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Abstract. The aim of this paper is double. From one side we survey the knowledge we have
acquired these last ten years about the lattice of all λ-theories (= equational extensions of
untyped λ-calculus) and the models of lambda calculus via universal algebra. This includes
positive or negative answers to several questions raised in these years as well as several
independent results, the state of the art about the long-standing open questions concerning
the representability of λ-theories as theories of models, and 26 open problems. On the other
side, against the common belief, we show that lambda calculus and combinatory logic sat-
isfy interesting algebraic properties. In fact the Stone representation theorem for Boolean
algebras can be generalized to combinatory algebras and λ-abstraction algebras. In every
combinatory and λ-abstraction algebra there is a Boolean algebra of central elements (play-
ing the role of idempotent elements in rings). Central elements are used to represent any
combinatory and λ-abstraction algebra as a weak Boolean product of directly indecompos-
able algebras (i.e., algebras which cannot be decomposed as the Cartesian product of two
other non-trivial algebras). Central elements are also used to provide applications of the
representation theorem to lambda calculus. We show that the indecomposable semantics
(i.e., the semantics of lambda calculus given in terms of models of lambda calculus, which
are directly indecomposable as combinatory algebras) includes the continuous, stable and
strongly stable semantics, and the term models of all semisensible λ-theories. In one of
the main results of the paper we show that the indecomposable semantics is equationally
incomplete, and this incompleteness is as wide as possible.

1 Introduction

Among the computational formalisms which have been introduced, the lambda calculus plays
an important role as a bridge between logic and computer science. The lambda calculus was
originally introduced by Church [20, 21] as a foundation for logic, where functions, instead of
sets, were primitive, and it turned out to be consistent and successful as a tool for formalizing
all computable functions. The rise of computers and the development of programming languages
gave a new development to its theoretical studies. The lambda calculus is the kernel of the func-
tional programming paradigm, because its ordinary parameter-binding mechanism corresponds
closely to parameter binding in many functional programming languages and to variable binding
of quantifiers in logic.
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Lambda calculus has been originally investigated by using mainly syntactical methods (see
Barendregt’s book [4]). At the beginning researchers have focused their interest on a limited
number of equational extensions of lambda calculus, called λ-theories. They arise by syntactical
or semantic considerations. Indeed, a λ-theory may correspond to a possible operational seman-
tics of lambda calculus, as well as it may be induced by a model of lambda calculus through
the kernel congruence relation of the interpretation function. Syntactical proofs of consistency
of remarkable λ-theories (for example, the theory equating all unsolvable λ-terms) were given in
Barendregt’s 1971 thesis [3], while one of the most significant λ-theories is connected with the
study of the infinite normal forms of λ-terms through Böhm trees [15, 4]. The set of λ-theories
is naturally equipped with a structure of complete lattice (see [4, Chapter 4]). The bottom ele-
ment of this lattice is the least λ-theory λβ, while the top element is the inconsistent λ-theory.
Although researchers have mainly focused their interest on a limited number of them, the lattice
of λ-theories, hereafter denoted by λT , has a very rich and complex structure (see e.g. [4, 8, 9]).

The lambda calculus, although its axioms are all in the form of equations, is not a genuine
equational theory since the variable-binding properties of lambda abstraction prevent “variables”
in lambda calculus from operating as real algebraic variables. Consequently the general methods
that have been developed in universal algebra, for defining the semantics of an arbitrary algebraic
theory for instance, are not directly applicable. There have been several attempts to reformulate
the lambda calculus as a purely algebraic theory. The earliest, and best known, algebraic models
are the combinatory algebras of Curry and Schönfinkel (see [28, 70]). Although combinatory
algebras do not keep the lambda notation, they have a simple purely equational characterization
and were used to provide an intrinsic first-order, but not equational, characterization of the models
of lambda calculus, as a special class of combinatory algebras called λ-models [4, Def. 5.2.7].
The connection between the syntax and the semantics of lambda calculus is established by the
completeness theorem of lambda calculus: every λ-theory is the equational theory of some λ-
model (see [4]).

Semantical methods have been extensively investigated. Topology is at the center of the
known approaches to giving models of the untyped lambda calculus. After the first model, found
by Scott [65] in 1969 in the category of complete lattices and Scott continuous functions, a large
number of mathematical models for lambda calculus have been introduced in various categories
of domains and were classified into semantics according to the nature of their representable func-
tions, see e.g. [4, 8, 59]. Scott continuous semantics [68] is given in the category whose objects
are complete partial orders and morphisms are Scott continuous functions. Scott continuous se-
mantics includes the class of graph models, which were isolated in the seventies by Plotkin,
Scott and Engeler [33, 59, 67], and the class of filter models, which were isolated at the begin-
ning of eighties by Barendregt, Coppo and Dezani [5] after the introduction of intersection-type
discipline at the end of seventies by Coppo and Dezani [26]. Filter models were investigated
by Coppo, Dezani, Barendregt et al. in a series of papers and are perhaps the most established
and studied semantics of lambda calculus (see e. g. [27, 5, 47]). Other semantics of lambda cal-
culus were isolated by Berry [12] and Bucciarelli-Ehrhard [16]: Berry’s stable semantics and
Bucciarelli-Ehrhard’s strongly stable semantics are refinements of the continuous semantics in-
troduced to capture the notion of “sequential” Scott continuous function. All these semantics
are structurally and equationally rich [10, 44, 46] in the sense that it is possible to build up 2ℵ0

λ-models in each of them inducing, pairwise distinct λ-theories. Nevertheless, the above deno-
tational semantics do not match all possible operational semantics of lambda calculus. We recall
that a semantics of lambda calculus is equationally incomplete if there exists a λ-theory which is
not the theory of any model in the semantics. In the nineties the problem of the equational incom-



pleteness was positively solved by Honsell and Ronchi della Rocca [39] for Scott’s continuous
semantics, and by Bastonero and Gouy for Berry’s stable semantics [6]. The proofs of the above
results are syntactical and very difficult. In [63, 64] it was shown the equational incompleteness
of all semantics of lambda calculus that involve monotonicity with respect to some partial order
and have a bottom element (including the incompleteness of the strongly stable semantics, which
had been conjectured by Bastonero-Gouy and by Berline [6, 8]). The proof is simple, general and
abstract. First a theorem relating the properties of a graph to the properties of a suitable binary
operation on the vertices of the graph is proven. Then the incompleteness is obtained by apply-
ing this theorem to the graphs, whose vertices are the elements of a partially ordered model of
lambda calculus, and whose edges correspond to the symmetric and antireflexive relation which
is the union of the strict order and of the strict dual order of the model. This incompleteness
removes the belief that partial orderings with a bottom element are intrinsic to models of the
lambda calculus, and that the incompleteness of a semantics is only due to the richness of the
structure of representable functions. Instead, the incompleteness is also due to the richness of the
structure of λ-theories.

The need of more abstract and sophisticated mathematical techniques in lambda calculus
arises when we recognize the difficulty of the problems we handle, for example in order to
investigate the structure of the lattice of λ-theories (see [4, Chapter 4] and [8, 9]) in itself and in
connections with the theory of models. Salibra [51, 64, 61] has launched at the end of the nineties
a research program for exploring lambda calculus and combinatory logic using techniques of
universal algebra. The remark that the lattice of λ-theories is isomorphic to the congruence lattice
of the term algebra of the least λ-theory λβ is the starting point for studying lambda calculus
by universal algebraic methods, through the variety generated by the term algebra of λβ. In [61]
Salibra has shown that the variety generated by the term algebra of λβ is axiomatized by the finite
schema of identities characterizing λ-abstraction algebras (LAAs). The equational theory of λ-
abstraction algebras, introduced by Pigozzi and Salibra [57, 58], constitutes a purely algebraic
theory of the untyped lambda calculus in the same spirit that cylindric and polyadic (Boolean)
algebras constitute an algebraic theory of the first-order predicate logic. The variety of LAAs is
intended as an alternative to the variety CA of combinatory algebras in this regard since it is a
first-order algebraic description of lambda calculus, which keeps the lambda notation and hence
all the functional intuitions. In [61] Salibra has shown that, for every variety of LAAs, there exists
exactly one λ-theory whose term algebra generates the variety. Thus, the properties of a λ-theory
can be studied by means of the variety of LAAs generated by its term algebra.

Long-standing open problems of lambda calculus can be restated in terms of algebraic prop-
erties of varieties of LAAs. For example, the open problem of the order-incompleteness of lambda
calculus, raised by Selinger (see [69]), asks for the existence of a λ-theory not arising as the equa-
tional theory of a non-trivially partially ordered model of lambda calculus. A partial answer to
the order-incompleteness problem was obtained by Salibra in [64], where it is shown the exis-
tence of a λ-theory not arising as the equational theory of a non-trivially partially ordered model
with a finite number of connected components. The order-incompleteness of lambda calculus is
equivalent to the existence of an n-permutable variety of LAAs for some natural number n ≥ 2
(see the remark after Thm. 3.4 in [69]). Plotkin, Selinger and Simpson (see [69]) have shown
that 2-permutability and 3-permutability are inconsistent with lambda calculus. The problem of
n-permutability remains open for n ≥ 4.

We wonder if it is possible to apply to the varieties LAA and CA the nice results developed
in universal algebra in the last thirty years, which essentially connect (a) identities or quasi-
identities in the language of lattices satisfied by congruence lattices; (b) properties of the com-



mutator; and (c) Mal’cev conditions, that characterize properties in varieties by the existence of
certain terms involved in certain identities. We recall that the structure of an algebra is affected
by the shape of its congruence lattice and that the commutator, a binary operation on this lat-
tice, provides a “measure” of this shape. The commutator was first introduce in group theory,
where the concept of Abelian group, and other important concepts, can be defined in terms of
the commutator operation on normal subgroups. The extension of the commutator to algebras
other than groups is due to the pioneering papers of Smith [71] and Hagemann-Hermann [37].
The commutator is very well behaved in congruence modular varieties (see Freese-McKenzie
[34] and Gumm [35]). However, in [62] it was shown that LAA is not congruence modular. As
a consequence, it is not possible to apply to LAA the nice theory of commutator developed for
congruence modular varieties. Lipparini [49, 50] and Kearnes-Szendrei [41] have recently shown
that under very weak hypotheses the commutator proves also useful in studying algebras without
congruence modularity. However, in [51] Lusin and Salibra have shown that a lattice identity is
satisfied by all congruence lattices of λ-abstraction algebras (combinatory algebras, respectively)
iff it is true in all lattices. Thus, there is a common belief that lambda calculus and combinatory
logic are algebraically pathological.

On the contrary, we will show that λ-calculus and combinatory logic do satisfy interesting
algebraic properties. One of the milestones of modern algebra is the Stone representation theo-
rem for Boolean algebras. This result was first generalized by Pierce to commutative rings with
unit and next by Comer to the class of algebras with Boolean factor congruences. By applying
a theorem by Vaggione [74], we show that Comer’s generalization of Stone representation theo-
rem also holds for combinatory and λ-abstraction algebras: any combinatory (or λ-abstraction)
algebra is isomorphic to a “weak” Boolean product of directly indecomposable algebras (i.e.,
algebras which cannot be decomposed as the Cartesian product of two other non-trivial alge-
bras). The proof of the representation theorem is based on the fact that every combinatory (or
λ-abstraction) algebra contains a Boolean algebra of central elements (introduced by Vaggione
[73] in universal algebra). These elements define a direct decomposition of the algebra as the
Cartesian product of two other algebras, just like idempotent elements in rings.

