = x.

The congruenceθe is generated by the pair(e, t) (i.e.,
θe = θ(e, t)), while the congruenceθe by the pair(e, f)
(i.e.,θe = θ(e, f)).

We now show that the partial ordering over central ele-
ments, defined by

d ≤ e iff θd ⊆ θe (3)

is a Boolean ordering. The combinatorst andf are respec-
tively the bottom element and the top element of this order-
ing, while the combinatorsλxy∗.xty andλx∗.xft represent
respectively the meet operation and the complementation.

Theorem 6 Let A be a combinatory algebra. Then the al-
gebraE(A) = (E(A),∧,− ) of central elements ofA, de-
fined by

e ∧ d = etd; e− = eft,

is a Boolean algebra.

Proof. We first show that the factor congruences ofA
form a Boolean sublattice of the congruence lattice ConA.
Let A = B × C be a decomposition ofA as the direct
product of two combinatory algebrasB andC. It is easy to
show, by using the equations defining central elements, that
E(A) = E(B) × E(C), i.e., every central element ofA
can be decomposed as a pair of central elements ofB and
C. In the terminology of universal algebra this means that
A has no ‘skew factor congruences’. We get the conclu-
sion from [9, Prop. 1.3], where it is shown that an algebra
A has no skew factor congruences if, and only if, the fac-
tor congruences ofA form a Boolean sublattice of the con-
gruence lattice ConA.

It follows that the partial ordering on central elements,
defined in (3), is a Boolean ordering. We have to show now
that, for all central elementsd, e, the elementse− = eft
ande ∧ d = etd are central and are respectively associated
with the pairs(θe, θe) and(θe∩ θd, θe∨ θd) of complemen-
tary factor congruences (recall thate is associated with the
pair (θe, θe)).

We check the details foreft. By Cor. 5(1) we have that
eft is the unique elementu such thatt θe u θe f . By (1)
in Section 2.5 this means thateft = g(t, f) for the decom-
position operatorg associated with the pair(θe, θe) of com-
plementary factor congruences. We have the conclusion that
eft is central associated with the pair(θe, θe) as in the proof
of Prop. 4.

We now considere ∧ d = etd. First of all, we show
that etd = dte. By Cor. 5(1) we have thatt θe etd θe d,
while t θe dte θe d can be obtained as follows:t =
(by Def. 3(i)) dtt θe (by tθee) dte θe (by eθef) dtf =
(by Def. 3(iv)) d. Since there is a unique elementu such
that t θe u θe d, then we have the conclusiondte = etd.
We now show thatetd is the central element associated with
the factor congruenceθe ∩ θd, i.e.,

t (θe ∩ θd) etd (θe ∨ θd) f .

Fromdte = etd we easily get thatt θe etd andt θd etd,
that is, t (θe ∩ θd) etd. Finally, by Cor. 5 we have:
etd θe d = dtf θd f , i.e.,etd (θe ∨ θd) f .

We now provide the promised representation theorem. If
I is a maximal ideal of the Boolean algebraE(A), then∪I
denotes the congruence onA defined by

x (∪I) y iff x θe y for somee ∈ I.

By a Peirce variety(see [30]) we mean a variety of al-
gebras for which there are two constants0, 1 and a



term u(x, y, z, v) such that the following identities hold:
u(x, y, 0, 1) = x andu(x, y, 1, 0) = y.

Theorem 7 (Representation Theorem)Let A be a combi-
natory algebra andX be the Boolean space of maximal ide-
als of the Boolean algebraE(A) of central elements. Then
the map

f : A → ΠI∈X(A/ ∪ I),

defined by

f(x) = (x/ ∪ I : I ∈ X),

gives aweak Boolean product representation ofA, where
the quotient algebrasA/ ∪ I are directly indecomposable.

Proof. By Thm. 6 the set of factor congruences ofA
constitutes a Boolean sublattice of ConA. Then by [13]
f gives a weak Boolean product representation ofA. The
quotient algebrasA/ ∪ I are directly indecomposable by
[30, Thm. 8], because the variety of combinatory alge-
bras is a Peirce variety if we define1 ≡ t, 0 ≡ f and
u = λxyzv∗.zyx.

The mapf of the above theorem does not give in gen-
eral a Boolean product representation. This follows from
two results due to Vaggione [31] and to Plotkin-Simpson
[29]. Vaggione has shown that, if a variety has factorable
congruences (i.e., every congruence in a product is a prod-
uct of congruences) and every member of the variety can
be represented as a Boolean product of directly indecom-
posable algebras, then the variety is a discriminator variety
(see [12] for the terminology). Discriminator varieties sat-
isfy very strong algebraic properties, in particular they are
congruence permutable (i.e., the join of two congruences is
just their composition). Plotkin and Simpson have shown
that the property of having permutable congruences is in-
consistent with combinatory logic.

