
Interaction Equivalence

BENIAMINO ACCATTOLI, Inria - École Polytechnique, France
ADRIENNE LANCELOT, Inria - École Polytechnique - Université Paris Cité, France
GIULIO MANZONETTO, Université Paris Cité, France
GABRIELE VANONI, Université Paris Cité, France

Contextual equivalence is the de facto standard notion of program equivalence. A key theorem is that contextual

equivalence is an equational theory. Making contextual equivalence more intensional, for example taking

into account the time cost of the computation, seems a natural refinement. Such a change, however, does not
induce an equational theory, for an apparently essential reason: cost is not invariant under reduction.

In the paradigmatic case of the untyped 𝜆-calculus, we introduce interaction equivalence. Inspired by game

semantics, we observe the number of interaction steps between terms and contexts but—crucially—ignore

their internal steps. We prove that interaction equivalence is an equational theory and characterize it as B, the

well-known theory induced by Böhm tree equality. It is the first observational characterization of B obtained

without enriching the discriminating power of contexts with extra features such as non-determinism. To prove

our results, we develop interaction-based refinements of the Böhm-out technique and of intersection types.

CCS Concepts: • Theory of computation→ Lambda calculus; Denotational semantics.

Additional Key Words and Phrases: Lambda calculus, program equivalences, Böhm trees.

ACM Reference Format:
Beniamino Accattoli, Adrienne Lancelot, Giulio Manzonetto, and Gabriele Vanoni. 2025. Interaction Equiva-

lence. Proc. ACM Program. Lang. 9, POPL, Article 55 (January 2025), 30 pages. https://doi.org/10.1145/3704891

1 Introduction
A cornerstone of the theory of programming languages is the acceptance of contextual equivalence

as a meaningful notion—if not as the notion—of program equivalence. Introduced by Morris [1968]

to study the untyped 𝜆-calculus, contextual equivalence has the advantage that its definition is

almost language-agnostic. Given a language L, one simply needs the notion of contexts 𝐶 of L,

usually defined as terms with a single occurrence of a special additional constant ⟨·⟩ (the hole of
the context), and a chosen predicate ⇓ of observation for L, typically some notion of termination,

which is the only language-specific ingredient. Then, contextual equivalence is defined as:

𝑡 ≡ctx 𝑢 if for all contexts 𝐶 . [𝐶 ⟨𝑡⟩ ⇓ ⇔ 𝐶 ⟨𝑢⟩ ⇓]
Contextual equivalence embodies a black box behavioral principle with respect to termination.

Nothing is said about the structure of 𝑡 and𝑢, it is only prescribed that any use of 𝑡 in a larger program

can be replaced by 𝑢 (and vice-versa) without affecting the observables. One of the most studied

contextual equivalences is head contextual equivalence ≡ctx

h for the untyped 𝜆-calculus [Barendregt

1984], where one observes termination of head reduction →h. Another contextual equivalence

Authors’ Contact Information: Beniamino Accattoli, Inria - École Polytechnique, Palaiseau, France, beniamino.accattoli@

inria.fr; Adrienne Lancelot, Inria - École Polytechnique - Université Paris Cité, Palaiseau, France, lancelot@irif.fr; Giulio

Manzonetto, Université Paris Cité, Paris, France, gmanzone@irif.fr; Gabriele Vanoni, Université Paris Cité, Paris, France,

gabriele.vanoni@irif.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/1-ART55

https://doi.org/10.1145/3704891

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

HTTPS://ORCID.ORG/0000-0003-4944-9944
HTTPS://ORCID.ORG/0009-0009-5481-5719
HTTPS://ORCID.ORG/0000-0003-1448-9014
HTTPS://ORCID.ORG/0000-0001-8762-8674
https://doi.org/10.1145/3704891
https://orcid.org/0000-0003-4944-9944
https://orcid.org/0009-0009-5481-5719
https://orcid.org/0000-0003-1448-9014
https://orcid.org/0000-0003-1448-9014
https://orcid.org/0000-0001-8762-8674
https://doi.org/10.1145/3704891

55:2 Accattoli, Lancelot, Manzonetto, and Vanoni

that was studied at length is the one of Plotkin’s PCF [1977], where the observation is termination

on the same value of ground type, typically a natural number. Both played crucial roles in the

historical development of denotational semantics of programming languages.

Contextual equivalence is also relevant in more applied settings. The typical example being

program transformations at work in compilers, for which contextual equivalence guarantees a

strong form of soundness, see, for instance, the survey by Patrignani et al. [2019].

Equational Contextual Equivalence. In order for contextual equivalence ≡ctx
to be a proper

semantical notion, one actually has to show that it is an equational theory for L. This means that

the following two properties must be satisfied:

(1) Compatibility: ≡ctx
is stable under context closure, that is, 𝑡 ≡ctx 𝑢 implies 𝐶 ⟨𝑡⟩ ≡ctx 𝐶 ⟨𝑢⟩ for

all contexts 𝐶 , and;

(2) Invariance: ≡ctx
includes 𝛽-conversion =𝛽 , that is, if 𝑡 =𝛽 𝑢 then 𝑡 ≡ctx 𝑢.

While compatibility holds by definition, invariance is a non-trivial theorem, because of the universal

quantification on contexts in ≡ctx
, which is notoriously hard to manage. For head contextual

equivalence ≡ctx

h , for instance, a rewriting-based proof of the invariance property requires to prove

the confluence of 𝛽-reduction and various non-trivial properties of head reduction
1
.

An equational theory for L can be seen as a semantics for L. The abstract requirement defining

denotational models is that their induced equivalence
2
is an equational theory. Notably, head

contextual equivalence ≡ctx

h is exactly the equational theory of Scott’s D∞ model [1972], the first

model of the untyped 𝜆-calculus.

Termination 𝑣𝑠 Time Cost, Equationally. It is natural to wonder whether contextual equivalence

can be refined by replacing the termination predicate ⇓ with a finer one ⇓𝑘 indicating termination

in 𝑘 evaluation steps. Intuitively, the number of evaluation steps is taken as a time cost model. With

the compiler analogy in mind, it is indeed natural to ask that a program transformation preserves

the time behavior. This refinement is exactly Sands’ notion of cost equivalence, the symmetric form

of his more famous improvement preorder [1996a; 1996b; 1999]:

𝑡 ≡cost 𝑢 if for all contexts 𝐶, ∃𝑘 ≥ 0 . [𝐶 ⟨𝑡⟩ ⇓𝑘 ⇔ 𝐶 ⟨𝑢⟩ ⇓𝑘]

Cost equivalence falls short, however, of being a refinement of contextual equivalence. The price to

pay for the added quantitative information is that it can no longer be seen as a semantics, that is, it

is not an equational theory. The reason is both simple and deep. It is simple because (in, say, the

𝜆-calculus) if 𝑡 →𝛽 𝑢, then 𝐶 ⟨𝑢⟩ might take one step less to terminate than 𝐶 ⟨𝑡⟩, so 𝛽-conversion
=𝛽 cannot be included in cost equivalence ≡cost

, breaking the invariance of equational theories.

Internal and External. The issue is deep as it reflects a more general tension between quantitative

intensional properties such as time cost, which by their nature cannot be invariant under evaluation,

and semantical notions such as equational theories, that are expected to hide the computational

process. More generally, one might identify two perspectives on programs. The internal view studies

programs in isolation, and it is concerned with qualitative properties such as, e.g., termination,

confluence, productivity, or quantitative properties such as time or space cost. The external view,
instead, studies how programs interact with other programs, as it is the case for contextual equi-

valences, labelled transition systems (LTSs), or process calculi. Usually, the external view hides

the internal dynamics of programs, for instance via the invariance requirement for contextual

equivalence, or via the silent 𝜏 transitions of LTSs.

1
For an overview of such a proof, see Appendix A of the longer version on arXiv [Accattoli et al. 2024].

2
The equivalence induced by a model M is defined as 𝑡 =M 𝑢 if J𝑡K = J𝑢K, where J·K is the interpretation in the model.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

Interaction Equivalence 55:3

The mentioned issue with cost equivalence is then an instance of a more general question: is

there a way of analyzing quantitative properties externally, without interference from the hidden

internal dynamics? Concretely, is there a way of measuring the amount of interactions between a

term and its context modulo the internal dynamics of the term and of the context?

Interaction Equivalence and the Checkers Calculus. In this paper, we provide a positive answer.

The literature on improvements has focused on application-oriented 𝜆-calculi based on call-by-need

evaluation. Our focus is different, more theoretical, we are rather interested in the semantical

aspect and the understanding of the internal/external dilemma. Therefore, we place ourselves in

a minimalistic setting, namely the ordinary (call-by-name) untyped 𝜆-calculus, the denotational

semantics of which has been studied in depth—see the classic book [Barendregt 1984] and its recent

extension [Barendregt and Manzonetto 2022]—and aim at refining head contextual equivalence.

We introduce a new notion of cost equivalence, called (head) interaction equivalence, whose
key property is being—as we prove—an equational theory, in contrast to what happens for cost

equivalence. This is obtained via a reconciliation of the internal and the external perspectives,

loosely inspired by game semantics [Abramsky et al. 2000; Hyland and Ong 2000].

Interaction equivalence is based on the new checkers calculus Λ◦•, a 𝜆-calculus enriched with two

players, black • and white ◦. The idea is to duplicate the abstraction and application constructors

of the 𝜆-calculus as to have white (𝜆◦𝑥 .𝑡 and 𝑡 ◦𝑢) and black variants (𝜆•𝑥 .𝑡 and 𝑡 •𝑢) of each. Next,
borrowing from LTSs, one defines two variants of 𝛽-reduction, the silent one (internal to a player)

and the interaction (external) one, depending on whether the constructors involved in the redex

belong to the same player or not:

Silent 𝛽 Interaction 𝛽

(𝜆•𝑥 .𝑡) • 𝑢 →𝛽𝜏 𝑡{𝑥 :=𝑢} (𝜆◦𝑥 .𝑡) • 𝑢 →𝛽 𝑡{𝑥 :=𝑢}
(𝜆◦𝑥 .𝑡) ◦ 𝑢 →𝛽𝜏 𝑡{𝑥 :=𝑢} (𝜆•𝑥 .𝑡) ◦ 𝑢 →𝛽 𝑡{𝑥 :=𝑢}

Interaction equivalence of 𝑡 and𝑢 is then defined in the checkers calculus exactly as cost equivalence

except that one uses the predicate ⇓ 𝑘
h◦•

holding when checkers head reduction terminates using 𝑘

interaction steps→𝛽 and—crucially—arbitrarily many (possibly zero) silent steps →𝛽𝜏 .

Checkers interaction equivalence is then transferred to the ordinary 𝜆-calculus via a paint-and-
wash construction: two ordinary 𝜆-terms 𝑡 and 𝑢 are interaction equivalent when their uniformly,

say, black-painting 𝑡
•
and 𝑢• are interaction equivalent in the checkers calculus, i.e.:

𝑡 ≡int 𝑢 if for all checkers contexts 𝐶, ∃𝑘 ≥ 0 . [𝐶 ⟨𝑡•⟩ ⇓ 𝑘
h◦•

⇔ 𝐶 ⟨𝑢•⟩ ⇓ 𝑘
h◦•

]

Our first main result is that interaction equivalence is an equational theory of the ordinary untyped

𝜆-calculus. As for contextual equivalence, proving that ≡int
is an equational theory is non-trivial,

and the counting of interaction steps adds a further difficulty. We do it via a multi type system, as

explained after our second contribution. We also prove that two preorder variants of interaction

equivalence, one of which is the interaction reformulation of Sands’s improvements, are inequational
theories, that is, preorders verifying the compatibility and invariance of equational theories.

Inspecting Black Boxes. Contextual equivalences, as already mentioned, are black-box principles.

While the concept is natural, it is hard to establish the contextual equivalence of two given terms,

because of the universal quantification over all the contexts. It is then common to look for alternative,

more explicit reformulations that relate the inner structure of equivalent terms. Historically, these

reformulations were presented via semantic trees such as Böhm trees, introduced by Barendregt

[1977]. Head contextual equivalence≡ctx

h for the untyped 𝜆-calculus is one of the few cases for which

an explicit description is available, as they are not easy to obtain. Namely, ≡ctx

h was characterized

by Hyland [1976] and Wadsworth [1976] as the equational theory B𝜂∞ induced by the equality of

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

55:4 Accattoli, Lancelot, Manzonetto, and Vanoni

Böhm trees up to possibly infinite 𝜂-equivalence. A natural question then arises: is there an explicit

description of interaction equivalence? Does it correspond to anything already known?

Interaction Equivalence and Böhm Trees. The second contribution of our work is the answer to

these two questions. We prove that interaction equivalence is exactly the well-known equational

theory B induced by Böhm tree equality. In particular, interaction equivalence is not extensional,
that is, it does not validate any form of 𝜂-equivalence, given that 𝑥 and 𝜆𝑦.𝑥𝑦 clearly have a different

number of interactions with any context providing an argument. Therefore, interaction equivalence

≡int
has a simpler explicit description than head contextual equivalence ≡ctx

h , and provides an

operational insight about 𝜂-equivalence. The failure of 𝜂-equivalence also reveals that, despite the

analogy, our framework is not that close to game semantics, where 𝜂 is naturally validated unless

additional constraints are imposed to avoid it, as in [Ker et al. 2003; Ong and Di Gianantonio 2002].

Our results actually turn out to solve an open problem in the semantical theory of the untyped

𝜆-calculus, namely the problem of finding a satisfying description of (non-extensional) Böhm tree

equality B as an observational equivalence. Partial solutions have been presented in the literature

and are discussed among related works, in Section 9. Ours is the first solution that does not require

adding any extra features such as concurrency or non-determinism, but only refining the analysis.

Normal Form Bisimilarities. Some readers might prefer a coinductive formulation of the problem.

The equational theory B, indeed, corresponds to head normal form bisimilarity, as shown by Lassen

[1999], building over Sangiorgi’s work [1994]. Normal form bisimilarities are known to be sound

but—in general—not complete for contextual equivalences. The open problem from the literature

then might be recast as follows: is there an observational equivalence for which normal form

bisimilarities are complete? We show that, for the head case, interaction equivalence is the answer.

Technical Development. Our results are proved via new interaction-based refinements of standard

proof methods in the literature, namely the Böhm-out technique and multi types, overviewed in

the next subsection. While the proofs are non-trivial, we believe that they are compact and neat,

hopefully reassuring that the introduced framework is not ad-hoc.

Proofs. Some proofs are omitted; they are in the proof appendix on arXiv [Accattoli et al. 2024].

Overview of the Proof Techniques
In the study of program equivalences, proving the inclusion of an equivalence into another one is

always challenging. As it is customary, we study preorders rather than equivalences, and prove the

equality of the Böhm preorder ⊑B and the interaction preorder ⊑int
by showing the two inclusions.

Proof Technique 1: Böhm-Out. For ⊑int ⊆ ⊑B , we prove the contrapositive: if 𝑡 and 𝑢 have different

Böhm trees then they are not interaction equivalent. We adapt the Böhm-out technique at work
in Böhm’s separation theorem [1968]—a classic result of the untyped 𝜆-calculus—thus building a

context that separates 𝑡 and 𝑢. The original technique, used also more recently in [Barendregt and

Manzonetto 2022; Boudol and Laneve 1996; Dezani-Ciancaglini et al. 1998; Intrigila et al. 2019],

cannot distinguish 𝜂-equivalent terms. We refine it by counting interaction steps: when interacting

with a context, 𝜂-equivalent terms give rise to different amounts of interaction.

Proof Technique 2: Multi Types. For the inclusion ⊑B ⊆ ⊑int
, we use a different technique. The

main tool is a new multi type system (also known as non-idempotent intersection types) for the

checkers calculus. Multi types are an established tool for the study of untyped 𝜆-calculi, mediating

between operational and denotational studies; see [Bucciarelli et al. 2017] for an introduction.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

Interaction Equivalence 55:5

Λ ∋ 𝑡,𝑢, 𝑠 ::= 𝑥 (∈ Var) | 𝜆𝑥 .𝑡 | 𝑡𝑢
hnfs ℎ F 𝜆𝑥1 . . . 𝑥𝑛 .𝑦 𝑡1 · · · 𝑡𝑘
C ∋ 𝐶 ::= ⟨·⟩ | 𝜆𝑥.𝐶 | 𝑡 𝐶 | 𝐶 𝑢
H ∋ 𝐻 ::= 𝜆𝑥1 . . . 𝑥𝑛 .⟨·⟩𝑡1 · · · 𝑡𝑘

𝛽-rule (𝜆𝑥 .𝑡)𝑢 ↦→𝛽 𝑡{𝑥 :=𝑢}
𝜂-rule 𝜆𝑥 .𝑡𝑥 ↦→𝜂 𝑡, if 𝑥 ∉ fv(𝑡)

𝛽 →𝛽 := C⟨↦→𝛽⟩
head →h := H⟨↦→𝛽⟩

𝜂 →𝜂 := C⟨↦→𝜂⟩

Fig. 1. The 𝜆-calculus. Λ is the set of 𝜆-terms, C the class of contexts,H the subclass of head contexts.

Similarly to intersection types, they characterize various termination properties, in the sense that

𝑡 “converges” if and only if 𝑡 is typable3. In contrast to intersection types, however, multi types are

quantitative, which can be expressed in at least two ways. Firstly, the fact that typability implies

(head) termination can be proved easily using as a decreasing measure the size of type derivations,

while intersection types require more involved techniques. Secondly, multi types allow one to

extract a bound of the number of head steps to normal form, as first shown by de Carvalho [2007,

2018], which is impossible with (idempotent) intersection types.

As a disclaimer, please note that multi types are a theoretical tool not meant to be used in real

life programming languages, since typability in multi type systems is an undecidable property.

Rather, they provide handy type-theoretic presentations of denotational models.

We prove that our multi type system for the checkers calculus characterizes head termination,

and we use the type system to introduce a type preorder ⊑•typ
and show that ⊑B ⊆ ⊑•typ ⊆ ⊑int

.

