
Böhm’s Theorem for Resource Lambda Calculus
through Taylor Expansion?

Giulio Manzonetto1 and Michele Pagani2

1 Intelligent Systems, Radboud University
g.manzonetto@cs.ru.nl

2 Laboratoire LIPN, CNRS UMR7030 Université Paris 13
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Abstract. We study the resource calculus, an extension of the λ-calculus
allowing to model resource consumption. We achieve an internal sepa-
ration result, in analogy with Böhm’s theorem of λ-calculus. We define
an equivalence relation on the terms, which we prove to be the maximal
non-trivial congruence on normalizable terms respecting β-reduction. It
is significant that this equivalence extends the usual η-equivalence and
is related to Ehrhard’s Taylor expansion – a translation mapping terms
into series of finite resources.
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Introduction

Böhm’s theorem in the λ-calculus. Böhm’s theorem [1] is a fundamental
result in the untyped λ-calculus [2] stating that, given two closed distinct βη-

normal λ-terms M and N , there exists a sequence of λ-terms ~L, such that M~L β-
reduces to the first projection λxy.x and N~L β-reduces to the second projection
λxy.y. The original issue motivating this result was the quest for solutions of
systems of equations between λ-terms: given closed terms M1, N1, . . . , Mn, Nn,
is there a λ-term S such that SM1 ≡β N1 ∧ · · · ∧ SMn ≡β Nn holds? The
answer is trivial for n = 1 (just take S = λz.N1 for a fresh variable z) and
Böhm’s theorem gives a positive answer for n = 2 and M1,M2 distinct βη-
normal forms (apply the theorem to M1,M2 and set S = λf.f ~LN1N2). The
result has been then generalized in [3] to treat every finite family M1, . . . ,Mn of
pairwise distinct βη-normal forms. This generalization is non-trivial since each
Mi may differ from the other ones at distinct addresses of its syntactic tree.

As an important consequence of Böhm’s theorem we have that the βη-
equivalence is the maximal non-trivial congruence on normalizable terms extend-
ing the β-equivalence. The case of non-normalizable terms has been addressed
by Hyland in [4]. Indeed, the βη-equivalence is not maximal on such terms, and
one must consider the congruence H? equating two λ-terms whenever they have
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the same Böhm tree up to possibly infinite η-expansions [2, §16.2]. Then one

proves that for all closed λ-terms M 6≡H? N there is a sequence of λ-terms ~L
such that M~L β-reduces to the identity λx.x while N~L is unsolvable (i.e., it does
not interact with the environment [2, §8.3]) or vice versa. This property is called
semi-separation because of the asymmetry between the two values: the identity,
on the one hand, and any unsolvable term, on the other hand. In fact, non-
normalizable terms represent partial functions, and one cannot hope to separate
a term less defined than another one without sending the first to an unsolvable
term (corresponding to the empty function). Despite the fact that Hyland’s semi-
separability is weaker than the full separability achieved by Böhm’s theorem, it
is sufficient to entail that H? is the maximal non-trivial congruence on λ-terms
extending β-equivalence and equating all unsolvable terms [2, Thm. 16.2.6].

The resource λ-calculus. We study Böhm’s theorem in the resource λ-calculus
(Λr for short), which is an extension of the λ-calculus along two directions.
First, Λr is resource sensitive. Following Girard’s linear logic [5], the λ-calculus
application can be written as M(N !) emphasizing the fact that the argument
N is actually infinitely available for the function M , i.e. it can be erased or
copied as many times as needed during the evaluation. Λr extends this setting
by allowing also applications of the form M(Nn) where Nn denotes a finite
resource that must be used exactly n-times during the evaluation. If the number
n does not match the needs of M then the application evaluates to the empty
sum 0, expressing the absence of a result. In fact, 0 is a β-normal form giving
a notion of unsolvable different from the λ-calculus one represented by looping
terms3. The second feature of Λr is the non-determinism. Indeed, the argument
of an application, instead of being a single term, is a bag of resources, each being
either finite or infinitely available. In the evaluation several possible choices arise,
corresponding to the different possibilities of distributing the resources among
the occurrences of the formal parameter. The outcome is a finite formal sum of
terms collecting all possible results.

Boudol has been the first to extend the λ-calculus with a resource sensitive
application [8]. His resource calculus was designed to study Milner’s encoding of
the lazy λ-calculus into the π-calculus [9,10]. Some years later, Ehrhard and Reg-
nier introduced the differential λ-calculus [11], drawing on insights gained from
the quantitative semantics of linear logic, denoting proofs/terms as smooth (i.e.
infinitely differentiable) functions. As remarked by the authors, the differential
λ-calculus is quite similar to Boudol’s calculus, the resource sensitive applica-
tion M(Nn) corresponds to applying the n-th derivative of M at 0 to N . This
intuition was formalized by Tranquilli, who defined the present syntax of Λr and
showed a Curry-Howard correspondence between this calculus and Ehrhard and
Regnier’s differential nets [12]. The main differences between Boudol’s calculus
and Λr are that the former is equipped with explicit substitution and lazy oper-
ational semantics, while the latter is a true extension of the regular λ-calculus.
Since we cannot separate M from M + M we will conveniently suppose that

3 Denotational models of Λr distinguishing between 0 and the usual unsolvable terms
are built in [6]. For more details on the notion of solvability in Λr see [7].
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the sum on Λr is idempotent as in [13]; this amounts to say that we only check
whether a term appears in a result, not how many times it appears.
A resource conscious Böhm’s theorem. A notable outcome of Ehrhard and
Regnier’s work has been to develop the λ-calculus application as an infinite series
of finite applications, M(N !) =

∑∞
n=0

1
n!M(Nn), in analogy with the Taylor

expansion of the entire functions. In [14], the authors relate the Böhm tree of a
λ-term with its Taylor expansion, giving the intuition that the latter is a resource
conscious improvement of the former. Following this intuition, we achieve the
main result of this paper, namely a separation property in Λr that can be seen
as a resource sensitive Böhm’s theorem (Theorem 2). Such a result states that for
all closed β-normal M,N having η-different Taylor expansion, there is a sequence
~L, such that M~L β-reduces to λx.x and N~L β-reduces to 0, or vice versa.

This theorem reveals a first sharp difference between Λr and the λ-calculus,
as our result is much similar to Hyland’s semi-separation than Böhm’s theorem,
even if we consider the β-normal forms. This is due to the empty sum 0, the
unsolvable β-normal form, outcome of the resource consciousness of Λr.

Taylor expansion is a semantical notion, in the sense that it is an infinite series
of finite terms. It is then notable that we give a syntactic characterization of the
Taylor equality introducing the τ -equivalence in Definition 3 (Proposition 1). As
expected, our semi-separability is strong enough to entail that the ητ -equivalence
induces the maximal non-trivial congruence on β-normalizable terms extending
the β-equivalence (Corollary 1).