4. The algebraic incompleteness of lambda
calculus

The representation theorem of combinatory algebras can
be roughly summarized as follows: the directly indecom-
posable combinatory algebras are the ‘building blocks’ in
the variety of combinatory algebras. Then it is natural to
investigate the class of models of lambda calculus, which
are directly indecomposable as combinatory algebras (inde-
composable semantics, for short). In this section we show
that the indecomposable semantics includes: (i) the contin-
uous semantics; (ii) the stable and strongly stable semantics
restricted to models whose underlying domain is algebraic;
(iii) the term models of all semisensible lambda theories.
However, in one of the main results of the paper we give a
proof, based on central elements, that the indecomposable
semantics is incomplete, and this incompleteness is as wide

as possible: for every recursively enumerable lambda the-
ory T , there is a continuum of lambda theories including
T which are omitted by the indecomposable semantics. In
last result of the paper we show that the set of lambda the-
ories induced by each of the known semantics is not closed
under finite intersection, so that it cannot constitute a sub-
lattice of the lattice of lambda theories.

4.1. Internalising ‘indecomposable’

We have shown how to internally represent a factor con-
gruence as a central element. Now we show how to repre-
sent the logical assertion that the only factor congruences of
a combinatory algebra are trivial.

We recall that an algebraA is directly indecomposable
when it is not trivial and it is not isomorphic to a product of
two nontrivial algebras (i.e., there is not a pair of nontriv-
ial complementary factor congruences). A combinatory al-
gebraA is directly indecomposable ifE(A) = {t, f}.

For two combinatory termst and u, define the pair
[t, u] ≡ λz∗.ztu and, for every sequencet1, . . . , tn, define
[t1, . . . , tn] ≡ [t1, [t2, . . . , tn]].

Define the following combinatory terms:

• Z ≡ λe∗.[λx∗.exx, λxyz∗.e(exy)z, λxyz∗.exz,
λxyzu∗.e(xy)(zu), etf ];

• U ≡ λe∗.[λx∗.x, λxyz∗.exz, λxyz∗.ex(eyz),
λxyzu∗.exz(eyu), e].

Lemma 8 The classCADI of the directly indecomposable
combinatory algebras is a universal class (i.e., it is an ele-
mentary class which can be axiomatized by universal sen-
tences).

Proof. By Def. 3 we have thate is central if, and only
if, the equationZe = Ue holds. Then the classCADI is
axiomatized by the following universal formulaφ:

φ ≡ ∀e((Ze = Ue → e = t ∨ e = f) ∧ ¬(t = f)).

Corollary 9 The classCADI of the directly indecompos-
able combinatory algebras is closed under subalgebras and
ultraproducts.

4.2. Algebraic incompleteness

The closure of the class of directly indecomposable com-
binatory algebras under subalgebras is the key trick in the
proof of the algebraic incompleteness theorem.

Theorem 10 (The algebraic Incompleteness Theorem)The
indecomposable semantics is incomplete.



Proof. Let Ω ≡ (λx.xx)(λx.xx) be the usual looping
term of lambda calculus. Consider two arbitrary consistent
lambda theoriesT andS satisfying the following condi-
tions:

T ` Ω = T ; S ` Ω = F .

T and S exist becauseΩ is an easy term (see [3,
Prop. 15.3.9]), i.e., it can be equated consistently with
any other closed term. It is a simple exercise to ver-
ify that the lambda theoryT ∩ S contains all equa-
tions (i)-(iv) of Def. 3 for e = Ω, making the equiva-
lence class ofΩ a nontrivial central element in the term
model ofT ∩ S.

Assume, by the way of contradiction, that the semantics
given in terms of directly indecomposableλ-models is com-
plete, so that there is a directly indecomposableλ-modelA
such thatTh(A) = T ∩S. SinceA is directly indecompos-
able, thenA satisfies the universal formulaφ defined in the
proof of Lemma 8. Sinceφ is universal, every subalgebra of
A satisfiesφ. In particular, the term model ofT ∩ S satis-
fiesφ, so that it is directly indecomposable. This is a con-
tradiction, because the term model ofT ∩ S admitsΩ as a
nontrivial central element.

We have shown that theories exist with no indecompos-
able models, so that any class of models which excludes de-
composable models cannot be complete.