This result suggests a connection between propositional classic logic and combinatory logic;
what is the real meaning of this connection remains to be investigated. What we would like to
emphasize here is that central elements have been shown fundamental in the application of the
representation theorem to λ-calculus, as it will be explained in the next paragraph.

The representation theorem can be roughly summarized as follows: the directly indecompos-
able combinatory algebras and λ-abstraction algebras are the ‘building blocks’ in the respective
varieties. The notion of directly indecomposable combinatory algebra appears to be so relevant
that we find it even interesting to speak of the “indecomposable semantics” to denote the class of
models of lambda calculus which are directly indecomposable as combinatory algebras. This se-
mantics is very general since, as we will show, it encompasses the continuous, stable and strongly
stable semantics, and represents all semisensible λ-theories (theories which do not equate solv-
able and unsolvable terms). In one of the main results of the paper we show that the indecompos-
able semantics, although so general, is (largely) incomplete. More precisely, we will prove that it
omits a set of λ-theories which contains an antichain of cardinality 2ℵ0 and also countably many
intervals of cardinality 2ℵ0 .

In one of the last results of the paper we show that the set of λ-theories representable in each
of the classic semantics of λ-calculus is not closed under finite intersection, in particular it is not
a sublattice of the lattice of all λ-theories.



Outline. This paper is organized as follows: In Section 2 we review the basic definitions of
universal algebra which are involved in the rest of the paper. Section 3 is devoted to present the
λ-calculus from an algebraic point of view and to recall some results concerning its models. In
Section 4 we recall the properties of the lattice of λ-theories and we provide some new results.
The Stone representation theorem for combinatory and λ-abstraction algebras is presented in
Section 5. Section 6 is devoted to the equational incompleteness of the indecomposable seman-
tics. In Section 7 we present 26 open problems concerning models and theories of λ-calculus.

2 Preliminaries

2.1 Lattices

A lattice is a poset S = (S,v) such that any two elements s, s′ ∈ S have a least upper bound
s∨s′ and a greatest lower bound s∧s′ which are respectively called, in this context, join and meet.
Then, v is definable from the meet or the join. A lattice is bounded if it has a top and a bottom
element. A lattice is complete if any A ⊆ S has a least upper bound (then all A’s have also a
greatest lower bound); in particular every complete lattice is bounded. The interval notation will
have the obvious meaning, e.g., I[s, s′] = {s′′ ∈ S : s v s′′ v s′} and I[s, s′[= I[s, s′]− {s′}.

We say that an element s of a bounded lattice S is an atom (coatom) if it is a minimal element
different from ⊥ (maximal element different from >).

Given a poset S and S′ ⊆ S we recall that: S′ is a chain of S if it is totally ordered by v,
and S′ is antichain in case its elements are pairwise incomparable.

2.2 Algebras

An algebraic similarity type Σ is constituted by a non-empty set of operator symbols together
with a function assigning to each operator f ∈ Σ a finite arity. Operator symbols of arity 0 are
called nullary operators or constants.

AΣ-algebra A is determined by a non-empty setA together with an operation fA : An → A
for every f ∈ Σ of arity n. A is trivial if its underlying set is a singleton.

Given a Σ-algebra A, a binary relation φ on A is compatible if for all f ∈ Σ of arity n, and
for all ai, bi ∈ A we have

a1φb1, . . . , anφbn ⇒ fA(a1, . . . , an)φfA(b1, . . . , bn).

A compatible equivalence relation on a Σ-algebra A is called a congruence. As a matter of
notation, we will often write aφb or a =φ b for (a, b) ∈ φ.

We denote by Con(A) the complete lattice of the congruences of A, which is a sublattice of
the equivalence relations on A.

The lattice Con(A) contains a top and a bottom element:

∇A = A×A; ∆A = {(a, a) : a ∈ A}.

When A is clear from the context we will omit the superscript A and write∇, ∆. A congruence
φ on A is called trivial if it is equal to∇ or ∆.

Notation 1. IfX ⊆ A×A and φ is a congruence, then we write θφ(X) for the least congruence
on A including φ∪X . If φ = ∆, then we write θ(X) for θ∆(X). θ(a, b) denotes the congruence
θ({(a, b)}).



An algebra A is simple if Con(A) = {∆,∇}.
Given two algebras A and B, we denote by A×B their (direct) product and we let A ∼= B

mean that they are isomorphic. Recall that the product congruence of φ1 ∈ Con(A) and φ2 ∈
Con(B) is the congruence φ1 × φ2 on A ×B defined by: (b, c) φ1 × φ2 (b′, c′) if, and only if,
b φ1 b

′ and c φ2 c
′.

An algebra A is directly decomposable if there exist two non-trivial algebras B,C such that
A ∼= B×C.

An algebra A is a subdirect product of the algebras (Bi)i∈I , written A ≤ Πi∈IBi, if there
exists an embedding f of A into the direct productΠi∈IBi such that the projection πi ◦f : A→
Bi is onto for every i ∈ I .

A non-empty class K of algebras of the same similarity type is: (i) a variety if it is closed
under subalgebras, homomorphic images and direct products; (ii) an equational class if it is
axiomatizable by a set of equations. Birkhoff proved in [14] (see also [53, Thm. 4.131]) that
conditions (i) and (ii) are equivalent.

A variety K of algebras is generated by an algebra A ∈ K if every equation satisfied by A
is also satisfied by every algebra in K. We will denote by V(A) the variety generated by A.

Let K be a class of Σ-algebras, A be a Σ-algebra and X be a subset of A. We say that
A has the universal mapping property for K over X if, and only if, for every B ∈ K and for
every mapping g : X → B, there is a unique homomorphism f : A → B that extends g (i.e.,
f(x) = g(x) for every x ∈ X). We say that A is free in K over X iff A ∈ K, A is generated by
X and A has the universal mapping property for K over X . If A is free in K over X , then X is
called a set of generators for A, and A is said to be freely generated by X . A free algebra in the
class of all Σ-algebras is called absolutely free.

Σ-terms are defined by structural induction as follows: x is aΣ-term for every variable x; a is
a Σ-term for every nullary operator a ∈ Σ; if t1, . . . , tn (n > 1) are Σ-terms then f(t1, . . . , tn)
is a Σ-term for all f ∈ Σ of arity n. We will call ground Σ-terms those Σ-terms without
occurrences of variables. If t is a Σ-term, we write t ≡ t(x1, . . . , xn) if the variables occurring
in t are among x1, . . . , xn. If A is a Σ-algebra then every Σ-term t(x1, . . . , xn) induces a term
operation tA : An → A defined in the obvious way.

A reduct of A is an algebra (A, tA1 , t
A
2 , . . .) such that every tA1 , t

A
2 , . . . is a term operation of

A. An extension of A is an algebra B such that A is a reduct of B. Sometimes we will indicate
an extension of A as (A, f1, f2, . . .).

2.3 Factor congruences

Given two congruences σ and τ on an algebra A, we can form their relative product:

τ ◦ σ = {(a, c) : (∃b ∈ A) a σ b τ c}.

It is easy to check that τ ◦σ is still a compatible relation on A, but not necessarily a congruence.

Definition 1. A congruence φ on an algebra A is a factor congruence if there exists another
congruence φ such that φ ∧ φ = ∆ and φ ◦ φ = ∇. In this case we call (φ, φ) a pair of
complementary factor congruences.

Under the hypotheses of Definition 1 the homomorphism f : A → A/φ × A/φ defined
by f(x) = (x/φ, x/φ) is an isomorphism. Hence, (φ, φ) is a pair of complementary factor
congruences of A if, and only if, A ∼= A/φ ×A/φ. So, the existence of factor congruences is
just another way of saying “this algebra is a direct product of simpler algebras”.



The set of factor congruences of A is not, in general, a sublattice of Con(A). ∆ and ∇ are
the trivial factor congruences, corresponding to A ∼= A × B, where B is a trivial algebra; of
course, B is isomorphic to A/∇ and A is isomorphic to A/∆.

Lemma 1. An algebra A is directly indecomposable when A admits only the two trivial factor
congruences (∆ and ∇).

Clearly, every simple algebra is directly indecomposable, while there are algebras which are
directly indecomposable but not simple: they have congruences, which however do not split the
algebra up neatly as a Cartesian product.

2.4 Decomposition operators

Factor congruences can be characterized in terms of certain algebra homomorphisms called de-
composition operators (see [53, Def. 4.32] for more details).

Definition 2. A decomposition operation for an algebra A is a function f : A × A → A such
that

– f(x, x) = x;
– f(f(x, y), z) = f(x, z) = f(x, f(y, z));
– f is an algebra homomorphism from A×A into A.

There exists a bijective correspondence between pairs of complementary factor congruences
and decomposition operations, and thus, between decomposition operations and factorizations
like A ∼= B×C.

Proposition 1. [53, Thm. 4.33] Given a decomposition operator f the binary relations φ and φ
defined by:

x φ y if, and only if, f(x, y) = y,

x φ y if, and only if, f(x, y) = x,

form a pair of complementary factor congruences. Conversely, given a pair (φ, φ) of comple-
mentary factor congruences, the map f defined by:

f(x, y) = u if, and only if, x φ u φ y, (1)

is a decomposition operation.

Notice that if (φ, φ) is a pair of complementary factor congruences, then for all x and y there
is just one element u such that x φ u φ y.

2.5 Boolean factor congruences and Boolean products

An algebra has Boolean factor congruences if its factor congruences form a Boolean sublattice
of the congruence lattice. Most known examples of varieties in which all algebras have Boolean
factor congruences are those with factorable congruences. This is the case, for example, of the
congruence distributive varieties, and congruence permutable varieties in which the universal
congruences are compact (e.g., the variety of rings with unit). A variety C of algebras has fac-
torable congruences if for every A,B ∈ C we have Con(A×B) ∼= Con(A)× Con(B).



Lemma 2. (Bigelow-Burris [13, Cor. 1.4]) If a variety C has factorable congruences, then every
A ∈ C has Boolean factor congruences.

The Boolean product construction allows us to transfer numerous fascinating properties of
Boolean algebras into other varieties of algebras (see [22, Ch. IV]). Actually, this construction
has been presented for several years as “the algebra of global sections of sheaves of algebras
over Boolean spaces” (see [25, 40]); however, these notions were unnecessarily complex and we
prefer to adopt here the following equivalent presentation (see [23]). We recall that a Boolean
space is a compact, Hausdorff and totally disconnected topological space.

Definition 3. A weak Boolean product of a family (A)i∈I of algebras is a subdirect product
A ≤ Πi∈IAi, where I can be endowed with a Boolean space topology such that:

(i) the set {i ∈ I : ai = bi} is open for all a, b ∈ A, and
(ii) if a, b ∈ A and N is a clopen subset of I , then the element c, defined by ci = ai for every

i ∈ N and ci = bi for every i ∈ I −N , belongs to A.

