
Kindly Bent To Free Us

Gabriel Radanne Hannes Saffrich Peter Thiemann

“high severity security bugs” in Chromium

Chromium is written in C/C++!
Surely these bugs don’t happen in high-level typed languages.

2/16

“high severity security bugs” in Chromium

Chromium is written in C/C++!
Surely these bugs don’t happen in high-level typed languages.

2/16

“high severity security bugs” in Chromium

Chromium is written in C/C++!
Surely these bugs don’t happen in high-level typed languages . . . right?

2/16

Let’s write some OCaml code

let gradeDB : database = Dbm.opendbm "gradeDB" ... in
Dbm.add gradeDB "math" 42;
(* ... *)
Dbm.close gradeDB;
(* ... *)
print_int (Dbm.find gradeDB "literature") (* run-time error! *)

3/16

Affe!

let gradeDB : database = Dbm.opendbm "gradeDB" ... in
Dbm.add &!gradeDB "math" 42;
(* ... *)
Dbm.close gradeDB;
(* ... *)
print_int (Dbm.find &gradeDB "literature") (* 8 compile-time error! *)

4/16

Affe!

let gradeDB : database = Dbm.opendbm "gradeDB" ... in
Dbm.add &!gradeDB "math" 42;
(* ... *)
Dbm.close gradeDB;
(* ... *)
print_int (Dbm.find &gradeDB "literature") (* 8 compile-time error! *)

Kinds determine usage

type database : lin (* Linear kind *)

type string : un (* Unrestricted kind *)

4/16

Affe!

let gradeDB : database = Dbm.opendbm "gradeDB" ... in
Dbm.add &!gradeDB "math" 42;
(* ... *)
Dbm.close gradeDB;
(* ... *)
print_int (Dbm.find &gradeDB "literature") (* 8 compile-time error! *)

Borrows!

4/16

Affe!

let gradeDB = Dbm.opendbm "gradeDB" ... in
Dbm.add &!gradeDB "math" 42;
(* ... *)
Dbm.close gradeDB;
(* ... *)
print_int (Dbm.find &gradeDB "literature") (* 8 compile-time error! *)

Complete Type Inference

4/16

Table of contents

1. Linearity through kinds

2. Functions and captures

3. Borrows and regions

4. Inference and constraints

5/16

Linearity through kinds

Kinds determine usage:

• Linear (lin): Used exactly once [1]

• Affine (aff): Used at most once [0− 1]

• Unrestricted (un): Used arbitrarily many time [0−∞]

Examples:

type database : lin
type string : un

6/16

Linearity through kinds

Kinds determine usage:

• Linear (lin): Used exactly once [1]

• Affine (aff): Used at most once [0− 1]

• Unrestricted (un): Used arbitrarily many time [0−∞]

Examples:

type ('a : 'k) list : 'k

6/16

Linearity through kinds

Kinds determine usage:

• Linear (lin): Used exactly once [1]

• Affine (aff): Used at most once [0− 1]

• Unrestricted (un): Used arbitrarily many time [0−∞]

Examples:

type ('a : 'k) list : 'k
val create_list : ('a : un) => int -> 'a -> 'a list

6/16

Linearity through kinds

Kinds determine usage:

• Linear (lin): Used exactly once [1]

• Affine (aff): Used at most once [0− 1]

• Unrestricted (un): Used arbitrarily many time [0−∞]

Examples:

type ('a : 'k) list : 'k
val create_list : ('a : un) => int -> 'a -> 'a list

We also use subkinding: un ≤ aff ≤ lin

6/16

Table of contents

1. Linearity through kinds

2. Functions and captures

3. Borrows and regions

4. Inference and constraints

7/16

Functions and captures

let gradeDB = Dbm.open ...

let log_n_close msg =
printf "Closing: %s" msg;
Dbm.close gradeDB

8/16

Functions and captures

let gradeDB = Dbm.open ...

let log_n_close msg =
printf "Closing: %s" msg;
Dbm.close gradeDB

Capture!

8/16

Functions and captures

let gradeDB = Dbm.open ...

let log_n_close msg =
printf "Closing: %s" msg;
Dbm.close gradeDB

We infer the type:

val log_n_close : string lin−−→ unit

Capture!

Usage mode

8/16

Functions and captures

let gradeDB = Dbm.open ...

let log_n_close msg =
printf "Closing: %s" msg;
Dbm.close gradeDB

We infer the type:

val log_n_close : string lin−−→ unit

Capture!

Usage mode

Warning: Does not say anything about the arguments!!