A lambda theory is semisensible if it does not equate a
solvable and an unsolvable lambda term. The most impor-
tant lambda theories are semisensible: for example, the min-
imal lambda theoryλβ and the minimal extensional lambda
theoryλη.

In the following theorem we show that, although the
class of directly indecomposableλ-models is incomplete,
it is so wide to include all term models of the semisensi-
ble lambda theories.

Theorem 11 The indecomposable semantics is complete
for the set of semisensible lambda theories.

Proof. We recall from Section 2.3 that the term model
of a lambda theory is a model of lambda calculus. Then the
conclusion of the theorem follows if we show that the term
model of every semisensible lambda theory is directly in-
decomposable. Assume, by the way of contradiction, that
there exists a semisensible lambda theoryT such that the
term modelMT of T admits a nontrivial central element
e. From the identityexx = x (see Def. 3) and from the hy-
pothesis onT it follows that e is a solvableλ-term. Since
the congruencesθe = θ(e,T ) and θe = θ(e,F ) on the
term model ofT are nontrivial, then the lambda theories
T1 andT2, generated respectively byT ∪ {F = e} and
T ∪ {T = e}, are consistent. By [3, Lemma 10.4.1(i)] it
is consistent to equate two solvableλ-terms only if they are
equivalent according to [3, Def. 10.2.9]. Then theλ-terme
should be equivalent toF andT . By Remark 10.2.20(ii) in

[3] this is possible only if the head variable ofexy, where
x andy are distinct variables, is equal tox and toy. This is
a contradiction. In conclusion, our hypothesis that there is
a semisensible lambda theoryT , whose term model has a
nontrivial central element, is contradictory.

4.3. Continuous, stable and strongly stable seman-
tics

We recall that an algebra issimplewhen it has just two
congruences (so that every simple algebra is directly inde-
composable).

In the next two theorems we give simple proofs of in-
completeness for the classic semantics of lambda calculus.

Theorem 12 (Honsell-Ronchi della Rocca [16])The se-
mantics of lambda calculus given in terms of continuous
models is incomplete.

Proof. Let M be a continuous model of lambda calcu-
lus. The functiong, defined by:g(x) = c if x 6≤ b and
g(x) = ⊥ otherwise, is Scott continuous for every arbitrary
elementc. We now show thatM is simple as a combina-
tory algebra. Letθ be a congruence onM such thata θ b
with a 6= b. We havea 6≤ b or b 6≤ a. Suppose that we are
in the first case. Since the continuous functiong is repre-
sentable in the model, then we have:⊥ = g(a) θ g(b) = c.
By the arbitrariness ofc we get thatθ is trivial, so thatM is
simple. The conclusion of the theorem follows from the al-
gebraic incompleteness theorem (see Thm. 10), because ev-
ery simple combinatory algebra is directly indecomposable.

The continuous functiong of the above proof is neither
stable nor strongly stable (see [5] for a full treatment of sta-
ble and strongly stable semantics).

Theorem 13 (Gouy-Bastonero [15, 4]; Salibra [24, 25])
The semantics of lambda calculus given in terms of stable
or strongly stable models, and whose underlying domain is
algebraic, is incomplete.

Proof. LetM be a (strongly) stable model of lambda cal-
culus. Takea, b ∈ M such thata 6= b. We havea 6≤ b or
b 6≤ a. Suppose that we are in the first case. Then there is
a compact elementd of M such thatd ≤ a andd 6≤ b.
The step functionf defined by :f(x) = c if x ≥ d and
f(x) = ⊥ otherwise, is stable, and strongly stable for ev-
ery elementc. This functionf can be used to show that ev-
ery congruence onM is trivial as in the proof of Thm. 12.
Then the conclusion is again a consequence of the algebraic
incompleteness theorem.

We do not know whether the stable and strongly stable
models, whose underlying domains arenotalgebraic, are di-
rectly indecomposable as combinatory algebras.



Given a classC of λ-models, we denote byλC the set
of lambda theories which are representable inC (see Sec-
tion 2.3). It is unknown, in general, whetherλC is a lattice
with respect to the inclusion ordering of sets and whether
λC is a sublattice of the latticeλT of lambda theories. In
the remaining part of this subsection we show for each of
the classic semantics of lambda calculus that the setλC is
not closed under finite intersection, so that it is not a sublat-
tice of the latticeλT of lambda theories.

Theorem 14 Let C be a class of directly indecomposable
models of lambda calculus. If there are two consistent
lambda theoriesT ,S ∈ λC such that

T ` Ω = T ; S ` Ω = F ,

thenλC is not closed under finite intersection, so it is not a
sublattice ofλT .