A crucial ingredient in the classic proof of Böhm’s theorem is the fact that
it is possible to erase subterms in order to pull out of the terms their structural
difference. This is not an easy task in Λr, since the finite resources must be con-
sumed and cannot be erased. In this respect, our technique has some similarities
with the one developed to achieve the separation for the λI-calculus (i.e., the
λ-calculus without weakening, [2, §10.5]). Moreover, since the argument of an
application is a bag of resources, comparing a difference between two terms may
turn into comparing the differences between two multisets of terms, and this
problem presents analogies with that of separating a finite set of terms [3].

Basic definitions and notations. We let N denote the set of natural numbers.
Given a set X ,Mf(X ) is the set of all finite multisets over X . Given a reduction
r→ we let r←, r∗−→ and ≡r denote its transpose, its transitive-reflexive closure and

its symmetric-transitive-reflexive closure, respectively.
An operator F (−) (resp. F (−,−)) is extended by linearity (resp. bilinearity)

by setting F
(
ΣiAi

)
= ΣiF (Ai) (resp. F

(
ΣiAi, ΣjBj

)
= Σi,jF (Ai, Bj)).

1 Resource Calculus

Syntax. The resource calculus has three syntactic categories: terms that are in
functional position, bags that are in argument position and represent unordered
lists of resources, and finite formal sums that represent the possible results of
a computation. Figure 1(a) provides the grammar for generating the set Λr of
terms and the set Λb of bags, together with their typical metavariables.
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Λr: M,N,L ::= x | λx.M |MP terms

Λb: P,Q,R ::= [M1, . . . ,Mn,M!] bags

Λe: A,B ::= M | P expressions

M,N ∈ 2〈Λr〉 P,Q ∈ 2〈Λb〉 A,B ∈ 2〈Λe〉 := 2〈Λr〉 ∪ 2〈Λb〉 sums

(a) Grammar of terms, resources, bags, expressions, sums.

λx.(
∑

iMi) :=
∑

i λx.Mi

(
∑

iMi)P :=
∑

iMiP

M(
∑

i Pi) :=
∑

i MPi

[(
∑

iMi)]·P :=
∑

i[Mi]·P
(b) Notation on 2〈Λe〉.

y〈N/x〉 :=

{
N if y = x,

0 otherwise,

[M!]〈N/x〉 := [M〈N/x〉,M!],

(λy.M)〈N/x〉 := λy.(M〈N/x〉),

(MP )〈N/x〉 := M〈N/x〉P +M(P 〈N/x〉),

([M ] · P )〈N/x〉 := [M〈N/x〉] · P + [M ] · P 〈N/x〉,

(c) Linear substitution, in the abstraction case we suppose y /∈ FV(N) ∪ {x}.

Fig. 1: Syntax, notations and linear substitution of resource calculus.

A bag [ ~M,M!] is a compound object, consisting of a multiset of linear re-

sources [ ~M ] and a set of terms M presented in additive notation (see the dis-
cussion on sets and sums below) representing the reusable resources. Roughly

speaking, the linear resources in ~M must be used exactly once during a reduc-
tion, while the reusable ones in M can be used ad libitum (hence, following
the linear logic notation, M is decorated with a ! superscript). We shall deal
with bags as if they were multisets presented in multiplicative notation, defining
union by [ ~M,M!] · [ ~N,N!] := [ ~M, ~N, (M + N)!]. This operation is commuta-
tive, associative and has the empty bag 1 := [0!] as neutral element. To avoid
confusion with application we will never omit the dot “·”. To lighten the no-
tations we write [L1, . . . , Lk] for the bag [L1, . . . , Lk, 0

!], and [Mk] for the bag
[M, . . . ,M ] containing k copies of M . Such a notation allows to decompose a
bag in several ways, and this will be used throughout the paper. As for example:
[x, y, (x+y)!] = [x] · [y, (x+y)!] = [x!] · [x, y, y!] = [x, y] · [(x+y)!] = [x, x!] · [y, y!].

Expressions (whose set is denoted by Λe) are either terms or bags and will
be used to state results holding for both categories.

Let 2 be the semiring {0, 1} with 1 + 1 = 1 and multiplication defined in
the obvious way. For any set X , we write 2〈X 〉 for the free 2-module generated
by X , so that 2〈X 〉 is isomorphic to the finite powerset of X , with addition
corresponding to union, and scalar multiplication defined in the obvious way.
However we prefer to keep the algebraic notations for elements of 2〈X 〉, hence
set union will be denoted by + and the empty set by 0. This amounts to say
that 2〈Λr〉 (resp. 2〈Λb〉) denotes the set of finite formal sums of terms (resp.
bags), with an idempotent sum. We also set 2〈Λe〉 = 2〈Λr〉 ∪ 2〈Λb〉. This is an
abuse of notation, as 2〈Λe〉 here does not denote the 2-module generated over
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Λe = Λr ∪ Λb but rather the union of the two 2-modules; this amounts to say
that sums may be taken only in the same sort.

The size of A ∈ 2〈Λe〉 is defined inductively by: size(ΣiAi) = Σi size(Ai),
size(x) = 1, size(λx.M) = size(M) + 1, size(MP ) = size(M) + size(P ) + 1,
size([M1, . . . ,Mk,M!]) = Σk

i=1 size(Mi) + size(M) + 1.
Notice that the grammar for terms and bags does not include any sums, but

under the scope of a (·)!. However, as syntactic sugar – and not as actual syntax
– we extend all the constructors to sums as shown in Figure 1(b). In fact all
constructors except the (·)! are (multi)linear, as expected. The intuition is that
a reusable sum (M + N)! represents a resource that can be used several times
and each time one can choose non-deterministically M or N .

Observe that in the particular case of empty sums, we get λx.0 := 0, M0 := 0,
0P := 0, [0] := 0 and 0 ·P := 0, but [0!] = 1. Thus 0 annihilates any term or bag,
except when it lies under a (·)!. As an example of this extended (meta-)syntax,
we may write (x1+x2)[y1+y2, (z1+z2)!] instead of x1[y1, (z1+z2)!]+x1[y2, (z1+
z2)!] + x2[y1, (z1 + z2)!] + x2[y2, (z1 + z2)!]. This kind of meta-syntactic notation
is discussed thoroughly in [14].

The α-equivalence and the set FV(A) of free variables are defined as in or-
dinary λ-calculus. From now on expressions are considered up to α-equivalence.
Concerning specific terms we set:

I := λx.x, Xn := λx1 . . . λxnλx.x[x!1] . . . [x!n] for n ∈ N,

where Xn is called the n-th Böhm permutator.
Due to the presence of two kinds of resources, we need two different notions

of substitutions: the usual λ-calculus substitution and a linear one, which is
particular to differential and resource calculi (see [14,15]).

Definition 1 (Substitutions).We define the following substitution operations.

1. A {N/x} is the usual capture-free substitution of N for x in A. It is ex-
tended to sums as in A {N/x} by linearity in A, and using the notations
of Figure 1(b) for N.

2. A〈N/x〉 is the linear substitution defined inductively in Figure 1(c). It is
extended to A〈N/x〉 by bilinearity in both A and N.

Intuitively, linear substitution replaces the resource to exactly one linear free oc-
currence of the variable. In presence of multiple occurrences, all possible choices
are made and the result is the sum of them. E.g., (x[x])〈I/x〉 = I[x] + x[I].