8/16

Table of contents

1. Linearity through kinds

2. Functions and captures

3. Borrows and regions

4. Inference and constraints

9/16

Borrows

A borrow is a temporary loan of a resource a

• Shared borrows &a are for observing the resource

• Exclusive borrows &!a are for modifying the resource

10/16

Borrows

A borrow is a temporary loan of a resource a

• Shared borrows &a are for observing the resource

• Exclusive borrows &!a are for modifying the resource

A correct usage of borrows:

let avg =
(Dbm.find &gradeDB "math" + Dbm.find &gradeDB "compsci") / 2
(* 4 Multiple shared borrows *)

in
Dbm.add &!gradeDB "average" avg (* 4 One exclusive borrow *)

Unrestricted – un

Affine – aff

10/16

Borrows – Example of uses

Rule 1: Cannot use a borrow and the resource itself simultaneously

let gradeDB = ... in
f (gradeDB, &gradeDB) (* 8 Conflicting use and borrow! *)

11/16

Borrows – Example of uses

Rule 2: Cannot use an exclusive borrow and any other borrow simultaneously

let gradeDB = ... in
f (&!gradeDB, &gradeDB) (* 8 Conflicting borrows! *)

11/16

Borrows – Example of uses

Rule 3: Borrows must not escape

let f () =
let gradeDB = ... in
let x = (&gradeDb, "mygrades") in
x
(* 8 Borrow escaping its scope! *)

Indexed kinds ensure that borrows do not escape!

Borrows of index 2 cannot escape a region of index 1.

11/16

Borrows – Example of uses

Rule 3: Borrows must not escape

let f () =
let gradeDB = ... in
{| let x = (&gradeDb, "mygrades") in
x |}
(* 8 Borrow escaping its scope! *)

Indexed kinds ensure that borrows do not escape!

Borrows of index 2 cannot escape a region of index 1.

11/16

Borrows – Example of uses

Rule 3: Borrows must not escape

let f () =
let gradeDB = ... in
{| let x = (&gradeDb, "mygrades") in
x |}
(* 8 Borrow escaping its scope! *)

&gradeDb : &(database, un2)

Region nesting level: 1

Indexed kinds ensure that borrows do not escape!

Borrows of index 2 cannot escape a region of index 1.

11/16

Everything together

The Database API:

type database : lin

val find : &(database,'k) -> string ’k−→ int

val add : &!(database,'k) -> string ’k−→ int ’k−→ unit

12/16

Everything together

The Database API:

type database : lin

val find : &(database,'k) -> string ’k−→ int

val add : &!(database,'k) -> string ’k−→ int ’k−→ unit

A simple use:

let gradeDB = ... in
let avg =
(Dbm.find &gradeDB "math" + Dbm.find &gradeDB "compsci") / 2

in
Dbm.add &!gradeDB "average" avg

12/16

Everything together

The Database API:

type database : lin

val find : &(database,'k) -> string ’k−→ int

val add : &!(database,'k) -> string ’k−→ int ’k−→ unit

A simple use:

let gradeDB = ... in
let avg =
let grade subject = Dbm.find &gradeDB subject in (* 4 Capture *)
(grade "math" + grade "compsci") / 2

in
Dbm.add &!gradeDB "average" avg

12/16

Everything together

The Database API:

type database : lin

val find : &(database,'k) -> string ’k−→ int

val add : &!(database,'k) -> string ’k−→ int ’k−→ unit

A simple use:

let gradeDB = ... in
let avg =
let grade = Dbm.find &gradeDB in (* 4 Partial application *)
(grade "math" + grade "compsci") / 2

in
Dbm.add &!gradeDB "average" avg

12/16

Everything together

The Database API:

type database : lin

val find : &(database,'k) -> string ’k−→ int

val add : &!(database,'k) -> string ’k−→ int ’k−→ unit

A simple use:

let average db subjects =
List.map (Dbm.find db) subjects / List.length subjects

let main () =
let gradeDB = ... in
let avg = average &gradeDB ["math";"compsci";...] in
Dbm.add &!gradeDB "average" avg

12/16

Everything together

The Database API:

type database : lin

val find : &(database,'k) -> string ’k−→ int

val add : &!(database,'k) -> string ’k−→ int ’k−→ unit

A simple use:

let average db subjects =
List.map (Dbm.find db) subjects / List.length subjects

let main () =
let gradeDB = ... in
let avg = {| average &gradeDB ["math";"compsci";...] |} in
{| Dbm.add &!gradeDB "average" avg |}

No type annotation

Disjoint regions
12/16

Table of contents

1. Linearity through kinds

2. Functions and captures

3. Borrows and regions

4. Inference and constraints

13/16

Inference in action

let average db subjects =
List.map (Dbm.find db) subjects / List.length subjects

let main () =
let gradeDB = ... in
let avg = average &gradeDB ["math";"compsci";...] in
Dbm.add &!gradeDB "average" avg

let average db subjects =
List.map (Dbm.find db) subjects / List.length subjects

let main () =
let gradeDB = ... in
let avg = {| average &gradeDB ["math";"compsci";...] |} in
{| Dbm.add &!gradeDB "average" avg |}

1. Elaborate
regions

Γ =(αf : κf)(αx : κx) . . .

