
Tierless Web Programming in the Large
Gabriel Radanne
University of Freiburg

Germany
radanne@informatik.uni-freiburg.de

Jérôme Vouillon
IRIF UMR 8243 CNRS

Univ Paris Diderot, Sorbonne Paris Cité – CNRS
BeSport, Paris, France
jerome.vouillon@irif.fr

ABSTRACT

Tierless Web programming languages allow combining client-side
and server-side programming in a single program. This allows
defining expressions with both client and server parts, and at the
same time provides good static guarantees regarding client-server
communication. However, these nice properties come at a cost:
most tierless languages offer very poor support for modularity and
separate compilation.

To regain this modularity and offer a larger-scale notion of com-
position, we propose to leverage a well-known tool: ML-style mod-
ules. In modernML languages, the module system is a layer separate
from the expression language.

Eliom is an extension of OCaml for tierless Web programming
which provides type-safe communication and an efficient execution
model. In this article, we present how the Eliom module system
combines the flexibility of tierless Web programming languages
with a powerful module system, thus providing good support for
abstraction, modularity and separate compilation. We also show
that we can provide all these advantages while providing seamless
integration with OCaml and its ecosystem.

CCS CONCEPTS

• Software and its engineering→ Functional languages;

KEYWORDS

Web; client/server; OCaml; ML; Eliom; functional; module

ACM Reference Format:

Gabriel Radanne and Jérôme Vouillon. 2018. Tierless Web Programming in
the Large. InWWW ’18 Companion: The 2018 Web Conference Companion,
April 23–27, 2018, Lyon, France. ACM, New York, NY, USA, 10 pages. https:
//doi.org/https://doi.org/10.1145/3184558.3185953

1 INTRODUCTION

Traditional Web applications are composed of several distinct tiers:
Web pages are written in HTML and styled in CSS; these pages
are produced by a server which can be written in just about any
language: PHP, Ruby, C++ . . . ; their dynamic behavior is controlled
through client-side languages such as JavaScript. The traditional

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution. In case of republi-
cation, reuse, etc., the following attribution should be used: “Published in WWW2018
Proceedings © 2018 International World Wide Web Conference Committee, published
under Creative Commons CC BY 4.0 License.”
WWW ’18 Companion, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5640-4/18/04.
https://doi.org/https://doi.org/10.1145/3184558.3185953

way to compose these languages is to write separate programs
for the client and the server. Then, the programmer is expected
to respect a common interface between the two programs. This
constraint is usually not checked automatically, and it is the respon-
sibility of the programmer to ensure that the two programs behave
in a coherent manner. Of course, such checking is often error-prone.
This issue, present in the Web since its inception, has become even
more relevant in modernWeb applications. Furthermore, the unit of
composition here is a whole file (or compilation unit): files contain
either client code or server code but cannot be composed of both
client and server code. Such composition is very coarse-grained
and hinders the modularity of Web programming libraries.

One goal of a modern client-server Web application framework
should be to make it possible to build dynamic Web pages in a
composable way. One should be able to define on the server a func-
tion that creates a fragment of a page together with its associated
client-side behavior; this behavior might depend on the function
parameters. The so-called tierless languages aim to solve such mod-
ularity issues by allowing to compose tiers inside expressions, by
allowing to freely intersperse the client and server parts of the ap-
plication in one language with seamless communication. For most
of these languages, the program is sliced in two: a part which runs
on the server and a part which is compiled to JavaScript and runs
on the client. This allows to write libraries and widgets with both
client and server behaviors. It also provides static guarantees about
client-server separation and a fine-grained notion of composition.

However, programming large-scale software and libraries still
requires a form of larger-scale composition. Indeed, parts of a li-
brary could be entirely on the server or on the client. Most tierless
languages do not support such modular approach to program ar-
chitecture. Even worse, almost no tierless programming languages
support separate compilation. Separate compilation, or its weaker
form incremental compilation, is an essential-productivity boost
for programmers working on medium to large scale software.