The first of these two inclusions is proved exploiting the quantitative properties of the multi type

system. The second inclusion requires more, namely to characterize the multi type judgements

from which one can measure the exact number of interaction steps, rather than simply providing a

bound. For that, we adapt the tight technique of Accattoli et al. [2020], in its turn refining previous

work by de Carvalho [2007, 2018]. A possibly interesting point is that the literature uses the tight

technique to measure the number of internal steps, while here we use it dually, for measuring

interaction steps. The following diagram sums up the technical development:

⊑B ⊑int

⊑•typQuantitative properties of multi types

Thm. 8.1

Tight technique

Cor. 8.5(3)

Interaction Böhm-out

Thm. 5.4

In fact, we end up providing two characterizations of interaction equivalence/preorder, one as Böhm

trees and one as multi types. Our first main result, namely the fact that interaction equivalence is

an equational theory (Cor. 3.12(3)), is also proved using tight multi types. Essentially, it is obtained

by symmetry from the inclusion ⊑•typ ⊆ ⊑int
above and the fact that ⊑•typ

is an inequational theory.

2 The 𝜆-Calculus
To keep this article as self-contained as possible, we summarize some definitions and results

concerning 𝜆-calculus that we shall use in the paper. For more information, see [Barendregt 1984].

Definition 2.1. The syntax and rewriting rules of 𝜆-calculus are given in Fig. 1.

𝜆-Terms and Contexts. The set Λ of 𝜆-terms is constructed over a countable set Var of variables.

We assume that application associates to the left and has a higher precedence than abstraction.

Given 𝑘, 𝑛 ≥ 0 and 𝑡,𝑢, 𝑠1, . . . , 𝑠𝑘 ∈ Λ, we write 𝜆®𝑥 .𝑡 as an abbreviation of 𝜆𝑥1 . . . 𝑥𝑛 .𝑡 , and 𝑡®𝑠 for
𝑡𝑠1 · · · 𝑠𝑘 . For instance, 𝜆𝑥𝑦𝑤𝑧.𝑥𝑦 (𝑤𝑧) stands for 𝜆𝑥 .(𝜆𝑦.(𝜆𝑤.(𝜆𝑧.((𝑥𝑦) (𝑤𝑧))))).
3
The notion of convergence that is captured depends on the system that is considered. Here, we consider head normalization.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

55:6 Accattoli, Lancelot, Manzonetto, and Vanoni

The set fv(𝑡) of free variables of 𝑡 and 𝛼-conversion are defined as in [Barendregt 1984, §1.2].

Hereafter, we consider 𝜆-terms up to 𝛼-conversion and we denote 𝛼-conversion simply by =. The

usual meta-level capture-avoiding substitution of 𝑢 for 𝑥 in 𝑡 is noted 𝑡{𝑥 :=𝑢}.
The class C of contexts contains 𝜆-terms built using exactly one occurrence of the hole ⟨·⟩,

standing for a removed sub-term. We shall also use the subclassH of head contexts. Given a context

𝐶 and a 𝜆-term 𝑡 , we denote by𝐶 ⟨𝑡⟩ the 𝜆-term obtained by replacing 𝑡 for the hole ⟨·⟩ in𝐶 , possibly
with capture of free variables.

Rewriting. The 𝜆-calculus can be endowed with several notions of reduction →R, turning the set

Λ into a higher-order term rewriting system. Given a notion of reduction →R:

(i) →∗
R stands for the reflexive and transitive closure of →R (multistep R-reduction);

(ii) =R stands for its reflexive, symmetric, and transitive closure (R-conversion);
We write 𝑡 →𝑛

R 𝑢 to indicate a reduction sequence 𝑡 →R 𝑡1 →R · · · →R 𝑡𝑛−1 →R 𝑢 of length 𝑛. A

𝜆-term 𝑡 is an R-normal form (or R-nf) if there is no term 𝑢 such that 𝑡 →R 𝑢. Given 𝑡 ∈ Λ, we write
𝑡 ⇓R 𝑢 if 𝑡 →∗

R 𝑢 and 𝑢 is a R-nf. The term 𝑡 is R-normalizable, written 𝑡 ⇓R, if 𝑡 ⇓R 𝑢, for some 𝑢.

Contextual Closure and Reductions. We distinguish between the (rewriting) rule R and the notion
of reduction →R, where the latter is obtained from the former via some form of context closure.

The context closure defined next is applicable more generally to every relation R ⊆ Λ2
on 𝜆-terms.

Definition 2.2 (Contextual closure). Let R ⊆ Λ2 be a relation and D be a class of contexts.
The D-closure of R is the least relationD⟨R⟩ such that 𝑡 R 𝑢 entails𝐶 ⟨𝑡⟩ D⟨R⟩ 𝐶 ⟨𝑢⟩, for all𝐶 ∈ D.
R is called D-compatible if D⟨R⟩ ⊆ R, and simply compatible when D is the class of all contexts C.

The 𝛽-reduction→𝛽 (resp. 𝜂-reduction→𝜂) is the closure of the 𝛽-rule (𝜂-rule) under all contexts.

Notation 2.3. Concerning specific 𝜆-terms, we fix the following notations:

I := 𝜆𝑥.𝑥, 1 := 𝜆𝑥𝑦.𝑥𝑦, K := 𝜆𝑥𝑦.𝑥, F := 𝜆𝑥𝑦.𝑦, Y := 𝜆𝑓 .(𝜆𝑥.𝑓 (𝑥𝑥)) (𝜆𝑥 .𝑓 (𝑥𝑥)), Ω := YI,

where I is the identity, 1 is an 𝜂-expansion of I, K and F are the projections, Y is a fixed point

operator satisfying Y𝑓 =𝛽 𝑓 (Y𝑓), and Ω =𝛽 (𝜆𝑥.𝑥𝑥) (𝜆𝑥 .𝑥𝑥) is the paradigmatic looping combinator.

Head reduction →h, defined in Fig. 1, is the evaluation strategy adopted in this paper. We

choose head reduction because of its key role in the semantics of 𝜆-calculus [Barendregt 1984],

but our construction of interaction equivalence could be adapted smoothly to weak (i.e. not under
abstraction) head reduction. We shall discuss it in Section 10.

Fig. 1 gives the standard characterization of head normal forms (or hnfs). Given a hnf ℎ =

𝜆𝑥1 . . . 𝑥𝑛 .𝑦 𝑡1 · · · 𝑡𝑘 , we refer to 𝑦 (which may possibly be one of 𝑥1, . . . , 𝑥𝑛) as to its head variable.

Conversion and Equational Theories. The equational theories of the 𝜆-calculus, called 𝜆-theories,
are compatible equivalence relations containing 𝛽-reduction. They arise naturally when one aims at

equating 𝜆-terms displaying the same operational behavior. Similarly, inequational theories express

the fact that the behavior of a 𝜆-term is somewhat less defined than the behavior of another term.

Definition 2.4. (i) A relation R ⊆ Λ2 is called a congruence if it is a compatible equivalence.
(ii) We say that R is 𝛽-invariant if it contains 𝛽-conversion =𝛽 .
(iii) An equational theory, or 𝜆-theory, is any 𝛽-invariant congruence =T .
(iv) An inequational theory is any compatible 𝛽-invariant preorder ⊑T .
(v) An (in)equational theory is consistent if it is different from Λ2, extensional if it contains =𝜂 .
(vi) An inequational theory ⊑T is semi-extensional if it contains 𝜂-reduction →𝜂 .

Note that inequational 𝜆-theories are not required to be symmetric—they are preorders—and yet

they are required to contain 𝛽-conversion =𝛽 , which is symmetric. Any inequational 𝜆-theory ⊑T ,
induces a 𝜆-theory denoted by =T by setting: 𝑡 =T 𝑢 if both 𝑡 ⊑T 𝑢 and 𝑢 ⊑T 𝑡 hold.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

Interaction Equivalence 55:7

Contextual Preorders and Equivalences. A nowadays standard notion in the study of programming

languages and 𝜆-calculi is contextual equivalence, and its asymmetric variant of contextual preorder.

The idea is to observe the termination of 𝜆-terms when plugged in the same context. Thus, they

depend on a notion of termination. In this paper, we focus on termination of head reduction.

Definition 2.5. The (head) contextual preorder ⊑ctx on 𝜆-terms is defined as follows:
𝑡 ⊑ctx 𝑢 if for all contexts 𝐶 . [𝐶 ⟨𝑡⟩ ⇓h ⇒ 𝐶 ⟨𝑢⟩ ⇓h]

The associated (head) contextual equivalence is defined by setting 𝑡 ≡ctx 𝑢 if 𝑡 ⊑ctx 𝑢 and 𝑢 ⊑ctx 𝑡 .

Often the literature requires 𝐶 to be a closing context, that is, such that both 𝐶 ⟨𝑡⟩ and 𝐶 ⟨𝑢⟩ are
closed. In the ordinary 𝜆-calculus, adding/removing the closing requirement does not change the

defined relation, which is why we do not add it. It turns out that the head contextual preorder

provides an inequational 𝜆-theory.

Theorem 2.6 ([Barendregt 1984]). The head contextual preorder ⊑ctx is an inequational 𝜆-theory.
Moreover, it is consistent and extensional.

As mentioned in the introduction, the proof of the previous theorem is non-trivial. Proving that

𝛽-conversion =𝛽 is included in ⊑ctx
indeed is not immediate, because of the famously fastidious

universal quantification on contexts in ⊑ctx
. A rewriting-based proof requires the use of both

confluence of 𝛽 and the untyped normalization theorem of head reduction (if 𝑡 →∗
𝛽
𝑢 and 𝑢 is

normal for head reduction, then 𝑡 is head normalizing). For an overview, see Appendix A of the

longer version on arXiv [Accattoli et al. 2024]. Similarly, a rewriting-based proof that 𝜂-conversion

=𝜂 is included in ⊑ctx
also rests on non-trivial theorems about 𝜂. Also in this case, for an overview

see Appendix A of the longer version on arXiv [Accattoli et al. 2024].

Semantic proofs are possible but not easy anyway, as they rest on soundness of the model. For

the similar case of interaction equivalence, we shall develop a semantic proof.

Background and Notable Variants. The head contextual preorder has been studied in-depth

because it captures the (in)equational theory of Scott’s denotational model D∞ [Scott 1972], the

first model of the untyped 𝜆-calculus. The preorder ⊑ctx
is also the maximal contextual preorder of

interest: any strictly larger inequational 𝜆-theory is inconsistent [Barendregt and Manzonetto 2022,

Lemma 12.5]. In 1976, Hyland and Wadsworth have shown that the associated equivalence ≡ctx

coincides with Böhm trees equality up to infinite 𝜂-expansions (Cf. Theorem 4.7, below).

Another relevant contextual preorder is obtained by considering termination with respect to

𝛽-reduction, instead of head reduction. This alternative preorder was originally introduced in

Morris’s PhD thesis [1968], but has been the subject of fewer investigations than the head one (until

recently, see [Intrigila et al. 2019] and [Barendregt and Manzonetto 2022, Ch. 12]). Hyland [1975]

showed that the associated equivalence captures Böhm trees equality up to finite 𝜂-expansions.

3 The Checkers Calculus
In this section we introduce the checkers calculus, obtained from the 𝜆-calculus by duplicating the

abstraction and application constructors, that now both come in white and black dresses.

Definition 3.1. The syntax and operational semantics of the checkers calculus are defined in Fig. 2.

Black andWhite Constructors. The constructors of abstraction and application receive a tag, called
player, that can be either white ◦ or black •. The terms populating the set Λ◦• are called checkers
terms, and inherit the notions of free variables, 𝛼-conversion, and substitution from 𝜆-calculus.

Note that variables do not receive a player tag. The main reason is simplicity: this way, we do not

need to enforce the uniform tagging of all the occurrences of the same variable.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

55:8 Accattoli, Lancelot, Manzonetto, and Vanoni

Terms and Contexts Beta rules and reductions

Players p, q F ◦ | •
Terms Λ◦• ∋ 𝑡,𝑢, 𝑠 F 𝑥 | 𝜆p𝑥 .𝑡 | 𝑡 ·p 𝑢

h◦•-nfs ℎ,ℎ′ F 𝜆®p®𝑥 .𝑦 ·q1 · · ·q𝑘 𝑡1 · · · 𝑡𝑘

C◦• ∋ 𝐶 F ⟨·⟩ | 𝜆p𝑥 .𝐶 | 𝐶 ·p 𝑢 | 𝑡 ·p 𝐶
H◦• ∋ 𝐻 F 𝜆®p®𝑥 .⟨·⟩ ·q1 · · ·q𝑘 𝑡1 · · · 𝑡𝑘

Silent (𝜆p𝑥 .𝑡) ·p 𝑢 ↦→𝛽𝜏 𝑡{𝑥 :=𝑢}
Interaction (𝜆p𝑥 .𝑡) ·p

⊥
𝑢 ↦→𝛽 𝑡{𝑥 :=𝑢}

Silent 𝛽 →𝛽𝜏
:= C◦•⟨↦→𝛽𝜏 ⟩

Interaction 𝛽 →𝛽 := C◦•⟨↦→𝛽 ⟩
Checkers 𝛽 →𝛽◦• := →𝛽𝜏 ∪ →𝛽

Silent head →h𝜏 := H◦•⟨↦→𝛽𝜏 ⟩
Interaction head →h := H◦•⟨↦→𝛽 ⟩

Checkers head →h◦• := →h𝜏 ∪ →h

Fig. 2. The checkers calculus.

Notation 3.2. When the players are actually specified, we simply denote the applications by 𝑡 ◦𝑢
(and 𝑡 •𝑢) instead of 𝑡 ·◦𝑢 (and 𝑡 ·•𝑢). Hereafter, we often need to refer to constructors of a fixed but

arbitrary player p, thus we use 𝜆p𝑥 .𝑡 and 𝑡 ·p 𝑢 for abstractions and applications of player p ∈ {◦, •}.
We also use p⊥ to denote the opposite player, defined as ◦⊥ := • and •⊥ := ◦. In case of many

consecutive abstractions or applications, we shorten the notations to 𝜆®p®𝑥 .𝑡 and 𝑡 ·®p ®𝑢, respectively.
The former is sometimes slightly expanded to 𝜆p1 · · ·p𝑘𝑥1 . . . 𝑥𝑘 . 𝑡 , and the latter to 𝑡 ·p1 · · ·p𝑘 𝑢1 · · ·𝑢𝑘 .

Checkers Contexts. The class C◦• of checkers contexts, and the subclass H◦• of checkers head
contexts are defined in Fig. 2. Definition 2.2 of contextual closure with respect to a class of contexts,

generalizes to this setting in the obvious way. Checkers contexts shall play a key role in the

definition of contextual preorders and equivalences on checkers terms (see Definition 3.7, below).

Silent and Interaction Steps. There are two kinds of colored 𝛽-redexes (𝜆p𝑥 .𝑡) ·q 𝑢, the silent one
and the interaction one, each one with its own 𝛽-rule. Silent redexes are 𝛽-redexes where the color

of the abstraction p matches the color of the application q. Intuitively, these steps are internal to
each player’s world. In interaction redexes, instead, the color of the abstraction and the color of the

application are different, i.e. p ≠ q. This represents the scenario where the two players interact

with each other, which, from each player’s perspective, amounts to interacting with the external

world. Our focus shall be on the number of head interaction steps.

The internal/external dichotomy, and the idea of having two players are strong guiding intuitions

but note that, in general, a checkers term can arbitrarily interleave black and white constructors:

there is no neat frontier between the parts of a term corresponding to the two players. The key

point is that, even if we start with cleanly separated black and white parts, they still end up mixing

during the reduction.

Example 3.3. Consider the black identity I• := 𝜆•𝑥 .𝑥 and the white term D◦ := 𝜆◦𝑦.𝜆◦𝑥 .𝑥 ◦ (𝑦 ◦ 𝑥).
(1) If the black identity is black-applied to D◦, then it gives rise to a silent step I• • D◦ →𝛽𝜏 D◦, while

if it is white-applied to D◦ then the step is an interaction one, namely I• ◦ D◦ →𝛽 D◦.
(2) D◦ • I• • I• →h (𝜆◦𝑥 .𝑥 ◦ (I• ◦ 𝑥)) • I• →𝛽 (𝜆◦𝑥 .𝑥 ◦ 𝑥) • I• →h I• ◦ I• →h I•

Basic Rewriting Properties. As the 𝜆-calculus, the checkers 𝜆-calculus is an example of orthogonal
higher-order rewriting system [Aczel 1978; Klop 1980; Nipkow 1991], that is a class of rewriting

systems for which confluence always holds, because of the good shape of their rewriting rules.

Similarly, the silent and interaction sub-relations →𝛽𝜏 and →𝛽 are also confluent and commute.

Theorem 3.4 (Confluence). Reductions →𝛽◦• , →𝛽𝜏 , and →𝛽 are confluent.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

Interaction Equivalence 55:9

Similarly, checkers head reduction inherits various expected properties of head reduction, such

as determinism. In particular, we shall use the following immediate substitutivity property.

Lemma 3.5 (Substitutivity). Let 𝑡, 𝑡 ′, 𝑢 ∈ Λ◦• and R ∈ {𝛽𝜏 , 𝛽 , 𝛽◦•, h𝜏 , h , h◦•}. If 𝑡 →R 𝑡
′ then

𝑡{𝑥 :=𝑢} →R 𝑡
′{𝑥 :=𝑢}.

𝜂-Conversion. Note that there are no checkers 𝜂-rules in Fig. 2. A key point in our work, indeed,

is that 𝜂-conversion can change the number of interaction steps.

Example 3.6 (The Delicate Role of 𝜂). Consider the black 𝜂-expansion 1• := 𝜆•𝑥 .𝜆•𝑦.𝑥 • 𝑦 of
the black identity I• and the following diagram:

1• ◦ 𝑧 ◦𝑤
(𝜆•𝑦.𝑧 • 𝑦) ◦𝑤 𝑧 •𝑤

I• ◦ 𝑧 ◦𝑤 𝑧 ◦𝑤
≠

h

•𝜂 h

h

It shows that𝜂 changes the number of interaction steps. It also shows that standard properties of ordinary
𝜂 do not lift to the checkers case (see Appendix A on arXiv [Accattoli et al. 2024] for definitions):→𝜂

cannot be postponed after→h ,→𝜂 and→h do not commute, and adding 𝜂 to→𝛽◦• breaks confluence.

Big-Step Notation and Interaction Index. Recall that 𝑡 ⇓h◦• stands for “𝑡 is h◦•-normalizing”. We

introduce the notation 𝑡 ⇓ 𝑘
h◦•

for: 𝑡 is h◦•-normalizing and the number of head interaction steps

→h in its h◦•-evaluation is 𝑘 . Note that the number 𝑘 is well-defined because→h◦• is deterministic.