A Boolean product is a weak Boolean product such that the set {i ∈ I : ai = bi} is clopen (i.e.,
open and closed) for all a, b ∈ A.

3 The λ-calculus in algebraic setting

The two primitive notions of the untyped λ-calculus are application, the operation of applying
a function to an argument, and lambda abstraction, the process of forming a function from the
“expression” defining it.

From now on we consider two fixed countable non-empty sets; namely, the set Na of names,
and the set Va of algebraic variables. The elements of Na will be denoted by a, b, c, . . . , while
the elements of Va by x, y, z, . . . .

Definition 4. The algebraic similarity type Σλ is constituted by a binary operator symbol “·”;
a nullary operator symbol “a” and a unary operator symbol “λa”, for every a ∈ Na.

The binary operator · is called “application” and the unary operator λa “lambda abstraction”.
A λ-term is ground Σλ-term, while a meta λ-term is a Σλ-term. Every λ-term is also a meta

λ-term; meta λ-terms will be usually denoted by t, u, v, . . . , while λ-terms by M,N,P, . . . .
The following are well known λ-terms, where the symbol ≡ denotes syntactical equality:

I ≡ λa(a); 1 ≡ λa(λb(a · b)); T ≡ λa(λb(a)); F ≡ λa(λb(b));
S ≡ λa(λb(λc((a · c) · (b · c)))); δ ≡ λa(a · a); Ω ≡ δ · δ.

λa(a · x) is an example of a meta λ-term that is not a λ-term.

Notation 2. From now on, we will write λabc.M for λa(λb(λc(M))). The dot “·” of the ap-
plication operator is usually omitted and association is made on the left, so that, for example,
(((a · b) · c) · d) · e is written abcde. Then the above λ-terms can be rewritten as follows:

I ≡ λa.a; 1 ≡ λab.ab; T ≡ λab.a; F ≡ λab.b;
S ≡ λabc.ac(bc); δ ≡ λa.aa; Ω ≡ δδ.

Remark 1. Meta λ-terms and algebraic variables are called respectively contexts and holes in
Barendregt’s book [4, Def. 14.4.1].



An occurrence of a name a in a meta λ-term is bound if it lies within the scope of a lambda
abstraction λa; otherwise it is called free. For example, the occurrence of a in λa.ac is bound,
whilst the one of c is free. The set of free names of M is denoted by FN(M). A λ-term without
free names is said to be closed.

The set of all meta λ-terms (resp. λ-terms) is denoted by ΛVa (resp. Λ). The set of all closed
λ-terms is denoted by Λo.

Two kinds of substitution In the following we analyze the two kinds of substitutions that are
studied in this paper: the substitution for the free occurrences of a name and the substitution for
the occurrences of an algebraic variable.

The essential feature of a meta λ-term is that a free name in a λ-term may become bound
when we substitute it for a variable within a meta λ-term. This kind of substitution is the usual
one of the equational calculus and it does not matter of free and bound occurrences of names.
More precisely, given a meta λ-term u, t{x := u} is defined by induction over the complexity of
the meta λ-term t as follows:

– x{x := u} = u (x ∈ Va)
– a{x := u} = a (a ∈ Na)
– (t · t′){x := u} = (t{x := u}) · (t′{x := u})
– (λa.t){x := u} = λa.t{x := u}.

For example,

(λa.xa){x := λb.a} = λa.(λb.a)a.

The other substitution is proper of λ-calculus and concerns λ-terms. Given a λ-term M , we
denote by M [a := N ] the result of substituting the λ-term N for all free occurrences of a in M
subject to the usual proviso about renaming bound names in M to avoid capture of free names in
N . More precisely M [a := N ] is defined by induction over the complexity of M as follows:

– a[a := N ] = N

– b[a := N ] = b (b 6= a)
– (P ·Q)[a := N ] = (P [a := N ]) · (Q[a := N ])
– (λa.P )[a := N ] = λa.P

– b /∈ FN(N) ⇒ (λb.P )[a := N ] = λb.P [a := N ] (a 6= b)
– b ∈ FN(N) ⇒ (λb.P )[a := N ] = λc.P [b := c][a := N ] (a 6= b), where c is a new name

not occurring neither free nor bound in P .

For example,

(λa.ba)[b := aa] = λc.(aa)c,

where the new name c avoids capture of free names.
Note that the equations between λ-terms, unlike the associative and commutative laws for

example, are not always preserved when arbitrary λ-terms are substituted for free names (e.g.,
λa.ba = λc.bc does not imply λa.ca = λc.cc). On the contrary, the equations between meta
λ-terms are always preserved when arbitrary λ-terms are substituted for algebraic variables.



3.1 λ-abstraction algebras

The λ-theories are the main object of study of the untyped λ-calculus, when, roughly speaking,
we consider “conversion” more important than “reduction”.

We start by defining the λ-theories as congruences including (β)-conversion (which ex-
presses the way of calculating a function λa.M on an argument N ) and (α)-conversion (which
avoids capture of free names).

Let
Λ = (Λ, ·, λa, a)a∈Na

be the absolutely free Σλ-algebra over an empty set of generators.

Definition 5. A λ-theory is any congruence on Λ including (α)- and (β)-conversion (hereM,N
are arbitrary λ-terms and a, b are names):

(α) λa.M = λb.M [a := b], for any name b that does not occur free in M ,
(β) (λa.M)N = M [a := N ].

The least λ-theory is denoted by λβ, while the quotient of the absolutely free algebra Λ by a
λ-theory φ is called the term algebra of φ and will be denoted by Λφ.

The identities between λ-terms expressing (α)- and (β)-conversion do not provide a good
algebraization of the untyped λ-calculus, because algebraic variables do not occur in λ-terms. In
the remaining part of this section we show how it is possible to algebraize the lambda calculus.

The variety V(Λλβ) generated by the term algebra Λλβ of λβ is the starting point for study-
ing the lambda calculus by universal algebraic methods.

We recall that, by definition, V(Λλβ) satisfies an identity between meta λ-terms

t(x1, . . . , xn) = u(x1, . . . , xn)

if, and only if, the term algebra Λλβ satisfies it. This means that all instances of the above identity,
obtained by substituting (without α-conversion) λ-terms for variables in it, fall within λβ:

t(M1, . . . ,Mn) =λβ u(M1, . . . ,Mn), for all λ-terms M1, . . . ,Mn.

In the next theorem, which was the one of the main results of [61], it is shown that V(Λλβ) is
axiomatizable by suitable equations between meta λ-terms. Among the seven axioms character-
izing V(Λλβ), the first six constitute a recursive definition of the abstract substitution operator;
they express precisely the meta-mathematical content of (β)-conversion. The last one is an alge-
braic translation of (α)-conversion.

Theorem 1. (Salibra [61]) The variety V(Λλβ) is axiomatized by the following identities, where
a, b, c (a 6= b, b 6= c) are names and x, y, z are variables:

(β1) (λa.a)x = x;
(β2) (λa.b)x = b;
(β3) (λa.x)a = x;
(β4) (λaa.x)y = λa.x;
(β5) (λa.xy)z = (λa.x)z((λa.y)z);
(β6) (λab.x)((λb.y)c) = λb.(λa.x)((λb.y)c);
(α) (λa.(λb.x)c) = λb.(λa.(λb.x)c)b.



The identities of Thm. 1 were first isolated by Pigozzi and Salibra in [58] and used to define the
class of λ-abstraction algebras, which are algebraic structures of the form

A = 〈A, ·A, λaA, aA〉a∈Na

satisfying the identities (β1)-(β6) and (α). The class of λ-abstraction algebras is a variety, de-
noted by LAA, and therefore it is closed under subalgebras, homomorphic images, and Cartesian
products.

Remark 2. The meta-mathematical content of the phrase “a name a does not occur free in x”, or
equivalently “x does not depend on the name a”, can be expressed by an equation:

(λa.x)b = x (b 6= a).

Then, for example, axiom (β6) assumes the following natural form for all elements y which do
not depend on b:

(λab.x)y = λb.(λa.x)y, (a 6= b).

Remark 3. Thm. 1 is a consequence of a result shown in [61], relating identities between meta
λ-terms and identities between λ-terms. Let A be an LAA and t(x1, . . . , xn) = u(x1, . . . , xn)
be an identity between meta λ-terms. Then there exist two λ-terms Mt and Mu such that

A |= t(x1, . . . , xn) = u(x1, . . . , xn) ⇔ A |= Mt = Mu. (2)

We remark that the proof of (2) is not trivial, because λ-abstraction algebras may admit elements
which depend on all the names in Na. This is obviously not true for the term algebra of a λ-
theory because every λ-term is a finite string. As an example of this phenomenon, we consider
the Cartesian product A = (Λλβ)Na of Na-copies of the term algebra of λβ. Then all names in
Na occur free in 〈aA : a ∈ Na〉 ∈ A (see Remark 2). Another example concerns the elements
which are free generators of the free LAA-algebra.

What kind of variety is LAA? We wonder if it is possible to apply to λ-abstraction algebras
the nice results developed in universal algebra in the last thirty years. The following theorem
seems to show that λ-calculus is algebraically pathological.

Theorem 2. (Lusin-Salibra [51]) Every lattice identity holding in LAA is trivial (i.e., true in all
lattices).

Many problems on λ-calculus may be rephrased as problems of existence of a suitable sub-
variety of LAA (see Section 1). This explains why it is important to study the structure of the
lattice of the subvarieties of LAA, or dually of the lattice of the equational theories of LAA. The
next theorem shows a first positive algebraic result about the subvarieties of LAA.

Theorem 3. (Berline-Salibra [10]) There exists a congruence distributive variety of λ-abstraction
algebras.

The existence of a variety of LAAs satisfying strong algebraic properties, such as n-permutability
or congruence distributivity was an open problem first raised in [62].

In the following theorem it is shown that the term algebras of the λ-theories are the generators
of the subvarieties of LAA.

Theorem 4. (Salibra [61]) Every variety of LAAs is generated by the term algebra Λφ of a
suitable λ-theory φ. In particular

LAA = V(Λλβ).



3.2 The models of λ-calculus

Combinatory logic is a formalism for writing expressions which denote functions. Combinators
are designed to perform the same tasks as λ-terms, but without using bound names. Schönfinkel
and Curry discovered that a formal system of combinators, having the same expressive power of
the λ-calculus, can be based on only two primitive combinators.

Combinatory algebras An algebra C = (C, ·,k, s), where · is a binary operation and k, s are
constants, is called a combinatory algebra (see [28, 70]) if it satisfies the following identities:

(k · x) · y = x; ((s · x) · y) · z = (x · z) · (y · z).

The symbol “·” is usually omitted and association is made on the left, so that, for example,
the above axioms can be written as follows:

kxy = x; sxyz = xz(yz).

The class CA of all combinatory algebras constitutes a variety of algebras and, therefore, it is
closed under homomorphic images, subalgebras and direct products.

In the equational language of combinatory algebras the derived combinators i, ε and εn are
defined as follows:

i ≡ skk; ε ≡ ε1 ≡ s(ki); εn+1 ≡ s(kε)(s(kεn)).

Hence, every combinatory algebra satisfies the identities

ix = x; εxy = xy; ε2xyz = xyz; ε3xyzu = xyzu.

