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Abstract reformulate the lambda calculus as a purely algebraic the-
ory. The earliest, and best known, algebraic models are the
In this paper we show that the Stone representation the-combinatory algebras of Curry [14] and Sctiinkel [27].

orem for Boolean algebras can be generalized to combi- Combinatory algebras have a simple purely equational char-
natory algebras. In every combinatory algebra there is a acterization and were used to provide an intrinsic first-order,
Boolean algebra otentral elementgplaying the role of  but not equational, characterization of the models of lambda
idempotent elements in rings), whose operations are definectalculus, as a special class of combinatory algebras called
by suitable combinators. Central elements are used to rep-\-models [3, Def. 5.2.7].
resent any combinatory algebra as a Boolean product of ,
directly indecomposable combinatory algebras (i.e., alge- _ 10P0logy is at the center of the known approaches to
bras which cannot be decomposed as the Cartesian prod-91ving models of the untyped lambda calculus. The first
uct of two other nontrivial algebras). Central elements are Model, found by Scott in 1969 in the category of alge-
also used to provide applications of the representation the- Praic lattices, was successfully used to show that all un-
orem to lambda calculus. We show that théecomposable solvableA-terms can be conglstently equated. After Scott,
semanticg(i.e., the semantics of lambda calculus given in & 1arge number of mathematical models for lambda calcu-
terms of models of lambda calculus, which are directly in- 1US; arising from syntax-free constructions, have been in-
decomposable as combinatory algebras) includes the con-reduced in various categories of domains and were clas-
tinuous, stable and strongly stable semantics, and the termSified into semantics according to the nature of their rep-
models of all semisensible lambda theories. In one of the'€Sentable functions, see e.g. [1, 3, 5, 6, 23]. Scott's con-
main results of the paper we show that the indecomposableinuous semantics [28] is given in the category whose ob-
semantics is equationally incomplete, and this incomplete-1€CtS aré complete partial orders and morphisms are Scott
ness is as wide as possible: for every recursively enumer-continuous functions. The_stable se_manycs (Berry [8]) and
able lambda theory, there is a continuum of lambda the- the strongly stable semantics (Bucciarelli-Ehrhard [10]) are

ories includingl” which are omitted by the indecomposable & strengthening of the continuous semantics, introduced to
semantics. capture the notion of “sequential” Scott continuous func-

tion. All these semantics are structurally and equationally
rich [7, 17, 18] in the sense that it is possible to build up
2% \-models in each of them inducing, through the ker-
1. Introduction nel congruence relation of the interpretation function, pair-
wise distinct lambda theories. Nevertheless, the above de-
The lambda calculus is not a true equational theory sincenotational semantics are equationatgzomplete they do
the variable-binding properties of lambda abstraction pre- not match all possible operational semantics of lambda cal-
vent variables in lambda calculus from operating as real al-culus. The problem of the equational incompleteness was
gebraic variables. Consequently the general methods thapositively solved by Honsell-Ronchi della Rocca [16] for
have been developed in universal algebra, for defining thethe continuous semantics and by Bastonero-Gouy [4, 15]
semantics of an arbitrary algebraic theory for instance, arefor the stable semantics. In [24, 25] Salibra has shown in a
not directly applicable. There have been several attempts tauniform way that all semantics (including the strongly sta-
ble semantics), which involve monotonicity with respect to

*  Work partially supported by the Equipe PPS of the University Paris some partial order and have a bottom element, fail to in-
7-Denis Diderot, and by MIUR Cofin'04 FOLLIA Project. duce a continuum of lambda theories.




Salibra [20, 25, 26] has recently launched a research proplete, removes the belief that partial orderings are intrin-
gram for exploring lambda calculus and combinatory logic sic to A-models. It would be interesting to find new Carte-
using techniques of universal algebra. In [20] Lusin and Sal- sian closed categories, where the partial orderings play no
ibra have shown that a lattice identity is satisfied by all con- role and the reflexive objects are directly indecomposable as
gruence lattices of combinatory algebras iff it is trivial (i.e, combinatory algebras. In this paper we investigate the class
true in all lattices). As a consequence, it is not possible to of all models of lambda calculus, which are directly inde-
apply to combinatory algebras the nice results developed incomposable as combinatory algebraslécomposable se-
universal algebra (see [12, 21]) in the last thirty years, which mantics for short). We show that the indecomposable se-
essentially connect lattice identities satisfied by all congru- mantics includes: (i) the continuous semantics; (ii) the sta-
ence lattices of algebras in a variety, and Mal’cev condi- ble and strongly stable semantics restricted to models whose
tions (that characterize properties in varieties by the exis-underlying domain is algebraic; (iii) the term models of all
tence of suitable terms involved in certain identities). Thus semisensible lambda theories (theories which do not equate
there is a common belief that lambda calculus and combi- solvable and unsolvable terms). In one of the main results of
natory logic are algebraically pathological. the paper we show that the indecomposable semantics is in-