To solve these problems, we propose to leverage a well-known
tool: ML-style modules. By doing so, we gain a convenient para-
digm for organizing large-scale software and support for separate
compilation on top of the gains provided by tierless programming
languages. Our module system is built as a complement to Eliom,
a tierless web programming language built on top of OCaml, and
retains its good properties such as static typing of client-server
communications and an efficient excution model.

1.1 Modules

In modern ML languages, the module language is separate from
the expression language. While the language of expressions allows
to program “in the small”, the module language allows to program
“in the large”. In most languages, modules are compilation units: a

1

https://doi.org/https://doi.org/10.1145/3184558.3185953
https://doi.org/https://doi.org/10.1145/3184558.3185953
https://doi.org/https://doi.org/10.1145/3184558.3185953

simple collection of type and value declarations in a file. The SML
module language [MacQueen 1984] uses this notion of collection
of declarations (called structures) and extends it with types (module
specifications, or signatures), functions (parametrized modules, or
functors) and function application, forming a small typed functional
language. Such a module system can account for separate compi-
lation [Leroy 1994] and provides support for datatype abstraction
[Crary 2017; Leroy 1995], which allows to hide the implementation
of a given type in order to enforce some invariants. In the history
of ML-programming languages, ML-style modules have been in-
formally shown to be very expressive tools to architect software.
Functors, in particular, allow to write generic implementations by
abstracting over a complete module. The OCaml language provides
such a module system, extended with various other constructs such
as package types [Russo 2000] (also known as first-class modules).
One distinctive feature is that modules in OCaml are runtime en-
tities. In contrast to systems such as MLton [2014], they are not
eliminated at compile time.

1.2 Eliom

Eliom [Radanne et al. 2016a,b] is an extension of OCaml for tierless
programming that supports composable and typesafe client-server
interactions. It provides fine-grained modularity by allowing to
manipulate on the server, as first class values, fragments of code
which will be executed on the client. Eliom is part of the larger
Ocsigen [Balat et al. 2009; Eliom 2017] project, which also includes
the compiler js_of_ocaml [Vouillon and Balat 2014], a Web server,
and various related libraries to build client-server applications.
Besides the language presented here, Eliom comes with a complete
set of modules, for server and/or client side Web programming,
such as RPCs; a functional reactive library for Web programming; a
GUI toolkit [Ocsigen Toolkit 2017]; a powerful session mechanism
and an advanced service identification mechanism [Balat 2014]. The
Ocsigen project started in 2004, as a research project, with the goal
of building a complete industrial-strength framework.

1.3 Modules for tierless web programming

All of the modules and libraries in Ocsigen, and in particular in
the Eliom framework, are implemented on top of a core language
described by Radanne et al. [2016b]. The design of this core lan-
guage is guided by four complementary goals: easy composition
of client and server code, type-safe communication between client
and server, explicit communications that are easy to reason about
an efficient execution model. We introduce additional properties
that drive the design of our module language:

Integration with the host language. Eliom is an extension of
OCaml. We should be able to leverage both the language and the
ecosystem of OCaml. OCaml libraries can be useful on the server,
on the client or on both. As such, any OCaml file, even when com-
piled with the regular OCaml compiler, is a valid Eliom module.
Furthermore, we can specify if we want to use a given library on
the client, on the server, or everywhere.

Abstraction. Module languages are very powerful abstraction
tools. By only exposing part of a module, the programmer can
safely hide implementation details and enforce specific properties.
Eliom leverages module abstraction to provide encapsulation and

separation of concerns for widgets and libraries. By combining
module abstraction and tierless features, library authors can provide
good APIs that do not expose the minute details of client-server
communication to the users.

Modularity and separate compilation. Far from simple websites,
modern Web applications are complex programs that rival regular
desktop programs in size. Modularity and separate compilation
are essential tools to make programmers productive for large ap-
plications. Eliom is the only tierless programming language that
provides static slicing, efficient execution and separate compilation.