Interaction Equivalence and Preorders. We now introduce interaction equivalence ≡ctx
as a form

of quantitative contextual equivalence for the checkers calculus. Similarly to weak similarity for

labeled transition systems, ≡ctx
ignores silent head steps. The quantitative aspect is that it requires

to preserve the number of interaction head steps. The richer quantitative setting in fact gives rise

to two possible preorders, both generating ≡ctx
when symmetrized.

Definition 3.7 (Checkers interaction preorders and eqivalence). We define the interac-
tion preorder ⊑ctx, the interaction improvement (preorder) ⊑ctx·imp, and the interaction equivalence

≡ctx on checkers terms 𝑡,𝑢 ∈ Λ◦• as follows:

(i) 𝑡 ⊑ctx 𝑢 if 𝐶 ⟨𝑡⟩ ⇓ 𝑘
h◦•

implies 𝐶 ⟨𝑢⟩ ⇓ 𝑘
h◦•

for all checkers contexts 𝐶 ∈ C◦• and 𝑘 ∈ N;

(ii) 𝑡 ⊑ctx·imp

𝑢 if 𝐶 ⟨𝑡⟩ ⇓ 𝑘
h◦•

implies 𝐶 ⟨𝑢⟩ ⇓ 𝑘 ′

h◦•
with 𝑘 ′ ≤ 𝑘 , for all contexts 𝐶 ∈ C◦• and 𝑘 ∈ N;

(iii) 𝑡 ≡ctx 𝑢 is the equivalence relation induced by ⊑ctx, that is, 𝑡 ≡ctx 𝑢 if 𝑡 ⊑ctx 𝑢 and 𝑢 ⊑ctx 𝑡 .

The interaction improvement ⊑ctx·imp

adapts Sands’ improvements [1996a; 1996b; 1999] to our

up to silent steps setting. Note that ⊑ctx ⊆ ⊑ctx·imp

. It is easy to see that the two new preorders are

different, i.e. that ⊑ctx ⊊ ⊑ctx·imp

. Indeed, I• ◦ I◦ ⊑ctx·imp

I◦ but I• ◦ I◦ ̸⊑ctx I◦, as both checkers

terms have I◦ as head normal form but I• ◦ I◦ requires one more interaction step to reach it.

The interaction preorder ⊑ctx
turns out to be more easily manageable than the interaction

improvement ⊑ctx·imp

. Moreover, from the inclusion ⊑ctx ⊆ ⊑ctx·imp

we shall be able to transfer some

properties of ⊑ctx
to ⊑ctx·imp

. In this paper, then, we shall rather focus on ⊑ctx
.

Example 3.8. Recall that I• and D◦ have been defined in Ex. 3.3, and 1• in Ex. 3.6.

(i) (𝜆◦𝑥 .𝑥 ◦ 𝑥) ◦ (𝜆◦𝑥 .𝑥 ◦ 𝑥) ⊑ctx I•, because the former is not h◦•-normalizable.
(ii) I• ̸⊑ctx 1• and 1• ̸⊑ctx I•, as they are separated by 𝐶 = ⟨·⟩ ◦ 𝑧 ◦𝑤 , see Ex. 3.6.
(iii) D◦ ◦ (𝜆𝑥◦.𝑥) ◦ (𝜆𝑥◦.𝑥) ≡ctx (𝜆𝑥◦.𝑥), because they are 𝛽𝜏 -convertible.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

55:10 Accattoli, Lancelot, Manzonetto, and Vanoni

Back to Ordinary 𝜆-Terms. Composing the interaction relations for checkers terms defined above

with the black embedding of Λ into Λ◦•, we obtain new interaction relations on ordinary 𝜆-terms.

Definition 3.9 (Player Lifting and interaction preorders/eqivalence).

(i) Given p ∈ {◦, •}, define the player p-lifting of ordinary 𝜆-terms and ordinary contexts, as the
maps ·p : Λ → Λ◦• and ·p : C → C◦• obtained by p-tagging every constructor:

𝑥p := 𝑥, 𝜆𝑥 .𝑡
p
:= 𝜆p𝑥 .𝑡

p
, 𝑡𝑢

p
:= 𝑡

p ·p 𝑢p;
⟨·⟩p := ⟨·⟩, 𝜆𝑥 .𝐶

p
:= 𝜆p𝑥 .𝐶

p
, 𝑡𝐶

p
:= 𝑡

p ·p 𝐶p
, 𝐶𝑢

p
:=𝐶

p ·p 𝑢p.
(ii) The interaction preorder ⊑int, the interaction improvement ⊑int·imp, and the interaction equiv-

alence ≡int are the following relations on ordinary 𝜆-terms 𝑡,𝑢 ∈ Λ defined via black lifting:
• 𝑡 ⊑int 𝑢 if 𝑡• ⊑ctx 𝑢•;
• 𝑡 ⊑int·imp 𝑡 ′ if 𝑡• ⊑ctx·imp

𝑢•;
• 𝑡 ≡int 𝑢 is the equivalence relation induced by ⊑int, that is, 𝑡 ≡int 𝑢 if 𝑡 ⊑int 𝑢 and 𝑢 ⊑int 𝑡 .

Example 3.10. We use the 𝜆-terms introduced in Notation 2.3. We also consider D := 𝜆𝑦𝑥.𝑥 (𝑦𝑥),
having the property that YD is a fixed point operator whose head reduction is ‘slower’ than that of Y.
(i) YK ⊑int 𝑡 , for all 𝑡 ∈ Λ, because YK does not have an hnf. Similarly, YI =𝛽 Ω ⊑int 𝑡 .
(ii) We have I ̸⊑int 1, nor 1 ̸⊑int I (Cf. Ex. 3.8(ii)). It is easily seen that K ̸⊑int F and F ̸⊑int K.
(iii) YD ≡int Y, as the former needs more head-reduction steps to converge, but they are silent.

The Interaction Preorder is Inequational. We now show that the interaction preorder ⊑int
is a

semantics of 𝜆-calculus, i.e., it is an inequational 𝜆-theory, from which the corresponding results

for ⊑int·imp
and ≡int

follow. This is our first main result, showing that our framework does solve

the internal/external tension evoked in the introduction.

As for contextual equivalence, proving invariance (that is, that 𝛽-conversion is included) is non-

trivial, and even harder because of the constraint on the number of interaction steps. It follows from

the following theorem for the checkers interaction preorder, which we shall prove in a later section

via a semantic proof based on multi types (page 23), rather than via rewriting-based techniques.

Theorem 3.11 (The interaction preorder includes silent conversion). For all checkers
terms 𝑡,𝑢 ∈ Λ◦•, 𝑡 =𝛽𝜏 𝑢 entails 𝑡 ⊑ctx 𝑢.

Corollary 3.12.

(1) The interactional preorder ⊑int is a consistent inequational 𝜆-theory. Moreover, it is not semi-
extensional, whence not extensional.

(2) The interactional improvement ⊑int·imp is a consistent inequational 𝜆-theory.
(3) Interaction equivalence ≡int is a consistent 𝜆-theory. Moreover, it is not extensional.

Proof. (3) follows from (1).

(1) We unfold the definition of inequational 𝜆-theory, and check the following properties.

• Preorder . Reflexivity and transitivity are straightforward.

• Compatibility. It follows from the compatibility of⊑ctx
. If 𝑡 ⊑int 𝑢, thenwe need to prove that

𝐶 ⟨𝑡⟩ ⊑int 𝐶 ⟨𝑢⟩, for any context𝐶 . Let𝐶′
be a context. If𝐶′⟨𝐶 ⟨𝑡⟩⟩• ⇓ 𝑘

h◦•
then𝐶′⟨𝐶 ⟨𝑢⟩⟩• ⇓ 𝑘

h◦•

by 𝑡
• ⊑ctx 𝑢•.

• Invariance. Let 𝑡 =𝛽 𝑢. Then clearly 𝑡
•
=𝛽𝜏 𝑢

•
. By Thm. 3.11, 𝑡

• ⊑ctx 𝑢•. Then 𝑡 ⊑int 𝑢.

Consistency of ⊑int
is given by the fact that I ̸⊑int Ω, as it can be seen by considering the

empty context. The failure of semi-extensionality is shown in Ex. 3.6.

(2) The proof that ⊑int·imp
is a compatible and consistent goes as for ⊑int

. For invariance, just

note that =𝛽 ⊆ ⊑int ⊆ ⊑int·imp
. □

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

Interaction Equivalence 55:11

Interaction Improvement and 𝜂. Note that the corollary does not say anything about ⊑int·imp

and 𝜂. We conjecture that 𝜂-reduction is included in ⊑int·imp
, which would imply that the obvious

inclusion ⊑int ⊆ ⊑int·imp
is strict, since it is not included in ⊑int

(Ex. 3.6) (beware that strictness of the

inclusion does not follows from ⊑ctx ⊊ ⊑ctx·imp

as strictness in that case relies on black and white

terms). For instance, 1 →𝜂 I and we expect that 1 ⊑int·imp I because, intuitively, head termination

of 𝐶 ⟨1•⟩ does require at most one more interaction step than for 𝐶 ⟨I•⟩, for all 𝐶 ∈ C◦•.
At present, however, it is only a conjecture. There is a real technical difficulty because the

properties of 𝜂 that are usually used for rewriting-based proofs of similar facts fail for the checkers

calculus, see Ex. 3.6. The semantic tools that we shall develop in the next sections for studying ⊑int

are not able to deal with 𝜂 either.

Adding and Removing Players. The next proposition formalizes the fact that the black-only and

white-only fragments of the checkers calculus are embeddings of the ordinary 𝜆-calculus, not only

statically but also dynamically. The statements concern head steps, but generalize to arbitrary steps.

Proposition 3.13 (Lifting Properties). Let p ∈ {◦, •} and 𝑡,𝑢 ∈ Λ:
(1) Head steps are turned into silent ones: if 𝑡 →h 𝑢 then 𝑡p →h𝜏 𝑢

p.
(2) Mono-player head-steps can be pulled back to the ordinary 𝜆-calculus: if 𝑡p →h◦• 𝑠 then

there exists a 𝜆-term 𝑢 ∈ Λ such that 𝑡 →h 𝑢 and 𝑠 = 𝑢p.
(3) Head normal forms are preserved: 𝑡 is a hnf if and only if 𝑡p is h◦•-normal.

Let us also formalize the fact that adding tags to application and abstractions does not change

the possible reductions. Let 𝑡 ∈ Λ, a tagging 𝑡𝑇 is a checkers term that preserves the syntax but

tags its abstractions and applications with players.

Proposition 3.14. Let 𝑡 →h 𝑢 be a reduction in the ordinary 𝜆-calculus. For any tagging 𝑇 of 𝑡 ,
there exists a tagging 𝑇 ′ of 𝑢 such that 𝑡𝑇 →h◦• 𝑢𝑇

′
in the checkers calculus.

It follows that sequences of head reductions in the ordinary 𝜆-calculus are preserved in the

checkers calculus, under some tagging determined by the first term in the reduction.

Hierarchy. Since ⊑ctx ⊆ ⊑ctx·imp

, we have ⊑int ⊆ ⊑int·imp
(we showed that ⊑ctx ⊊ ⊑ctx·imp

, but not

by using black lifted terms, so that does not give us ⊑int ⊊ ⊑int·imp
). The lifting properties above are

used to prove the following expected lemma.

Lemma 3.15. ⊑int·imp ⊆ ⊑ctx.

From Ex. 3.6, it follows that I ̸⊑int·imp 1, while I ⊑ctx 1 holds. Thus, ⊑int·imp ⊊ ⊑ctx
. Summing up,

we obtain the following hierarchy of preorders.

Lemma 3.16 (Hierarchy). ⊑int ⊆ ⊑int·imp ⊊ ⊑ctx. Similarly, ≡int ⊊ ≡ctx.

4 Böhm Trees
Here starts the second part of the paper, where interaction equivalence ≡int

shall be characterized

as the equational theory B induced by the equality of Böhm trees. In this section, we recall Böhm

trees and two notions of equality between them.

Barendregt proposed to represent the (possibly infinite) behavior of a 𝜆-term 𝑡 as a (possibly

infinite) tree, obtained by repeatedly slicing it with respect to head termination. We first present

the idea informally, and then formally, following the similarity-based approach of Lassen [1999].

Definition 4.1 (Barendregt 1977). The Böhm tree BT(𝑡) of a 𝜆-term 𝑡 is defined as follows:
• If 𝑡 is head terminating then 𝑡 →∗

h 𝜆𝑥1 . . . 𝑥𝑛 .𝑦 𝑡1 · · · 𝑡𝑘 , for some 𝑛, 𝑘 ≥ 0, and we define:

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

55:12 Accattoli, Lancelot, Manzonetto, and Vanoni

BT(𝑡) := 𝜆𝑥1 . . . 𝑥𝑛 .𝑦

BT(𝑡1) BT(𝑡𝑘)· · ·

• Otherwise, 𝑡 is head diverging and we define BT(𝑡) := ⊥.
Böhm trees are naturally ordered as follows: BT(𝑡) ≤⊥ BT(𝑢) whenever BT(𝑢) is obtained from BT(𝑡)
by replacing some (possibly zero, or infinitely many) occurrences of ⊥ by arbitrary trees.

Intuitively, the constant ⊥ represents the complete lack of information and, accordingly, the

relation BT(𝑡) ≤⊥ BT(𝑢) captures the fact that the behavior of 𝑢 is more defined than that of 𝑡 .

Example 4.2. Some examples of Böhm trees of notable 𝜆-terms:

BT(1) = 𝜆𝑥𝑦.𝑥

𝑦

BT(Ω) = ⊥ BT(P𝑧) = 𝜆𝑥0.𝑥0

𝜆𝑥1 .𝑥1

𝜆𝑥2 .𝑥2

BT(Y) = 𝜆𝑓 .𝑓

𝑓

𝑓

≥⊥ 𝜆𝑓 .𝑓

𝑓

⊥

≥⊥ 𝜆𝑓 .𝑓

⊥

≥⊥ ⊥

where P = Y(𝜆𝑦𝑧𝑥 .𝑥 (𝑦𝑧)) satisfies P𝑧 =𝛽 𝜆𝑥 .𝑥 (P𝑧). Note that 𝑧 is never erased by P, rather “pushed
into infinity” in the sense that P𝑧 →∗

𝛽
𝑡 entails 𝑧 ∈ fv(𝑡), but 𝑧 does not occur in BT(P𝑧).

It is well-known that Böhm trees are invariant under 𝛽-conversion [Barendregt 1984, Ch. 10].

Informally, the Böhm preorder ⊑B on terms is defined by pulling back the preorder on the associated

trees, that is, 𝑡 ⊑B 𝑢 if BT(𝑡) ≤⊥ BT(𝑢). Formally, we rather define the Böhm preorder as a notion

of similarity, following Lassen [1999].

Definition 4.3 (Böhm preorder, formally). The Böhm preorder ⊑B , also known as head (normal

form) similarity, is the largest relation 𝑡 ⊑B 𝑢 closed under the following clauses:
(bot) 𝑡 ̸⇓

h
i.e. 𝑡 has no head normal form.

(H) 𝑡 ⇓h 𝜆𝑥1 . . . 𝑥𝑛 .𝑦 𝑡1 · · · 𝑡𝑘 and 𝑢 ⇓h 𝜆𝑥1 . . . 𝑥𝑛 .𝑦 𝑢1 · · ·𝑢𝑘 with (𝑡𝑖 ⊑B 𝑢𝑖)𝑖≤𝑘 .
Theorem 4.4 ([Barendregt 1984, Cor. 14.3.20(iii)]). The Böhm preorder ⊑B is an inequational

𝜆-theory. Moreover, ⊑B is neither extensional nor semi-extensional.

The main result of the paper is that ⊑B coincides with the interaction preorder ⊑int
. For the

direction ⊑int ⊆ ⊑B , we shall partly rely on a similar important result in the theory of the 𝜆-calculus,

namely Hyland’s semi-separation theorem, which concerns an extensional variant of ⊑B below.

Extensional Böhm Preorder. We now formally introduce an extensional version of ⊑B capturing

the preorder induced by Scott’s model D∞.

Definition 4.5 (Extensional Böhm preorder). The extensional Böhm preorder ⊑B𝜂∞ is the
largest relation 𝑡 ⊑B𝜂∞ 𝑢 closed under the following clauses:
(bot) 𝑡 ̸⇓

h
i.e. 𝑡 has no head normal form.

(H𝜂) 𝑡 ⇓h ℎ, 𝑢 ⇓h ℎ′, and there exist 𝑛, 𝑘 ≥ 0 such that ℎ =𝜂 𝜆𝑥1 . . . 𝑥𝑛 .𝑦 𝑡1 · · · 𝑡𝑘 and ℎ′ =𝜂
𝜆𝑥1 . . . 𝑥𝑛 .𝑦 𝑢1 · · ·𝑢𝑘 with (𝑡𝑖 ⊑B𝜂∞ 𝑢𝑖)𝑖≤𝑘 .

Example 4.6. Recall that I, 1, K, and F have been defined in Notation 2.3.
(i) We start with some negative examples: K ̸⊑B𝜂∞ F and F ̸⊑B𝜂∞ K (their head variables differ).
(ii) Both I ⊑B𝜂∞ 1 and 1 ⊑B𝜂∞ I hold. This entails the extensionality of ⊑B𝜂∞ , hence of =B𝜂∞ .
(iii) 𝜆𝑥𝑦.𝑥Ω ⊑B𝜂∞ I, holds since 𝜆𝑥𝑦.𝑥Ω ⊑B 1 ⊑B𝜂∞ I and ⊑B ⊆ ⊑B𝜂∞ . Conclude by transitivity.
(iv) To understand the role of the infinitary 𝜂-expansion, consider the 𝜆-term J = Y(𝜆 𝑗𝑥 .𝑥 (𝑗𝑥)). It is

easy to check that J ⊑B𝜂∞ I by looking at the in-line depiction of its Böhm tree:

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

Interaction Equivalence 55:13

BT(J) = 𝜆𝑥𝑦0.𝑥 (𝜆𝑦1.𝑦0 (𝜆𝑦2.𝑦1 (𝜆𝑦3 .𝑦2 (· · ·))))

The relations ⊑B𝜂∞ and =B𝜂∞ have characterizations as contextual preorders/equivalences.