On the contrary, in this paper we show that combina- complete, and this incompleteness is as wide as possible:
tory algebras satisfy interesting algebraic properties. Onefor every recursively enumerable lambda thediythere is
of the milestones of modern algebra is the Stone represen continuum of lambda theories includifigvhich are omit-
tation theorem for Boolean algebras, which was generalizedted by the indecomposable semantics.
by Peirce to commutative rings with unit and next by Comer  Itis unknown, in general, whether the set of lambda the-
to the class of algebras with Boolean factor congruencesories, which are representable in a semantics of lambda cal-
(see[13, 19, 22]). By applying a theorem by Vaggione [30], culus, is a lattice with respect to the inclusion ordering. In
we show that Comer’s generalization of Stone representa-the last result of the paper we show that the set of lambda
tion theorem holds also for combinatory algebras: any com-theories representable in the continuous (stable) semantics
binatory algebra is isomorphic to a weak Boolean product is not closed under finite intersection, so that it cannot con-
of directly indecomposable combinatory algebras (i.e., al- stitute a sublattice of the lattice of all lambda theories.
gebras which cannot be decomposed as the Cartesian prod- The paper is organized as follows. In Section 2 we review
uct of two other nontrivial algebras). Another way to ex- the basic definitions of lambda calculus, combinatory logic
press the representation theorem is in terms of sheaves: angnd universal algebra. In particular, we recall the formal
combinatory algebra is isomorphic to the algebra of global definitions of a model of lambda calculus and of a Boolean
sections of a sheaf of indecomposable combinatory alge-product. The Stone representation theorem for combinatory
bras over a Boolean space. algebras is presented in Section 3, where it is also shown

The proof of the representation theorem for combinatory that the central elements of a combinatory algebra constitute
a|geb|’as is based on the fact that every Combinatory a|ge_a Boolean algebra, whose Operations are defined by suitable
bra hascentral elementsi.e., elements which define a di- Ccombinators. Section 4 is devoted to the algebraic incom-
rect decomposition of the algebra as the Cartesian producpleteness of lambda calculus.
of two other combinatory algebras, just like idempotent el-
erneqts in rings or complemented elements in boundeq dls-2_ Notation and basic definitions
tributive lattices. We show that central elements constitute
a Boolean algebra, whose Boolean operations can be de-
fined by suitable combinators. This result highlights a con-
nection between propositional classic logic and combina-
tory logic. What is the real meaning of this flavour of clas-
sic logic within combinatory logic remains to be investi- sal glgebra.. ! ,
gated in the future. What we would like to emphasize here Since t,h's paper spans several flelds_ (logic, algebra, _and
is that central elements have been shown fundamental in thé:omputatlon), which may each havg their own vocabularies,
application of the representation theorem to lambda calcu-'t May be useful to recall some basic terminology.
lus, as it will be explained in the next paragraph.

The representation theorem can be roughly summarized2.1. The untyped lambda calculus
as follows: the directly indecomposable combinatory alge-
bras are the ‘building blocks’ in the variety of combinatory A and A° are, respectively, the set ofterms and of
algebras. On the other hand, the result of incompletenesslosed\-terms. Concerning specificterms we set:
[25], stating that any semantics of lambda calculus given in
terms of partial orderings with a bottom element is incom- I = Az.x; T = Azy.a; F = Azy.y; Q = (\z.zz)(Az.ax).

We will generally use the notation of Barendregt’s clas-
sic work [3] for lambda calculus and combinatory logic and
the notation of Burris and Sankappanavar [12] for univer-



A more traditional notation fof" is K (when not viewed as
a boolean).

We will denotea3-conversion byAS3. A lambda theory
is a congruence oA (with respect to the operators of ab-
straction and application) which containg; it can also
be seen as a (specific) set of equations betwe&srms.

function in C. For example: and1c¢ are always extension-

ally equal. (We usd below to select a canonical represen-

tative inside a class of extensionally equivalent elements.)
For each variable: we define a transformatiohz™ of

the set of combinatory terms as followst*.z = i. Lett

be a combinatory term different from If = does not occur

The set of all lambda theories is naturally equipped with a in ¢, defineAz*.t = k¢. Otherwisef must be of the formrs

structure of complete lattice, hereafter denoted\By with

wheres andr are combinatory terms, at least one of which

meet defined as set theoretical intersection. The join of two containse; in this case defingz*.t = s(Az*.r)(Az*.s). It

lambda theorie$’ andsS is the least equivalence relation in-
cludingZ'U S. Itis clear that\§ is the least element ofT,
while the inconsistent lambda theofiyx A is the top ele-
ment of A7 .

is well known thatr does not occur il\x*.t and that, for
every combinatory algebr@ and combinatory term, we
have:

C | (A" .t)u =tz :=ul,

The lambda theory generated (or axiomatized) by a set Ofyyhere the combinatory termiz := ] is obtained by sub-
equations is the least lambda theory containing it. As a mat-gtjtyting« for x in t.

ter of notation,I" = M = N stands forM = N € T, this
is also written as\/ =1 N. A lambda theoryI is consis-
tent if there exists at least an equatidh = N such that
THM=N.