A function f : C → C is representable in a combinatory algebra C if there exists an element
x ∈ C such that x · z = f(z) for all z ∈ C. In this case, we say that c represents f in C.

Two elements x, y ∈ C are called extensionally equal if they represent the same function in
C. For example, the elements x and εx are extensionally equal for every x ∈ C. The combinator
ε will be used in the next subsection to select a canonical representative inside the class of all
elements y extensionally equal to a given element x ∈ C.

Lambda Models Although λ-calculus has been object of study since the early thirties, its model
theory developed only much later, following Scott’s pioneering model construction. At the end of
the seventies, researchers were able to provide a general algebraic characterization of the models
of λ-calculus as an elementary subclass of combinatory algebras called λ-models [54, 68]. This
axiomatization, while elegant, is not equational.

Let C be a combinatory algebra. An environment with values in C is a total function ρ :
Na → C, where Na is the set of names of λ-calculus. For every a ∈ Na and x ∈ C we denote
by ρ[a := x] the environment ρ′ which coincides with ρ, except on a, where ρ′ takes the value x.
The interpretation of a λ-term M is a function |M | : CNa → C and it is defined by induction as
follows, for every environment ρ:

|a|ρ = ρ(a); |M ·N |ρ = |M |ρ · |N |ρ; |λa.M |ρ = ε ·m,

where m ∈ C is any element representing the following function fa : C → C:

fa(x) = |M |ρ[a:=x], for all x ∈ C. (3)



The drawback of the previous definition is that, if C is an arbitrary combinatory algebra, it may
happen that the function fa is not representable in C. The axioms characterizing λ-models were
expressly chosen to make coherent the previous definition of interpretation.

A combinatory algebra C is called a λ-model if it satisfies the identities ε2k = k, ε3s = s
and the Meyer-Scott axiom:

∀x∀y(∀z(x · z = y · z)⇒ ε · x = ε · y).

Here the combinator ε is used as an inner choice operator. Indeed, given any x, the element ε·x is
in the same equivalence class as x w.r.t. extensional equality; and, by Meyer-Scott axiom, ε ·x =
ε · y for every y extensionally equal to x. Thus, the set Y = {x : x · z = fa(z) for all z ∈ C}
of elements representing the function fa defined in (3) admits ε ·m as a canonical representative
and this does not depend on the choice of m ∈ Y .

As a matter of notation, we write C |= M = N if |M |ρ = |N |ρ for all environments ρ. A λ-
model univocally induces a λ-theory through the kernel congruence relation of the interpretation
function. For every λ-model C, the equational theory of C is the λ-theory defined as follows
Th(C) = {(M,N) ∈ Λ× Λ : C |= M = N}.

Given a λ-theory φ, a λ-model C represents (or induces) φ if φ = Th(C).

Functional LAAs and λ-models The most natural LAAs are algebras of functions that are ob-
tained by coordinatizing λ-models. This situation is analogous to that of algebraic logic: the most
natural cylindric (and polyadic) algebras are algebras of functions that are obtained by coordina-
tizing models of first-order logic.

We now define the λ-abstraction expansion

Cλ = (Cλ, ·λ, λaλ, aλ)a∈Na

of a λ-model C as an algebra in the similarity type of LAAs. The underlying set Cλ is the set
of all functions F : CNa → C satisfying the following condition: for every ρ ∈ CNa, for every
sequence of distinct names a = a1 . . . an, there exists an element u ∈ C (which depends on F ,
ρ and a) such that, for all x = x1 . . . xn ∈ Cn,

F (ρ[a := x]) = ux1 . . . xn−1xn.

The operations of application and lambda abstraction are defined as follows, for all F,G ∈ Cλ
and ρ ∈ CNa.

(i) aλ(ρ) = ρ(a);
(ii) (F ·λ G)(ρ) = F (ρ) ·G(ρ);

(iii) λaλ(F )(ρ) = ε · x, where x ∈ C is any element satisfying x · y = F (ρ[a := y]) for all
y ∈ C.

The set Cλ contains the interpretations of all λ-terms and all constant functions.

Theorem 5. (Pigozzi-Salibra [57]) The algebra Cλ is a λ-abstraction algebra, and it is the
largest algebra of functions F : CNa → C closed under the operations defined in (i)-(iii).

Any algebra isomorphic to a subalgebra of a λ-abstraction expansion of a λ-model is called
a functional λ-abstraction algebra. The class of all these algebras is denoted by FLA.

In [60] it was shown the following representation theorem:



Theorem 6. (Goldblatt-Salibra [60]) LAA = FLA.

In other words, any λ-abstraction algebra is isomorphic to a subalgebra of a λ-abstraction ex-
pansion of a suitable λ-model. This makes clear the connection existing between lambda calculus
and combinatory logic.

Remark 4. Various infinitary versions of λ-calculus have been introduced by several authors in
[43, 7, 29]. Here, as an application of Thm. 6, we recall from [60] the completeness theorem for
the infinitary λ-calculus. Let Σ⊥ be the similarity type obtained from Σ by adding a new nullary
operator symbol ⊥. An infinitary λ-term is defined as a finite or infinite rooted tree such that
each leaf is either labeled by a name a ∈ Na or by the constant ⊥, and the inner nodes are either
binary ‘application nodes’, or unary ‘abstraction nodes’, in which case they have a label of the
form λa for some a ∈ Na. The set of infinitary λ-terms, which contains properly Λ, is denoted
by Λ∞ and its elements by A,B,C, . . .

Infinitary λ-terms arise as ‘limits’ of infinite sequences of β-conversions. For example, let
ω3 ≡ λa((a · a) · a) and Ω3 ≡ ω3 · ω3. The λ-term Ω3 generates an infinite sequence of β-
conversions

Ω3 =λβ Ω3 · ω3 =λβ (Ω3 · ω3) · ω3 =λβ · · · =λβ ((((Ω3 · ω3) · ω3) · ω3) · ω3) · ω3 =λβ · · · .

Then it is natural to consider the infinitary λ-term

Ω∞3 ≡ ((((· · ·ω3) · ω3) · ω3) · ω3) with infinitely many ω3’s

as the limit of the above sequence of β-conversions. Ω∞3 corresponds to the tree

·
zzzz DDD where ω3 is equal to λa

·
www GGG ω3 ·

}}} CCC

·
}}} GGG ω3 ·

�� AA a

·
�� 999 ω3 a a

...
ω3

The notions of free and bound occurrence of a name are easily extended to infinitary λ-terms.
The extension of the substitution is more subtle, and sometimes has an unexpected behaviour;
we refer the reader to [61, Sec. 3] for more details. Once defined A[a := B] we can consider the
infinitary versions (α∞) and (β∞) of the usual (α) and (β)-conversions.

Let Λ∞ be the absolutely free algebra of infinitary λ-terms. An infinitary λ-theory is any
congruence on Λ∞ including (α∞)- and (β∞)-conversion. The quotient algebra of Λ∞ by an
infinitary λ-theory φ, i.e., the term algebra of φ, is denoted by Λ∞φ .

In [60] Goldblatt and Salibra showed that Λ∞φ is a LAA. As a consequence of Thm. 6 we
have that, for all infinitary λ-theories φ, there exists a λ-model C such that the term algebra Λ∞φ
of φ embeds into Cλ. This constitutes the completeness of the infinitary λ-calculus.

4 The lattice of λ-theories

The interval I[λβ,∇] of all λ-theories is a sublattice of the congruence lattice of the absolutely
free Σλ-algebra Λ over an empty set of generators, so that it is isomorphic to the congruence



lattice of the term algebra Λλβ of λβ. The lattice of λ-theories is naturally equipped with a
structure of complete lattice, with meet defined as set-theoretical intersection. The join of two
λ-theories φ and ψ is the least equivalence relation including φ ∪ ψ. It is clear that the bottom
element of this lattice is λβ, while the top element∇ is the inconsistent λ-theoryΛ×Λ. Although
researchers have mainly focused their interest on a limited number of them, the lattice of λ-
theories, hereafter denoted by λT , constitutes a very rich and complex structure (see [4, 8, 9]).
Lambda theories interesting for computer scientists can be defined by classifying λ-terms in
terms of their computational behaviour. A closed λ-term M is solvable if

M =λβ λa1 . . . an.aiM1M2 . . .Mk, (n, k ≥ 0 and 1 ≤ i ≤ n)

for some M1, . . . ,Mk ∈ Λ. M is unsolvable, otherwise. Intuitively, solvable λ-terms are in-
teresting from the computational point of view since they provide at least a partial fixed output,
namely λa1 . . . an.ai−1 · · · −k, whilst unsolvable λ-terms correspond to looping terms. Looking
at the λ-theories in terms of solvability/unsolvability, they are classified as semisensible, if they
do not equate a solvable and an unsolvable λ-term, and as sensible, if they equate all unsolvable
λ-terms. The following results can be found in [4, Sec. 16, 17]. The λ-theory H, generated by
equating all unsolvable λ-terms, is the minimal sensible λ-theory and it is consistent.H admits a
unique maximal consistent extensionH∗.H∗ is a coatom in the lattice of λ-theories. A λ-theory
φ is semisensible if, and only if, φ ⊆ H∗ and it is sensible if, and only if, H ⊆ φ. Sensible
consistent λ-theories are semisensible and never recursively enumerable (r.e., for short). The
semisensible λ-theory λβη, axiomatized by the axiom of extensionality:

M · a = N · a ⇒ M = N, (a not free in M,N ),

does not distinguish λ-terms which define the same function.
Summarizing, the lattice λT of λ-theories is divided into two parts: one containing all non-

semisensible λ-theories and the other one containing all semisensible λ-theories. The interval
I[H,H∗], which belongs to the latter part, constitutes the set of all sensible λ-theories.

λβ

H

H∗

∇

λβη

sensible
λ-theories

= least λ-theory

= inconsistent λ-theory

coatoms

non-semisensible
λ-theories

semisensible
λ-theories

least extensional
λ-theory



Many problems on λ-calculus may be rephrased as problems of existence of suitable varieties
of LAAs. This explains why it is important to study the structure of the lattice of the subvarieties
of LAA, or dually of the lattice of the equational theories of LAA. Techniques of universal algebra
were applied in [51, 64, 61] to study the structure of the lattice λT by the variety V(Λλβ) and its
subvarieties.

Theorem 7. (Salibra [61]) The lattice of the equational theories of LAAs is isomorphic to the
lattice of λ-theories.

We summarize in the next theorem some results which enlighten the structure of the lattice of
λ-theories. At the end of the nineties, Salibra proposed the conjecture that the lattice λT satisfies
no (non-trivial) lattice identity. This conjecture is still open, because Thm. 2 only implies that
every lattice identity e fails in the congruence lattice of a suitable λ-abstraction algebra that may
be different from Λλβ . Moreover, there is a good reason to be also interested in large intervals
of the form I[φ,∇], where φ is a λ-theory, because this interval is isomorphic to the congruence
lattice of the term algebra of φ, which is a bridge to universal algebra. The following results have
been shown by several authors.

Theorem 8. (i) λT has a continuum of coatoms.
(ii) [72] The meet of all coatoms of λT is different from λβ. In other words, there are identities

between non-(β)-equivalent λ-terms which are consistent with every λ-theory.
(iii) [75] Every countable partially ordered set embeds into λT by an order-preserving map.
(iv) [75] Every interval I[φ, ψ] where φ and ψ are r.e. λ-theories has a continuum of elements.
(v) [62] λT is not modular.