Theorem 4.7 (Hyland 1975/Wadsworth 1976). For all 𝜆-terms 𝑡,𝑢, we have 𝑡 ⊑ctx 𝑢 if and only
if 𝑡 ⊑B𝜂∞ 𝑢. Therefore 𝑡 ≡ctx 𝑢 if and only if 𝑡 =B𝜂∞ 𝑢.

5 Completeness, or Separating Böhm Different Terms
In this section, we prove that the interaction preorder ⊑int

is included in the Böhm preorder ⊑B .

Proof Technique. The standard way of proving that a contextual preorder ⊑ is included in a

tree similarity is to proceed by proving the contrapositive: one supposes BT(𝑡) � BT(𝑢), and
constructs a context 𝐶 that:

(1) Extraction of the difference: brings up this difference from possibly deep down the tree structure

of BT(𝑡) and BT(𝑢), that is, 𝐶 is such that 𝐶 ⟨𝑡⟩ and 𝐶 ⟨𝑢⟩ head reduce to two terms 𝑡 ′ and 𝑢′

for which the difference BT(𝑡 ′) � BT(𝑢′) is on the root node, and

(2) Root separation: exploits the root difference to make 𝑡 ′ head terminating and𝑢′ head divergent,
thus obtaining that 𝑡 @ 𝑢.

In the literature, this extraction process is known as Böhm out technique [Böhm 1968]; see also

[Barendregt and Manzonetto 2022; Böhm 1968; Boudol and Laneve 1996; Dezani-Ciancaglini et al.

1998; Intrigila et al. 2019]. It is a concise and yet sophisticated technique. The culprit is that the

extracting context needs to first reorganize the applicative structure of 𝑡 and𝑢 (via tupler combinators,
see below), to then apply the suitable selectors for extracting the discriminating sub-terms.

What raises difficulties is when one has two different terms, say, 𝑡 := 𝑥𝑡1𝑡2 and 𝑢 := 𝑥𝑡1𝑡3 with

the difference deep down the structure of 𝑡2 and 𝑡3. Intuitively, to ’extract’ 𝑡2 and 𝑡3 one would

simply substitute for 𝑥 a term that selects the second argument, namely 𝜆𝑦𝑧.𝑧. Unfortunately, this

approach is too simple to work, because then extracting the difference deep down 𝑡2 and 𝑡3 might

require to substitute a different selecting term (say, of the first argument) for another occurrence of

𝑥 in 𝑡2 and 𝑡3, but clearly all the occurrences of 𝑥 must receive the same selecting term. An example

of how the Böhm out technique solves this colliding selectors issue is discussed below.

Definitions for the Böhm Out Technique. On closed 𝜆-terms, the technique amounts to applying

the tupler T𝑛 and the 𝑖-th selector S𝑛𝑖 defined as follows:

𝑛-tuples ⟨𝑡1, . . . , 𝑡𝑛⟩ := 𝜆𝑥 .𝑥𝑡1 · · · 𝑡𝑛, with 𝑥 fresh;

Tuplers T𝑛 := 𝜆𝑥1 . . . 𝑥𝑛 .⟨𝑥1, . . . , 𝑥𝑛⟩;
Selectors S𝑛𝑖 := 𝜆𝑥1 . . . 𝑥𝑛 .𝑥𝑖 , with 1 ≤ 𝑖 ≤ 𝑛.

So, the tupler T𝑛 takes 𝑛 arguments 𝑡1, . . . , 𝑡𝑛 and returns the tuple ⟨𝑡1, . . . , 𝑡𝑛⟩, while the selector S𝑛𝑖
takes𝑛 arguments 𝑡1, . . . , 𝑡𝑛 and returns the 𝑖-th argument 𝑡𝑖 . Note that S11 = I. Then, T𝑛𝑡1 · · · 𝑡𝑛𝑢 →∗

h
𝑢𝑡1 · · · 𝑡𝑛 and S𝑛𝑖 𝑡1 · · · 𝑡𝑛 →∗

h 𝑡𝑖 , whence we have the following combined extraction property:

T𝑛𝑡1 · · · 𝑡𝑛S𝑛𝑖 →∗
h 𝑡𝑖 . (1)

In the following, we shall need to locate nodes/hnfs occurring at a certain path in a Böhm tree.

Definition 5.1.

• Path: a path is a (possibly empty) finite list of natural numbers 𝛼 = ⟨𝑎1, . . . , 𝑎𝑛⟩, where 𝑎𝑖 ≥ 1,
for each 1 ≤ 𝑖 ≤ 𝑛.

• Concatenation: given 𝑖 ∈ N and a path 𝛼 as above, their concatenation is 𝑖 · 𝛼 := ⟨𝑖, 𝑎1, . . . , 𝑎𝑛⟩.
• Node occurring at a path: let 𝑡 be a 𝜆-term such that 𝑡 →∗

h 𝜆®𝑥 .𝑦𝑡1 · · · 𝑡𝑘 . If 𝛼 = ⟨⟩ then
𝑡↾𝛼= 𝜆®𝑥 .𝑦𝑡1 · · · 𝑡𝑘 , if 𝛼 = 𝑖 · 𝛼 ′ with 𝑖 ≤ 𝑘 then 𝑡𝛼 = (𝑡𝑖)𝛼 ′ . Otherwise, 𝑡↾𝛼 is undefined.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

55:14 Accattoli, Lancelot, Manzonetto, and Vanoni

Example 5.2. We show how the Böhm out technique is able to construct a context separating the
𝜆-term 𝑡 := 𝜆𝑥𝑦.𝑥 (𝑥Ω𝑦)Ω from the 𝜆-term 𝑢 := 𝜆𝑥𝑦.𝑥 (𝑥𝑦Ω)Ω, which provide an example of the
colliding selectors issue. We represent below their Böhm trees:

BT(𝑡) =

𝜆𝑥𝑦.𝑥

𝑥 ⊥

⊥ 𝑦

BT(𝑢) =

𝜆𝑥𝑦.𝑥

𝑥 ⊥

𝑦 ⊥
Showing that 𝑡 ̸⊑ctx 𝑢 requires a context 𝐶 making 𝑡 converge and 𝑢 diverge. The path to extract

along is 𝛼 ′ = ⟨1, 2⟩, which showcases the colliding selectors issue: the first occurrence of 𝑥 needs to
select the first argument, while the second occurrence needs the second argument. Böhm’s trick consists
in using tuplers, as we now attempt to explain. The Böhm out context is 𝐶 := ⟨·⟩T2IS21S22. The idea is
that, by substituting a tupler T2 on 𝑥 and having as further arguments the right selectors for each
occurrence, one exploits the extraction property (1) above to select the right sub-term in each case. The
identity I is added like a padding when more arguments are needed. Concretely, we have:

𝐶 ⟨𝑡⟩ = (𝜆𝑥𝑦.𝑥 (𝑥Ω𝑦)Ω)T2IS21S22
→2

h T2 (T2ΩI)ΩS21S22
by (1) →∗

h T2ΩIS22
by (1) →∗

h I

𝐶 ⟨𝑢⟩ = (𝜆𝑥𝑦.𝑥 (𝑥𝑦Ω)Ω)T2IS21S22
→2

h T2 (T2IΩ)ΩS21S22
by (1) →∗

h T2IΩS22
by (1) →∗

h Ω

There are more technicalities of the Böhm out technique, unfortunately. Firstly, since the ex-

traction process works through substitutions of tuplers and selectors, one in general extracts a

substitution instance of a sub-term, and not the sub-term itself. Secondly, in our example both

occurrences of 𝑥 have two arguments, but in general different occurrences might have different

numbers of arguments. Then, one needs to apply a tupler T𝑛 with 𝑛 “large enough”, and this

over-approximation may destroy some 𝜂-differences between the two trees. If one observes only

termination, then 𝜂-equivalent terms are not separable.
In our setting, we are able to discriminate 𝜂-convertible 𝜆-terms because we observe termination

and count the number of interaction steps, which are changed by 𝜂, as showed by Ex. 3.6. The idea

is to black dress the differing terms 𝑡 and 𝑢 and to white dress the separating context 𝐶 , so that the

black 𝜂-differences in 𝑡
•
and 𝑢• that are erased by 𝐶

◦
are turned into interaction steps.

Interaction Böhm Out. The following lemma shows how to separate those 𝜆-terms which have

Böhm trees differing only by some (possibly infinitary)𝜂-expansions, that is, the case when 𝑡 ⊑B𝜂∞ 𝑢
and 𝑡 ̸⊑B 𝑢, because the case 𝑡 ̸⊑B𝜂∞ 𝑢 is handled by Thm. 4.7, that is, via standard Böhm out.

Because of its technical nature, it is labeled as a lemma and yet it is one of the main technical

contributions of the paper. The inclusion ⊑int ⊆ ⊑B then follows easily.

Lemma 5.3 (Interaction Böhm-out). Let 𝑡,𝑢 ∈ Λ such that 𝑡 ⊑B𝜂∞ 𝑢 and 𝑡 ̸⊑B 𝑢. Then, there
exists a context 𝐶 ∈ C such that 𝐶

◦⟨𝑡•⟩ ⇓ 𝑖
h◦•

and 𝐶
◦⟨𝑢•⟩ ⇓ 𝑖′

h◦•
with 𝑖′ ≠ 𝑖 .

Terminology and Notations for the Proof. As customary in mathematical analysis, we say that

a relation P(−) holds for all 𝐾 ∈ N large enough whenever there exists a 𝐾 ′ ∈ N such that P(𝐾)
holds for all 𝐾 ≥ 𝐾 ′

. We also use the notation 𝑡𝑢∼𝑛 for (· · · ((𝑡𝑢)𝑢) · · ·)𝑢 (𝑛 times). Finally, two

head normal forms ℎ,ℎ′ are spine equivalent, written ℎ =sp ℎ
′
, if there are 𝑛, 𝑘 ≥ 0 such that:

ℎ = 𝜆𝑥1 . . . 𝑥𝑛 .𝑦 𝑡1 · · · 𝑡𝑘 and ℎ′ = 𝜆𝑥1 . . . 𝑥𝑛 .𝑦 𝑢1 · · ·𝑢𝑘 . (2)

Proof. We prove a stronger statement, i.e. that there exist closed terms ®𝑠 ∈ Λ such that, for all

®𝑦 containing fv(𝑡) ∪ fv(𝑢) and for all 𝐾 ∈ N large enough, the following holds:

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

Interaction Equivalence 55:15

𝑡
•{®𝑦 :=T𝐾

◦} ◦ ®𝑠
◦
⇓ 𝑖
h◦•

and 𝑢•{®𝑦 :=T𝐾
◦} ◦ ®𝑠

◦
⇓ 𝑖′

h◦•
with 𝑖′ ≠ 𝑖 .

Given variables ®𝑥 and a 𝜆-term 𝑡 we write 𝜎®𝑥 for {®𝑥 :=T𝐾
◦}, and 𝑡𝜎 ®𝑥 for 𝑡{®𝑥 :=T𝐾

◦}.
Note that 𝑡 ̸⊑B 𝑢 is only possible if 𝑡 ⇓

h
. Moreover, 𝑡 ⇓

h
ℎ and 𝑡 ⊑B𝜂∞ 𝑢 entail 𝑢 ⇓

h
ℎ′, for some

ℎ′. We proceed by induction on the length of a minimal path 𝛿 ∈ N∗
such that 𝑡↾𝛿 ̸=sp 𝑢↾𝛿 .

Base case 𝛿 = ⟨⟩, i.e. ℎ ̸=sp ℎ
′
. Then 𝑡 ⊑B𝜂∞ 𝑢 is only possible if the amount of spine abstractions

and applications in ℎ,ℎ′ can be matched via 𝜂-expansion, say:

𝑡 →∗
h ℎ = 𝜆𝑥1 . . . 𝑥𝑛 .𝑦 𝑡1 · · · 𝑡𝑘 and 𝑢 →∗

h ℎ
′ = 𝜆𝑥1 . . . 𝑥𝑛𝑧1 . . . 𝑧𝑚 .𝑦 𝑢1 · · ·𝑢𝑘+𝑚

for 𝑛, 𝑘 ≥ 0 and𝑚 > 0. (The symmetrical case where ℎ has more abstractions/applications than ℎ′

is omitted because analogous.) There are two subcases to consider, depending on whether 𝑦 is free.

(1) 𝑦 is free, i.e. 𝑦 ∈ ®𝑦. Take any 𝐾 ≥ 𝑘 +𝑚, and empty ®𝑠 . For 𝑡 , we have:
-Steps Terms and 𝜏-steps

𝑡
•{®𝑦 :=T𝐾

◦} →∗
h𝜏

ℎ
•{®𝑦 :=T𝐾

◦}, by Pr. 3.13(1) & L.3.5

= 𝜆•···•𝑥1 . . . 𝑥𝑛 . T𝐾
◦ • 𝑡1•

𝜎 ®𝑦 • · · · • 𝑡𝑘
•𝜎 ®𝑦

→𝑘
h 𝜆•···•𝑥1 . . . 𝑥𝑛 . 𝜆◦···◦𝑤𝑘+1 . . .𝑤𝐾 . ⟨𝑡1

•𝜎 ®𝑦
, . . . , 𝑡𝑘

•𝜎 ®𝑦
,𝑤𝑘+1, . . . ,𝑤𝐾 ⟩◦

where ⟨−, . . . ,−⟩◦ denotes the tuple with white applications 𝜆𝑧.𝑧 − ◦ · · · ◦ −. For 𝑢, we have:
-Steps Terms and 𝜏-steps

𝑢•{®𝑦 :=T𝐾
◦} →∗

h𝜏
ℎ′

•{®𝑦 :=T𝐾
◦}, by Pr. 3.13(1) & L.3.5,

= T𝐾
◦ • 𝑢1•𝜎 ®𝑦 • · · · • 𝑢𝑘+𝑚•𝜎 ®𝑦

→𝑘+𝑚
h 𝜆•···•𝑥1 . . . 𝑥𝑛 . 𝜆◦···◦𝑤𝑘+1 . . .𝑤𝐾 . ⟨𝑢1•𝜎 ®𝑦 , . . . , 𝑢𝑘+𝑚

•𝜎 ®𝑦 ,𝑤𝑘+𝑚+1, . . . ,𝑤𝐾 ⟩◦
Summing up, 𝑡

•𝜎 ®𝑦 ⇓ 𝑘
h◦•

and 𝑢•𝜎 ®𝑦 ⇓ 𝑘+𝑚
h◦•

. The statement holds because𝑚 > 0.

(2) 𝑦 is bound, i.e. 𝑦 = 𝑥 𝑗 ∈ ®𝑥 . Take any 𝐾 ≥ 𝑘 +𝑚, and let the arguments ®𝑠 be 𝑛 copies of T𝐾
(noted T∼𝑛

𝐾
for short). On the one hand:

-Steps Terms and 𝜏-steps

𝑡
•{®𝑦 :=T𝐾

◦} ◦ T𝐾
◦∼𝑛 →∗

h𝜏
ℎ
•{®𝑦 :=T𝐾

◦} ◦ T𝐾
◦∼𝑛

, by Pr. 3.13(1) & L.3.5,

=
(
𝜆•···•𝑥1 . . . 𝑥𝑛 . 𝑥 𝑗 • 𝑡1•

𝜎 ®𝑦 • · · · • 𝑡𝑘
•𝜎 ®𝑦) ◦ T𝐾 ◦∼𝑛

→𝑛
h T𝐾

◦ • 𝑡1•
𝜎 ®𝑥 ®𝑦 • · · · • 𝑡𝑘

•𝜎 ®𝑥 ®𝑦

→𝑘
h 𝜆◦···◦𝑤𝑘+1 . . .𝑤𝐾 . ⟨𝑡1

•𝜎 ®𝑥 ®𝑦
, . . . , 𝑡𝑘

•𝜎 ®𝑥 ®𝑦
,𝑤𝑘+1, . . . ,𝑤𝐾 ⟩◦

On the other hand:

-Steps Terms and 𝜏-steps

𝑢•{®𝑦 :=T𝐾
◦} ◦ T𝐾

◦∼𝑛 →∗
h𝜏

ℎ′
•{®𝑦 :=T𝐾

◦} ◦ T𝐾
◦∼𝑛

, by Pr. 3.13(1) & L.3.5,

=
(
𝜆•···•𝑥1 . . . 𝑥𝑛®𝑧. 𝑥 𝑗 • 𝑢1•𝜎 ®𝑦 • · · · • 𝑢𝑘+𝑚•𝜎 ®𝑦

)
◦ T𝐾

◦∼𝑛

→𝑛
h◦•

T𝐾
◦ • 𝑢1•𝜎 ®𝑥 ®𝑦 • · · · • 𝑢𝑘+𝑚•𝜎 ®𝑥 ®𝑦

→𝑘+𝑚
h◦•

𝜆◦···◦𝑤𝑘+𝑚+1 . . .𝑤𝐾 . ⟨𝑢1•𝜎 ®𝑥 ®𝑦 , . . . , 𝑢𝑘+𝑚
•𝜎 ®𝑥 ®𝑦 ,𝑤𝑘+𝑚+1, . . . ,𝑤𝐾 ⟩◦.

Summing up, 𝑡
•𝜎 ®𝑦 ⇓ 𝑛+𝑘

h◦•
and 𝑢•𝜎 ®𝑦 ⇓ 𝑛+𝑘+𝑚

h◦•
. The statement holds because𝑚 > 0.

Inductive case 𝛿 = 𝑗 · 𝛾 . In this case, we must have:

𝑡 →∗
h ℎ = 𝜆𝑥1 . . . 𝑥𝑛 .𝑦 𝑡1 · · · 𝑡𝑘 and 𝑢 →∗

h ℎ
′ = 𝜆𝑥1 . . . 𝑥𝑛 .𝑦 𝑢1 · · ·𝑢𝑘

with 𝑡 𝑗 ̸⊑B 𝑢 𝑗 and (𝑡𝑙 ⊑B𝜂∞ 𝑢𝑙)𝑙≤𝑘 . By i.h., there exists 𝐾 ′
and ®𝑠′ such that for all 𝐾 ≥ 𝐾 ′

:

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

55:16 Accattoli, Lancelot, Manzonetto, and Vanoni

𝑡 𝑗
•𝜎 ®𝑥 ®𝑦 ◦ ®𝑠′

◦
⇓ 𝑖
h◦•

and 𝑢 𝑗
•𝜎 ®𝑥 ®𝑦 ◦ ®𝑠′

◦
⇓ 𝑖′

h◦•
with 𝑖′ ≠ 𝑖 .