Solvable)\-terms can be characterized as follows\-a
term M is solvable if, and only if, it has aead normal form
thatis,M =xg Az1...zn.yM; ... M for somen,k > 0
and\-termsMy, ..., M. M € A is unsolvabléf it is not
solvable.

2.3. Lambda model

The axioms of an elementary subclass of combinatory
algebras, called\-modelsor models of the lambda calcu-
lus, were expressly chosen to make coherent the definition
of interpretation of\-terms (see [3, Def. 5.2.7]). L&t be
a A\-model and let be a new symbol for eache C. Ex-
tend the language of the lambda calculus by addiag a

H is the lambda theory generated by equating all the un-new constant symbol for eache C. Let A°(C) be the set

solvableX-terms, whileH* is the unique maximal consis-
tent lambda theory such that C H*. A lambda theoryl’
is calledsemisensibl¢3, Def. 4.1.7(ii)] if T ¥ M = N
wheneverM is solvable andV is unsolvableT" is semisen-
sible iff T' C ‘H*. A lambda theoryl" is sensiblaéf H C T
(see Section 10.2 and Section 16.2 in [3]).

2.2. Combinatory algebra

An applicative structureis an algebra with a distin-
guished2-ary function symbol which we calipplication
We may write it infix ass - ¢, or even drop it entirely and
write st. As usual, application associates to the lefi;
meang st)u.

Schdnfinkel and Curry discovered that a particularly sim-

of closed\-terms with constants frod'. The interpretation
of terms inA°(C) with elements of” can be defined by in-
duction as follows (for ali/, N € A°(C) andc € C):

el = ¢ [(MN)] = [M| [N]; [Ae.M]| = 1m,

wherem € C is any element representing the following

functionf : C' — C:
fle)=|M[z:=¢]|, forallceC.

The Meyer-Scott axions the most important axiom in the
definition of ax\-model. In the first-order language of com-
binatory algebras it takes the following form

VaVy(Vz(zz = yz) = 1a = 1y).

The combinatorl becomes an inner choice operator, that

ple applicative structure has tremendous expressive powemakes coherent the interpretation of an abstractioerm.

[27, 14]: acombinatory algebraC is an applicative struc-
ture for a signature with two constaritsands, such that
kxy = x andszyz = x2(yz) for all z, y, andz. See else-
where [14] for a full treatment.

Call k ands the basic combinatorsin the equational

EachA-model M induces a lambda theory, denoted here
by Th(M), and calledhe equational theory oM. Thus,
M = N € Th(M) if, and only if, M, N have the same
interpretation inM.

The term modelMy of a lambda theoryl" (see [3,

language of combinatory algebras the derived combinatorsDef. 5.2.11]) consists of the set of the equivalence classes

i and1 are defined as= skk and1 = s(ki). It is not hard

of A-terms modulo the lambda theofy together with the

to verify that every combinatory algebra satisfies the identi- operation of application on the equivalence classes. By [3,

tiesiz = x andlzy = xy.
We say that € C representsa functionf : C — C
(and thatf is representablgif cz = f(z) forall z € C. Call

Cor. 5.2.13(ii)JM ¢ is aA-model which induces the lambda
theoryT'.
We define various notions of representability of theories

¢,d € C extensionally equakhen they represent the same in classes of models.



Definition 1 Given a lambda theor¥’,
o A \-modelM isa modelof T' if T C Th(M).

e A X-model M
T =Th(M).

represents (or induces)l’ if

Definition 2 Given a classC of A\-models and a lambda
theoryT,

1. C representd’ if there is someM € C representing
T.

2. ComitsT if there is noM € C representindl.

3. C is completefor the setS C AT of lambda theories
if C represents all elements 6&f

4. Cisincompletdf it omits a consistent lambda theory.

2.4. Algebra

A congruence) on an algebraA is an equivalence re-
lation which is compatible with respect to the basic opera-
tion of the algebra. Write Cah for the set of congruences
of A. This has a natural complete lattice structure by inclu-
sion of sets (consideringas a subset ofl x A, so the meet
is just set-intersection).

0 is trivial if it is the top or bottom element in the natu-
ral inclusion ordering; write thesé? (equal toA x A) and
AA (equal to{(a,a) | a € A}) respectively. Also, given
a,b € A write 0(a,b) for the least congruence relating
andb.

Given two congruences and7 on the algebraA, we
can form theelative product

Too ={(a,c) | acbre, for someb € A}.

This is a compatible relation oA, but not necessarily a
congruence.

An algebraA is simplewhen its only congruences are
AA andVA.

An algebraA is asubdirect productf the algebra¢B; :
i € I) if there exists an embeddingof A into the direct
productll;-;B; such that the projection; o f : A — B;
is onto for everyi € I. We write A < II;¢/B; if Ais a
subdirect product of the algebréB,; : i € I).

Call a nonempty clas&’ of algebras of the same sim-
ilarity type avariety if it is closed under subalgebras, ho-
momorphic images and direct products. By Birkhoff’s the-

this case calp and@ a pair of complementary factor con-
gruences

It is easy to see thaA has a pair(d, #) of complemen-
tary factor congruences precisely when it is isomorphic to
B x C (with B isomorphic toA /6 and C isomorphic to
A/0).