(vi) [51] λT satisfies the Zipper condition.
(vii) [10] There exists a finitely axiomatizable λ-theory φ such that the interval I[φ,∇] is distribu-

tive.

Proof. (i) There is a continuum of λ-theories that are pairwise incompatible (see e.g. [10]).
(ii)-(iv) are shown by using ingenious non-algebraic techniques.
(v) The non-modular pentagon N5 (see [53, Thm. 2.25]) embeds into λT .
(vi) follows from Thm. 7 and from Lampe’s results [48] on the lattices of equational theories

(see Thm. 10 below for another proof).
(vii) There is a λ-theory φ whose term algebra Λφ has the lattice operations as term opera-

tions.

The remaining results of the section are new.
Let L be a bounded lattice with least element ∆ and top element∇. For any x ∈ L we define

Lx = {y ∈ L − {∆} : x ∧ y = ∆}. Every element of Lx is called a lower semicomplement of
x. L is said to be lower semicomplemented if Lx is non-empty for all x 6= 1.

Proposition 2. The maximal sensible λ-theory H∗ does not admit a lower semicomplement, so
that the lattice of λ-theories is not lower semicomplemented.

Proof. LetH∗ be the maximal sensible λ-theory and φ be any non-semisensible λ-theory. Since
every φ-equivalence class contains an unsolvable λ-term, it is not difficult to prove that φ∨H∗ =
∇. Assume now, by the way of contradiction, that φ∧H∗ = λβ. Let U be an unsolvable λ-term
such that U =φ I. Then we have UM =φ M for all unsolvable λ-terms M . Since we also have
UM =H∗ M by the sensibility of H∗, then UM =λβ M . In particular, we have UΩ =λβ Ω.
By [2, Lemma 1.10] this implies either Ua =λβ a or Ua =λβ Ω, for a new name a. In the first
case, we contradict the semisensibility of λβ. In the second one we derive UM =λβ M =λβ Ω
for all unsolvable λ-terms M . This contradicts the fact that λβ is not sensible.



Proposition 3. Let φ be an r.e. λ-theory. Then the lattice interval I[φ,∇] is not lower semicom-
plemented.

Proof. By [4, Prop. 17.1.9] there exists a λ-term M such that θφ(M,N) 6= ∇ for all closed
λ-terms N . This implies that there exists an infinite number of maximal consistent λ-theories
extending φ. The interval I[φ,∇] is a coatomic complete lattice satisfying the Zipper condition,
and admitting a compact top element. Then the conclusion of the proposition follows from [32,
Prop. 3], where it is shown that, under the above hypotheses, a lattice is lower semicomplemented
if, and only if, the coatoms form a finite decomposition of the least element.

4.1 The commutator for λ-theories

The structure of an algebra is affected by the shape of its congruence lattice. The commutator, a
binary operation on this lattice, provides a “misure” of this shape. In this section we show that
the binary commutator on the set of λ-theories has a good behavior if one of its arguments is ∇.
As a consequence, we get that the lattice λT satisfies a condition (in the form of quasi-identity)
that, among other things, implies the ET and Zipper conditions.

Given two λ-theories φ and ψ, we writeM(φ, ψ) for the set of all 2× 2 matrices M = Mi,j

(1 ≤ i, j ≤ 2) of the form:

M =
(
t(s1, u1) t(s1, u2)
t(s2, u1) t(s2, u2)

)
where s1, s2 ∈ An, u1, u2 ∈ Am, for some n,m ≥ 0, t is any m + n-ary term, and s1φs2,
u1ψu2. That is, if in a matrix M we shift along a line then we shift modulus ψ, if we shift along
a column we shift modulus φ.

If τ is another λ-theory, we say that φ centralizes ψ modulo τ (see e.g. [34]), in symbols
C(φ, ψ; τ), if and only if, for every matrix M such that:(

t u
s w

)
∈M(φ, ψ)

we have:
tτu ⇒ sτw.

The set of all λ-theories τ such that C(φ, ψ; τ) is non-empty and closed under arbitrary inter-
section (see [34]). The commutator [φ, ψ] of φ and ψ is defined as the least λ-theory τ sat-
isfying C(φ, ψ; τ). Notice that φ always centralizes ψ modulo φ ∧ ψ, so that we have always
[φ, ψ] ≤ φ ∧ ψ.

In this first result we show that the commutator for λ-theories has a good behavior when one
of the involved congruences is∇.

Theorem 9. Let φ be a λ-theory. Then

[∇, φ] = [φ,∇] = φ.

Proof. Let s, u be λ-terms such that s =φ u. We define:

M ≡
(
F sF FuF
T sF TuF

)
=
(
F F
s u

)
∈M(∇, φ)

From (F ,F ) ∈ [∇, φ] it follows that (s, u) ∈ [∇, φ]. By the arbitrariness of s and u such that
s =φ u we obtain that φ ≤ [∇, φ]. Since [∇, φ] ≤ φ always holds, we obtain the conclusion.
Similarly we can show that [φ,∇] = φ.



Theorem 10. Let φ, ψ and δi (i ∈ I) be λ-theories. Then we have:

(i) If
∨
i∈I δi = ∇, φ ≥ ψ ∧ (δi ∨ (φ ∧ ψ)) (i ∈ I) then ψ ≤ φ.

(ii) (Zipper Condition) If
∨
i∈I δi = ∇, δi ∧ ψ = φ (i ∈ I) then ψ = φ.

(iii) If the lattice interval I[ψ,∇] is modular and
∨
i∈I δi = ∇ then φ =

∨
i∈I(δi ∧ φ) for every

φ, δi ≥ ψ.

Proof. (i) By [49, Prop. 1.2(6)] and by hypothesis we have C(
∨
i∈I δi, ψ;φ). Since

∨
i∈I δi =

∇ and [∇, ψ] = ψ we get ψ ≤ φ, because the commutator [∇, ψ] is the least congruence γ
satisfying C(∇, ψ; γ).

(ii) By putting φ = δi ∧ ψ in (i).
(iii) By [49, Cor. 1.3(e)] and the hypothesis of modularity [

∨
i∈I δi, φ] ≤

∨
i∈I [δi, φ]. Then

we have: φ = [∇, φ] = [
∨
i∈I δi, φ] ≤

∨
i∈I [δi, φ] ≤

∨
i∈I δi ∧ φ.

5 The Stone representation theorem for λ-calculus

In this section we show that combinatory algebras and λ-abstraction algebras satisfy a theorem
which is similar to the Stone representation theorem for Boolean algebras.

5.1 The classical Stone and Pierce theorem

The Stone representation theorem for Boolean rings (the observation that Boolean algebras could
be regarded as rings is due to Stone) admits a generalization, due to Pierce, to commutative rings
with unit (see [56] and [40, Ch. V]). To help the reader to get familiar with the argument, we
outline now Pierce’s construction.

Let A = (A,+, ·, 0, 1) be a commutative ring with unit, and let IE(A) = {a ∈ A : a·a = a}
be the set of its idempotent elements. One defines a structure of Boolean algebra on IE(A) as
follows. For all a, b ∈ IE(A):

– a ∧ b = a · b;
– a ∨ b = a+ b− (a · b);
– a− = 1− a.

Then it is possible to show that for every a ∈ IE(A), a 6= 0, 1 induces a pair (θ(a, 1), θ(a, 0))
of non-trivial complementary factor congruences. In other words, the ring A can be decomposed
in a non-trivial way as A ∼= A/θ(a, 1) × A/θ(a, 0). If IE(A) = {0, 1}, then A is directly
indecomposable. Then Pierce’s theorem for commutative rings with unit can be stated as follows:

“Every commutative ring with unit is isomorphic to a Boolean product of directly
indecomposable rings.”

If A is a Boolean ring, we get the Stone representation theorem for Boolean algebras, because
the ring of truth values is the unique directly indecomposable Boolean ring.

The remaining part of this section is devoted to provide the statement and the proof of the
representation theorem for combinatory algebras and λ-abstraction algebras.



5.2 The Boolean algebra of central elements

We start by defining the constants which correspond to the constants 0 and 1 in a commutative
ring with unit:

– Combinatory algebras: 1 ≡ k; 0 ≡ sk,
– λ-abstraction algebras: 1 ≡ λab.a; 0 ≡ λab.b.

As a matter of notation, we set

θe ≡ θ(1, e); θe ≡ θ(e, 0).

Definition 6. (Vaggione [73, 74]) We say that an element e of an algebra A with two constants
0, 1 is central, and we write e ∈ Ce(A), if (θe, θe) forms a pair of complementary factor con-
gruences.

A central element e is trivial if it is equal either to 0 or to 1.

Lemma 3. Let A ∈ CA∪LAA and e ∈ A. Then we have: e ∈ Ce(A) if, and only if, θe∧θe = ∆.

Proof. (⇐) We have to show that θe ◦ θe = ∇. Since

1 θe e θe 0

then
x = 1xy θe exy θe 0xy = y. (4)

We now provide a new characterization of the notion of central element which works for
combinatory algebras and λ-abstraction algebras.

Theorem 11. Let C ∈ CA ∪ LAA. Then the following conditions are equivalent for all e ∈ C:

(i) e is central;
(ii) e satisfies the following identities:

1. exx = x,
2. e(exy)z = exz = ex(eyz),
3. e(xy)(zt) = exz(eyt),
4. e = e10,
5. e(λa.x)(λa.y) = λa.exy, (only for LAAs).

(iii) The function fe defined by fe(x, y) = exy is a decomposition operator and fe(1, 0) = e.

Proof. (ii)⇔ (iii) It is a simple exercise to show that e satisfies the identities in (ii) if, and only
if fe is a decomposition operator such that fe(0, 1) = e.

(i) ⇒ (iii) If e is central, then by Lemma 3 we have that θe and θe are a pair of comple-
mentary factor congruences and exy is the unique element such that x θe exy θe y (see item (4)
above). It follows that fe is a decomposition operator. Moreover, fe(1, 0) = e10 = e, because e
is the unique element such that 1 θe e θe 0.

(iii) ⇒ (i) Let (φ, φ) be the pair of complementary factor congruences associated with fe,
that is, x φ y iff exy = x, and x φ y iff exy = y. We recall that exy is the unique element such
that x φ exy φ y. Since fe(1, 0) = e then e is the unique element such that 1 φ e φ 0. It follows
that θe ⊆ φ and θe ⊆ φ. For the opposite direction, let xφy, i.e., exy = x. Then, by 1 θe e we
have x = 1xy θe exy = y. Similarly, for φ.



It follows that an algebra C ∈ CA∪LAA is directly indecomposable if, and only if, Ce(C) =
{1, 0}.

Theorem 12. Let Dec(C) be the set of decomposition operators of an algebra C ∈ CA ∪ LAA.
Then the functions, mapping central elements into decomposition operators

e ∈ Ce(C)→ fe, where fe(x, y) = exy (5)

and decomposition operators into central elements

f ∈ Dec(C)→ f(1, 0) ∈ Ce(C),

form the two sides of a bijection.