We consider any 𝐾 ≥ max{𝐾 ′, 𝑘}. We assume wlog. that 𝑦 is free, the other case being analogous.

Steps Terms

𝑡
•{®𝑦 :=T𝐾

◦} ◦ T𝐾
◦∼𝑛+𝐾−𝑘 ◦ S𝐾

𝑗

◦
◦ ®𝑠′

◦
, by Pr. 3.13(1) & L.3.5,

→∗
h𝜏

ℎ
•{®𝑦 :=T𝐾

◦} ◦ T𝐾
◦∼𝑛+𝐾−𝑘 ◦ S𝐾

𝑗

◦
◦ ®𝑠′

◦

=
(
𝜆•···•𝑥1 . . . 𝑥𝑛 . T𝐾

◦ • 𝑡1•
𝜎 ®𝑦 • · · · • 𝑡𝑘

•𝜎 ®𝑦) ◦ T𝐾 ◦∼𝑛+𝐾−𝑘 ◦ S𝐾
𝑗

◦
◦ ®𝑠′

◦

→𝑛
h T𝐾

◦ • 𝑡1•
𝜎 ®𝑥 ®𝑦 • · · · • 𝑡𝑘

•𝜎 ®𝑥 ®𝑦 ◦ T𝐾
◦∼𝐾−𝑘 ◦ S𝐾

𝑗

◦
◦ ®𝑠′

◦

→𝑘
h →∗

h𝜏
𝑡 𝑗

•𝜎 ®𝑥 ®𝑦 ◦ ®𝑠′
◦

by (1).

An identical sequence of steps extracts 𝑢 𝑗
•
from the other term, that is, we have:

𝑢•{®𝑦 :=T𝐾
◦} ◦ T𝐾

◦∼𝑛+𝐾−𝑘 ◦ S𝐾
𝑗

◦
◦ ®𝑠′

◦
→∗

h𝜏
→𝑛+𝑘

h →∗
h𝜏

𝑢 𝑗
•𝜎 ®𝑥 ®𝑦 ◦ ®𝑠′

◦

Note the same number of -steps. By defining ®𝑠
◦
as the arguments T𝐾

◦∼𝑛+𝐾−𝑘
, S𝐾
𝑗

◦
, ®𝑠′

◦
, and by

composing with what is obtained by the i.h., we obtain:

𝑡
•{®𝑦 :=T𝐾

◦} ◦ ®𝑠
◦
⇓ 𝑛+𝑘+𝑖
h◦•

and 𝑢•{®𝑦 :=T𝐾
◦} ◦ ®𝑠

◦
⇓ 𝑛+𝑘+𝑖′
h◦•

,

which is an instance of the statement because 𝑖 ≠ 𝑖′ by i.h. □

Theorem 5.4 (Completeness). Let 𝑡,𝑢 ∈ Λ. If 𝑡 ⊑int 𝑢 then 𝑡 ⊑B 𝑢.

Proof. Assume 𝑡 ̸⊑B 𝑢, towards a contradiction. There are two cases:

(i) If 𝑡 ̸⊑B𝜂∞ 𝑢, then by Theorem 4.7 there exists a context 𝐶 such that 𝐶 ⟨𝑡⟩ ⇓h, while 𝐶 ⟨𝑢⟩ ̸⇓h.
By Prop. 3.14, it follows that 𝐶

◦⟨𝑡•⟩ ⇓h◦• , while 𝐶
◦⟨𝑢•⟩ ̸⇓h◦• . This shows 𝑡 ̸⊑int 𝑢.

(ii) If 𝑡 ⊑B𝜂∞ 𝑢 then 𝑡 ̸⊑int 𝑢 follows directly from interaction Böhm out (Lemma 5.3). □

6 Multi Types and Relational Semantics
We now start preparing the ground for the proof of the inclusion ⊑B ⊆ ⊑int

. The main tool shall be

a system of checkers multi types. The needed background on multi types, a.k.a. non-idempotent
intersection types, is recalled here, the checkers variant shall be introduced in the next section.

Here, we present Engeler’s relational model [Hyland et al. 2004] in terms of de Carvalho’s system

of multi types [2007; 2018], together with some classic results. In particular, we recall the multi

type characterization of head normalizability, and the bounds of the length of head evaluations

that can be extracted from the type derivations.

Definition 6.1. Types and typing rules of the multi types system are given in Fig. 3.

Multi Types. There are two categories of types: linear types L, which include a single
4
atomic type

A and arrow typesM → L; multi types M, which are possibly empty multisets of linear types. Multi

types are generally represented as unordered lists [L1, . . . , L𝑛] of linear types L1, . . . , L𝑛 , possibly
with repetitions. The empty multi type [], obtained by taking 𝑛 = 0, is also denoted by 0.

A multi type [L1, . . . , L𝑛] should be intended as a conjunction L1 ∧ · · · ∧ L𝑛 , for a commutative,

associative, non-idempotent conjunction ∧ (morally a tensor ⊗), having 0 as a neutral element. The

intuition is that a linear type corresponds to a single use of a term 𝑡 , which is typed with a multiset

4
One may ask for more atomic types, but this choice does not really affect the results presented in the paper.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

Interaction Equivalence 55:17

Types Typing rules

Linear L, L′ F A | M → L
Multi M,N F [L1, . . . , L𝑛] 𝑛 ≥ 0

Generic T, T′ F L | M
Zero 0 F []

𝑥 : [L] ⊢ 𝑥 :L ax
(Γ𝑖 ⊢ 𝑡 :L𝑖)𝑖∈𝐼 𝐼 finite

⊎𝑖∈𝐼 Γ𝑖 ⊢ 𝑡 : [L𝑖]𝑖∈𝐼
many

Γ, 𝑥 :M ⊢ 𝑡 :L
Γ ⊢ 𝜆𝑥 .𝑡 :M → L 𝜆

Γ ⊢ 𝑡 :M → L Δ ⊢ 𝑢 :M
Γ ⊎ Δ ⊢ 𝑡𝑢 :L @

Fig. 3. De Carvalho’s multi type system.

M of cardinality 𝑛 if it is going to be used 𝑛 times. In particular, if 𝑛 > 0 and 𝑡 is part of a larger

term 𝑢, then a copy of 𝑡 shall end up in evaluation (i.e. head) position during the evaluation of 𝑢.

Typing Rules. Judgments have shape Γ ⊢ 𝑡 :L or Γ ⊢ 𝑡 :M, where 𝑡 is a 𝜆-term,M is a multi type,

L is a linear type, and Γ is a type environment, i.e., a total function from variables to multi types

such that dom(Γ) := {𝑥 | Γ(𝑥) ≠ 0} is finite. We say that Γ is empty if dom(Γ) = ∅. We write

𝑥1 :M1, . . . , 𝑥𝑛 :M𝑛 for the environment Γ such that Γ(𝑦) =M𝑖 , if 𝑦 = 𝑥𝑖 ∈ ®𝑥 , Γ(𝑦) = 0, otherwise.
Note that the application rule @ requires the argument to be typed with a multi type M, which

is necessarily introduced by rule many, having as hypotheses a multiset of derivations, indexed

by a possibly empty set 𝐼 . When 𝐼 is empty, the rule@ has no premises and can type every term

with 0. For instance, ⊢ Ω :0 is derivable, but no linear type can be assigned to Ω. Intuitively, 0 is the
type of erasable terms, and every 𝜆-term is erasable in the (call-by-name) 𝜆-calculus.

Technicalities about Types. The multiset union is denoted by ⊎ and is extended to type environ-

ments pointwisely, i.e. (Γ⊎Δ) (𝑥) := Γ(𝑥) ⊎Δ(𝑥), for all 𝑥 ∈ Var. This notion is extended further to

a finite family of type environments as expected. In particular, if 𝐽 = ∅ we let

⊎
𝑖∈ 𝐽 Γ𝑖 be the empty

environment. Given two type environments Γ and Δ having disjoint domain dom(Γ) ∩dom(Δ) = ∅,
we simply write Γ,Δ for Γ ⊎ Δ. Note that Γ, 𝑥 :0 = Γ, where we implicitly assume 𝑥 ∉ dom(Γ). We

write 𝜋 ▷ Γ ⊢ 𝑡 : T whenever 𝜋 is a (type) derivation (i.e. a finite tree constructed bottom up by

applying the rules in Fig. 3) with as conclusion the judgment Γ ⊢ 𝑡 :T. We write 𝜋 ▷ 𝑡 if 𝜋 ▷ Γ ⊢ 𝑡 :T,
for some type environment Γ and some type T.

Type Preorder and Relational Semantics. The multi type system induces a notion of semantic

interpretation into what is known as relational model of (the call-by-name) 𝜆-calculus. The inter-

pretations of 𝜆-terms are naturally ordered by set-theoretical inclusion, and this induces a preorder

on 𝜆-terms, namely the inequational theory of the model.

Definition 6.2 (Relational interpretation and type preorder).

(i) The relational interpretation J𝑡K of a 𝜆-term 𝑡 is defined as follows:
J𝑡K := {(Γ, L) | ∃ 𝜋 ▷ Γ ⊢ 𝑡 :L}.

(ii) The type preorder ⊑typ on ordinary 𝜆-terms is defined as 𝑡 ⊑typ 𝑢 if J𝑡K ⊆ J𝑢K, and the induced
type equivalence is noted ≡typ.

We have the following fundamental properties of the multi type preorder.

Theorem 6.3 (Breuvart et al. [2018]). Let 𝑡,𝑢 ∈ Λ.
(1) Compatibility: if 𝑡 ⊑typ 𝑢 then 𝐶 ⟨𝑡⟩ ⊑typ 𝐶 ⟨𝑢⟩, for every context 𝐶 .
(2) 𝛽-invariance: if 𝑡 →𝛽 𝑢 then J𝑡K = J𝑢K.
(3) 𝜂-reduction: if 𝑡 →𝜂 𝑢 then J𝑡K ⊆ J𝑢K.
(4) No 𝜂-expansion: 𝜆𝑦.𝑥𝑦 →𝜂 𝑥 , but J𝑥K ⊈ J𝜆𝑦.𝑥𝑦K.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

55:18 Accattoli, Lancelot, Manzonetto, and Vanoni

The failure of 𝜂-expansion, i.e. Point 4 of the theorem, is due to the fact that 𝑥 can be typed with

the atomic type A using an axiom, while there is no way of typing 𝜆𝑦.𝑥𝑦 with A, since it can only

be typed with an arrow type.

Corollary 6.4. The relation ⊑typ is an inequational 𝜆-theory. Moreover, ⊑typ is semi-extensional
but not extensional.

The corollary captures the soundness of Engeler’s relational model. It is possible to prove that

⊑typ ⊆ ⊑ctx
, thus obtaining a semantic proof that ⊑ctx

is an inequational theory (Thm. 2.6). In Sect. 8,

we shall follow this approach for proving that the interaction preorder is an inequational theory.

Adequacy with Respect to Head Reduction. For showing that typable terms are head terminating,

we need a notion of size for type derivations, that shall bound the number of head steps.

Definition 6.5 (Size). Let 𝜋 be a type derivation. The (applicative) size |𝜋 |@ of 𝜋 is the number of
occurrences of rules @ in 𝜋 .

Proposition 6.6 ([Barendregt and Manzonetto 2022]). Let 𝑡, 𝑡 ′ ∈ Λ be such that 𝑡 →h 𝑡
′.

(1) Quantitative subject reduction: if 𝜋 ⊲ Γ ⊢ 𝑡 :L then there exists a derivation 𝜋 ′ ⊲ Γ ⊢ 𝑡 ′ :L such
that |𝜋 ′ |@ = |𝜋 |@ − 1.

(2) Subject expansion: if 𝜋 ′ ⊲ Γ ⊢ 𝑡 ′ :L then there is a derivation 𝜋 ⊲ Γ ⊢ 𝑡 :L.

Note the quantitative aspect of subject reduction (Prop. 6.6(1)), stating that the derivation size

strictly decreases along head steps. It does not say that it decreases at arbitrary 𝛽-steps because the
contraction of redexes occurring in sub-terms typed with rule many might not change the size. For

instance, if 𝑥𝑡 →𝛽 𝑥𝑡
′
and 𝑡 is typed using an empty many rule (i.e. with 0 premises), which is a

sub-derivation of size 0, then also 𝑡 ′ is typed using an empty many rule, of size 0. In fact, not all

typable terms are 𝛽-normalizable: 𝑥Ω is typable as follows, for any linear type L, but it has no 𝛽-nf:

ax
𝑥 : [0 → L] ⊢ 𝑥 :0 → L

many
⊢ Ω :0

@

𝑥 : [0 → L] ⊢ 𝑥Ω :L
(3)

Since the size of type derivations decreases at every head step, it provides a termination measure

(only) for the head reduction of typable terms. The fact that typable terms are head terminating is

also called correctness of the type system.

Completeness of the type system—i.e. every head terminating term is typable—is obtained via

typability of all head normal forms, proved next, and subject expansion (Prop. 6.6(2)).

Proposition 6.7 (Typability of head normal forms. [Barendregt and Manzonetto 2022]).

Let ℎ ∈ Λ be a head normal form. Then there exists a derivation 𝜋 ▷ Γ ⊢ ℎ :L.

Summing up, we obtain the following characterization of head normalization.

Theorem 6.8 (Typability characterizes head normalization. [Barendregt and Man-

zonetto 2022]). Let 𝑡 ∈ Λ.

(1) Correctness: if 𝜋 ▷ 𝑡 then there exists a head normalizing evaluation 𝑡 →𝑛
h ℎ with ℎ normal

and 𝑛 ≤ |𝜋 |@.
(2) Completeness: if 𝑡 →∗

h ℎ is a head normalizing sequence, then there exists a derivation 𝜋 ▷ 𝑡 .

Therefore J𝑡K ≠ ∅ if and only if 𝑡 is head normalizable. In particular, ⊑typ is consistent.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

Interaction Equivalence 55:19

Linear types L, L′ F A | M
pq
−−→ L p, q ∈ {◦, •} Generic types T, T′ F L | M

Multi types M,N F [L1, . . . , L𝑛] 𝑛 ≥ 0 Zero 0 F []

𝑥 : [L] ⊢0 𝑥 :L
ax

(Γ𝑖 ⊢𝑘𝑖 𝑡 :L𝑖)𝑖∈𝐼 𝐼 finite

⊎𝑖∈𝐼 Γ𝑖 ⊢
∑

𝑖∈𝐼 𝑘𝑖 𝑡 : [L𝑖]𝑖∈𝐼
many Γ ⊢𝑘1 𝑡 :M

pp
−−→ L Δ ⊢𝑘2 𝑢 :M

Γ ⊎ Δ ⊢𝑘1+𝑘2 𝑡 ·p 𝑢 :L
@𝜏

Γ, 𝑥 :M ⊢𝑘 𝑡 :L

Γ ⊢𝑘 𝜆p𝑥 .𝑡 :M
pq
−−→ L

𝜆
Γ ⊢𝑘1 𝑡 :M

pq
−−→ L Δ ⊢𝑘2 𝑢 :M

Γ ⊎ Δ ⊢𝑘 𝑡 ·q 𝑢 :L
@

Γ ⊢𝑘1 𝑡 :M
pp⊥
−−−→ L Δ ⊢𝑘2 𝑢 :M

Γ ⊎ Δ ⊢𝑘1+𝑘2+1 𝑡 ·p⊥ 𝑢 :L
@

In rule@, 𝑘 = 𝑘1+𝑘2 if p = q, otherwise 𝑘 = 𝑘1+𝑘2+1. Rule@ compactly sums up rules@𝜏 and@ .

Fig. 4. Checkers multi type system ⊢ .

Exact Bounds? It is natural to wonder whether there are type derivations 𝜋 for which correctness

holds with𝑛 = |𝜋 |@. The answer is no: the type derivation in (3), as well as any other type derivation
for 𝑥Ω, has at least one @ rule even if the 𝜆-term 𝑥Ω is already a head normal form, whence 𝑛 = 0.

The question has been studied and refined in the literature. Such a mismatch can be improved in

two ways, both studied in-depth by Accattoli et al. [2020]. The first one traces back to de Carvalho

[2007, 2018], and takes into account the number |ℎ |h of application constructors in the spine of the

head normal formℎ. Then type derivations 𝜋 satisfying a certain tight predicate verify𝑛+|ℎ |h = |𝜋 |@.
The second one is developed in Accattoli et al. [2020]. It introduces:

• A second set of typing rules assigning some new type constants to the constructors that

occur in the head normal form, and;

• A tight predicate forcing all such constructors to be typed with these alternative rules.

In such a system, one can actually obtain 𝑛 = |𝜋 |@ when the tight predicate holds. The drawback is

that in this case one obtains a constants-only type that cannot be composed with any other type.

For the new type system of the next section, we shall give in Sect. 8 a refined technique for exact

bounds that exploits player tags. We shall measure the exact number of interaction head steps

without resorting to constants-only types, which is a novelty.

7 Checkers Multi Types
In this section, we introduce a system ⊢ of multi types for the checkers calculus, that can be seen

as an annotated version of the standard one presented in Section 6. We shall prove that the new

system characterizes termination of checkers head reduction→h◦• , similarly to the standard system.

Despite the similarity, however, the two systems are inherently different because the new one shall

not be invariant under 𝜂-reduction, while the standard one is (Thm. 6.3(3)).

Definition 7.1. Types and typing rules of the checkers multi types system ⊢ are given in Fig. 4.

Main Ideas 1: Checkers Arrows. We start by turning the arrow type M → L into a checkers arrow

type M
pq
−−→ L carrying two tags p, q ∈ {•, ◦}, thus giving rise to four possible player combinations.

The idea is that if, say, 𝑡 : M
◦•−→ L then 𝑡 can only be applied via •-applications and if it reduces to

an abstraction then it must be a ◦-abstraction. In the typing rule 𝜆 for abstractions, the first player

p is determined by the external abstraction, while the second player q can be freely chosen. We

shall refer to

◦•−→ and

•◦−→ as interaction arrow types, and to

••−→ and

◦◦−→ as silent arrow types.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

55:20 Accattoli, Lancelot, Manzonetto, and Vanoni

Main Ideas 2: Interaction Application Rule and Index. The second main ingredient is that there

are now two application rules @𝜏 and @ , one for the application of silent arrows and one for

interaction arrows. We provide also a rule @ that sums them up compactly. Moreover, typing

judgement Γ ⊢𝑘 𝑡 :T now carry an index 𝑘 which counts the number of @ rules in the derivation.