So factor congruences are another way of saying ‘this al-
gebrais a direct product of simpler algebras’.

The set of factor congruences Afis not, in general, a
sublattice ofCon A. A andV# are thetrivial factor con-
gruences, corresponding 0= 1 x A; of course|l is iso-
morphic toA /VA andA is isomorphic toA /A4,

Call A directly indecomposablehenFCA has two el-
ements A* andV4).

Clearly, a simple algebra is directly indecomposable,
though there are algebras which are directly indecompos-
able but not simple (they just have congruences which do
not split the algebra up neatly as a Cartesian product).

It is useful to characterize factor congruences in terms
of algebra homomaorphisms satisfying certain equalities (the
next step will be to express the equalities in the equational
language of the algebra itself).

A decomposition operation (see [21, Def. 4.32]) for an
algebraA is an algebra homomorphisg: A2 — A such
that

[, z) =2 [(f(2,y),2) = [z, 2) = (2, [(y,2))-

By [21, Thm. 4.33] there exists a bijective correspondence
between pairs of complementary factor congruences and de-
composition operations, and thus between decomposition
operations and factorizationss =~ B x C.

By this intuition we see that the binary relatiohandd
defined by

w0y iff f(z,y)=y; x0yiff f(z,y) ==,

are a pair of complementary factor congruences, and con-
versely we see that for every pdiandd of complementary
factor congruences, the mgdefined by

flz,y)=u iff z0ufy, Q)

is a decomposition operation. Notice that for anyandy
there is just one elementsuch that: 6 u 0 3.

The reader can easily verify these facts for themselves,
or find proofs elsewhere [21].

orem (see [21]) a class of algebras is a variety if, and only  An algebra haBoolean factor congruencéthe factor
if, it is an equational class (that is, it is axiomatized by a set congruences form a Boolean sublattice of the congruence

of equations).

2.5. Factor congruence

Call ¢ a factor congruencevhen there exists another
congruencd such thatt N = A% andVA = Ao 6. In

lattice. Most known examples of varieties in which all al-
gebras have Boolean factor congruences are thosdawith
torable congruencesghat is, varieties in which every con-
gruenced on A x B is a product congruena® x 6y of
two congruence8; € ConA andf, € ConB. Recall that
(b, C) 61 x 64 (b/, C/) iff b 01 b ande 0 c.



2.6. Boolean product ea =1-—a.

Then it is possible to show that every idempotent element
a # 0,1 defines a paif(a, 1), 0(a,0) of nontrivial com-
plementary factor congruences, whée, 1) is the least
congruence containing the pdir, 1) and similarly for the

The Boolean product construction (see [12, Chapter IV])
provides a method for translating numerous fascinating
properties of Boolean algebras into other varieties of alge-
bras. Actually the construction that we call “Boolean prod- :

. p other congruencé(a,0). In other words, the ringA can
uct” has been known for several years as “the algebra of ; g

. he decomposed in a non trivial way &s= A /6(a,1) x
global sections of sheaves of algebras over Boolean spaces L .
) 2 A/0(a,0). If E(A) = {0,1}, thenA is directly indecom-
(see [13, 19]); however the definition of the latter was un- ) S
o . _posable. Then the Peirce theorem for commutative rings
necessarily involved. We recall that a Boolean space is a

. .~ _“with unit can be stated as follows: every commutative ring
compact, Hausdorff and totally disconnected topological _ . L ) ) .
space with unit is isomorphic to a Boolean product of directly in-

A weak Boolean produaitan indexed famib(A, + 1 € guo oS B B TR e, e e e
I) of algebras is a subdirect produtt< II;c ;A ;, wherel P 9 '

can be endowed with a Boolean space topology so that the ring of truth values is the unique directly indecompos-
able Boolean ring.

() theset{i € I : a; = b;} is open for alla,b € A, and The remaining part of this section is devoted to the proof

(ii) if a,b e AandN is a clopen subset df, then the ele- of the representation theorem for combinatory algebras.

mentc, defined by:; = a; for everyi € N andc; = b;
for everyi € I — N, belongs ta. 3.2. The Boolean algebra of central elements

A Boolean producis just a weak Boolean product suchthat  Combinatory logic and lambda calculus internalise many

the set{i € I : a; = b;} is clopen for alla, b € A. important things (computability theory, for example). ‘To
be directly decomposable’ is another internalisable prop-

3. The Stone representation theorem for com-  erty of these formalisms, as it will be shown in this sub-

binatory algebras section. _
As a matter of notation, ldét= Axy*.z andf = \zy*.y,

The axioms characterizing the variety of combinatory al- WhereAzy” is.defined in Section 2.2.
gebras are suggested by an analysis of recursive processes, Th? combinators .and'f COI'I'.eSpOI"ld to .the constarfls
gebras are never commutative, associative, finite and recurlory algebra correspond to idempotent elements in a ring.
sive, so that there is a common belief that these algebras ar&€ntral elements in universal algebra were introduced by
algebraically pathological. Vaggione in [31] and were used, among the other things,
On the contrary, in this section we show that combi- to investigate the closure of varieties of algebras under
natory algebras satisfy interesting algebraic properties: theBoolean products.