In the rest of this article, we present how Eliom module system
provides abstraction and modularity for tierless applications. As
a guiding example for our exploration of the Eliom language, we
consider the case of a commenting system, as can be found on
numerous websites. A comment is a piece of HTML written by a
user and identified by a unique identifier. Such a comment library
features both server aspects (storing and rendering the comments)
and client interactions (browsing and searching comments).

We first give a reminder of the OCaml module system (Sec-
tion 2) and small-scale tierless programming (Section 3). We then
present the Eliom module language (Section 4) and the challenges
regarding its implementation in (Section 5). Finally, we give a quick
comparison with existing work in Section 6.

2 OF COMMENTS AND CAMELS

A SHORT INTRODUCTION TO OCAML MODULES

The OCaml module system forms a second language separate from
the expression language. While the language of expressions allows
programming “in the small”, the module language allows program-
ming “in the large”. TheML flavor of module systems, whichOCaml
is part of, significantly extend usual module languages by providing
module types (called signatures) and functions from modules to
modules (called functors). The module system is implicitly used for
any kind of OCaml or Eliom programming: Each .ml and .eliom
file form a structure containing the list of declarations included in
the file. It is also possible to specify a signature for such module by
adding a .mli or eliomi file.

We can do a lot more with OCaml modules. For example, let us
say we are writing an HTML library. We want to gather the event
related attributes in a single module. We can easily do so with the
following construction.

1 module On = struct

2 let click = ...

3 let keypress = ...

4 end

These functions can then be used through qualified accesses:
1 open Html

2 let mywidget = div ~a:[On.click myclickhandler] [...]

Some users of our HTML library may want to experiment with
new, custom-made HTML elements. They can easily do so by ex-
tending the Html module:

1 module HtmlPlus = struct

2 include Html

3 let blink elems = ...

4 end

2

Here, we declare a new module, HtmlPlus, in which we include
Html and define the new blink function. The include operation
simply takes all the fields of amodule and adds them to the enclosing
module. This way, we obtain a new module HtmlPlus which can
be used anywhere Html can, but also includes the new function.

2.1 Abstraction and encapsulation

We now want to build a simple library to handle internet comments.
In our library, comments are pieces of HTML (constructed with the
Html module) identified by a unique number. We are not sure yet if
we should use simple sequential IDs, date-base IDs or something
else like UUIDs and Hashids [2017]. Fortunately, we do not have to
make this decision immediately! All we need in order to write the
rest of our engine is an interface for creating and using identifiers.
We can declare such an interface inOCaml using a signature. Below,
we declare the ID signature describing what amodule implementing
unique identifiers should look like.

1 module type ID = sig

2 type t (* type of ids *)

3 val compare : t -> t -> int (* Compare ids *)

4 val create : unit -> t (* Create fresh ids *)

5 val to_string : t -> string (* show ids *)

6 end

We can then create various modules implementing this speci-
fication. Here we declare the modules SequentialID and DateID.
We can then switch one module for the other easily.

1 module SequentialID : ID = struct

2 type t = int

3 (* ... *)

4 end

5
6 module DateID : ID = struct

7 type t = date

8 (* ... *)

9 end

One important thing to note here is that, to the outer world,
these two modules have exactly the same type and can not be
distinguished. The type that implements the identifiers in the ID
signature is abstract: its implementation is only visible inside the
module and can not be used outside. It is also useful to note that
such abstraction can be provided after the fact. Declaring a module
and abstracting its interface are completely distinct operations.

Hiding the internal details of our ID modules is not only useful
for modularity: it also allows to enforce abstraction boundaries. For
example in the case of SequentialID, it is impossible to inadver-
tently use the ID as an integer, since the fact that it is an integer
is not revealed! We can use this fact to enforce numerous complex
properties, as we see in the next section.