These rules, intuitively, type interaction steps, which can be factual or potential, as we now explain.

The application of an abstraction typed with an interaction arrow type gives rise to an interaction

step →𝛽 , whence it is a factual interaction. The application of a free variable typed with an

interaction arrow, for instance, does not give rise to an interaction step, but that potential interaction
is recorded in the type and it might arise if the term is plugged in a context, according to its type.

When the interaction index 𝑘 is irrelevant, we omit it and simply write Γ ⊢ 𝑡 :T.

Definition 7.2 (Checkers relational interpretation and type preorder).

(i) The checkers relational interpretation J𝑡K of a checkers term 𝑡 ∈ Λ◦• is defined by:
J𝑡K := {((Γ, 𝑘, L) | ∃ 𝜋 ⊲ Γ ⊢𝑘 𝑡 :L}.

(ii) The type preorder ⊑typ on checkers 𝜆-terms 𝑡,𝑢 ∈ Λ◦• is defined as 𝑡 ⊑typ

𝑢 if J𝑡K ⊆ J𝑢K , and
the induced type equivalence is noted ≡typ.

(iii) The black type preorder ⊑•typ on ordinary 𝜆-terms 𝑡,𝑢 ∈ Λ is defined as 𝑡 ⊑•typ 𝑢 if 𝑡• ⊑typ

𝑢•,
and the induced type equivalence is noted ≡•typ.

We have the following fundamental properties of the multi type preorder.

Theorem 7.3. Let 𝑡,𝑢 ∈ Λ◦•.
(1) Compatibility: if 𝑡 ⊑typ

𝑢 then 𝐶 ⟨𝑡⟩ ⊑typ

𝐶 ⟨𝑢⟩, for every context 𝐶 .
(2) Silent 𝛽-invariance: if 𝑡 →𝛽𝜏 𝑢 then J𝑡K = J𝑢K .
(3) No 𝜂-reduction: for all players p, q ∈ {•, ◦} . J𝜆p𝑦.𝑥 ·q 𝑦K ⊈ J𝑥K .
(4) No 𝜂-expansion: for all players p, q ∈ {•, ◦} . J𝑥K ⊈ J𝜆p𝑦.𝑥 ·q 𝑦K .

The fact that the checkers relational interpretation invalidates 𝜂-reduction, is specific to interac-

tion arrow types. As an example of Thm. 7.3(3), consider the black 𝜂-expansion of 𝑥 :

𝑥 : [0 ◦•−→ L] ⊢0 𝑥 :0 ◦•−→ L
ax

⊢0 𝑦 :0
many

𝑥 : [0 ◦•−→ L] ⊢1 𝑥 • 𝑦 :L
@

𝑥 : [0 ◦•−→ L] ⊢1 𝜆•𝑦.𝑥 • 𝑦 :0
•p
−−→ L

𝜆

and note that instead 𝑥 : [0 ◦•−→ L] ̸⊢ 𝑘 𝑥 : 0
•p
−−→ L, for all indices 𝑘 and players p. An analogous

typing derivation shows that 𝜆•𝑦.𝑥 ◦ 𝑦 ̸⊑typ

𝑥 .

Corollary 7.4. The black type preorder ⊑•typ is an inequational 𝜆-theory. Moreover, ⊑•typ is neither
extensional nor semi-extensional.

Adequacy with Respect to Checkers Head Reduction. As in the plain type system, the applicative

size |𝜋 |@ of type derivations (which is still defined as the number of rules @ in 𝜋 , even if the rule

itself has changed) decreases with each head step →h◦• . The difference, however, is that if the step

is an interaction one—and only in that case—then also the index 𝑘 decreases by exactly 1.

Proposition 7.5. Let 𝑡, 𝑡 ′ ∈ Λ◦• be such that 𝑡 →h◦• 𝑡
′.

(1) Quantitative subject reduction: if 𝜋 ⊲ Γ ⊢𝑘 𝑡 :L then there is a derivation 𝜋 ′ ⊲ Γ ⊢𝑘 ′ 𝑡 ′ :L such
that |𝜋 ′ |@ = |𝜋 |@ − 1. Moreover, if 𝑡 →h 𝑡 ′ then 𝑘 ′ = 𝑘 − 1 and if 𝑡 →h𝜏 𝑡

′ then 𝑘 ′ = 𝑘 .
(2) Subject expansion: if 𝜋 ′ ⊲ Γ ⊢ 𝑡 ′ :L then there is a derivation 𝜋 ⊲ Γ ⊢ 𝑡 :L.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

Interaction Equivalence 55:21

As before, quantitative subject reduction entails the correctness of the checkers type system,

and the following typability of head normal forms gives its completeness.

Proposition 7.6 (Typability of head normal forms). Let ℎ ∈ Λ◦• be a head normal form. Then
there exists a derivation 𝜋 ▷ Γ ⊢ ℎ :L.

Typability of all head normal forms (Prop. 7.6) together with subject expansion (Prop. 7.5(2))

implies the completeness of the type system: every head terminating term is typable. Summing up,

we obtain the following characterization of head normalization.

Theorem 7.7 (Typability characterizes head normalization). Let 𝑡 ∈ Λ◦•.

(1) Correctness: if 𝜋 ⊲ Γ ⊢𝑘 𝑡 :L then there exists a h◦•-normal form ℎ and an evaluation sequence
𝑒 : 𝑡 →𝑛

h◦•
ℎ with 𝑛 ≤ |𝜋 |@ and such that the number of interaction steps in 𝑒 is ≤ 𝑘 .

(2) Completeness: if 𝑡 →∗
h◦•
ℎ is a head normalizing sequence, then there exists 𝜋 ⊲ Γ ⊢ 𝑡 :L.

Therefore, J𝑡K ≠ ∅ if and only if 𝑡 is h◦•-normalizable.

8 From the Böhm Preorder to the Interaction One, via Multi Types
In this section, we use the obtained results about checkers multi types to prove the chain of

inclusions ⊑B ⊆ ⊑•typ ⊆ ⊑int
, as to complete the proof that ⊑B =⊑int

. The first inclusion ⊑B ⊆ ⊑•typ

is simple: it follows from an easy induction on the size of checkers type derivations, exploiting the

properties of the checkers type system. The second inclusion ⊑•typ ⊆ ⊑int
requires slightly more

work. The key point is to show that the type preorder preserves the number of interaction steps

during head normalization in Λ◦•, that is, that if 𝑡 ⇓ 𝑘
h◦•

and 𝑡 ⊑typ

𝑢 then 𝑢 ⇓ 𝑘
h◦•

. Such a property

requires to characterize a class of checkers type derivations whose index captures exactly the

number of head interaction steps to head normal form. We do it via a notion of tight typing.

The First Inclusion. The proof of the following proposition goes by a simple induction on the

size of derivations. The use of quantitative subject reduction (hence of multi types, instead of

idempotent intersection types) is critical in order for the induction argument to go through.

Theorem 8.1 (The Böhm preorder is included in the checkers type preorder). Let 𝑡,𝑢 ∈ Λ.
If 𝑡 ⊑B 𝑢 then 𝑡 ⊑•typ 𝑢.

Proof. Assume 𝑡 ⊑B 𝑢. If 𝑡 ̸⇓
h
then by Proposition 3.13 also 𝑡

•
is not h◦•-normalizable.

From Thm. 7.7, we obtain J𝑡•K = ∅ ⊆ J𝑢•K whence 𝑡 ⊑•typ 𝑢 (by definition).

Otherwise, we must have 𝑡 ⇓
h
ℎ𝑡 := 𝜆𝑥1 . . . 𝑥𝑚 .𝑦 𝑡1 · · · 𝑡𝑛 and𝑢 ⇓

h
ℎ𝑢 := 𝜆𝑥1 . . . 𝑥𝑚 .𝑦 𝑢1 · · ·𝑢𝑛 , with

(𝑡𝑖 ⊑B 𝑢𝑖)𝑖≤𝑛 . Let us take any typing (Γ, 𝑘, L) ∈ J𝑡•K , and show that it belongs to J𝑢•K . We proceed

by induction on the size |𝜋 |@ of a derivation 𝜋 ⊲ Γ ⊢𝑘 𝑡• :L. By Prop. 3.13(1) we get 𝑡
• →∗

h𝜏
ℎ
•
𝑡 , and

by quantitative subject reduction (Prop. 7.5(1)) there is a derivation 𝜋hnf ⊲ ⊢𝑘
′
ℎ
•
𝑡 :L such that 𝑘 = 𝑘 ′

(since all head reductions involved are silent) and |𝜋hnf |@ ≤ |𝜋 |@. Moreover,

𝜋hnf =

Δ0 ⊢0 𝑦 :N1

p1•−−→ · · ·N𝑛
p𝑛•−−−→ L′ (𝜋𝑖 ⊲ Δ𝑖 ⊢𝑘𝑖 𝑡•𝑖 :N𝑖)1≤𝑖≤𝑛

Γ, (𝑥𝑖 :M𝑖)1≤𝑖≤𝑚 ⊢𝑘 𝑦 𝑡1 · · · 𝑡𝑛• :L′
𝑛@

Γ ⊢𝑘 ℎ𝑡
•
:L =M1

•q1−−→ · · ·M𝑛

•q𝑚−−−→ L′
𝑚𝜆

where 𝑛@ (resp.𝑚𝜆) denotes 𝑛 (resp.𝑚) consecutive applications of the rule, and

- Γ, (𝑥𝑖 :M𝑖)1≤𝑖≤𝑚 =
⊎

0≤𝑖≤𝑛 Δ𝑖 ;
-

∑
1≤𝑖≤𝑛 (𝑘𝑖 + 𝛾• (p𝑖)) = 𝑘 , where 𝛾• (𝑎) := 0 if 𝑎 = •, and 𝛾• (𝑎) := 1 otherwise.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

55:22 Accattoli, Lancelot, Manzonetto, and Vanoni

Note that, for every 𝑖 ≤ 𝑛, 𝑡𝑖 ⊑B 𝑢𝑖 and |𝜋𝑖 |@ < |𝜋hnf |@ ≤ |𝜋 |@, so we can apply the i.h. to each

linear type in the multi type N𝑖 and get a derivation Δ𝑖 ⊢𝑘𝑖 𝑢𝑖• :N𝑖 . We use these derivations to

build the appropriate derivation for ℎ𝑢 :

Δ0 ⊢0 𝑦 :N1

p1•−−→ · · ·N𝑛
p𝑛•−−−→ L′ (𝜋𝑢𝑖 ⊲ Δ𝑖 ⊢𝑘𝑖 𝑢•𝑖 :N𝑖)1≤𝑖≤𝑛

Γ, (𝑥𝑖 :M𝑖)1≤𝑖≤𝑚 ⊢𝑘 𝑦 𝑢1 · · · 𝑢𝑛• :L′
𝑛@

Γ ⊢𝑘 ℎ𝑢
•
:L =M1

•q1−−→ · · ·M𝑛

•q𝑚−−−→ L′
𝑚𝜆

By Prop. 3.13(1) we get 𝑢• →∗
h𝜏
ℎ
•
𝑢 and by subject expansion (Prop. 7.5(2)) we obtain Γ ⊢𝑘 ′ 𝑢• :L.

Since all head reductions involved are silent, we conclude 𝑘 = 𝑘 ′ and (Γ, 𝑘, L) ∈ J𝑢•K .

(Note that a ‘hidden’ base case is when 𝑛 = 0, as it does not require the induction hypothesis.) □

The Second Inclusion, via Tight Typings. Now, we consider a tight predicate on type judgements

that forces the index 𝑘 on the type derivation to be exactly the number of head interaction steps to

head normal form, as we show below. An essential aspect is the fact that the predicate concerns

types, and not type derivations, so that it can be transferred from 𝑡 to 𝑢 when they are related by

the type preorder, that is, when 𝑡 ⊑typ

𝑢.

Definition 8.2 (Tight typings and derivations). Let 𝑡 ∈ Λ◦• and Γ ⊢ 𝑡 :L be a type judgement.
The pair (Γ, L) is a tight typing if:

(1) All multi types M occurring in Γ and L are empty except for one, and
(2) All arrows in (Γ, L) are silent.

For ease of language, we shall also say that a derivation 𝜋 ⊲ Γ ⊢ 𝑡 :L is tight if (Γ, L) is a tight typing.

The definition of tight typing can actually be slightly weakened, by asking that only the arrows in

the non-empty multi type are silent, without loosing any of its properties. This weakened definition,

however, is slightly more technical, which is why we avoid it.

The crucial property ensured by tightness is that tightly typed head normal forms have interaction

index 0, and that a tight typing can be derived for every head normal form.

Proposition 8.3 (Tightness and head normal forms). Let ℎ ∈ Λ◦• be a h◦•-normal form.

(1) Existence: there exists a tight derivation Γ ⊢𝑘 ℎ :L;
(2) Zero interaction: if Γ ⊢𝑘 ℎ :L is tight then 𝑘 = 0.

From the properties of tightness for head normal forms and the characterization of head reduction

(Thm. 7.7), we obtain the following refined characterization.

Theorem 8.4 (Tight characterization). Let 𝑡 ∈ Λ◦•.

(1) Correctness: if 𝜋 : Γ ⊢𝑘 𝑡 :L is tight then there exists a head normal form ℎ and an evaluation
sequence 𝑒 : 𝑡 →∗

h◦•
ℎ such that the number of interaction steps in 𝑒 is exactly 𝑘 .

(2) Completeness: if 𝑒 : 𝑡 →∗
h◦•
ℎ with ℎ head normal, and 𝑘 is the number of interaction steps in 𝑒 ,

then there exists a tight derivation 𝜋 : Γ ⊢𝑘 𝑡 :L.

Proof.

(1) By correctness (Thm. 7.7(1)), there exists an evaluation sequence 𝑒 : 𝑡 →∗
h◦•
ℎ such that the

number of interaction steps in 𝑒 is 𝑘 ′ ≤ 𝑘 . By quantitative subject reduction (Prop. 7.5(1)),

Γ ⊢𝑘−𝑘 ′ ℎ :L. Since (Γ, L) is tight, by the zero interaction property of tight typings (Prop. 8.3(2))
we obtain 𝑘 − 𝑘 ′ = 0, that is, 𝑘 ′ = 𝑘 .

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

Interaction Equivalence 55:23

(2) By the existence of tight derivations for head normal forms (Prop. 8.3(1)), we obtain a tight

derivation 𝜋 ⊲ Γ ⊢0 ℎ :L. By subject expansion (Prop. 7.5), the same typing types 𝑡 but with

an index 𝑘 ′, i.e. Γ ⊢𝑘 ′ 𝑡 : L. By Point 1, 𝑡 →∗
h◦•

ℎ′ for some head normal form ℎ′ doing 𝑘 ′

interaction steps. By determinism of →h◦• , ℎ = ℎ′ and 𝑘 = 𝑘 ′. □

The tight characterization is then used to show that the type preorder is sound with respect to

the interaction preorder.

Corollary 8.5.

(1) Tightness of the checkers type preorder: let 𝑡,𝑢 ∈ Λ◦•. If 𝑡 ⇓ 𝑘
h◦•

and 𝑡 ⊑typ

𝑢 then 𝑢 ⇓ 𝑘
h◦•

.
(2) Soundness of the checkers type preorder: let 𝑡,𝑢 ∈ Λ◦•. If 𝑡 ⊑typ

𝑢 then 𝑡 ⊑ctx 𝑢.
(3) On ordinary 𝜆-terms: let 𝑡,𝑢 ∈ Λ. If 𝑡 ⊑•typ 𝑢 then 𝑡 ⊑int 𝑢.

Proof. (3) follows immediately from (2).

(1) Let 𝑡 and 𝑢 such that 𝑡 ⊑typ

𝑢 and 𝑡 ⇓ 𝑘
h◦•

. By tight completeness (Thm. 8.4(2)), there exists a

tight typing Γ, L such that Γ ⊢𝑘 𝑡 :L. By 𝑡 ⊑typ

𝑢, we obtain a derivation of Γ ⊢𝑘 𝑢 :L. By tight

correctness (Thm. 8.4(1)) and tightness of (Γ, L), we obtain 𝑢 ⇓ 𝑘
h◦•

.

(2) Let 𝑡,𝑢 ∈ Λ◦• such that 𝑡 ⊑typ

𝑢. By compatibility of ⊑typ

(Thm. 7.3(1)),𝐶 ⟨𝑡⟩ ⊑typ

𝐶 ⟨𝑢⟩ for all
𝐶 ∈ C◦•. By tightness of ⊑typ

(Point 1), if 𝐶 ⟨𝑡⟩ ⇓ 𝑘
h◦•

then 𝐶 ⟨𝑢⟩ ⇓ 𝑘
h◦•

. Hence, 𝑡 ⊑ctx 𝑢. □

We can now put the all the inclusions together, thus obtaining our main theorem.

Theorem 8.6 (Tree and type characterizations of interaction eqivalence). The preorders
⊑B , ⊑•typ, and ⊑int coincide. Therefore, the 𝜆-theories =B , ≡•typ, and ≡int coincide.

Proof. (⊑B ⊆ ⊑•typ) By Thm. 8.1. (⊑•typ ⊆ ⊑int) By Cor. 8.5(3). (⊑int ⊆ ⊑B) By Thm. 5.4. □

Back to a Delayed Proof. We can now finally prove Thm. 3.11, stating that silent conversion =𝛽𝜏
is included in the checkers interaction preorder ⊑int

, which is the key point of the proof that the

interaction preorder ⊑int
is an inequational 𝜆-theory (Cor. 3.12).

Theorem 3.11 (The interaction preorder includes silent conversion). For all checkers
terms 𝑡,𝑢 ∈ Λ◦•, 𝑡 =𝛽𝜏 𝑢 entails 𝑡 ⊑ctx 𝑢.