Proof. Let f be a decomposition operator and let e = f(1, 0). We now show that e is central
and that f(x, y) = exy. The element e is the unique one satisfying 1 φ e φ 0, where (φ, φ) is the
pair of complementary factor congruences associated with the decomposition operator f . Since
φ and φ are compatible equivalence relations, it follows that for all x, y:

x = 1xy φ exy φ 0xy = y.

Since, by definition, f(x, y) is the unique element satisfying x φ f(x, y) φ y, we obtain:

f(x, y) = exy. (6)

Finally, the identities defining f as decomposition operator make e a central element by Thm. 11.
We now check that these correspondences form the two sides of a bijection. Assume e is

central, that is (θe, θe) is a pair of complementary factor congruences. Then f(x, y) = exy is a
decomposition operator because x θe exy θe y. If f is a decomposition operator, then by (6) we
have that ff(1,0)(x, y) = f(1, 0)xy = f(x, y) for all x, y.

Corollary 1. The functions, mapping central elements into pairs of complementary factor con-
gruences

e ∈ Ce(C)→ (θe, θe), (7)

and pairs of complementary factor congruences into central elements

(φ, φ)→ e if 1 φ e φ 0,

form the two sides of a bijection.

Corollary 2. If e is central, then we have:

1. x θe exy θe y.
2. x θe y if, and only if, exy = y, and x θe y if, and only if, exy = x.

Proof. (1) By Thm. 11(iii).
(2) By (1).

Lemma 4. The varieties CA and LAA have factorable congruences. Hence, every algebra C ∈
CA ∪ LAA has Boolean factor congruences.



Proof. Let A,B be combinatory algebras or λ-abstraction algebras; it is clear that, up to isomor-
phism, Con(A)×Con(B) ⊆ Con(A×B). Conversely, let φ ∈ Con(A×B). The “projections”
φ1, φ2 of φ are the binary relations on A and B, respectively, defined as follows:

x1φ1x2 ⇐⇒ ∃y1, y2 ∈ B such that (x1, y1) φ (x2, y2),
y1φ2y2 ⇐⇒ ∃x1, x2 ∈ A such that (x1, y1) φ (x2, y2).

It is obvious that φ ⊆ φ1×φ2. We now prove the opposite inclusion. Suppose that (x1, y1) φ1×
φ2 (x2, y2) for some x1, x2 ∈ A and y1, y2 ∈ B. Then, by definition of φ1 × φ2, we have that
x1φ1x2 and y1φ2y2. Hence, there exist x3, x4 ∈ A, y3, y4 ∈ B such that (x1, y3) φ (x2, y4) and
(x3, y1) φ (x4, y2). Since (1, 0) φ (1, 0) and φ is a compatible relation, we get:

(x1, y1) = (1x1x3, 0y3y1) φ (1x2x4, 0y4y2) = (x2, y2).

Thus we get φ = φ1 × φ2. It is easy to check that φ1, φ2 are reflexive, symmetric and com-
patible. We now show that φ1 is also transitive. Let x1φ1x2φ1x3, then there exist y1, y2, y3, y4
such that (x1, y1) φ (x2, y2) and (x2, y3) φ (x3, y4); from the symmetry of φ we have also
(x3, y4) φ (x2, y3). Since (1, 0) φ (1, 0) and φ is a compatible relation, we get:

(x1, y4) = (1x1x3, 0y1y4) φ (1x2x2, 0y2y3) = (x2, y3).

Finally, from (x1, y4) φ (x2, y3) and (x2, y3) φ (x3, y4) we get (x1, y4) φ (x3, y4) and, hence,
x1φ1x3; thus φ1 ∈ Con(A). An analogous reasoning gives φ2 ∈ Con(B). From this it is easy
to conclude that Con(A × B) ∼= Con(A) × Con(B). By Lemma 2, every algebra of a variety
with factorable congruences has Boolean factor congruences.

We now show that the partial ordering between central elements, defined by:

x ≤ y if, and only if, θx ⊆ θy (8)

is a Boolean ordering and the meet, join and complementation operations are internally repre-
sentable. 0 and 1 are respectively the bottom element and the top element of this ordering.

Theorem 13. The algebra (Ce(C),∧,∨,− , 0, 1) of central elements of C, defined by

x ∧ y = xy0; x ∨ y = x1y; x− = x01,

is a Boolean algebra isomorphic to the Boolean algebra of factor congruences.

Proof. By Lemma 4 C has Boolean factor congruences. It follows that the partial ordering on
central elements, defined in (8), is a Boolean ordering. There only remains to show that, for
all central elements x, y, the elements x−, x ∧ y and x ∨ y are central and are respectively
associated with the pairs (θx, θx), (θx ∨ θy, θx ∧ θx) and (θx ∧ θy, θx ∨ θx) of complementary
factor congruences.

We check the details for x−. Since x is central then (θx, θx) is a pair of complementary factor
congruences. The complement is the pair (θx, θx). We have that x− is the unique element such
that 0 θx x− θx 1. Then 1 θx x− θx 0 for the pair (θx, θx). This means that x− is the central
element associated with the pair (θx, θx).



We now consider x ∨ y = x1y. First of all, we show that x1y = y1x. By Cor. 2(i) we have
that 1 θx x1y θx y, while 1 θx y1x θx y can be obtained as follows:

1 = y11 by Thm. 11(ii-1),
y11 θx y1x by 1 θx x,
y1x θx y10 by x θx 0,
y10 = y by Thm. 11(ii-4).

Since there is a unique element c such that 1 θx c θx y, then we have the conclusion x1y = y1x.
We now show that x1y is the central element associated with the factor congruence θx ∧ θy , i.e.,

1 (θe ∧ θd) x1y (θe ∨ θd) 0.

From y1x = x1y we easily get that 1 θx x1y and 1 θd x1y, that is, 1 (θe ∧ θd) x1y. Finally, by
Cor. 2, we have: x1y θe y = y10 θd 0, i.e., x1y (θe ∨ θd) 0. The same reasoning works for x∧ y.

We now provide the promised representation theorem. If I is a maximal ideal of the Boolean
algebra Ce(A), then θI denotes the congruence on A defined by:

x (θI) y if, and only if, x θe y for some e ∈ I .

By a Pierce variety (see [74] for the general definition) we mean here a variety of algebras for
which there are two constants 0, 1 and a term u(x, y, z, v) such that the following identities hold:
u(x, y, 0, 1) = x and u(x, y, 1, 0) = y.

Obviously, the variety of combinatory algebras and that of λ-abstraction algebras are Pierce
varieties: in both cases it is sufficient to take u(x, y, z, v) ≡ zyx.

Theorem 14. (Representation Theorem for CAs and LAAs) Let C ∈ CA ∪ LAA and X be the
Boolean space of maximal ideals of the Boolean algebra E(C) of central elements. Then, for all
I ∈ X the quotient algebra C/θI is directly indecomposable and the map

f : C → ΠI∈X(C/θI),

defined by
f(x) = (x/θI : I ∈ X),

gives a weak Boolean product representation of C.

Proof. By Lemma 4 the factor congruences of C constitute a Boolean sublattice of Con(C).
Then by [25] f gives a weak Boolean product representation of C. The quotient algebras C/θI
are directly indecomposable by [74, Thm. 8], because the varieties CA and LAA are Pierce vari-
eties.

Note that, in general, it is not possible to obtain a (non-weak) Boolean product representation
of an algebra C ∈ CA ∪ LAA. This follows from Lemma 4 and two results due to Vaggione [73]
and Plotkin-Simpson [69]. Vaggione has shown that, if a variety has factorable congruences and
every member of the variety can be represented as a Boolean product of directly indecomposable
algebras, then the variety is a discriminator variety (see [22] for the terminology). Discriminator
varieties satisfy very strong algebraic properties, in particular they are congruence permutable
(i.e., in each algebra the join of two congruences is just their composition). Plotkin and Simpson
have shown that this last property is inconsistent with λ-calculus and combinatory logic, hence
by Lemma 4 and Vaggione’s theorem not all combinatory algebras and λ-abstraction algebras
have a Boolean product representation.



6 The indecomposable semantics

The Stone representation theorem for combinatory algebras can be roughly summarized as fol-
lows: the directly indecomposable combinatory algebras are the “building blocks” in the variety
of combinatory algebras. Then it is natural to investigate the class of models of λ-calculus, which
are directly indecomposable as combinatory algebras (indecomposable semantics, for short).

In this section we show that the indecomposable semantics encompasses the Scott-continuous,
the stable and the strongly stable semantics, and represents all semisensible λ-theories. In spite
of this richness, in the last results of this chapter we show that the indecomposable semantics is
incomplete, and that this incompleteness is as wide as possible. Finally, we will show that the set
of λ-theories induced by each of the main semantics is not closed under finite intersection, and
hence it does not form a sublattice of λT .

6.1 The main semantics of λ-calculus

After Scott, several models of λ-calculus have been defined by order theoretic methods and
classified into “semantics” according to the nature of their representable functions (see [8], for a
survey on these semantics).

The Scott-continuous semantics corresponds to the class of λ-models having cpo’s (complete
partial orders) as underlying sets and representing all Scott continuous functions.

The stable semantics (Berry [12]) and the strongly stable semantics (Bucciarelli-Ehrhard
[16]) are refinements of the Scott-continuous semantics which have been introduced to capture
the notion of “sequential” continuous function. The underlying sets of the λ-models living in the
stable (strongly stable) semantics are particular algebraic cpo’s called dI-domains (dI-domains
with coherences). These models represent all stable (strongly stable) functions between such do-
mains. A function between dI-domains is stable if it is continuous and, furthermore, commutes
with “infs of compatible elements”. A strongly stable function between dI-domains with coher-
ence, is a stable function preserving coherence. We refer the reader to [8, 9] for a more detailed
description of these semantics.

All these semantics are structurally and equationally rich: in particular, in each of them it is
possible to build up 2ℵ0 models having pairwise distinct, and even incomparable, λ-theories.

6.2 Incompleteness of the indecomposable semantics

We now define various notions of representability of λ-theories in classes of models.

Definition 7. Given a class C of λ-models and a λ-theory φ, we say that:

1. C represents φ if there is some C ∈ C representing φ (i.e., Th(C) = φ).
2. C omits φ if there is no C ∈ C representing φ.
3. C is complete for a set S ⊆ λT of λ-theories if C represents all elements of S.
4. C is incomplete if it omits a consistent λ-theory.

We now remark that the class of directly indecomposable combinatory algebras is a universal
class (i.e., it is an elementary class which can be axiomatized by universal sentences).

Proposition 4. The class CDI of the directly indecomposable combinatory (λ-abstraction-algebras)
algebras is a universal class, so that it is closed under subalgebras and ultraproducts.



Proof. By [13, Prop. 1.3].

The closure of the class of directly indecomposable combinatory algebras under subalgebras
is the key trick in the proof of the algebraic incompleteness theorem.

We have shown that any factor congruence can be represented by a central element, and in
particular that a combinatory (or λ-abstraction) algebra C is directly indecomposable if, and only
if, it only admits the trivial central elements.

If A is a λ-abstraction algebra, the combinatory reduct of A is the algebra

Cr(A) = (A, ·A, (λab.a)A, (λabc.ac(bc))A).