Notice the difference between [x, x!] {M +N/x} = [(M + N), (M + N)!] =
[M, (M+N)!]+[N, (M+N)!] and [x, x!]〈M+N/x〉 = [x, x!]〈M/x〉+[x, x!]〈N/x〉 =
[M,x!] + [x,M, x!] + [N, x!] + [x,N, x!].

Linear substitution bears resemblance to differentiation, as shown clearly in
Ehrhard and Regnier’s differential λ-calculus [11]. For instance, it enjoys the
following Schwarz lemma, whose proof is rather classic and is omitted.

Lemma 1 (Schwarz Lemma [14,11]). Given A ∈ 2〈Λe〉, M,N ∈ 2〈Λr〉 and
y /∈ FV(M) ∪ FV(N) we have A〈M/y〉〈N/x〉 = A〈N/x〉〈M/y〉 + A〈M〈N/x〉/y〉.
In particular, if x /∈ FV(M) the two substitutions commute.
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M R M
λx.M R λx.M lam

M R M
MP R MP

appl P R P
MP R MP

appr

M R M
[M ] · P R [M] · P lin

M R M
[M !] · P R [M!] · P

bng A R A
A+ B R A + B

sum

(a) Rules defining the context closure of a relation R ⊆ Λe × 2〈Λe〉.

M R N
λx.M R λx.N lam

M R N P R Q
MP R NQ

app

M R N P R Q
[M] · P R [N] ·Q lin

M R N
[M!] R [N!]

bng A R B A′ R B′

A + A′ R B + B′
sum

(b) Rules defining a compatible relation R ⊆ 2〈Λe〉 × 2〈Λe〉.

Fig. 2: Definition of context closure and compatible relation.

Operational semantics. Given a relation R ⊆ Λe × 2〈Λe〉 its context closure
is the smallest relation in 2〈Λe〉 × 2〈Λe〉 containing R and respecting the rules
of Figure 2(a). The main notion of reduction of resource calculus is β-reduction,
which is defined as the context closure of the following rule:

(β) (λx.M)[L1, . . . , Lk,N!]
β→M〈L1/x〉 · · · 〈Lk/x〉{N/x}.

Notice that the β-rule is independent of the ordering of the linear substitutions,
as shown by the Schwarz lemma above. We say that A ∈ Λe is in β-normal form

(β-nf, for short) if there is no A such that A
β→ A. A sum A is in β-nf if all

its summands are. Notice that 0 is a β-nf. It is easy to check that a term M is
in β-nf iff M = λx1 . . . xn.yP1 . . . Pk for n, k ≥ 0 and, for every 1 ≤ i ≤ k, all
resources in Pi are in β-nf. The variable y in M is called head-variable.

The regular λ-calculus [2] can be embedded into the resource one by translat-
ing every application MN into M [N !]. In this fragment the β-reduction defined
above coincides with the usual one. Hence the resource calculus has usual looping
terms like Ω := (λx.x[x!])[(λx.x[x!])!], but also terms like I1 or I[y, y] reducing
to 0 because there is a mismatch between the number of linear resources needed
by the functional part of the application and the number it actually receives.

Theorem 1 (Confluence [15]). The β-reduction is Church-Rosser on Λr.

The resource calculus is intensional, indeed just like in the λ-calculus there are
different programs having the same extensional behaviour. In order to achieve
an internal separation, we need to consider the η-reduction that is defined as the
contextual closure of the following rule:

(η) λx.M [x!]
η→M, if x /∈ FV(M).
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(
∑

iAi)
◦ :=

⋃
iA
◦
i x◦ := {x} (λx.M)◦ := λx.M◦ (MP )◦ := M◦P ◦

([M!])◦ :=Mf(M◦) ([M ] · P )◦ := [M◦] · P ◦

Fig. 3: Taylor expansion A◦ of A.

The Taylor expansion. The finite resource calculus is the fragment of resource
calculus having only linear resources (every bag has the set of reusable resources
empty). The terms (resp. bags, expressions) of this sub-calculus are called finite
and their set is denoted by Λrf (resp. Λbf , Λ

e
f ). Notice that the bags of Λbf are

actually finite multisets. It is easy to check that the above sets are closed under
β-reduction, while η-reduction cannot play any role here.

In Definition 2, we describe the Taylor expansion as a map (·)◦ from 2〈Λr〉
(resp. 2〈Λb〉) to possibly infinite sets of finite terms (resp. finite bags). The Taylor
expansion defined in [11,14], in the context of λ-calculus, is a translation devel-
oping every application as an infinite series of finite applications with rational
coefficients. In our context, since the coefficients are in 2, the Taylor expansion of
an expression is a (possibly infinite) set of finite expressions. Indeed, for all sets
X , the set of the infinite formal sums 2〈X 〉∞ with coefficients in 2 is isomorphic
to the powerset of X . Our Taylor expansion corresponds to the support4 of the
Taylor expansion taking rational coefficients given in [11,14].

To lighten the notations, we adopt for sets of expressions the same abbrevia-
tions introduced for finite sums in Figure 1(b). E.g., given M⊆ Λrf and P,Q ⊆
Λbf we have λx.M = {λx.M | M ∈M} and P · Q = {P ·Q | P ∈ P, Q ∈ Q}.

Definition 2. Let A ∈ 2〈Λe〉. The Taylor expansion of A is the set A◦ ⊆ Λef
which is defined (by structural induction on A) in Figure 3.

As previously announced, the Taylor expansion of an expression A can be infinite,
e.g., (λx.x[x!])◦ = {λx.x[xn] | n ∈ N}. Different terms may share the same Taylor
expansion: (x[(z[y!])!])◦ = (x[(z1 + z[y, y!])!])◦. The presence of linear resources
permits situations where M◦ ( N◦, e.g. M := x[x, x!], N := x[x!]. The presence
of non-determinism allows to build terms like M1 := x[(y+z)!],M2 := x[(y+h)!]
such that M◦1 ∩M◦2 = {x[yn] | n ∈ N} is infinite. However the intersection can
also be finite as in N1 := x[y, z!], N2 := x[z, y!] where N◦1 ∩N◦2 = {x[y, z]}.

2 A Syntactic Characterization of Taylor Equality

In Λr, there are distinct βη-nf’s which are inseparable, in contrast with what
we have in the regular λ-calculus. In fact, all normal forms having equal Taylor
expansions are inseparable, since the first author proved in [16] that there is a
non-trivial denotational model of resource calculus equating all terms having the
same Taylor expansion. For example, x[(z[y!])!] and x[(z1+z[y, y!])!] are distinct
inseparable βη-nf’s since they have the same Taylor expansion.

4 I.e., the set of those finite terms appearing in the series with a non-zero coefficient.
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Because of its infinitary nature, the property of having the same Taylor ex-
pansion is more semantical than syntactical. In this section, we provide an al-
ternative syntactic characterization (Definition 3, Proposition 1).