Stone representation theorem for Boolean algebras admits @efinition 3 Let A be a combinatory algebra. We say an
generalization to combinatory algebras. elemente € A is centralwhen it satisfies the following
equations, for all;, y, 2z, t € A:

3.1. Stone and Peirce () cxz =2
The Stone representation theorem for Boolean rings (the (i) e(exy)z = exz = ex(eyz).

observation that Boolean algebras could be regarded agiii) e(xy)(zt) = exz(eyt).

rings is due to Stone) admits a generalization, due to Peirce,(iv) ¢ — otf

to commutative rings with unit (see [22] and [19, Chapter '

V]). To make the reader familiar with the argument, we give The set of central elements &f will be denoted by (A ).

in this subsection an outline of Peirce construction. Every combinatory algebra admits at least two central el-
Let A = (A, +,-,0,1) be a commutative ring with unit, ~ements, namely the combinatarandf. Now we show that

and letE(A) = {a € A : a-a = a} be the set of idempo- ~ central elements, as idempotent elements in a ring, decom-

tent elements ofd. We define a structure of Boolean alge- Pose a combinatory algebra as a Cartesian product: if

bra onE(A) as follows, for alla, b € E(A): e € E(A), thenA = A/f(e,t) x A/0(e,f). This will

be shown in the next proposition via decomposition oper-

ators. The use of decomposition operators to characterize

eaVb=a+b—(a-b) central elements is new.

e aANb=ua-b;



Fix some combinatory algebra. Theorem 6 Let A be a combinatory algebra. Then the al-

Proposition 4 There is a (natural) bijective correspon- gebraE(A) = (E(A), A7) of central elements o4, de-

dence between central elements and decomposition opera]flnecj by _

t eNd=etd;, e = eft,

ors.

Proof. Given a central elementwe obtain a decomposition 'S @ Boolean algebra.

operator by takingf.(z,y) = exy. It is a simple exercise Proof. We first show that the factor congruencesAf

to show that axioms (i)-(iii) of a central element makea form a Boolean sublattice of the congruence lattice £on
decomposition operator. Let A = B x C be a decomposition oA as the direct

Conversely, given a decomposition operafowe have  product of two combinatory algebr&andC. It is easy to
to show that the elemerfi(t, f) is central. From Section 2.5  show, by using the equations defining central elements, that
we have thatf(t,f) is the unique element satisfying  E(A) = E(B) x E(C), i.e., every central element ¢
t 0 u 0 £, wheref) andd are the pair of complementary fac- can be decomposed as a pair of central elemenB ahd
tor congruences associated with the decomposition operatoC. In the terminology of universal algebra this means that
f. Then, from the property of congruencetofnd? it fol- A has no ‘skew factor congruences’. We get the conclu-
lows, for allx, y: sion from [9, Prop. 1.3], where it is shown that an algebra
— A has no skew factor congruences if, and only if, the fac-

toy 0 f(t, £)zy 0 fay, tor congruences oA form a Boolean sublattice of the con-
that implies gruence lattice CoA.

20 f(t,f)zy 0 y. It follows that the partial ordering on central elements,
defined in (3), is a Boolean ordering. We have to show now
that, for all central elements, ¢, the elementg~ = eft

20 flz,y) 0y, ar_1de Ad = etd are central and are respectively associated

with the pairs(é., 6.) and(6. N84, 0. V 8,4) of complemen-

then we obtain tary factor congruences (recall thats associated with the
pair (9., 0.)).

f(x,y) = f(t,f)zy @) We check the details forft. By Cor. 5(1) we have that

eft is the unique element such thatt 6, v 6. f. By (1)

in Section 2.5 this means thefit = g(t, f) for the decom-

position operatoy associated with the paif.., 6. ) of com-

plementary factor congruences. We have the conclusion that

eft is central associated with the pé,, 6..) as in the proof

of Prop. 4.

We now considee A d = etd. First of all, we show
thatetd = dte. By Cor. 5(1) we have that 6, etd 6. d,
while t 6, dte 6. d can be obtained as follows: =
(by Def. 3(i)) dtt 6. (bytb.e) dte 0. (byed f) dtf =
(by Def. 3(iv)) d. Since there is a unique elementsuch
Corollary 5 If e is central, then we have: thatt 0. v 0, d, then we have the conclusieite = etd.

1. 2 0. exy O, y; We now show thattd is the central element associated with
the factor congruena® N 6y, i.e.,

Since by definitionf (z, y) is the unique element satisfying

Finally, the identities defining as decomposition operator
makef (t, f) a central element.