Cr(A) is always a combinatory algebra. By [4, Cor. 5.2.13(ii)] it is a λ-model in the hypothesis
that A is the term algebra of a λ-theory.

In every λ-model the interpretations of the combinators k and sk coincide with those of the
λ-terms λab.a and λab.b. Then the role of the trivial central elements in a λ-abstraction algebra
and in its combinatory reduct is covered by the same elements.

Lemma 5. Let φ be a λ-theory and M be a closed λ-term. If [M ]φ is a non-trivial central
element of Λφ, then every λ-model whose theory is φ is directly decomposable. It follows that
the indecomposable semantics omits φ.

Proof. Let C be a λ-model. Then Th(C) = φ if, and only if, Λφ is isomorphic to a subalgebra
of the λ-abstraction expansion Cλ of C (see Section 3.2). By Prop. 4 and by the hypothesis we
obtain that Cλ is decomposable. Then the combinatory reduct Cr(Cλ) is decomposable. Finally,
C is decomposable because it is a subalgebra of Cr(Cλ) that contains the interpretation of all
closed terms.

We are now able to provide the promised algebraic incompleteness theorem.

Theorem 15. (Algebraic incompleteness theorem) The indecomposable semantics is incomplete.

Proof. By Lemma 5 it is sufficient to produce a λ-theory φ such that the term algebra Λφ of φ has
a non-trivial central element. By [4, Prop. 15.3.9] the λ-theories θ(Ω, λab.a) and θ(Ω, λab.b) are
non-trivial. Then, we conclude by Lemma 3 that [Ω]φ, where φ = θ(Ω, λab.a)∧ θ(Ω, λab.b), is
a non-trivial central element of Λφ.

6.3 Continuous, stable and strongly stable semantics

In Thm. 16 below we show that, although the indecomposable semantics is incomplete, it is large
enough to represent all semisensible λ-theories.

We need now a technical lemma.

Lemma 6. Let φ be a λ-theory and e be a non-trivial central element of Λφ. Then, every λ-term
belonging to the equivalence class e is unsolvable.

Proof. Let M ∈ e. Since the congruences θe and θe on Λφ are non-trivial, then the λ-theories
φ1 = θφ(0,M) and φ2 = θφ(λab.a,M) are consistent. By [4, Lemma 10.4.1(i)] it is consistent
to equate two solvable λ-terms only if they are equivalent according to [4, Def. 10.2.9]. IfM were
solvable then it should be equivalent both to λab.b and λab.a, so that these last terms should be
equivalent. But this is false. Then M must be unsolvable.



Theorem 16. The indecomposable semantics represents all semisensible λ-theories.

Proof. Let φ be a semisensible λ-theory. Assume, by the way of contradiction, that Λφ has a
non-trivial central element e (cf. Lemma 5). Let M ∈ e. Then, Λφ satisfies the identity exx = x
from which we derive MPP = P for every solvable P . This contradicts the semisensibility of
φ since M is unsolvable by Lemma 6.

In the next proposition we show that all λ-models living in the main semantics are simple
algebras. We recall that an algebra is simple when it has just the two trivial congruences, and is
hence directly indecomposable.

Proposition 5.

(i) All λ-models living in the Scott-continuous semantics are simple combinatory algebras.
(ii) All λ-models living in the stable or strongly stable semantics are simple combinatory alge-

bras.

Proof. Let us consider a λ-model C = (D, ·,k, s).
(i) Suppose that C lives in Scott-continuous semantics, so that D is a cpo and all Scott

continuous functions are representable in C. It is easy to check that, for all b, c ∈ D, the function
gb,c defined by

gb,c(x) =
{
c if x 6vD b,
⊥ otherwise,

is Scott continuous. Let φ be a congruence on C and suppose that there exist a, d such that a φ d
with a 6= d. We have a 6vD d or d 6vD a. Suppose, without loss of generality, that we are in the
first case. Since the continuous function gd,c is representable in the model (for all c), we have:
⊥ = gd,c(a) φ gd,c(d) = c, hence cφ⊥. By the arbitrariness of c we get that φ is trivial, so that C
is simple. Note that gd,c is neither stable nor strongly stable hence it cannot be used for proving
item (ii).

(ii) Suppose that C is a (strongly) stable λ-model. Consider two elements a, b ∈ D such that
a 6= b. We have a 6vD b or b 6vD a. Suppose, without loss of generality, that we are in the first
case. Then there is a compact element d of C such that d vD a and d 6vD b. The step function
fd,c defined by :

fd,c(x) =
{
c if d vD x,
⊥ otherwise,

is stable (strongly stable) for every element c. This function fd,c can be used to show that every
congruence on C is trivial as in the proof of item (i).

As a consequence of Prop. 5, we get, in a uniform way, the incompleteness for the main
semantics of λ-calculus. We will see later on that this incompleteness is very large.

Corollary 3. The Scott-continuous, the stable and the strongly stable semantics are incomplete.

Proof. By Prop. 5 and Thm. 15.

Given a class C of λ-models, λC denotes the set of λ-theories which are represented in C.
In the remaining part of this subsection we show that, for each of the classic semantics of λ-
calculus, the set λC is not closed under finite intersection, so that it is not a sublattice of the
lattice λT of λ-theories.



Theorem 17. Let C be a class of directly indecomposable models of λ-calculus. If there are two
consistent λ-theories φ, ψ ∈ λC such that

Ω =φ λab.a; Ω =ψ λab.b,

then λC is not closed under finite intersection, so it is not a sublattice of λT .

Proof. Let ξ = φ ∧ ψ. By Lemma 3, [Ω]ξ is a non-trivial central element of Λξ. It follows that
ξ /∈ λC.

We recall that the graph models (see, e.g., [9, 18]) and the filter models (see, e.g., [5]) are
classes of λ-models within the Scott-continuous semantics.

Corollary 4. Let C be one of the following semantics: graph semantics, filter semantics, Scott-
continuous semantics, stable semantics, strongly stable semantics. Then λC is not a sublattice of
λT .

Proof. In each of these semantics it has been proved that for all M ∈ Λo there exists a model
C such that Th(C) is consistent and Ω =Th(C) M . Then the conclusion follows from Thm. 17
and Prop. 5.

6.4 Concerning the number of decomposable and indecomposable λ-models

From the work done in the previous subsection, it is easy to conclude that there is a wealth of
directly indecomposable λ-models representing different λ-theories.

Theorem 18. Let CIND be the indecomposable semantics. Then λCIND contains an interval of
cardinality 2ℵ0 and an antichain of cardinality 2ℵ0 .

Proof. We know from Thm. 16 that λCIND contains the interval I[λβ,H∗], which has cardinality
2ℵ0 by [4, Sec. 16.3] (see Section 4 for the definition of H∗). Moreover, Cor. 3 implies that
λCIND also contains the set of all λ-theories represented by the class of graph models, which has
an antichain of cardinality 2ℵ0 by [10].

Now, we show that also the incompleteness of the indecomposable semantics is as wide as
possible.

First of all we need some results about λ-theories. The proof of the following lemma is similar
to that of [4, Prop. 17.1.9], where the case k = 1 (due to Visser) is shown, and it is omitted.

Lemma 7. Suppose that φ is an r.e. λ-theory and fix arbitrary pairs of λ-terms (Mi, Ni) for
1 ≤ i ≤ k such that Mi 6=φ Ni for all i ≤ k. Then there is M ∈ Λo such that, for all P ∈ Λo,
the λ-theory ψ = θφ(M,P ) is consistent and

Mi 6=ψ Ni, for every i ≤ k.

Then the following theorems are corollaries of the algebraic incompleteness theorem.

Theorem 19. Let φ be an r.e. λ-theory. Then, the interval I[φ,∇[ contains a subinterval I[ψ1, ψ2]
satisfying the following conditions:

– ψ1 and ψ2 are distinct r.e. λ-theories,



– every ψ ∈ I[ψ1, ψ2] is omitted by the indecomposable semantics,
– card(I[ψ1, ψ2]) = 2ℵ0 .

Proof. Since φ is r.e. we know by [4, Prop. 17.1.9] that there exists a λ-term Q such that
θφ(Q,M) is consistent for all M ∈ Λo. Note that, in particular, this implies Q 6=φ λab.a and
Q 6=φ λab.b.

Let ψ1 = θφ(Q,λab.a) ∧ θφ(Q,λab.b). Obviously, the λ-theory ψ1 is consistent, r.e. and
contains φ. By Lemma 3, [Q]ψ1 is a non-trivial central element of Λψ1 .

We apply Lemma 7 to the r.e. λ-theory ψ1 and to the pairs (Q,λab.a) and (Q,λab.b) such
that Q 6=φ λab.a and Q 6=φ λab.b. We get a λ-term R ∈ Λo such that Q 6=θψ1(R,P ) λab.a and
Q 6=θψ1(R,P ) λab.b, for all λ-terms P ∈ Λo. Let ψ2 = θψ1(R, λa.a). We have that ψ2 is a proper
extension of ψ1.

The term algebra Λψ2 of ψ2 is a homomorphic image of the term algebra Λψ1 of ψ1, then
every equation satisfied by Λψ1 is also satisfied by Λψ2 . In particular, the equations expressing
thatQ is a central element. Finally, [Q]ψ2 is non-trivial as a central element becauseQ 6=ψ2 λab.a
and Q 6=ψ2 λab.b.

Hence, for every λ-theory ψ such that ψ1 ⊆ ψ ⊆ ψ2 the equivalence class of Q is a non-
trivial central element of the term algebra of ψ.

We get the conclusion of the theorem because card(I[ψ1, ψ2]) = 2ℵ0 by Thm. 8(iv).

Remark 5. From Lemma 5 it follows that all the λ-models C such that Th(C) belongs to the
interval I[ψ1, ψ2] above, are directly decomposable.

Theorem 20. Let DEC be the class of all directly decomposable λ-models. Then we have that

(i) λDEC has an antichain of cardinality 2ℵ0 .
(ii) λDEC contains countably many “pairwise incompatible” intervals of cardinality 2ℵ0 .

Proof. (i) Let Un ≡ Ω(λx1 . . . xnx.x) and k be the k-th Church’s numeral. Given a permutation
σ of the set of Church’s numerals, we write ψσ, φσ for the λ-theories respectively generated by:

E1
σ = {U0 = λab.a} ∪ {Un = σ(n− 1) : n ≥ 1},

E0
σ = {U0 = λab.b} ∪ {Un = σ(n− 1) : n ≥ 1}.

From [10, Thm. 22] we get that ψσ, φσ are consistent and hence we have that the equivalence
class of U0 is a non-trivial central element of Λψσ∧φσ . Thus, ψσ ∧ φσ ∈ λDEC by Lemma 5.

If σ1, σ2 are two distinct permutations of the set of Church’s numerals, then ψσ1 ∧ φσ1 and
ψσ2 ∧ φσ2 are incompatible, because it is inconsistent to equate n = m for every n 6= m.

Hence, (i) follows since there exist 2ℵ0 permutations σ of the set of Church’s numerals which
give rise to pairwise incompatible λ-theories ψσ ∧ φσ ∈ λDEC.