A relation R ⊆ 2〈Λe〉 × 2〈Λe〉 is compatible if it satisfies the rules in Fig-
ure 2(b). The congruence generated by a relation R, denoted ≡R, is the small-
est compatible equivalence relation containing R. Given two relations R,S ⊆
2〈Λe〉 × 2〈Λe〉, we write ≡RS for the congruence generated by their union R∪ S.

Definition 3. The Taylor equivalence ≡τ is the congruence generated by:

(τ) [M !] ≡τ 1 + [M,M !]

Moreover, we set A vτ B iff A + B ≡τ B.

It is not difficult to check that vτ is a compatible preorder. We now prove that
it captures exactly the inclusion between Taylor expansions (Proposition 1).

E.g., z[x, x!] + z1 ≡τ z[x!] vτ z[x, x!] + z[y!], while x[x!] 6≡τ x[y!] 6vτ x[y, y!].
Note that all elements of A◦ share the same minimum structure, called here

skeleton, obtained by taking 0 occurrences of every reusable resource.

Definition 4. Given A ∈ Λe, its skeleton s(A) ∈ Λef is obtained by erasing all
the reusable resources occurring in A. That is, inductively:

s(x) := x, s(λx.M) := λx.s(M), s(MP ) := s(M)s(P ),

s([M1, . . . ,Mn,M!]) := [s(M1), . . . , s(Mn)].

Obviously s(A) ∈ A◦. In general it is false that s(A) ∈ B◦ entails A vτ B. Take
for instance A := x[x!] and B := x[y!]; indeed s(A) = x1 ∈ {x[yn] | n ∈ N} = B◦.
The above implication becomes however true when A is “expanded enough”.

Definition 5. Given k ∈ N, we say that A ∈ Λe is k-expanded if, whenever it
contains a bag that can be decomposed into [M !] · P , we have P = [Mk] · P ′ for
some P ′ k-expanded. A sum A ∈ 2〈Λe〉 is k-expanded if all its summands are.

E.g., x, x1, x[y4, x3, (x+ y)!] are 3-expanded, but the latter is not 4-expanded.

Lemma 2. Let A ∈ Λe be k-expanded for some k ∈ N. Then for every B ∈ Λe
such that size(B) ≤ k, we have that s(A) ∈ B◦ entails A vτ B.

Proof. By induction on A. The only significant case is when A is a bag, which
splits in three subcases, depending on how such a bag can be decomposed.

Case I (A = [Mk,M !]·P , P k-expanded). By definition s(A) = [s(M)k]·s(P ).
From s(A) ∈ B◦, we deduce that B = Q1 ·Q2 ·Q3 where Q1 = [L1, . . . , L`], Q2 =
[(N1 + · · ·+Nn)!] for some `, n ≥ 0 and Q1, Q2, Q3 are such that [s(M)`] ∈ Q◦1,
[s(M)k−`] ∈ Q◦2 and s(P ) ∈ (Q2 ·Q3)◦. From size(B) ≤ k we get ` < k and this
entails n > 0. We then have that s(M) ∈ L◦i , for every i ≤ `, and there is a j such
that s(M) ∈ N◦j . By induction hypothesis, we have M vτ Li for every i ≤ `,

M vτ Nj and P vτ Q2·Q3. Hence, by compatibility ofvτ , we derive [M `] vτ Q1

and [M !] vτ [N !
j ], that entails [Mk,M !] vτ [M `,M !] vτ Q1 · [N !

j ]. From this,

using [N !
j ]·Q2 ≡τ Q2 and P vτ Q2 ·Q3, we conclude A vτ Q1 ·[N !

j ]·Q2 ·Q3 ≡τ B.
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Case II (A = [M ] · P , P without reusable resources). By definition
s(A) = [s(M)] · s(P ). Suppose s(A) ∈ B◦, then two subcases are possible.

Case B = [N ] · Q such that s(M) ∈ N◦ and s(P ) ∈ Q◦. By induction
hypothesis M vτ N and P vτ Q. By compatibility, A = [M ] ·P vτ [N ] ·Q = B.

Case B = [N !] · Q such that s(M) ∈ N◦ and s(P ) ∈ ([N !] · Q)◦. Then by
induction hypothesis, M vτ N and P vτ [N !] ·Q, and, always by compatibility
of vτ , we conclude that A = [M ] · P vτ [N,N !] ·Q vτ B.

Case III (A = 1). From s(A) = 1 ∈ B◦, we deduce B is a bag containing only
reusable resources, hence trivially A = 1 vτ B. ut

Lemma 3. For all A ∈ Λe and k ∈ N there is a k-expanded A such that A ≡τ A.

Proof. By immediate structural induction on A. The crucial case is when A =
[M !]·P . Then by induction hypothesisM ≡τ M and P ≡τ P for some k-expanded
M,P. Let us explicit the first sum into M = M1 + · · ·+Mm. Then, we have:

[M !]·P ≡τ [M!]·P ≡τ [Mk
1 , . . . ,M

k
m,M!]·P+

∑k−1
n1=0 · · ·

∑k−1
nm=0[Mn1

1 , . . . ,Mnm
m ]·P.

Note that all summands in the last sum are k-expanded, since so are M,P. ut

Proposition 1. For all A,B ∈ 2〈Λe〉 we have that A vτ B iff A◦ ⊆ B◦.

Proof. (⇒) By a trivial induction on a derivation of A+B ≡τ B, remarking that
all rules defining ≡τ preserve the property of having equal Taylor expansion.

(⇐) By induction on the number of terms in the sum A. If A = 0, then clearly
A vτ B by the reflexivity of ≡τ . If A = A+A′, then by induction hypothesis we
have A′ vτ B. As for A, let k ≥ max(size(A), size(B)), by Lemma 3, we have a k-
expanded sum A′′ = A1 + · · ·+Aa ≡τ A. From A′′ ≡τ A and the already proved
left-to-right direction of the proposition we get (A′′)◦ = A◦ ⊆ B◦. This means
that A◦i ⊆ B◦ for all i ≤ a. In particular s(Ai) ∈ B◦ji , for a particular summand
Bji of B. Since we are supposing that Ai is k-expanded and size(Bji) ≤ k, we
can apply Lemma 2, so arguing Ai vτ Bji vτ B. Since this holds for every i ≤ a,
we get A′′ vτ B. Then we can conclude A ≡τ A′ + A′′ vτ B + B ≡τ B. ut

We conclude that ≡τ deserves the name of Taylor equivalence.

3 Separating a Finite Term from Infinitely Many Terms

We now know that two βη-nf’s M,N such that M ≡τ N are inseparable; hence,
in order to achieve an internal separation, we need to consider the ητ -difference.
One may hope that M 6≡ητ N is equivalent to first compute the η-nf of two
β-normal M,N and then check whether they are τ -different. Unfortunately, this
is false as shown in the following counterexample (which is a counterexample to
the confluence of η-reduction modulo ≡τ [17, §14.3]).