It is easy to verify that these correspondences form the
two sides of a bijection. I¢ is central, then the central ele-
ment f.(t, f) is equal toe, becausef.(t,f) = etf = e by
(iv). If f is a decomposition operator, then by (2) we have
that f (¢ ) (z,y) = f(t,f)zy = f(z,y) forall z,y. m

For every central elemenrt we denote respectively by
f. and by(d.,8,) the decomposition operator and the pair
of complementary factor congruences determined.by

2. 0. yiffexy=vy; x0.yiff exy = z.
The congruencd, is generated by the paife, t) (i.e., t (0N 04) etd (0 V 0q) £.
0. = 0(e,t)), while the congruencé. by the pair e, f) Fromdte = etd we easily get that 6. etd andt 0, etd,

(€., 0c = O(e, £)). that is, t (0. N 64) etd. Finally, by Cor. 5 we have:
We now show that the partial ordering over central ele- etd 0. d = dtf 0, f, i.e.,etd (6. V 0,) f. m
ments, defined by We now provide the promised representation theorem. If
I is a maximal ideal of the Boolean algelbf4A ), thenul

d<eiff 04 C 0. @) denotes the congruence andefined by

is a Boolean ordering. The combinatarandf are respec-
tively the bottom element and the top element of this order-
ing, while the combinatordzy™*.zty and\x*.xft represent By a Peirce variety(see [30]) we mean a variety of al-
respectively the meet operation and the complementation. gebras for which there are two constariisl and a

x (UI) yiff z 0, y for somee € I.



term u(zx,y, z,v) such that the following identities hold: as possible: for every recursively enumerable lambda the-

u(z,y,0,1) = x andu(z,y,1,0) = y. ory T, there is a continuum of lambda theories including
) ) T which are omitted by the indecomposable semantics. In
Theorem 7 (Representation Theorerhpt A be a combi- |55t result of the paper we show that the set of lambda the-

natory algebra and¥’ be the Boolean space of maximalide- yyies induced by each of the known semantics is not closed
als of the Boolean algebrE(A) of central elements. Then  nqer finite intersection, so that it cannot constitute a sub-

the map lattice of the lattice of lambda theories.
[ A—=Tex(A/UIT),

defined by 4.1. Internalising ‘indecomposable’
flx)=(x/UI:IeX), .

We have shown how to internally represent a factor con-
gives aweak Boolean product representation &f, where  gruence as a central element. Now we show how to repre-
the quotient algebrad / U I are directly indecomposable.  sent the logical assertion that the only factor congruences of
a combinatory algebra are trivial.

We recall that an algebrA is directly indecomposable
when it is not trivial and it is not isomorphic to a product of
two nontrivial algebras (i.e., there is not a pair of nontriv-
ial complementary factor congruences). A combinatory al-
gebraA is directly indecomposable f(A) = {t,f}.

For two combinatory termsg and u, define the pair
[t,u] = Az*.ztu and, for every sequenag, .. ., t,, define
[t ta] = [t [t - ta]):

Define the following combinatory terms:

Proof. By Thm. 6 the set of factor congruences Af
constitutes a Boolean sublattice of GonThen by [13]
f gives a weak Boolean product representatiom\ofThe
quotient algebras\/ U I are directly indecomposable by
[30, Thm. 8], because the variety of combinatory alge-
bras is a Peirce variety if we definre= t, 0 = f and
u = Axyzv*.zyr. A

The mapf of the above theorem does not give in gen-
eral a Boolean product representation. This follows from
two results due to Vaggione [31] and to Plotkin-Simpson
[29]. Vaggione has shown that, if a variety has factorable
congruences (i.e., every congruence in a product is a prod-
uct of congruences) and every member of the variety can
be represented as a Boolean product of directly indecom- ® U = Ae*.[Az*.x, Avyz".exz, Ay 2" ex(eyz),
posable algebras, then the variety is a discriminator variety Azyzu®.exz(eyu), e].
(see [12] for the terminology). Discriminator varieties sat-
isfy very strong algebraic properties, in particular they are
congruence permutable (i.e., the join of two congruences is
just their composition). Plotkin and Simpson have shown
that the property of having permutable congruences is in-
consistent with combinatory logic. Proof. By Def. 3 we have that is central if, and only

if, the equationZe = Ue holds. Then the clasSAp; is

4. The algebraic incompleteness of lambda axiomatized by the following universal formuta
calculus p=Ve((Ze=Ue —we=tVe=F)A-(t=1)).

o 7 = \e*.[Ax*.exw, Axyz*.e(exy)z, \ryz*.exz,
Azyzu*.e(zy)(zu), etf];

Lemma 8 The classCAp; of the directly indecomposable
combinatory algebras is a universal class (i.e., it is an ele-
mentary class which can be axiomatized by universal sen-
tences).