Proof. The term model ofT ∩S admits a nontrivial cen-
tral elementΩ, so that it is directly decomposable. It fol-
lows thatT ∩ S /∈ λC.

We recall that the graphλ-models (see, for example,
[6, 11]) and the filterλ-models (see, for example, [2]) are
classes of models within the continuous semantics.

Corollary 15 Let C be one of the following semantics:
graph semantics, filter semantics, continuous semantics and
stable semantics (this last semantics restricted to models
whose underlying domain is algebraic). ThenλC is not a
sublattice ofλT .

Proof. Semantic proofs thatΩ is an easy term were given
in each of the semantics specified in the statement of the the-
orem (see [5]). Then the conclusion follows from Thm. 14,
because the models in each of these semantics are directly
indecomposable as combinatory algebras.

4.4. Concerning the number of decomposable
models

We have shown that lambda theories exist with no inde-
composable models. Now we can askhow manysuch theo-
ries there are. Is there some sense in which ‘most’ theories
have an indecomposable model?

On the contrary, in this section we shall see that it is the
directly indecomposable models which are the exception.

First of all we need some results about theories.
The proof of following lemma is similar to that of [3,

Prop. 17.1.9], where the casek = 1 (due to Visser) is
shown, and it is omitted.

Lemma 16 SupposeT is a recursively enumerable (r.e.)
lambda theory and fix arbitrary termsMi, Ni for 1 ≤ i ≤ k
which are not provably equal inT , that is, such thatT 6`
Mi = Ni for all i. Then there exists a termM such that

T ∪{M = P} 6` Mi = Ni, for all i and all closed termsP .

Then the following theorem is a corollary of the alge-
braic incompleteness theorem.

Theorem 17 Let T be an r.e. lambda theory. Then, the
interval [T ) = {S : T ⊆ S} contains a subinterval
[S1,S2] = {S : S1 ⊆ S ⊆ S2}, constituted by a con-
tinuum of lambda theories, satisfying the following condi-
tions:

• S1 andS2 are r.e. lambda theories;

• EveryS ∈ [S1,S2] is omitted by the indecomposable
semantics (in particular,S is omitted by the continu-
ous, stable and strongly stable semantics).

Proof. The proof is divided into claims.
We first constructS1. We recall that aλ-termQ isT -easy

when, for every fixed closedλ-term P , the lambda theory
generated byT ∪ {Q = P} is consistent.

Claim 18 There exists aT -easyλ-termQ.

By Lemma 16.

Claim 19 T 6` Q = T andT 6` Q = F .

Trivial, becauseQ is T -easy.

Let S1 = T1 ∩ T2, whereT1 and T2 are the consistent
lambda theories generated respectively byT ∪ {Q = T }
andT ∪ {Q = F }.

Claim 20 The lambda theoryS1 is r.e. and containsT .

S1 is r.e., because it is intersection of two r.e. lambda the-
ories. The other property follows fromT ⊆ T1 ∩ T2 = S1.

Claim 21 The term model ofS1 has a non trivial central
elemente.

Let e = [Q]S1 be the equivalence class of the lambda
term Q. It is easy to show thate satisfies the equation of
Def. 3. Moreover,e is not trivial becauseS1 6` Q = T and
S1 6` Q = F .

We now define the lambda theoryS2.

Claim 22 There exists an r.e. lambda theoryS2, which is a
proper extension ofS1, such thatS2 6` Q = T andS2 6`
Q = F .

We apply Lemma 16 to the lambda theoryS1 and to the
equationsQ = T andQ = F . We get aS1-easy termR
such thatS1 ∪ {R = P} 6` Q = T andS1 ∪ {R = P} 6`
Q = F , for all lambda termsP . LetS2 = S1∪{R = λx.x}.
S2 is a proper extension ofS1 because otherwiseR would
not be aS1-easy term.

Claim 23 The equivalence class ofQ is a non trivial cen-
tral element of the term model ofS2.



The term modelMS2 of S2 is a homomorphic image of
the term modelMS1 of S1. Then, every equation satisfied
by MS1 is also satisfied byMS2 . In particular, the equa-
tions characterizingQ as a central element. Finally,[Q]S2

is nontrivial as a central element becauseS2 6` Q = T and
S2 6` Q = F .

Claim 24 For every lambda theoryU such thatS1 ⊆ U ⊆
S2 the equivalence class ofQ is non trivial central element
of the term model ofU .

We get the conclusion of the theorem because the in-
terval [S1,S2] has a continuum of elements (see [3,
Cor. 17.1.11]).
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algébriques des modéles stables duλ-calcul. Th̀ese, Univer-
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