For all variables a, b we set Ma,b := v[λz.a1, λz.b[z!]] + v[λz.a[z, z!], λz.b[z!]]

and Na,b := v[λz.a1, b] + v[λz.a[z, z!], b]. Note that Ma,b
η∗→ Na,b, hence:

Nx,y
η∗←Mx,y ≡τ v[λz.x[z!], λz.y[z!]] ≡τ My,x

η∗→ Ny,x.
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If x 6= y, Nx,y and Ny,x are two inseparable but distinct βη-nf’s s.t. Nx,y 6≡τ Ny,x.
This means that, to study the ητ -difference, we cannot simply analyze the

structure of the η-nf’s. Our solution will be to introduce a relation �s such
that M 6≡ητ N entails either M 6�s N or vice versa (Definition 7). Basically, this
approach corresponds to first compute the Taylor expansion of M,N and then
compute their η-nf pointwise, using the following partial η-reduction on Λrf .

Definition 6. The partial η-reduction
ϕ→ is the contextual closure of the rule

λx.M [xn]
ϕ−→M if x /∈ FV(M).

We define the relation �s corresponding to the Smith extension of
ϕ∗→ and �τ

corresponding to the relation “η@η∼ ” of [2, Def. 10.2.32] keeping in mind the
analogy between Taylor expansions and Böhm trees discussed in [14].

Definition 7. Given M,N ∈ 2〈Λr〉 we define:

− M �s N iff ∀M ∈M◦,∃N ∈ N◦ such that M
ϕ∗−→ N .

− M �τ N iff ∃M′ η∗−→M, ∃N′ η∗−→ N such that M′ vτ N′.

It is easy to check that �s is a preorder, and we conjecture that also �τ is (we
will not prove it because unnecessary for the present work).

Remark 1. It is clear that M η→ N implies M �s N. More generally, by transi-

tivity of �s we have that M η∗→ N entails M �s N.

Lemma 4. Let M,N ∈ 2〈Λr〉. Then M �τ N and N �τ M entails M ≡ητ N

Proof. By hypothesis we have M′,M′′ η∗−→ M, N′,N′′ η∗−→ N, such that M′ vτ
N′ and N′′ vτ M′′. Then, N′ ≡τ M′ + N′ η∗−→ M + N, hence N ≡ητ M + N.

Symmetrically, M′′ ≡τ M′′ + N′′ η∗−→ M + N, hence M ≡ητ M + N, and we
conclude M ≡ητ N. ut

proof in

tech. app.
← Lemma 5. Let M,N ∈ 2〈Λr〉. Then M �s N entails M �τ N.

To sum up, M 6≡ητ N implies that, say, M 6�s N, which means ∃M ∈ M◦ such

that ∀N ∈ N◦ we have M 6ϕ∗→ N . Hence, what Lemma 7 below does, is basically
to separate such finite term M from all N’s satisfying the condition ∀N ∈ N◦

M 6ϕ∗→ N (that are infinitely many). For technical reasons, we will need to suppose
that M has a number of λ-abstractions greater than (or equal to) the number
of λ-abstractions of N, at any depth where its syntactic tree is defined.

Definition 8. Let M,N ∈ Λr be β-nf’s of the shape M = λx1 . . . λxa.yP1 . . . Pp,
N = λx1 . . . λxb.zQ1 . . . Qq. We say that M is λ-wider than N if a ≥ b and each
(linear or reusable) resource L in Pi is λ-wider than every (linear or reusable)
resource L′ ∈ Qi, for all i ≤ q. Given M,N in β-nf we say that M is λ-wider
than N iff each summand of M is λ-wider than all summands of N.

Notice that empty bags in M make it λ-wider than N , independently from
the corresponding bags in N . For example, y1 is λ-wider than zQ for any bag Q.
The term x[λy.I, I]1 is λ-wider than x[I][I] but not than himself.
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Remark 2. If M is λ-wider than N then every M ∈M◦ is λ-wider than N.

Lemma 6. For all M,N in β-nf there is a β-normal M′ such that M′ η∗→M and
M′ is λ-wider than both M and N.

Proof. (Outline) For m > size(M), define Ehm(M) by induction as follows:

E0m(A) = A Eh+1
m (A+ A) = Eh+1

m (A) + Eh+1
m (A)

Eh+1
m (λx1 . . . λxn.y ~P ) = λx1 . . . λxm.yEhm(~P )Ehm([x!n+1]) . . . Ehm([x!m])
Eh+1
m ([M1, . . . ,Mk,M!]) = [Eh+1

m (M1), . . . , Eh+1
m (Mk), (Eh+1

m (M))!]

Consider then M′ = Ekk (M) for some k > max(size(M), size(N)). ut

The next lemma will be the key ingredient for proving the resource Böhm’s
theorem (Theorem 2, below).

Lemma 7. Let M ∈ Λrf be a finite β-nf and Γ = {x1, . . . , xd} ⊇ FV(M). Then,

there exist a substitution σ and a sequence ~R of closed bags such that, for all
β-normal N ∈ 2〈Λr〉 such that M is λ-wider than N and FV(N) ⊆ Γ , we have:

(1) Nσ ~R β∗−→

{
I if ∃N ′ ∈ N◦, M ϕ∗−→ N ′,

0 otherwise.

Proof. The proof requires an induction loading, namely the fact that σ =
{Xk1/x1, . . . ,Xkd/xd} such that for all distinct i, j ≤ d we have ki, |ki−kj | > 2k
for some fixed k > size(M). Recall that Xn has been defined in section 1.

The proof is carried by induction on size(M). Let

M = λxd+1 . . . λxd+a.xhP1 . . . Pp

where a, p ≥ 0, h ≤ d + a and, for every i ≤ p, Pi = [Mi,1, . . . ,Mi,mi ] with
mi ≥ 0. Notice that, for every j ≤ mi, FV(Mi,j) ⊆ Γ ∪ {xd+1, . . . , xd+a} and
k > size(Mi,j). So, define σ′ = σ ·

{
Xkd+1

/xd+1, . . . ,Xkd+a/xd+a
}

such that
ki, |ki − kj | > 2k, for every different i, j ≤ d+ a.

By induction hypothesis on Mi,j , we have a sequence ~Ri,j of closed bags
satisfying condition (1) for every N′ such that Mi,j is λ-wider than N′ and
FV(N′) ⊆ Γ ∪ {xd+1, . . . , xd+a}.

We now build the sequence of bags ~R starting from such ~Ri,j ’s. First, we
define a closed term H as follows (setting m = max{k1, . . . , kd+a}):

H := λz1 . . . λzpλw1 . . . λwm+kh−p.I[z1 ~R1,1] . . . [z1 ~R1,m1
] . . . [zp ~Rp,1] . . . [zp ~Rp,mp ].

Then we set: ~R := [X!
kd+1

] . . . [X!
kd+a

] 1 . . . 1︸ ︷︷ ︸
kh−p times

[H !] 1 . . . 1︸ ︷︷ ︸
m times

.