The representation theorem of combinatory algebras cang
be roughly summarized as follows: the directly indecom-
posable combinatory algebras are the ‘building blocks’ in Corollary 9 The classCAp; of the directly indecompos-
the variety of combinatory algebras. Then it is natural to able combinatory algebras is closed under subalgebras and
investigate the class of models of lambda calculus, which ultraproducts.
are directly indecomposable as combinatory algebnate{
composgble semantickor short). I.n this section.we show_ 4.2. Algebraic incompleteness
that the indecomposable semantics includes: (i) the contin-

uous semantics; (i) the stable and strongly stable semantics The closure of the class of directly indecomposable com-
restricted to models whose underlying domain is algebraic; hinatory algebras under subalgebras is the key trick in the
(iii) the term models of all semisensible lambda theories. proof of the algebraic incompleteness theorem.

However, in one of the main results of the paper we give a

proof, based on central elements, that the indecomposabl@heorem 10 (The algebraic Incompleteness Theordig
semantics is incomplete, and this incompleteness is as widendecomposable semantics is incomplete.



Proof. Let Q = (Az.xzz)(A\x.zx) be the usual looping  [3] this is possible only if the head variable afy, where
term of lambda calculus. Consider two arbitrary consistent x andy are distinct variables, is equal foand toy. This is
lambda theorie¥ and S satisfying the following condi-  a contradiction. In conclusion, our hypothesis that there is
tions: a semisensible lambda thedfy, whose term model has a

THQ=T; SFQ=F. nontrivial central element, is contradictom.

7T and S exist because) is an easy term (see [3,

Prop. 15.3.9)), i.e., it can be equated consistently with 4.3. Continuous, stable and strongly stable seman-
any other closed term. It is a simple exercise to ver- tics

ify that the lambda theoryZ7 N S contains all equa-

tions (i)-(iv) of Def. 3 fore = £, making the equiva- We recall that an algebra @mplewhen it has just two
lence class of) a nontrivial central element in the term congruences (so that every simple algebra is directly inde-
model of7 N S. composable).

Assume, by the way of contradiction, that the semantics  In the next two theorems we give simple proofs of in-
given in terms of directly indecomposablenodels iscom-  completeness for the classic semantics of lambda calculus.
plete, so that there is a directly indecomposablaodel A
suchthaf’h(A) = TNS. SinceA is directly indecompos- ~ Theorem 12 (Honsell-Ronchi della Rocca [16]yhe se-
able, thenA satisfies the universal formutadefined inthe ~ mantics of lambda calculus given in terms of continuous
proof of Lemma 8. Since is universal, every subalgebra of models is incomplete.

A satisfiesp. In particular, the term model &f N S satis-

fies ¢, so that it is directly indecomposable. This is a con-

tradiction, because the term model®Din S admits(? as a 2 ; .
g(z) = L otherwise, is Scott continuous for every arbitrary

nontrivial central elementm o X
We have shown that theories exist with no indecompos- elementc. We now show thai\ is simple as a combina-
tory algebra. Let be a congruence ont such thata 6 b

able models, so that any class of models which excludes deWlth a £ b.We haves £ borb £ a. Suppose that we are
composable models cannot be complete. ) 4 : . .
. . L in the first case. Since the continuous functipis repre-
A lambda theory is semisensible if it does not equate a . )
: sentable in the model, then we have:= g(a) 0 g(b) = c.
solvable and an unsolvable lambda term. The most impor- oo e )
. ) S . By the arbitrariness af we get that is trivial, so thatM is
tant lambda theories are semisensible: for example, the min-

. - . simple. The conclusion of the theorem follows from the al-
imal lambda theory\g and the minimal extensional lambda L
theory . gebraic incompleteness theorem (see Thm. 10), because ev-

In the following theorem we show that, although the ery simple combinatory algebra is directly indecomposable.
class of directly indecomposablemodels is incomplete,

it is so wide to include all term models of the semisensi-
ble lambda theories.

Proof. Let M be a continuous model of lambda calcu-
lus. The functiong, defined by:g(z) = cif z £ b and

The continuous functiog of the above proof is neither
stable nor strongly stable (see [5] for a full treatment of sta-
ble and strongly stable semantics).

Theorem 11 The indecomposable semantics is complete

for the set of semisensible lambda theories. Theorem 13 (Gouy-Bastonero [15, 4]; Salibra [24, 25])
The semantics of lambda calculus given in terms of stable

of a lambda theory is a model of lambda calculus. Then the ggepraic, is incomplete.

conclusion of the theorem follows if we show that the term

model of every semisensible lambda theory is directly in-  Proof. Let M be a (strongly) stable model of lambda cal-
decomposable. Assume, by the way of contradiction, thatculus. Takeu,b € M such thata # b. We havea £ b or
there exists a semisensible lambda thedrguch that the b £ a. Suppose that we are in the first case. Then there is
term modelM 7 of 7 admits a nontrivial central element a compact element of M such thatd < a andd £ b.

e. From the identityezz = x (see Def. 3) and from the hy-  The step functiorf defined by :f(z) = cif + > d and
pothesis or it follows thate is a solvable\-term. Since  f(x) = L otherwise, is stable, and strongly stable for ev-
the congruence8. = f(e,T) andf, = (e, F) on the  ery element. This functionf can be used to show that ev-
term model of7 are nontrivial, then the lambda theories ery congruence o is trivial as in the proof of Thm. 12.