2.2 Functors

To implement our comment system, we sometimes need to find
comments by their ID. The idiomaticOCaml solution is to use maps,
also called dictionaries. Such maps are implemented with Binary
Search Trees which require a comparison function on the keys of
the map. Map.Make is a pre-defined functor in the OCaml standard
library that takes amodule implementing the COMPARABLE signature
as argument and returns a module that implements dictionaries
whose keys are of the type t in the providedmodule. In Fig. 2, we use
this functor to create the IDMap module which defines dictionaries

1 module type COMPARABLE = sig

2 type t

3 val compare : t -> t -> int

4 end

5
6 module Make (Key : COMPARABLE) : sig

7 type 'a t

8 val empty : 'a t

9 val add : Key.t -> 'a -> 'a t -> 'a t

10 (* ... *)

11 end

Figure 1: the Map module

1 module TheID = DateID (* The ID of our choice *)

2 module IDMap = Map.Make(TheID)

3
4 let register c map : Html.t IDMap.t =

5 let commentid = TheID.create () in

6 IDMap.add commentid c map

Figure 2: Dictionaries from IDs to comments

with IDs as keys. This is very easy, since the ID signature is already
a super-set of the COMPARABLE signature. We then define register,
a function which associates a fresh id to a comment c.

The Map.Make functor uses abstraction in two important ways.
First, since the type of the map is abstract, it is impossible to modify
it through means not provided by the module. In particular, this
enforces that the binary tree is always balanced. Second, since the
comparison function is provided in advance by the argument of
the functor, it is impossible to mix different comparison functions
by mistake. Indeed, application of the functor to different modules
would yield different types of maps.

2.3 Going further

This was just a taste of modules. For a longer (and better) intro-
duction to modules, please consult the OCaml manual [Leroy et al.
2016] or the Real World OCaml book [Minsky et al. 2013].

3 TIERLESS WIDGETS

Until now, we presented how to write various elements of libraries
useful for our comment system. For this purpose, we leveraged
the power of the OCaml module system in various ways. We now
want to write the widget that presents a comment. For this purpose,
we need to define both client and server code, along with some
client-server communication, which is precisely where tierless lan-
guages shine. Through this example, we provide a quick overview
of the Eliom expression language, along with some basic associated
concepts regarding tierless web programming.

3.1 Sections

Section annotations allow the programmer to specify where a dec-
laration should be executed. The programmer can specify whether
a declaration is to be performed on the server or on the client as
follows:

1 let%server s = ...

2 let%client c = ...

In particular, sections allow to group related code in the same file,
regardless of where it is executed. In the rest of this article, we
use the following color convention: client is in yellow, server is in
blue and mixed is in green. Colors are however not mandatory to
understand the rest of this article.

3

3.2 Client fragments

While section annotations allow programmers to gather code across
locations, they don’t allow convenient communication. For this pur-
pose, Eliom allows to include client-side expression inside a server
section: an expression placed inside [%client ...] will be com-
puted on the client when the page is received; but the eventual
client-side value of the expression can be passed around immedi-
ately as a black box on the server. These expressions are called
client fragments.

In the example below, the expression 1 + 3 will be evaluated on
the client, but it’s possible to refer server-side to the future value
of this expression (for example, put it in a list). The variable x is
only usable server-side, and has type int fragment which should
be read “a fragment containing some integer”. The value inside the
client fragment cannot be accessed on the server.

1 let%server x : int fragment = [% client 1 + 3]

3.3 Injections

Fragments allow programmers to manipulate client values on the
server. We also need the opposite direction. Values that have been
computed on the server can be used on the client by prefixing them
with the symbol~% . We call this an injection.

1 let%server s : int = 1 + 2

2 let%client c : int = ~%s + 1

Here, the expression 1 + 2 is evaluated and bound to variable s
on the server. The resulting value 3 is transferred to the client
together with the Web page. The expression ~%s + 1 is computed
client-side.

An injection makes it possible to access client-side a client frag-
ment which has been defined on the server. The value inside the
client fragment is extracted by~%x , whose value is 4 here.

1 let%server x : int fragment = [% client 1 + 3]

2 let%client c : int = 3 + ~%x

3.4 Comment widget

These three constructions are sufficient to create complex client-
server interactions. Here, we use them to build a very simple widget
to show one comment. Our widget, implemented by the function
make_comment shown below, has the additional feature that it will
hide the content of the comment when the user clicks on it. We
also want the HTML to be generated server-side and sent to the
client as a regular HTML page. This allows the comments to be
accessible even when JavaScript cannot run. The implementation,
the interface and the produced HTML fragment are shown in Fig. 3.