Notice the base of induction is when p = 0 or for every i ≤ p, mi = 0. In
these cases H will be of the form λ~zλ~w.I.
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We prove condition (1) for any N satisfying the hypothesis of the lemma.
Note that we can restrict to the case N is a single term N , the general case
follows by distributing the application Nσ ~R on every summand of N. So, let

N = λxd+1 . . . λxd+b.xh′Q1 . . . Qq

and let us prove that Nσ~R
β∗−→ I if there is N ′ ∈ N◦,M

ϕ∗→ N ′, otherwise

Nσ~R
β∗−→ 0. Since M is λ-wider than N , we have a ≥ b. We then get, setting

σ′′ = σ · {Xkd+1
/xd+1, . . . ,Xkd+b/xd+b}:

(2) Nσ~R
β∗−→ Xkh′Q1 . . . Qqσ

′′[X!
kd+b+1

] . . . [X!
kd+a

] 1 . . . 1︸ ︷︷ ︸
kh−p

[H !] 1 . . . 1︸ ︷︷ ︸
m

.

Indeed, since a ≥ b, the variables xd+b+1, . . . , xd+a can be considered not occur-
ring in Q1, . . . , Qq, so that σ′ acts on Q1, . . . , Qq exactly as σ′′. Moreover, since
k > a and k > q, we have kh′ ≥ 2k > q + (a− b), so, setting g = q + (a− b), we
have (2) β-reduces to:

(3)
(
λyg+1...λykh′λy.yQ1...Qq[X

!
kd+b+1

]...[X!
kd+a

][y!g+1]...[y!kh′ ]
)
σ′ 1...1︸︷︷︸
kh−p

[H !] 1...1︸︷︷︸
m

We consider now three cases.

Case I (h′ 6= h). This means M and N differ on their head-variable, in partic-

ular, for every N ′ ∈ N◦, M 6ϕ∗→ N ′. We prove then (3)
β∗−→ 0. By the hypothesis

on kh, kh′ , we have either kh > kh′ + 2k or kh′ > kh + 2k. In the first case, we
get (by the hypothesis on k and N) kh > kh′ +p+q+a+ b > kh′ +p−g, so that

(3)
β∗−→ 0 since the head-variable y will get 0 from an empty bag of the bunch of

the kh − p empty bags. In the second case, we get m ≥ kh′ − g > kh − p, so that

(3)
β∗−→ 0 since the head-variable y will get 0 from an empty bag of the bunch of

the m empty bags.

Case II (h′ = h and p−a 6= q− b). This means that, for every N ′ ∈ N◦, M 6ϕ∗→
N ′ (in fact, note that (·)◦ preserve the length of the head prefix of abstractions

and that of the head sequence of applications, while
ϕ→ preserves the difference

between the two). We prove then (3)
β∗−→ 0. As before, we have two subcases. If

p − a < q − b, then kh′ − g = kh − g < kh − p so (3)
β∗−→ 0, the head variable y

getting 0 from an empty bag of the bunch of the kh − p empty bags. Otherwise,

p−a > q− b implies kh′ − g = kh− g > kh−p and so (3)
β∗−→ 0, the head variable

y getting 0 from an empty bag of the bunch of the m empty bags.

Case III (h′ = h and p−a = q−b). In this case we have kh′−g = kh−g = kh−p,
so that (3) β-reduces to HQ1 . . . Qq[X

!
kd+b+1

] . . . [X!
kd+a

] 1 . . . 1︸ ︷︷ ︸
kh−p

1 . . . 1︸ ︷︷ ︸
m

σ′. Notice

that, by the definition of the substitution σ′, we can rewrite this term as

(4) HQ1 . . . Qq[x
!
kd+b+1

] . . . [x!kd+a ] 1 . . . 1︸ ︷︷ ︸
kh−p

1 . . . 1︸ ︷︷ ︸
m

σ′.
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Since N can be in Λr−Λrf , the bags Qi’s may contain reusable resources. Hence,
for every i ≤ q, let us explicit Qi = [Ni,1, . . . , Ni,`i , (Ni,`i+1+ · · ·+Ni,ni)!], where
ni ≥ `i ≥ 0. We split into three subcases. Notice that p ≥ q, indeed a ≥ b (as M
is λ-wider than N) and we are considering the case p − a = q − b. Also, recall
that mi is the number of resources in Pi.

Subcase III.a (∃i ≤ q,mi < `i). In this case, for every N ′ ∈ N◦, we have

M 6ϕ∗→ N ′. In fact, any N ′ ∈ N◦ is of the form λxd+1 . . . λxd+b.xh′Q
′
1 . . . Q

′
q, with

Q′j ∈ Q◦j for every j ≤ q. In particular, Q′i has at least `i > mi linear resources,

hence Pi 6
ϕ∗→ Q′i, and hence M 6ϕ∗→ N ′.

We have (4)
β∗→ 0. Indeed, applying the β-reduction to (4) will eventually match

the abstraction λzi in H with the bag Qi. The variable zi has mi linear oc-
currences in H and no reusable ones. This means there will be not enough
occurrences of zi to accommodate all the `i linear resources of Qi, so giving

(4)
β∗→ 0.

Subcase III.b (∃i ≤ q,mi 6= `i and ni = `i). This case means that Qi has
no reusable resources and a number of linear resources different from Pi. Hence

M 6ϕ∗→ N ′, for every N ′ ∈ N◦. Also, (4)
β∗→ 0 since the number of linear resources

in Qi does not match the number of linear occurrences of the variable zi in H.

Subcase III.c (∀i ≤ q,mi ≥ `i, and mi > `i entails ni > `i). The hypoth-
esis of the case says that `i < mi entails that Qi has some reusable resources.
Let Fi be the set of maps s : {1, . . . ,mi} → {1, . . . , `i, `i + 1, . . . , ni} such that

`i-injectivity: for every j, h ≤ mi, if s(j) = s(h) ≤ `i, then j = h,
`i-surjectivity: for every h ≤ `i, there is j ≤ mi, s(j) = h.

Intuitively, Fi describes the possible ways of replacing the mi occurrences of the
variable zi in H by the ni resources in Qi: the two conditions say that each of
the `i linear resources of Qi must replace exactly one occurrence of zi. Notice
that, being under the hypothesis that p−a = q− b, we have p− q = a− b, hence
(4) β-reduces to the following sum

(5)
∑

s1∈F1...
sq∈Fq

I[N1,s1(1)
~R1,1]...[N1,s1(m1)

~R1,m1 ]...[Nq,sq(1)
~Rq,1]...[Nq,sq(mq)

~Rq,mq ]

[xd+b+1
~Rq+1,1]...[xd+b+1

~Rq+1,m1 ]...[xd+a ~Rp,1]...[xd+a ~Rp,mp ]σ′

Notice that for every i ≤ q, si ∈ Fi, j ≤ mi the term Mi,j is λ-wider than
Ni,si(j) and FV(Ni,si(j)) ⊆ Γ ∪{xd+1, . . . , xd+a}, so by the induction hypothesis

(6) Ni,si(j)σ
′ ~Ri,j

β∗−→

{
I if ∃N ′ ∈ N◦i,si(j),Mi,j

ϕ∗→ N ′,

0 otherwise.