Proof. From Thm. 7.3(2), if 𝑡 =𝛽𝜏 𝑢 then 𝑡 ⊑typ

𝑢. By Cor. 8.5(2), we obtain 𝑡 ⊑ctx 𝑢. □

Interaction Improvement and 𝜂. We provided Böhm tree characterizations of ⊑int
and ≡int

, but not

of the interaction improvement ⊑int·imp
. Nonetheless, we almost have one. In the previous sections,

we obtained the following chain of relationships:

⊑B =𝑇 .8.6 ⊑int ⊆𝐿.3.16 ⊑int·imp ⊊𝐿.3.16 ⊑ctx =𝑇 .4.7 ⊑B𝜂∞ (4)

That is, interaction improvement ⊑int·imp
possibly enlarges the interaction preorder ⊑int

and yet

stays confined within the further fence of 𝜂-equivalence. Additionally, the fact that 𝜂-reduction

can decrease the number of interactions (Ex. 3.6) suggests the following.

Conjecture 8.7. Interaction improvement ⊑int·imp is characterized by ⊑B𝜂∞
red

, the variant of ⊑B𝜂∞

(Definition 4.5) up to possibly infinite 𝜂-reduction (rather than 𝜂-equivalence).

Breuvart et al. [2018] prove that the preorder ⊑B𝜂∞
red

coincides with the preorder ⊑typ
induced by

(plain) multi types (Definition 6.2), which validates 𝜂-reduction (Thm. 6.3.3). As already mentioned,

the difficulty for proving the conjecture is managing 𝜂-reduction in the checkers framework, since

both rewriting techniques and checkers multi types fail to handle it. Actually, the variant of Böhm

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

55:24 Accattoli, Lancelot, Manzonetto, and Vanoni

out technique of Section 5 smoothly adapts from preorder to improvement, giving ⊑int·imp ⊆ ⊑B𝜂∞
red

,

that is, ⊑B ⊆ ⊑int·imp ⊆ ⊑B𝜂∞
red

. Therefore, conjecture 8.7 reduces to prove ⊑B𝜂∞
red

⊆ ⊑int·imp
.

White Contexts Are Enough. In the proof of the completeness theorem (Thm. 5.4), black terms

are separated using only white contexts. The next corollary guarantees that, for the interaction

preorder, white contexts are as discriminating as general checkers contexts. Such a strong fact

validates the intuition that the interaction preorder amounts to consider the program and the

context as different players.

Corollary 8.8 (The interaction preorder can be restricted to white contexts). Let
𝑡,𝑢 ∈ Λ and the preorder 𝑡 ⊑◦int 𝑢 be defined as: for all ordinary contexts 𝐶 ∈ C, if there exists 𝑘 such
that 𝐶

◦⟨𝑡•⟩ ⇓ 𝑘
h◦•

then 𝐶
◦⟨𝑢•⟩ ⇓ 𝑘

h◦•
. Then, 𝑡 ⊑int 𝑢 if and only if 𝑡 ⊑◦int 𝑢.

Proof. Thm. 5.4 shows that 𝑡 ⊑◦int 𝑢 implies 𝑡 ⊑B 𝑢. Thm. 8.6 shows that 𝑡 ⊑B 𝑢 implies 𝑡 ⊑int 𝑢.

Clearly 𝑡 ⊑int 𝑢 implies 𝑡 ⊑◦int 𝑢, as 𝐶
◦
is a checkers context for any 𝐶 ∈ C. □

9 Related Work
Improvements. Improvements [Sands 1996a,b, 1999] were developed in the ’90s by Sands and co-

authors to prove that various program transformations are time or space improvements [Gustavsson

and Sands 2001; Moran and Sands 1999; Sands 1996a], in the context of call-by-need evaluation,

and have seen a revival in recent years [Hackett and Hutton 2014, 2015, 2018; Muroya and Hamana

2024; Riely and Prins 2000; Schmidt-Schauß et al. 2018].

Observational Equivalences and Trees. The characterization of observational equivalences in

terms of equalities on trees originates in [Hyland 1975, 1976; Wadsworth 1976], and is an ongoing

line of research whose state of the art is presented in [Intrigila et al. 2019]. The question appears

in the TLCA list of open problems [Dezani-Ciancaglini 2001]. This paper contributes to this line

of research, somewhat backwards: we introduce a new observational equivalence that matches a

known equality on trees, namely non-extensional Böhm tree equality B.

Böhm Tree Equality. For the specific case of B, the literature already presents some corresponding

observational equivalences. As hinted at in the introduction, however, they are partial answers since
they all extend the 𝜆-calculus with computational primitives, or embed it into process algebras:

• Dezani-Ciancaglini et al. [1998] add numerals, tests, and a non-deterministic choice operator,

and show that B corresponds to may convergence to a natural number in their calculus.

• In the slightly different setting of weak head reduction, Sangiorgi [1994] shows that Lévy-

Longo tree equality (the weak variant of B) corresponds to various contextual equivalences

all obtained via extended settings, namely the 𝜋-calculus, 𝜆-calculus with non-determinism,

and 𝜆-calculus with well-formed operators. Similarly, Dezani-Ciancaglini et al. use another

non-deterministic 𝜆-calculus [1999], and Boudol and Laneve [1996] use a 𝜆-calculus with

modified syntax and rewriting rules where—crucially—terms can get stuck.

• Recently, Sakayori and Sangiorgi [2023] provide a characterization of B via the 𝜋-calculus.

In this paper, we do modify the 𝜆-calculus via the checkers calculus, but we do not add extra

features, we only refine the analysis of 𝛽-reduction in a quantitative and interactive way.

Clocked 𝜆-Calculus. The idea of discriminating 𝜆-terms by counting the head reduction steps

in the construction of their Böhm trees also underlies the clocked 𝜆-calculus of Endrullis et al.
[2014, 2017]. The analogy ends there, as the clocked 𝜆-calculus does not allow one to separate the

internal/silent steps of terms and contexts from the external/interaction steps between the two.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

Interaction Equivalence 55:25

Game Semantics. Our notion of interaction is inspired by the one between Player and Opponent

in game semantics [Abramsky et al. 2000; Hyland and Ong 2000]—see Clairambault [2024] for the

state of the art—in particular, silent steps are inspired by the hiding mechanism for composing

games. We end up, however, with what seems to be a different setting. While the study of the

relationship is left to future work, our interaction seems more basic (no need of the technical

apparatus of game semantics), perfectly symmetrical, and allows for arbitrary shufflings of the two

players in checkers terms, rather than keeping them apart as in game semantics. Moreover, with a

few exceptions—namely, [Ker et al. 2003; Ong and Di Gianantonio 2002]—game models usually

validate 𝜂-equivalence, while interaction equivalence does not. Notably, the game model by Ker

et al. [2003] captures exactly B.

Multi Types. The quantitative analysis of the relational semantics via multi types was pioneered

by de Carvalho [2018]. Then Bernadet and Lengrand [2011]; de Carvalho et al. [2011] and especially

Accattoli et al. [2020] developed and extended that approach, that has been applied to a variety

of settings, including classical logic [Kesner and Vial 2020], the probabilistic 𝜆-calculus [Dal Lago

et al. 2021], reasonable space [Accattoli et al. 2022], and Bayesian networks [Faggian et al. 2024].

Variants of Relational Semantics. Relational semantics is generalized along several directions by

Grellois and Melliès [2015]; Laird et al. [2013]; Ong [2017]. Laird et al.’s generalization of relations

𝑟 ⊆ 𝐴 × 𝐵 from 𝑟 : 𝐴 × 𝐵 → Bool to 𝑟 : 𝐴 × 𝐵 → R [2013], where R is a continuous semi-ring,

might be used—in principle—to count interaction steps. The exact meaning of the coefficients in

the interpretation of programs, however, is well-understood only at ground types, and remains

unclear in the untyped case. Any temptation of seeing our checkers type system as a dichromatic

version of Grellois and Melliès’s colored linear logic [2015] should be avoided: in their work, colors

need to correctly “match” in a type derivation because they represent different levels of priority.

Cost-Aware Denotational Semantics. Another line of research aims at defining cost-sensitive

denotational semantics based on sized domains [Danner and Licata 2022; Kavvos et al. 2020]. These

models are used to interpret a syntactic recurrence extracted from a given program, and prove a

bounding theorem about such extraction. Niu and Harper [2023] propose a synthetic language for

cost-aware denotational semantics, endowed with phase-separated constructions of intensional

and extensional computations. These approaches are designed for typed languages with constants,

where observations are made at ground type, but they are hardly generalizable to the untyped case.

There also are cost-aware game models such as Ghica’s slot games [2005]—which capture Sands’

improvements—and Alcolei et al.’s resource-tracking concurrent games [2019]. The relationship

between these concurrency-driven models and our approach is deferred to future investigation.

10 Future Work
Weak Head. Our study focuses on the paradigmatic case of head reduction, but it could be adapted

to weak head reduction (sometimes called lazy reduction [Abramsky and Ong 1993]). It is folklore

that the Lévy-Longo tree preorder (a weak variant of Böhm trees) matches the weak head type

preorder. We conjecture that the Lévy-Longo tree preorder matches exactly the weak head variant

of our interaction preorder. Most of our study would adapt smoothly, but for the interaction Böhm

out. The culprit is that there is no analogous of Böhm separation theorem for weak head reduction.

There exist separation results but they all involve extensions of the 𝜆-calculus (see above among

related works). Crafting a weak interaction Böhm out might require some work.

Call-by-Value. In call-by-name, the gap between head normal form bisimilarity (aka interaction

equivalence), and contextual equivalence is, roughly, extensionality. In call-by-value, the gap

contains more computational principles, as stressed in particular by the recent works [Accattoli

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

55:26 Accattoli, Lancelot, Manzonetto, and Vanoni

et al. 2023; Accattoli and Lancelot 2024]. It would be interesting to adapt interaction equivalence to

call-by-value and explore whether variants of the definition catch theories in between.

Back to Improvements. Now that there is a notion of equational improvement, it is natural to

adapt it to call-by-need and compare / revisit / extend the results about Sands’ (non-equational)

improvements and program transformations in the literature [Gustavsson and Sands 2001; Hackett

and Hutton 2014, 2015, 2018; Moran and Sands 1999; Sands 1996a; Schmidt-Schauß et al. 2018].

Game Semantics. To relate interaction equivalence with game semantics, it is natural to look at

the Böhm tree game model by Ker et al. [2003]. Operational game semantics [Jaber and Sangiorgi

2022; Laird 2007; Levy and Staton 2014], a sub-area of game semantics based on labeled transition

systems, is another natural candidate. More generally, our work provides a good justification for a

systematic exploration of non-extensional game semantics.

PCF. Game semantics was introduced to capture denotationally PCF contextual equivalence,

which is obtained via a quotient on games [Abramsky et al. 2000; Hyland and Ong 2000]. Is there a

relationship between game models before the quotient and PCF interaction equivalence?

Higher-Order Model Checking. Higher-order model checking is strongly connected to game

semantics [Ong 2006], intersection/multi types [Kobayashi 2009], and Böhm trees [Clairambault

and Murawski 2013]. It is reasonable to expect a connection with interaction equivalence.

Complete Normal Form Bisimilarities. In some 𝜆-calculi with effects, normal form bisimilarities

are complete for contextual equivalences [Biernacki et al. 2019; Støvring and Lassen 2009]. We

conjecture that, therein, contextual equivalence and interaction equivalence coincide.

Interaction Cost. It is natural to wonder what kind of interaction cost emerges from our study

and how it relates to both the actual cost of computation and interaction (in)equivalence. The

characterization of our interaction improvement in terms of Böhm trees reveals that one can

improve the interactive cost of a 𝜆-term by performing 𝜂-reductions, or by replacing some head-

diverging sub-term—that is, an idle looping execution branch—with a non-looping one. Beyond

Böhm tree characterizations, this may also relate to the length of interaction sequences in game

semantics for the untyped call-by-name 𝜆-calculus, where interaction improvements could reflect

optimizations in communication between player and opponent.

We believe that our interaction semantics can also effectively capture communication costs in

the evaluation of functional programs within distributed environments. In this framework, black

and white terms correspond to processes running on different machines, with interaction steps

modeling inter-process communication, while locally executable steps remain silent. To formalize

this idea, we shall first adapt our interaction relations to a process calculus, and then investigate

how the resulting improvements in interaction relates with measures of communication complexity.

11 Conclusions
Our work stems from the recognition of a tension between the equational aspect of contextual

equivalences and the desire to observe the time cost of programs, expressed as the number of

evaluation steps. We solve the tension by introducing the checkers calculus, a 𝜆-calculus where
the internal and external aspects of computation receive a first-class status. The new setting is

then used to define interaction equivalence, which induces an equational theory for the ordinary

𝜆-calculus: a very well-known one, namely the equality B of Böhm trees without 𝜂.

Beyond the technical aspects, the main takeaway is probably the framework, which is con-

siderably simpler than other theories of interaction such as game semantics or the geometry of

interaction, and not ad-hoc, as witnessed by the relationship with B and with multi types.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

Interaction Equivalence 55:27

Acknowledgments
The authors would like to thank Guilhem Jaber for many discussions about operational game

semantics for the 𝜆-calculus, which eventually led us to the idea of tagging terms to distinguish

between silent and interaction steps.

References
Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. 2000. Full Abstraction for PCF. Inf. Comput. 163, 2 (2000),

409–470. https://doi.org/10.1006/INCO.2000.2930

Samson Abramsky and C.-H. Luke Ong. 1993. Full Abstraction in the Lazy Lambda Calculus. Inf. Comput. 105, 2 (1993),
159–267. https://doi.org/10.1006/INCO.1993.1044

Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. 2022. Multi types and reasonable space. Proc. ACM Program. Lang.
6, ICFP (2022), 799–825. https://doi.org/10.1145/3547650

Beniamino Accattoli, Claudia Faggian, and Adrienne Lancelot. 2023. Normal Form Bisimulations By Value. CoRR
abs/2303.08161 (2023). https://doi.org/10.48550/ARXIV.2303.08161 arXiv:2303.08161

Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. 2020. Tight typings and split bounds, fully developed.

J. Funct. Program. 30 (2020), e14. https://doi.org/10.1017/S095679682000012X

Beniamino Accattoli and Adrienne Lancelot. 2024. Mirroring Call-By-Need, or Values Acting Silly. In 9th International
Conference on Formal Structures for Computation and Deduction, FSCD 2024, July 10-13, 2024, Tallinn, Estonia (LIPIcs,
Vol. 299), Jakob Rehof (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 23:1–23:24. https://doi.org/10.4230/

LIPICS.FSCD.2024.23

Beniamino Accattoli, Adrienne Lancelot, Giulio Manzonetto, and Gabriele Vanoni. 2024. Interaction Equivalence. CoRR
abs/2409.18709 (2024). https://doi.org/10.48550/ARXIV.2409.18709 arXiv:2409.18709

Peter Aczel. 1978. A General Church-Rosser Theorem. Technical Report. University of Manchester.

Aurore Alcolei, Pierre Clairambault, and Olivier Laurent. 2019. Resource-Tracking Concurrent Games. In Foundations
of Software Science and Computation Structures - 22nd International Conference, FOSSACS 2019, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings (Lecture Notes in Computer Science, Vol. 11425), Mikolaj Bojanczyk and Alex Simpson (Eds.). Springer, 27–44.

https://doi.org/10.1007/978-3-030-17127-8_2

Henk Barendregt. 1977. The Type Free Lambda Calculus. In Handbook of Mathematical Logic, Jon Barwise (Ed.). Studies in

Logic and the Foundations of Mathematics, Vol. 90. Elsevier, 1091 – 1132.

Henk Barendregt. 1984. The Lambda Calculus – Its Syntax and Semantics. Studies in logic and the foundations of mathematics,

Vol. 103. North-Holland.

Henk Barendregt and Giulio Manzonetto. 2022. A Lambda Calculus Satellite. College Publications. https://www.

collegepublications.co.uk/logic/mlf/?00035

Alexis Bernadet and Stéphane Lengrand. 2011. Complexity of Strongly Normalising 𝜆-Terms via Non-idempotent Intersection

Types. In Foundations of Software Science and Computational Structures - 14th International Conference, FOSSACS 2011,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany,
March 26-April 3, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6604), Martin Hofmann (Ed.). Springer, 88–107.

https://doi.org/10.1007/978-3-642-19805-2_7

Dariusz Biernacki, Sergueï Lenglet, and Piotr Polesiuk. 2019. A Complete Normal-Form Bisimilarity for State. In Foundations
of Software Science and Computation Structures - 22nd International Conference, FOSSACS 2019, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings (Lecture Notes in Computer Science, Vol. 11425), Mikolaj Bojanczyk and Alex Simpson (Eds.). Springer, 98–114.

https://doi.org/10.1007/978-3-030-17127-8_6

Corrado Böhm. 1968. Alcune proprietà delle forme 𝛽-𝜂-normali nel 𝜆-𝐾-calcolo. Pubblicazioni dell’istituto per le applicazioni
del calcolo 696 (1968), 1–19. Lavoro eseguito all’INAC.

Gérard Boudol and Cosimo Laneve. 1996. The Discriminating Power of Multiplicities in the 𝜆-Calculus. Information and
Computation 126, 1 (1996), 83–102. https://doi.org/10.1006/inco.1996.0037

Flavien Breuvart, Giulio Manzonetto, and Domenico Ruoppolo. 2018. Relational Graph Models at Work. Log. Methods
Comput. Sci. 14, 3 (2018). https://doi.org/10.23638/LMCS-14(3:2)2018

Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. 2017. Non-idempotent intersection types for the Lambda-Calculus.