In order to implement our comment widget, we use an HTML
DSL [TyXML 2017] that provides combinators such as div and
a_onclick (which respectively create an HTML tag and an HTML
attribute). The~a is the OCaml syntax for named arguments. Here,
it is used for the list of HTML attributes. We first create a p ele-
ment which contain the text of the comment and a unique id. The
text is included in a div which represents the comment. We then
use a handler listening to the onclick event: since clicks are per-
formed client-side, this handler needs to be a client function inside
a fragment. Inside the fragment, an injection is used to access the
argument id which contains the identifier of the comment. We

1 let%server make_comment commentid =

2 let content =

3 p ~a:[a_id commentid] [text (Comment.get commentid)]

4 in

5 let author = text ("Author: " ^ Comment.author commentid) in

6 let handler = [% client fun _ ->

7 let elem = get_element_by_id ~% commentid in

8 Css.toggle_hidden elem]

9 in

10 div ~a:[On.click handler] [author; content]

1 val%server make_comment : id -> Html.element

1 <div>

2 Author: Me

3 <p id =1337>Eliom is great!</p>

4 </div>

Figure 3: The comment widget

then use this identifier to fetch the correct element and toggle the
“hidden” CSS property, which hides it.

As we can see, this type does not expose the internal details of
the widget’s behavior. In particular, the communication between
server and client does not leak in the API: This provides proper
encapsulation for client-server behaviors. Furthermore, this widget
is easily composable: the embedded client state cannot affect nor
be affected by any other widget and can be used to build larger
widgets.

3.5 Notes on semantics

In the examples above, we showed that we can interleave client and
server expressions and communications in fairly arbitrary manners.
This would be costly if the communication between client and
server were done naively.

Instead, the server only sends data once when the Web page is
sent. In particular, in the comment widget presented above, the id
of the comment is not sent for each click. This is made possible by
the fact that client fragments are not executed immediately when
encountered inside server code. Intuitively, the semantics is the
following. When the server code is executed, the encountered client
code is not executed right away; instead it is just registered for later
execution once the Web page has been sent to the client. Only then
is the client code executed. We also guarantee that client code, be
it either client sections or fragments, is executed in the order that
it was encountered on the server.

This presentation might makes it seem as if we dynamically
create the client code during execution of the server code. This is
not the case. LikeOCaml, Eliom is statically compiled and separates
client and server code at compile time. During compilation, we
statically extract the code included inside fragments and compile it
as part of the client code to JavaScript. This allows us to provide
both an efficient execution scheme that minimizes communication
and preserve side-effect orders while still presenting an easy-to-
understand semantics. We also benefits from optimizations done by
the js_of_ocaml compiler, thus producing efficient and compact
JavaScript code.

3.6 Further reading

We only gave a brief overview of what can be done with the new
language constructs introduced by Eliom. Radanne et al. [2016a]

4

present numerous advanced examples which cover many Web pro-
gramming idioms such as HTML, RPCs, broadcasts and other com-
munication patterns. More formally, Radanne et al. [2016b] give a
detailed account of the type system, the semantics and the compi-
lation scheme for the Eliom expression language.

For the rest of this article, we focus on large-scale tierless Web
programming through modules.

4 TIERLESS MODULAR PROGRAMMING

We are now equipped with two tools. On one hand, we have a
rich and expressive non-tierless module system, as presented in
Section 2, which provides abstraction and modularity at the library
level. On the other hand, we have a powerful tierless programming
language, as presented in Section 3, which allows us to describe
sophisticated client-server behaviors. In this section, we present
how we can bring those two tools together and reap the numerous
benefits of the OCaml module system in a tierless setting.

4.1 Interaction with OCaml

Web programming is never only about the Web. Web programmers
needs external libraries and a rich ecosystem that can not be pro-
vided by a fresh new language. Before writing complex tierless
programs, let us see how Eliom can leverage the OCaml ecosystem
almost transparently.