Also, for every i, 1 ≤ i ≤ p− q = a− b, j ≤ mq+i, we have that Mq+i,j is λ-wider
than xd+b+i ∈ Γ ∪ {xd+1, . . . , xd+a}, so by induction hypothesis

(7) xd+b+iσ
′ ~Rq+i,j

β∗−→

{
I if Mi,j

ϕ∗→ xd+b+i,

0 otherwise.
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From (6) and (7) we deduce that (5)
β∗−→ I if, and only if,

(i) for all i ≤ q, there exists si ∈ Fi such that, for all j ≤ mi, ∃N ′ ∈ N◦i,si(j)
satisfying Mi,j

ϕ∗→ N ′, and

(ii) for all i < p− q = a− b and for all j ≤ mq+i, we have Mq+i,j
ϕ∗→ xd+b+i.

Thanks to the conditions on the function si, item (i) is equivalent to say that

for all i ≤ q, ∃Q′i ∈ Q◦i , Pi
ϕ∗→ Q′i, while item (ii) is equivalent to say that for all

i < p− q = a− b, Pq+i
ϕ∗→ [x

mq+i
d+b+i]. This means that (5)

β∗−→ I if, and only if,

M = λxd+1 . . . λxd+a.xhP1 . . . Pp
ϕ∗→ λxd+1 . . . λxd+bλxd+b+1 . . . λxd+a.xhQ

′
1 . . . Q

′
q[x

mq+1

d+b+1] . . . [x
mp
d+a]

ϕ∗→ λxd+1 . . . λxd+b.xhQ
′
1 . . . Q

′
q

where the last term is in N◦. To sum up, Nσ ~R β-reduces to I if ∃N ′ ∈ N◦ such

that M
ϕ∗→ N ′ and to 0, otherwise. We conclude that condition (1) holds. ut

4 A Resource Conscious Böhm’s Theorem

In this section we will prove the main result of our paper, namely Böhm’s theorem
for the resource calculus. We first need the following technical lemma.

Lemma 8. Let M,N ∈ 2〈Λr〉. If M 6�τ N then M′ 6�τ N for all M′ η∗−→M.

Proof. Suppose, by the way of contradiction, that there is an M′ η∗−→ M such

that M′ �τ N. Then, there are M′′ η∗−→M′ and N′ η∗−→ N, such that M′′ vτ N′. By

transitivity of
η∗−→, M′′ η∗−→M holds, so we get M �τ N which is impossible. ut

We are now able to prove the main result of this paper.

Theorem 2 (Resource Böhm’s Theorem). Let M,N ∈ 2〈Λr〉 be closed sums

in β-nf. If M 6≡ητ N then there is a sequence ~P of closed bags such that either

M~P
β∗−→ I and N~P β∗−→ 0, or vice versa.

Proof. Let M 6≡ητ N, then M 6�τ N or vice versa (Lemma 4): say M 6�τ N.

Applying Lemma 8 we have M′ 6�τ N for all M′ η∗← M; in particular, by Lemma 6,
M′ 6�τ N holds for an M′ λ-wider than both M and N. By Lemma 5 there is

M ′ ∈ (M′)◦ such that for all N ∈ N◦ we have M ′ 6ϕ∗→ N ; such a term M ′ is in
β-nf since M′ is in β-nf and is λ-wider than both M and N by Remark 2.

From Lemma 7, recalling that M ′,M,N are closed, there is a sequence ~P of

closed bags such that: (i) N~P β∗→ 0, since for all N ∈ N◦ we have M ′ 6ϕ∗→ N , and

(ii) M~P
β∗→ I, since M′ η∗→ M and hence by Remark 1 there is an M ∈ M◦ such

that M ′
ϕ∗→M . This concludes the proof of our main result. ut
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Corollary 1. Let ∼ be a congruence on 2〈Λe〉 extending β-equivalence. If there
are two closed M,N ∈ 2〈Λr〉 in β-nf such that M 6≡ητ N but M ∼ N, then ∼ is
trivial, i.e. for all sums L ∈ 2〈Λr〉, L ∼ 0.

Proof. Suppose M 6≡ητ N but M ∼ N. From Theorem 2 there is ~P such that

M~P
β∗−→ I and N~P β∗−→ 0, or vice versa. By the congruence of ∼, we have M~P ∼

N~P . By the hypothesis that ∼ extends β-equivalence, we get I ∼ 0. Now, take
any term L ∈ 2〈Λr〉, we have L ≡β IL ∼ 0L = 0. ut
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A Technical Appendix

This technical appendix is devoted to provide the full proof of Lemma 5. To prove
this result we will need some preliminary definitions and technical lemmas.

Definition 9. The sliced size of an expression A ∈ Λe is the number sizesl(A)
defined by structural induction on A as follows:

– sizesl(x) := 1,
– sizesl(MP ) := sizesl(M) + sizesl(P ),
– sizesl(λx.M) := sizesl(M) + 1,
– sizesl([M1, . . . ,Mm, (Σ

m+k
i=m+1Mi)

!]) := maxi∈{1,...,m+k}(sizesl(Mi)) + 1.

Lemma 9. For A,B ∈ 2〈Λe〉 and A,B ∈ Λef , we have:

(i) ∀A′ ∈ A◦, sizesl(A′) ≤ size(A);

(ii) if A
ϕ→ B, then sizesl(A) ≥ sizesl(B);

(iii) if A η→ B, then ∀A ∈ A◦,∃B ∈ B◦ such that sizesl(A) ≥ sizesl(B) and vice
versa, ∀B ∈ B◦,∃A ∈ A◦ such that sizesl(A) ≥ sizesl(B).

Proof. (i) By a straightforward induction on A.

(ii) By a straightforward inspection of the rules defining A
ϕ→ B.

(iii) By an easy inspection of the rules defining A η→ B, one gets ∀A ∈
A◦,∃B ∈ B◦ such that A

ϕ→ B (hence by (ii), sizesl(A) ≥ sizesl(B)) and vice

versa ∀B ∈ B◦,∃A ∈ A◦ such that A
ϕ→ B, hence sizesl(A) ≥ sizesl(B). ut

Lemma 10. Let A,B ∈ Λef such that A
ϕ∗−→ B, then:

(i) if B = x then either A = x or A
ϕ∗−→ λy.x[yk], for some k ∈ N;

(ii) if B = MP then there are M ′, P ′ such that M ′
ϕ∗−→M , P ′

ϕ∗−→ P and either

A = M ′P ′ or A
ϕ∗−→ λy.M ′P ′[yk] for some y /∈ FV(M ′P ′) and k ∈ N;

(iii) if B = λx.M , then there exists M ′ such that M ′
ϕ∗−→ M and either A =

λx.M ′ or A
ϕ∗−→ λy.(λx.M ′)[yk] for some y /∈ FV(λx.M ′) and k ∈ N;

(iv) if B = [N1, . . . , Nn] then A = [M1, . . . ,Mn] with Mi
ϕ∗−→ Ni for every i ≤ n.

Proof. By induction on the length of the reduction chain A
ϕ∗−→ B. ut

Lemma 5 is a direct consequence of the following result. To ease the formulation
of its statement we define �s on sets A,B ⊆ Λef by setting A �s B iff ∀A ∈ A,
∀B ∈ B we have A

ϕ∗−→ B.

Lemma 11. Let A ⊆ Λef be such that supA∈A
(
sizesl(A)

)
is finite and let B ∈

2〈Λe〉. Then A �s B◦ implies there is B′ η∗→ B such that A ⊆ (B′)◦.