Log. J. IGPL 25, 4 (2017), 431–464. https://doi.org/10.1093/JIGPAL/JZX018

Pierre Clairambault. 2024. Causal Investigations in Interactive Semantics. https://tel.archives-ouvertes.fr/tel-04523273

Pierre Clairambault and Andrzej S. Murawski. 2013. Böhm Trees as Higher-Order Recursive Schemes. In IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2013, December 12-14, 2013,
Guwahati, India (LIPIcs, Vol. 24), Anil Seth and Nisheeth K. Vishnoi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

https://doi.org/10.1006/INCO.2000.2930
https://doi.org/10.1006/INCO.1993.1044
https://doi.org/10.1145/3547650
https://doi.org/10.48550/ARXIV.2303.08161
https://arxiv.org/abs/2303.08161
https://doi.org/10.1017/S095679682000012X
https://doi.org/10.4230/LIPICS.FSCD.2024.23
https://doi.org/10.4230/LIPICS.FSCD.2024.23
https://doi.org/10.48550/ARXIV.2409.18709
https://arxiv.org/abs/2409.18709
https://doi.org/10.1007/978-3-030-17127-8_2
https://www.collegepublications.co.uk/logic/mlf/?00035
https://www.collegepublications.co.uk/logic/mlf/?00035
https://doi.org/10.1007/978-3-642-19805-2_7
https://doi.org/10.1007/978-3-030-17127-8_6
https://doi.org/10.1006/inco.1996.0037
https://doi.org/10.23638/LMCS-14(3:2)2018
https://doi.org/10.1093/JIGPAL/JZX018
https://tel.archives-ouvertes.fr/tel-04523273

55:28 Accattoli, Lancelot, Manzonetto, and Vanoni

Informatik, 91–102. https://doi.org/10.4230/LIPICS.FSTTCS.2013.91

Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca. 2021. Intersection types and (positive) almost-sure

termination. Proc. ACM Program. Lang. 5, POPL (2021), 1–32. https://doi.org/10.1145/3434313

Norman Danner and Daniel R. Licata. 2022. Denotational semantics as a foundation for cost recurrence extraction for

functional languages. J. Funct. Program. 32 (2022), e8. https://doi.org/10.1017/S095679682200003X

Daniel de Carvalho. 2007. Sémantiques de la logique linéaire et temps de calcul. Thèse de Doctorat. Université Aix-Marseille

II.

Daniel de Carvalho. 2018. Execution time of 𝜆-terms via denotational semantics and intersection types. Math. Struct.
Comput. Sci. 28, 7 (2018), 1169–1203. https://doi.org/10.1017/S0960129516000396

Daniel de Carvalho, Michele Pagani, and Lorenzo Tortora de Falco. 2011. A semantic measure of the execution time in

linear logic. Theor. Comput. Sci. 412, 20 (2011), 1884–1902. https://doi.org/10.1016/J.TCS.2010.12.017

Mariangiola Dezani-Ciancaglini. 2001. TLCA list, Problem #18: Find trees representing contextual equivalences. See

http://tlca.di.unito.it/opltlca/.

Mariangiola Dezani-Ciancaglini, Benedetto Intrigila, and Marisa Venturini-Zilli. 1998. Böhm’s theorem for Böhm trees. In

ICTCS, Vol. 98. World Scientific, 1–23.

Mariangiola Dezani-Ciancaglini, Jerzy Tiuryn, and Pawel Urzyczyn. 1999. Discrimination by Parallel Observers: The

Algorithm. Information and Computation 150, 2 (1999), 153–186. https://doi.org/10.1006/inco.1998.2773

Jörg Endrullis, Dimitri Hendriks, Jan Willem Klop, and Andrew Polonsky. 2014. Discriminating Lambda-Terms Using

Clocked Boehm Trees. Logical Methods in Computer Science 10, 2 (2014). https://doi.org/10.2168/LMCS-10(2:4)2014

Jörg Endrullis, Dimitri Hendriks, Jan Willem Klop, and Andrew Polonsky. 2017. Clocked lambda calculus. Math. Struct.
Comput. Sci. 27, 5 (2017), 782–806. https://doi.org/10.1017/S0960129515000389

Claudia Faggian, Daniele Pautasso, and Gabriele Vanoni. 2024. Higher Order Bayesian Networks, Exactly. Proc. ACM
Program. Lang. 8, POPL (2024), 2514–2546. https://doi.org/10.1145/3632926

Dan R. Ghica. 2005. Slot games: a quantitative model of computation. In Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2005, Long Beach, California, USA, January 12-14, 2005, Jens
Palsberg and Martín Abadi (Eds.). ACM, 85–97. https://doi.org/10.1145/1040305.1040313

Charles Grellois and Paul-André Melliès. 2015. Relational Semantics of Linear Logic and Higher-order Model Checking.

In 24th EACSL Annual Conference on Computer Science Logic, CSL 2015, September 7-10, 2015, Berlin, Germany (LIPIcs,
Vol. 41), Stephan Kreutzer (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 260–276. https://doi.org/10.4230/

LIPICS.CSL.2015.260

Jörgen Gustavsson and David Sands. 2001. Possibilities and Limitations of Call-by-Need Space Improvement. In Proceedings of
the Sixth ACM SIGPLAN International Conference on Functional Programming (ICFP ’01), Firenze (Florence), Italy, September
3-5, 2001, Benjamin C. Pierce (Ed.). ACM, 265–276. https://doi.org/10.1145/507635.507667

Jennifer Hackett and Graham Hutton. 2014. Worker/wrapper/makes it/faster. In Proceedings of the 19th ACM SIGPLAN
international conference on Functional programming, Gothenburg, Sweden, September 1-3, 2014, Johan Jeuring and Manuel

M. T. Chakravarty (Eds.). ACM, 95–107. https://doi.org/10.1145/2628136.2628142

Jennifer Hackett and Graham Hutton. 2015. Programs for Cheap!. In 30th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2015, Kyoto, Japan, July 6-10, 2015. IEEE Computer Society, 115–126. https://doi.org/10.1109/LICS.2015.21

Jennifer Hackett and Graham Hutton. 2018. Parametric polymorphism and operational improvement. Proc. ACM Program.
Lang. 2, ICFP (2018), 68:1–68:24. https://doi.org/10.1145/3236763

Martin Hyland. 1975. A survey of some useful partial order relations on terms of the lambda calculus. In Lambda-Calculus
and Computer Science Theory, Proceedings of the Symposium Held in Rome, Italy, March 25-27, 1975 (Lecture Notes in
Computer Science, Vol. 37), Corrado Böhm (Ed.). Springer, 83–95. https://doi.org/10.1007/BFB0029520

Martin Hyland. 1976. A Syntactic Characterization of the Equality in Some Models for the Lambda Calculus. Journal of the
London Mathematical Society s2-12, 3 (1976), 361–370. https://doi.org/10.1112/jlms/s2-12.3.361

Martin Hyland, Misao Nagayama, John Power, and Giuseppe Rosolini. 2004. A Category Theoretic Formulation for

Engeler-style Models of the Untyped lambda. 161 (2004), 43–57. https://doi.org/10.1016/J.ENTCS.2006.04.024

Martin Hyland and C.-H. Luke Ong. 2000. On Full Abstraction for PCF: I, II, and III. Inf. Comput. 163, 2 (2000), 285–408.
https://doi.org/10.1006/INCO.2000.2917

Benedetto Intrigila, Giulio Manzonetto, and Andrew Polonsky. 2019. Degrees of extensionality in the theory of Böhm trees

and Sallé’s conjecture. Log. Methods Comput. Sci. 15, 1 (2019). https://doi.org/10.23638/LMCS-15(1:6)2019

Guilhem Jaber and Davide Sangiorgi. 2022. Games, Mobile Processes, and Functions. In 30th EACSL Annual Conference
on Computer Science Logic (CSL 2022) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 216), Florin Manea

and Alex Simpson (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 25:1–25:18. https:

//doi.org/10.4230/LIPIcs.CSL.2022.25

G. A. Kavvos, Edward Morehouse, Daniel R. Licata, and Norman Danner. 2020. Recurrence extraction for functional programs

through call-by-push-value. Proc. ACM Program. Lang. 4, POPL (2020), 15:1–15:31. https://doi.org/10.1145/3371083

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

https://doi.org/10.4230/LIPICS.FSTTCS.2013.91
https://doi.org/10.1145/3434313
https://doi.org/10.1017/S095679682200003X
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1016/J.TCS.2010.12.017
http://tlca.di.unito.it/opltlca/
https://doi.org/10.1006/inco.1998.2773
https://doi.org/10.2168/LMCS-10(2:4)2014
https://doi.org/10.1017/S0960129515000389
https://doi.org/10.1145/3632926
https://doi.org/10.1145/1040305.1040313
https://doi.org/10.4230/LIPICS.CSL.2015.260
https://doi.org/10.4230/LIPICS.CSL.2015.260
https://doi.org/10.1145/507635.507667
https://doi.org/10.1145/2628136.2628142
https://doi.org/10.1109/LICS.2015.21
https://doi.org/10.1145/3236763
https://doi.org/10.1007/BFB0029520
https://doi.org/10.1112/jlms/s2-12.3.361
https://doi.org/10.1016/J.ENTCS.2006.04.024
https://doi.org/10.1006/INCO.2000.2917
https://doi.org/10.23638/LMCS-15(1:6)2019
https://doi.org/10.4230/LIPIcs.CSL.2022.25
https://doi.org/10.4230/LIPIcs.CSL.2022.25
https://doi.org/10.1145/3371083

Interaction Equivalence 55:29

Andrew D. Ker, Hanno Nickau, and C.-H. Luke Ong. 2003. Adapting innocent game models for the Böhm tree 𝜆-theory.

Theor. Comput. Sci. 308, 1-3 (2003), 333–366. https://doi.org/10.1016/S0304-3975(02)00849-6

Delia Kesner and Pierre Vial. 2020. Consuming and Persistent Types for Classical Logic. In LICS ’20: 35th Annual ACM/IEEE
Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, Holger Hermanns, Lijun Zhang, Naoki

Kobayashi, and Dale Miller (Eds.). ACM, 619–632. https://doi.org/10.1145/3373718.3394774

Jan Willem Klop. 1980. Combinatory Reduction Systems. PhD thesis. Utrecht University.

Naoki Kobayashi. 2009. Types and higher-order recursion schemes for verification of higher-order programs. In Proceedings
of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA, USA,
January 21-23, 2009, Zhong Shao and Benjamin C. Pierce (Eds.). ACM, 416–428. https://doi.org/10.1145/1480881.1480933

Jim Laird. 2007. A Fully Abstract Trace Semantics for General References. In Automata, Languages and Programming,
34th International Colloquium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceedings (Lecture Notes in Computer
Science, Vol. 4596), Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki (Eds.). Springer, 667–679.

https://doi.org/10.1007/978-3-540-73420-8_58

Jim Laird, Giulio Manzonetto, Guy McCusker, and Michele Pagani. 2013. Weighted Relational Models of Typed Lambda-

Calculi. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28,
2013. IEEE Computer Society, 301–310. https://doi.org/10.1109/LICS.2013.36

Søren B. Lassen. 1999. Bisimulation in Untyped Lambda Calculus: Böhm Trees and Bisimulation up to Context. 20 (1999),

346–374. https://doi.org/10.1016/S1571-0661(04)80083-5

Paul Blain Levy and Sam Staton. 2014. Transition systems over games. In Proceedings of the Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS) (Vienna, Austria) (CSL-LICS ’14). Association for Computing Machinery, New York, NY, USA,

Article 64, 10 pages. https://doi.org/10.1145/2603088.2603150

Andrew Moran and David Sands. 1999. Improvement in a Lazy Context: An Operational Theory for Call-by-Need. In POPL
’99, Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Antonio, TX,
USA, January 20-22, 1999, Andrew W. Appel and Alex Aiken (Eds.). ACM, 43–56. https://doi.org/10.1145/292540.292547

James Hiram Morris. 1968. Lambda-calculus Models of Programming Languages. Ph. D. Dissertation. Massachusetts Institute

of Technology. https://books.google.is/books?id=DklAAQAAIAAJ

Koko Muroya and Makoto Hamana. 2024. Term Evaluation Systems with Refinements: First-Order, Second-Order, and

Contextual Improvement. In Functional and Logic Programming - 17th International Symposium, FLOPS 2024, Kumamoto,
Japan, May 15-17, 2024, Proceedings (Lecture Notes in Computer Science, Vol. 14659), Jeremy Gibbons and Dale Miller (Eds.).

Springer, 31–61. https://doi.org/10.1007/978-981-97-2300-3_3

Tobias Nipkow. 1991. Higher-Order Critical Pairs. In Proceedings of the Sixth Annual Symposium on Logic in Computer
Science (LICS ’91), Amsterdam, The Netherlands, July 15-18, 1991. IEEE Computer Society, 342–349. https://doi.org/10.

1109/LICS.1991.151658

Yue Niu and Robert Harper. 2023. A Metalanguage for Cost-Aware Denotational Semantics. In 38th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2023, Boston, MA, USA, June 26-29, 2023. IEEE, 1–14. https://doi.org/10.

1109/LICS56636.2023.10175777

C.-H. Luke Ong. 2006. On Model-Checking Trees Generated by Higher-Order Recursion Schemes. In 21th IEEE Symposium
on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings. IEEE Computer Society, 81–90.

https://doi.org/10.1109/LICS.2006.38

C.-H. Luke Ong. 2017. Quantitative semantics of the lambda calculus: Some generalisations of the relational model. In

32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE
Computer Society, 1–12. https://doi.org/10.1109/LICS.2017.8005064

C.-H. Luke Ong and Pietro Di Gianantonio. 2002. Games Characterizing Lévy-Longo Trees. In Automata, Languages and
Programming, 29th International Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings (Lecture Notes
in Computer Science, Vol. 2380), Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy,

Stephan J. Eidenbenz, and Ricardo Conejo (Eds.). Springer, 476–487. https://doi.org/10.1007/3-540-45465-9_41

Marco Patrignani, Amal Ahmed, and Dave Clarke. 2019. Formal Approaches to Secure Compilation: A Survey of Fully

Abstract Compilation and Related Work. ACM Comput. Surv. 51, 6 (2019), 125:1–125:36. https://doi.org/10.1145/3280984

Gordon D. Plotkin. 1977. LCF Considered as a Programming Language. Theor. Comput. Sci. 5, 3 (1977), 223–255. https:

//doi.org/10.1016/0304-3975(77)90044-5

James Riely and Jan F. Prins. 2000. Flattening Is an Improvement. In Static Analysis, 7th International Symposium, SAS 2000,
Santa Barbara, CA, USA, June 29 - July 1, 2000, Proceedings (Lecture Notes in Computer Science, Vol. 1824), Jens Palsberg
(Ed.). Springer, 360–376. https://doi.org/10.1007/978-3-540-45099-3_19

Ken Sakayori and Davide Sangiorgi. 2023. Extensional and Non-extensional Functions as Processes. In 38th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2023, Boston, MA, USA, June 26-29, 2023. IEEE, 1–13. https:

//doi.org/10.1109/LICS56636.2023.10175686

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

https://doi.org/10.1016/S0304-3975(02)00849-6
https://doi.org/10.1145/3373718.3394774
https://doi.org/10.1145/1480881.1480933
https://doi.org/10.1007/978-3-540-73420-8_58
https://doi.org/10.1109/LICS.2013.36
https://doi.org/10.1016/S1571-0661(04)80083-5
https://doi.org/10.1145/2603088.2603150
https://doi.org/10.1145/292540.292547
https://books.google.is/books?id=DklAAQAAIAAJ
https://doi.org/10.1007/978-981-97-2300-3_3
https://doi.org/10.1109/LICS.1991.151658
https://doi.org/10.1109/LICS.1991.151658
https://doi.org/10.1109/LICS56636.2023.10175777
https://doi.org/10.1109/LICS56636.2023.10175777
https://doi.org/10.1109/LICS.2006.38
https://doi.org/10.1109/LICS.2017.8005064
https://doi.org/10.1007/3-540-45465-9_41
https://doi.org/10.1145/3280984
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1007/978-3-540-45099-3_19
https://doi.org/10.1109/LICS56636.2023.10175686
https://doi.org/10.1109/LICS56636.2023.10175686

55:30 Accattoli, Lancelot, Manzonetto, and Vanoni

David Sands. 1996a. Proving the Correctness of Recursion-Based Automatic Program Transformations. Theor. Comput. Sci.
167, 1&2 (1996), 193–233. https://doi.org/10.1016/0304-3975(96)00074-6

David Sands. 1996b. Total correctness by local improvement in the transformation of functional programs. ACM Trans.
Program. Lang. Syst. 18, 2 (mar 1996), 175–234. https://doi.org/10.1145/227699.227716

David Sands. 1999. Improvement theory and its applications. Cambridge University Press, USA, 275–306.

Davide Sangiorgi. 1994. The Lazy Lambda Calculus in a Concurrency Scenario. Inf. Comput. 111, 1 (1994), 120–153.

https://doi.org/10.1006/INCO.1994.1042

Manfred Schmidt-Schauß, David Sabel, and Nils Dallmeyer. 2018. Sequential and Parallel Improvements in a Concurrent

Functional Programming Language. In Proceedings of the 20th International Symposium on Principles and Practice of
Declarative Programming, PPDP 2018, Frankfurt amMain, Germany, September 03-05, 2018, David Sabel and Peter Thiemann

(Eds.). ACM, 20:1–20:13. https://doi.org/10.1145/3236950.3236952

Dana S. Scott. 1972. Continuous lattices. In Toposes, Algebraic Geometry and Logic (Lecture Notes in Mathematics, Vol. 274),
Lawvere (Ed.). Springer, 97–136. https://doi.org/10.1007/BFb0073967

Kristian Støvring and Søren B. Lassen. 2009. A Complete, Co-inductive Syntactic Theory of Sequential Control and State. In

Semantics and Algebraic Specification, Essays Dedicated to Peter D. Mosses on the Occasion of His 60th Birthday (Lecture
Notes in Computer Science, Vol. 5700), Jens Palsberg (Ed.). Springer, 329–375. https://doi.org/10.1007/978-3-642-04164-8_17

Christopher P. Wadsworth. 1976. The Relation Between Computational and Denotational Properties for Scott’s D∞-Models

of the Lambda-Calculus. SIAM J. Comput. 5, 3 (1976), 488–521. https://doi.org/10.1137/0205036

Received 2024-07-11; accepted 2024-11-07

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 55. Publication date: January 2025.

https://doi.org/10.1016/0304-3975(96)00074-6
https://doi.org/10.1145/227699.227716
https://doi.org/10.1006/INCO.1994.1042
https://doi.org/10.1145/3236950.3236952
https://doi.org/10.1007/BFb0073967
https://doi.org/10.1007/978-3-642-04164-8_17
https://doi.org/10.1137/0205036

	Abstract
	1 Introduction
	2 The -Calculus
	3 The Checkers Calculus
	4 Böhm Trees
	5 Completeness, or Separating Böhm Different Terms
	6 Multi Types and Relational Semantics
	7 Checkers Multi Types
	8 From the Böhm Preorder to the Interaction One, via Multi Types
	9 Related Work
	10 Future Work
	11 Conclusions
	Acknowledgments
	References