7, and 73, generated respectively iy U {F = e} and Then the conclusion is again a consequence of the algebraic
T U {T = e}, are consistent. By [3, Lemma 10.4.1(i)] it incompleteness theorerm.

is consistent to equate two solvabléerms only if they are We do not know whether the stable and strongly stable
equivalent according to [3, Def. 10.2.9]. Then théerme models, whose underlying domains amalgebraic, are di-
should be equivalent t6" andT'. By Remark 10.2.20(ii) in  rectly indecomposable as combinatory algebras.



Given a clas<C of A-models, we denote b)C the set
of lambda theories which are representabl€ifsee Sec-
tion 2.3). It is unknown, in general, wheth&€ is a lattice

with respect to the inclusion ordering of sets and whether

AC is a sublattice of the latticaT" of lambda theories. In

the remaining part of this subsection we show for each of

the classic semantics of lambda calculus that the\Eeis

not closed under finite intersection, so that it is not a sublat-

tice of the lattice\T' of lambda theories.

Theorem 14 Let C be a class of directly indecomposable
models of lambda calculus. If there are two consistent

lambda theorie§ , S € AC such that
THFQ=T; SFQ=F,

then\C is not closed under finite intersection, so it is not a

sublattice ofAT'.

Proof. The term model of NS admits a nontrivial cen-
tral element(?, so that it is directly decomposable. It fol-
lowsthat7 NS ¢ AC. m

We recall that the graph-models (see, for example,
[6, 11]) and the filter\-models (see, for example, [2]) are
classes of models within the continuous semantics.

Corollary 15 Let C be one of the following semantics:

graph semantics, filter semantics, continuous semantics anq ¢ Sy

Then the following theorem is a corollary of the alge-
braic incompleteness theorem.

Theorem 17 Let 7 be an r.e. lambda theory. Then, the
interval [7) = {S : 7 C S} contains a subinterval
[S$1,82] = {S : & € S C 8.}, constituted by a con-
tinuum of lambda theories, satisfying the following condi-
tions:

e S; andS; are r.e. lambda theories;

e EveryS € [S1,8,] is omitted by the indecomposable
semantics (in particularS is omitted by the continu-
ous, stable and strongly stable semantics).

Proof. The proof is divided into claims.

We first construcs; . We recall that a-term( is 7 -easy
when, for every fixed closed-term P, the lambda theory
generated by U {Q = P} is consistent.

Claim 18 There exists & -easyA-termQ).
By Lemma 16.
Claml9 7T Q=Tand7 /¥ Q = F.

Trivial, becausd) is 7 -easy.

= 7, N Ty, where7; and 7, are the consistent

stable semantics (this last semantics restricted to models;;,pqa theories generated respectivelylby {Q = T}

whose underlying domain is algebraic). Th&@ is not a
sublattice ofAT.

Proof. Semantic proofs thd? is an easy term were given

in each of the semantics specified in the statement of the the-

and7 U{Q = F}.

Claim 20 The lambda theong; is r.e. and containg .

orem (see [5]). Then the conclusion follows from Thm. 14, ories. The other property follows froff C 7, N 75 = S;.
because the models in each of these semantics are directly

indecomposable as combinatory algebms.

4.4. Concerning the number of decomposable
models

Claim 21 The term model of; has a non trivial central
element.

Lete = [Q]s, be the equivalence class of the lambda
term Q. It is easy to show that satisfies the equation of
Def. 3. Moreoverg is not trivial because; t/ Q@ = T and

We have shown that lambda theories exist with no inde- Si/Q=F.

composable models. Now we can dskwv manysuch theo-

ries there are. Is there some sense in which ‘most’ theoriesWe now define the lambda thea$y.

have an indecomposable model?

On the contrary, in this section we shall see that it is the Claim 22 There exists an r.e. lambda thea$y, which is a

directly indecomposable models which are the exception.
First of all we need some results about theories.
The proof of following lemma is similar to that of [3,
Prop. 17.1.9], where the cage = 1 (due to Visser) is
shown, and it is omitted.

Lemma 16 Suppose7 is a recursively enumerable.¢)
lambda theory and fix arbitrary term/;, V; for1 < i < k
which are not provably equal i, that is, such that t/
M; = N; for all ;. Then there exists a tertd such that

TU{M = P}/ M; = N;, for all i and all closed terms>.

proper extension of;, such thatS; t/ @ = T and Sz I/
Q=F.

We apply Lemma 16 to the lambda the@®y and to the
equationsy) = T and@ = F'. We get aS;-easy termR
such thatS; U{R = P} I Q = T andS; U{R = P} I/
Q = F,foralllambdaterms®. LetS; = S;U{R = Az.z}.
Ss is a proper extension @; because otherwisB would
not be aS;-easy term.

Claim 23 The equivalence class ¢f is a non trivial cen-
tral element of the term model 6§.

S isr.e., because itisintersection of two r.e. lambda the-
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S, the equivalence class ¢f is non trivial central element  [19] P.T. JohnstoneStone spacesCambridge University Press,
of the term model of . 1982.
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