(ii) Let σ be a permutation of the Church’s numerals and ψσ, φσ be as in the proof of (i).
Suppose that σ is computable, then both ψσ and φσ are r.e. λ-theories, hence also ψσ ∧ φσ ∈
λDEC is r.e. Thus, the interval I[ψσ ∧ φσ,∇] contains an interval of 2ℵ0 λ-theories belonging to
λDEC. The theorem follows since there exist countably many computable permutations σ.

Corollary 5. The indecomposable semantics, and hence the Scott-continuous, the stable and the
strongly stable semantics omit a set of λ-theories which has an antichain of cardinality 2ℵ0 , and
even contains countably many “pairwise incompatible” intervals of cardinality 2ℵ0 .



7 Open problems

In this section we collect open problems and conjectures that are related to universal algebra and
topology. We start with the lattice of λ-theories.

7.1 The lattice of λ-theories

At the end of the nineties, the second author proposed the following conjecture:

(P1) The lattice λT satisfies no (non-trivial) lattice identity.

This conjecture is still open. The best we know about this problem was shown in [51]: for any
non-trivial lattice identity e, there exists a natural number n such that the identity e fails in the
lattice of λ-theories over a language of lambda calculus extended with n constants.

Another interesting problem to investigate is related to the lattices that are embeddable into
λT and in the congruence lattices of λ-abstraction algebras. We propose the following conjecture:

(P2) Every finite lattice can be embedded into λT .

Recall from [62] that the non-modular pentagon N5 is a sublattice of λT and that by Visser
[75] every countable partially ordered set embeds into λT by an order-preserving map. It is not
difficult to prove that the class L(LAA) of lattices embeddable into the congruence lattices of
LAAs is a prevariety (i.e., it is closed under isomorphism, subalgebras and direct products). We
conjecture that

(P3) L(LAA) is the variety of all lattices.

Meet irreducible elements give important information on the structure of a lattice. Then, it is
natural to investigate what λ-theories are meet irreducible. We have the following conjecture:

(P4) The least λ-theory λβ is meet irreducible.

Other interesting problems arise when we classify the λ-theories as sensible, semisensible
and non-semisensible. We recall thatH∗ is the unique maximal consistent sensible λ-theory.

(P5) What are the properties of the function mapping a λ-theory φ into the maximal semisensible
theory φ ∧H∗ contained within φ?

From Prop. 2 we have that φ ∧H∗ = λβ iff φ = λβ.
Another problem is related to the equations between non-β-equivalent λ-terms which are

consistent with every λ-theory. Their existence is a consequence of a result by Statman [72]
stating that the meet of all coatomic λ-theories is not λβ.

(P6) Classify the identities consistent with every λ-theory

Other problems are related to the commutator:

(P7) Define non-trivial λ-theories φ and ψ such that the commutator [φ, ψ] is strictly under φ∧ψ.



These λ-theories must exist, because the following basic property of commutator

[φ, ψ] = [γ, ψ] = δ ⇒ [φ ∨ γ, ψ] = δ

would imply the meet semidistributivity:

φ ∧ ψ = γ ∧ ψ = δ ⇒ (φ ∨ γ) ∧ ψ = δ,

and this property does not hold in λT .
The following are other interesting questions:

(P8) What varieties of LAAs have a “good” commutator?
(P9) Is there a property of the commutator which holds for λ-theories but not for LAAs?

All the known properties of the commutator for λ-theories (see Section 4.1 and [51]) are also
true for 0, 1-algebras, i.e., algebras having a binary term with a right unit and a right zero. Then
it is natural to rise the following question:

(P10) Is it possible to find a property of the commutator which distinguish 0, 1-algebras and LAAs
or, more generally, find a new commutator distinguishing 0, 1-algebras and LAAs in a natu-
ral way?

7.2 Models of lambda calculus

Concerning the models of λ-calculus, the result of incompleteness stating that any semantics
given in terms of partial orderings with a bottom element is incomplete leads us to the following
problem.

(P11) Find a class of models of lambda calculus, where partial orders and Scott topology do not
play any role.

As for the lattice of λ-theories, results on the structure of the set of λ-theories induced by a
semantics are still rare, and there exist several longstanding basic open questions. The following
natural questions were raised by Berline [8]:

(P12) Given a class of models of lambda calculus, is there a least λ-theory represented in the
class?

(P13) Given a class of models of lambda calculus, is there a least sensible λ-theory represented in
the class?

These two problems are related to one of the longstanding open problems of lambda calculus
raised by Honsell and Ronchi della Rocca [39]:

(P14) Is there a “non-syntactical” model of the untyped lambda calculus whose theory is exactly
the least (extensional) λ-theory λβ (λβη)?

Di Gianantonio, Honsell and Plotkin [31] have shown that there exists an extensional λ-theory
which is minimal among those represented by Scott continuous semantics.



Graph models and other classes of models. Graph semantics is the semantics G of lambda
calculus given in terms of graph models. The reasons to concentrate on G are the following. G is,
by far, the simplest class of models, nevertheless it contains a continuum of models with distinct
theories, so it is a rich class. Moreover, the techniques and results for G can often be transferred
to other classes of models.

Bucciarelli and Salibra [17–19] have shown that graph semantics admits a least graph theory
(where “graph theory” means “λ-theory of a graph model”) and a least sensible graph theory.
The least graph theory is not equal to λβ and it is trivially different from λβη. The following
interesting and difficult question is open:

(P15) Is the least sensible graph theory equal to the λ-theoryH generated by equating all unsolv-
able terms?

In [18] it was also shown that the λ-theory B (generated by equating λ-terms with the same
Böhm tree) is the greatest sensible graph theory. This result is a consequence of the fact that the
graph semantics omits all equationsM = N between λ-terms which do not have the same Böhm
tree, but have the same Böhm tree up to (possibly infinite) η-equivalence.

(P16) What are the equations omitted by the other semantics of lambda calculus (i.e., filter models,
stable models,...)?

In [11] it was recently shown that any “effective” model D of lambda calculus has an order-
theory (i.e., {M ≤ N : |M | vD |N |}) which is not r.e., so that λβ and λβη cannot be theories
of effective models. This enough surprising result holds in a strong way for graph models: the
least graph theory is the theory of an effective graph model and the order-theory of every graph
model is not r.e.

The following open problems deserve to be deeply investigated:

(P17) Is there a least “filter theory” (where “filter theory” means “λ-theory of a filter model”
[5])? If yes, is there an effective model representing it?

(P18) Is there a least sensible filter theory?

7.3 The order-incompleteness problem

One of the most interesting open problems of lambda calculus is whether every λ-theory arises as
the equational theory of a non-trivially ordered model (in other words, whether the semantics of
lambda calculus given in terms of non-trivially ordered models is complete). Selinger [69] gave
a syntactical characterization of the order-incomplete λ-theories (i.e., the theories not induced
by any non-trivially ordered model) in terms of so-called generalized Mal’cev operators. In an
algebraic setting the problem of the order-incompleteness can be expressed as follows:

(P19) Is there an n-permutable variety of LAAs for some n ≥ 2 (see [53] for the definition of
n-permutability)?

Plotkin, Selinger and Simpson [69] have shown that there exists no 2-permutable variety of LAAs
and no 3-permutable variety of LAAs. It is open the case n ≥ 4.

Selinger has shown in [69] that the problem of the order-incompleteness is also related to the
following question by Plotkin [59]:

(P20) Is there an absolutely unorderable combinatory algebra, i.e., a combinatory algebra which
cannot be embedded in any non-trivially partially ordered combinatory algebra?



7.4 Topology and lambda calculus

Scott topology is at the center of Scott continuous semantics and its refinements. In [64] it was
shown that the semantic of lambda calculus given in terms of topological metric spaces is com-
plete. Then it is natural to investigate the following problems:

(P21) Are there topological models of lambda calculus with a significant topology different from
Scott topology?

(P22) Are there other (i.e. different from metric space) classes of topological models which are
complete semantics of the lambda calculus?

We recall that many authors tried to find models in Cartesian closed categories of topological
spaces. Abramsky (see [55, Thm. 5.11]) and Plotkin (see [55, Thm. 5.14]) have shown respec-
tively that there exists no non-degenerate model of the lambda calculus in the category of posets
and monotone mappings, and in the category of complete ultrametric spaces and non-expansive
mappings. Hoffmann and Mislove [38] have shown that the category of k-spaces and continuous
maps has no non-degenerate, compact T2-topological model. A k-space is a topological space
in which a subset is open if and only if its intersection with each compact subset of the space is
open in the subspace. The following problem is still open.

(P23) (Hoffmann-Mislove) Is there a model of lambda calculus in the category of k-spaces?

Notice that every topological model, in which all continuous selfmaps of the model are repre-
sentable (as in the category of k-spaces), must have a connected topology because of the existence
of fixed points. Then the following natural question arises:

(P24) Is the semantics of lambda calculus given in terms of connected topological models, com-
plete?

Orderability/Unorderability. Selinger [69] has shown that the term algebras of the λ-theories
λβ and λβη are unorderable (i.e., they do not admit a non-trivial compatible partial order). Sali-
bra [64] has found out a continuum of λ-theories whose term algebras are unorderable.

The classification of the λ-models into orderable/unorderable models can be refined as fol-
lows (see [64]). For every λ-model C, let TC

i (i = 0, 1, 2, 21/2) be the set of all topologies τ
on C which make (C, τ) a Ti-topological model, where T0, . . . , T21/2 are the usual topological
separation axioms. It is obvious that in general we have

TC
0 ⊇ TC

1 ⊇ TC
2 ⊇ TC

21/2
.

We recall that a topology with a non-trivial specialization order (i.e., such that a < b for some
a, b) would be T0 but not T1, so that

C is unorderable iff TC
0 = TC

1 .

We say that a λ-theory φ is of (topological) type i (i = 0, 1, 2, 21/2) if the term algebra of φ
satisfies TΛφ

0 = T
Λφ
i . All λ-theories are of type 0; the λ-theory B, generated by equating two

λ-terms if they have the same Böhm tree, is not of type 1 (see [4]). λβ and λβη are of type 1
by Selinger’s result, while the λ-theory Π found out by Salibra in [64] is of type 21/2. Then the
following natural question arises:

(P25) Is λβ (λβη) of type 2?
(P26) Is λβ (λβη) of type 21/2?



8 Conclusions and further works

We generalized the Stone representation theorem to combinatory and λ-abstraction algebras
showing that every combinatory and λ-abstraction algebra can be decomposed as a weak product
of directly indecomposable algebras. We showed that the semantics of λ-calculus given in terms
of directly indecomposable λ-models, although huge enough to include all the main semantics,
is hugely incomplete. This gives a strong, uniform and elegant proof of the incompleteness of the
continuous, stable and strongly-stable semantics.

A related question is whether there exists a notion of decomposition which respects the partial
ordering of a model. Indeed there is no reason why the decomposition operators introduced in
this paper should decompose the λ-model respecting the associated ordering. Hence, it would be
interesting to find new kinds of decompositions which take into account also the partial order.
On the other hand, the result of incompleteness in [64], stating that any semantics of λ-calculus
given in terms of partial orderings with a bottom element is incomplete, removed the belief that
partial orderings were intrinsic to λ-models. It is an open problem to find new Cartesian closed
categories, where the partial orderings play no role and where the reflexive objects are directly
indecomposable as combinatory algebras.
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