C =(αf ≤ γ
κ1−→β) ∧ (γ ≤ αx)

∧ (β × αx ≤ αr) ∧ (κx ≤ U)

∧ . . .

2. Generate
constraints

1. Infer the placement of region based on the position of borrows and the borrowing rules.

14/16

Inference in action

let average db subjects =
List.map (Dbm.find db) subjects / List.length subjects

let main () =
let gradeDB = ... in
let avg = average &gradeDB ["math";"compsci";...] in
Dbm.add &!gradeDB "average" avg

let average db subjects =
List.map (Dbm.find db) subjects / List.length subjects

let main () =
let gradeDB = ... in
let avg = {| average &gradeDB ["math";"compsci";...] |} in
{| Dbm.add &!gradeDB "average" avg |}

1. Elaborate
regions

Γ =(αf : κf)(αx : κx) . . .

C =(αf ≤ γ
κ1−→β) ∧ (γ ≤ αx)

∧ (β × αx ≤ αr) ∧ (κx ≤ U)

∧ . . .

2. Generate
constraints

2. Generate custom constraints based on HM(X).

14/16

Inference in action

let average db subjects =
List.map (Dbm.find db) subjects / List.length subjects

let main () =
let gradeDB = ... in
let avg = average &gradeDB ["math";"compsci";...] in
Dbm.add &!gradeDB "average" avg

let average db subjects =
List.map (Dbm.find db) subjects / List.length subjects

let main () =
let gradeDB = ... in
let avg = {| average &gradeDB ["math";"compsci";...] |} in
{| Dbm.add &!gradeDB "average" avg |}

1. Elaborate
regions

Γ =(αf : κf)(αx : κx) . . .

C =(αf ≤ γ
κ1−→β) ∧ (γ ≤ αx)

∧ (β × αx ≤ αr) ∧ (κx ≤ U)

∧ . . .

2. Generate
constraints

val average : κ2 . &(database,κ)
κ2−→ string list κ−→ int list

3. Solve
constraints

3. Solve the constraints using a custom algorithm and obtain principal type schemes.

14/16

Inference in action

let average db subjects =
List.map (Dbm.find db) subjects / List.length subjects

let main () =
let gradeDB = ... in
let avg = average &gradeDB ["math";"compsci";...] in
Dbm.add &!gradeDB "average" avg

let average db subjects =
List.map (Dbm.find db) subjects / List.length subjects

let main () =
let gradeDB = ... in
let avg = {| average &gradeDB ["math";"compsci";...] |} in
{| Dbm.add &!gradeDB "average" avg |}

1. Elaborate
regions

Γ =(αf : κf)(αx : κx) . . .

C =(αf ≤ γ
κ1−→β) ∧ (γ ≤ αx)

∧ (β × αx ≤ αr) ∧ (κx ≤ U)

∧ . . .

2. Generate
constraints

val average : κ2 . &(database,κ)
κ2−→ string list κ−→ int list

3. Solve
constraints

val average : &(database,κ) −→ string list κ−→ int list

4. Simplify types

4. Simplify the obtained type scheme by leveraging subkinding

14/16

The Affe language – Summary

Prototype: https://affe.netlify.com/

4 Linearity, Closures, Borrows and Regions
⇒ Good support for both imperative and functional programming

4 Support managed and unmanaged objects

4 Principal type inference

8 No flow sensitivity

8 No concurrency story (yet)

Many examples in the paper: files, session types, semi-persistent arrays, iterators, connection
pools, . . .

15/16

https://affe.netlify.com/

The theory – Summary

• A Syntax-directed type system for Affe
⇒ How to encode borrows into an ML-style type-system

• A formal semantics that takes allocations into account (+ proof of soundness)

• An inference algorithm for Affe:
• An extension of HM(X) with kinds
• A novel constraint systems to encode linearity and borrows
• A constraint solving algorithm, and its proof of completeness

16/16

Close(Talk)

16/16

	Linearity through kinds
	Functions and captures
	Borrows and regions
	Inference and constraints
	Conclusion