Proof. The proof is performed by induction on the triplet(
sup
A∈A

(
sizesl(A)

)
, sup
A∈A

(
sizesl(A)

)
− inf
B∈B◦

(
sizesl(B)

)
, size(B)

)
,

lexicographically ordered. We split in several cases, depending on B.
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Case I (B = 0). Then, by the hypothesis A �s B◦, we deduce A = ∅. Clearly,

0
η∗→ 0 and ∅ ⊆ 0◦.

Case II (B = B1 + B2, both non-empty). Then, for i = 1, 2, let Ai := {A ∈
A | ∃B ∈ B◦i s.t. A

ϕ∗→ B}. Notice that supA∈A
(
sizesl(A)

)
≥ supA∈Ai

(
sizesl(A)

)
,

infB∈B◦
(
sizesl(B)

)
≤ infB∈B◦i

(
sizesl(B)

)
and size(B) > size(Bi). So, we can apply

the induction hypothesis, getting B′i
η∗→ Bi such that Ai ⊆ B◦i . We conclude by

setting B′ := B′1 + B′2.

Case III (B = x). Let Aη := {M ∈ A | M ϕ∗→ λy.x[yk], for k ∈ N} and notice
that, by Lemma 10(i), A ⊆ {x} ∪ Aη. We have that Aη �s (λy.x[y!])◦, and
supA∈A

(
sizesl(A)

)
≥ supA∈Aη

(
sizesl(A)

)
, while infB∈x◦

(
sizesl(B)

)
= sizesl(x) <

infB∈(λy.x[y!])◦
(
sizesl(B)

)
. So, we can apply the induction hypothesis, getting

Mη
η∗→ λy.x[y!] such that Aη ⊆ M◦η. We conclude by defining B′ := x + Mη. In

fact, B′ η∗→ x+ λy.x[y!]
η→ x+ x = x, by sum idempotency.

Case IV (B = NP ). Then, by Lemma 10(ii), A is a set of terms M such that,

for each of them, there exist N ′
ϕ∗→ N ′′, and P ′

ϕ∗→ P ′′, with N ′′ ∈ N◦, P ′′ ∈ P ◦
and either M = N ′P ′ or M

ϕ∗→ λy.N ′P ′[yk]
ϕ→ N ′P ′. Hence, let us decompose A

into the set A@ of those M of the form N ′P ′ and the set Aη of those M reducing
to λy.N ′P ′[yk], and let us define N@, P@ (resp. Nη, Pη) as the set of the terms
N ′ and the set of the bags P ′ associated with the M ’s in A@ (resp. in Aη).

Let us consider Nη. By definition, we have Nη �s N◦. Moreover, notice
that supN ′∈Nη

(
sizesl(N ′)

)
< supM∈A

(
sizesl(M)

)
, in fact let N ′ be the term in

Nη having maximum sizesl, and let P ′ be the bag such that there is M ∈ A,

M
ϕ∗→ λy.N ′P ′[yk]: by Lemma 9(ii), sizesl(M) ≥ sizesl(λy.N ′P ′[yk]) > sizesl(N ′).

Hence, we can apply the induction hypothesis to Nη �s N◦, getting Nη
η∗→ N

such that Nη ⊆ N◦η.

We can do a similar reasoning on Pη �s P ◦, getting Pη
η∗→ P such that

Pη ⊆ P◦η. That means NηPη
η∗→ NP as well as NηPη ⊆ (NηPη)◦. Notice that we

have, by construction, Aη �s
⋃∞
k=0 λy.NηPη[yk] ⊆ (λy.NηPη[y!])◦, hence Aη �s

(λy.NηPη[y!])◦. Notice also that supA∈A
(
sizesl(A)

)
≥ supA∈Aη

(
sizesl(A)

)
, while

infB∈(NP )◦
(
sizesl(B)

)
≤ infB∈(NηPη)◦

(
sizesl(B)

)
, because of NηPη

η∗→ NP and

Lemma 9(iii). Then, infB∈(NηPη)◦
(
sizesl(B)

)
< infB∈(λy.NηPη[y!])◦

(
sizesl(B)

)
.

We conclude:

sup
A∈A

(
sizesl(A)

)
− inf
B∈B◦

(
sizesl(B)

)
> sup
A∈Aη

(
sizesl(A)

)
− inf
B∈(λy.NηPη [y!])◦

(
sizesl(B)

)
and so we can apply the induction hypothesis to Aη �s (λy.NηPη[y!])◦, get-

ting Mη
η∗→ λy.NηPη[y!] such that Aη ⊆ M◦η. Notice that we have Mη

η∗→
λy.NηPη[y!]

η∗→ NηPη
η∗→ NP .

By an easier variant of the above reasoning one gets M@
η∗→ NP such that

A@ ⊆M◦@. We conclude by defining B′ := Mη + M@.



18 Manzonetto, Pagani

Case V (B = λx.M). It is an easier variant of the case B is an application,
using Lemma 10(iii) and Lemma 9.

Case VI (B = [N1, . . . , Nn,N!]). We explicit the sum N = Nn+1 + · · ·+Nn+m.
Then, by definition of B◦ and Lemma 10(iv), we have that each element of A is
a bag [L1, . . . , Ln,M1,1, . . . ,M1,k1 , . . . ,Mm,1, . . . ,Mm,km ], with m ≥ 0, for every
i ≤ m, ki ≥ 0 and

1. for every ` ≤ n there is N ′ ∈ N◦` such that L`
ϕ∗→ N ′

2. for every i ≤ m, j ≤ km there is N ′′ ∈ N◦n+i such that Mi,j
ϕ∗→ N ′′

For every ` ≤ n, we define L` as the set of the L`’s resources in each bag
of A associated with the linear resource N` in B. Note that L` �s N◦` and

supM∈L`
(
sizesl(M)

)
< supA∈A

(
sizesl(A)

)
. By induction hypothesis we get L`

η∗→
N` such that L` ⊆ L◦` .

Similarly, for all i ≤ m, we defineNi as the union of the sets {Mi,1, . . . ,Mi,ki}
of the Mi,j ’s resources in each bag of A associated with the exponential resource
Nn+i of B. Notice that we have Ni �s N◦n+i and that supM∈Ni

(
sizesl(M)

)
<

supA∈A
(
sizesl(A)

)
, then by induction hypothesis we get Ni

η∗→ Nn+i such that
Ni ⊆ N◦i .

We conclude by setting B′ = [L1, . . . ,Ln, (N1 + · · ·+ Nm)!]. ut

Lemma 5 Let M,N ∈ 2〈Λr〉. Then M �s N entails M �τ N.

Proof. Suppose M �s N. By Lemma 9(i) we have that M◦ is a set of terms

having supM∈M◦ sizesl(M) ≤ size(M). So Lemma 11 yields N′ η∗→ N such that

M◦ ⊆ (N′)◦. This latter entails M vτ N′ by Proposition 1. Hence Mvτ N′
η∗→ N

holds for some N′, and this entails M �τ N by definition. ut
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