Integration with the OCaml language is provided through the
use of a third location called base. Code located on base can be
used both on the client and on the server.

1 let%base f x = "Hello "^x^"!"

2 let%client a = f "client"

3 let%server b = f "server"

Eliom-specific features such as fragments and injections are not
allowed inside base code. In fact, base code corresponds exactly to
OCaml code. This equivalence holds in theory but also in practice,
meaning that any OCaml library compiled by the vanilla OCaml
compiler can be directly reused by Eliom as being on the base
location. This allows a very smooth integration with the OCaml
ecosystem. Furthermore, a givenOCaml library can be loaded either
on base, on the client or on the server, depending on what the user
wants. For example, an OCaml library manipulating file descriptors
might be better kept only on the server in order to avoid misuse.
The type-checker then raises an error if the library is mistakenly
used on the client.

4.2 Modules and locations

As demonstrated in Section 4.1,OCamlmodules, such as the String
module taken from the standard library, are immediately available
as Eliom modules located on base. We can also use such modules
on the client or on the server.

1 module%base TextHtml = Html

2 module%server ServerHtml = TextHtml

3 let%client l = Html.p [Html.text "Hello client!"]

Locations are checked by the compiler. For example, using a
server module on the client is forbidden.

1 let%client x = ServerHtml.text "hello client!" (* ✘ Error! *)

It is also possible to reuse OCaml module types freely. For ex-
ample, we might want to define a client module DomHtml which

shares the exact same API as the Html module, but is implemented
using the Document Object Model that is available on the client.
The type declaration for such a module would then be very simple,
as shown below.

1 module%client DomHtml : Html.Signature = struct

2 (* ... *)

3 end

We can easily declare a new structure completely on one location.
The constraint is that all the fields on such modules, including
submodules, should be on the same location. For example, a client
structure can only contain fields that are declared on the client. The
following piece of code declares a JsMap client module containing
various fields and implementing a dictionary data-structure with
JavaScript strings.

1 module%client JsMap : sig

2 type key

3 type 'a t

4
5 val empty : 'a t

6 val add : key -> 'a -> 'a t -> 'a t

7 (* ... *)

8 end

We can also use functors in client and server code as we would
in regular OCaml code. Consider the JsMap module above. The
simplest way to obtain such a module would be to use the Map.Make
functor presented in Section 2.2. We could for example write a
JsDate module which uses JavaScript native support for dates.
We can then obtain the JsDateMap module simply by applying
Map.Make to the module JsDate defined in Fig. 4. As expected,
the module we obtain is directly on the client. We can thus mix
and match client and server modules using the tierless features
and vanilla OCaml modules. This also works with all the other
module features such as abstraction, high order functors andmodule
inclusion. In all these cases, the Eliom typechecker ensures that
modules always end up on the appropriate location.

1 module%client JsDate = struct

2 type t = Js.date

3 let compare x y = compare x## valueOf y## valueOf

4 (** Compare by timestamp *)

5 end

6 module%client JsDateMap = Map.Make(JsDate)

Figure 4: Definition of JsID and JsMap

4.3 Mixed modules

Up until now, we only defined single-location modules, either base,
client or server. It is natural to also want to write modules that
contain base, client and server declarations. We call these modules
“mixed”.

1 module%mixed M = struct

2 type%client t = int

3 type%server t = t fragment

4 let%server x : t = [% client 2]

5 end

Just like sections, mixed modules allow to group together dec-
larations that are semantically related, regardless of client-server
boundaries. However, combining type declarations with mixed
modules and module signatures can provide even further benefits.

5

4.3.1 Encapsulation and Abstraction. A common idiom of web
programming is to generate some HTML element on the server,
add an id to it, and recover the element on the client through the
get_element_by_id function. Indeed, this is exactly what we did
in our comment widget in Section 3.4. This is so common, in fact,
that it could be considered the “id design pattern”. RPCs, channels
and other communication APIs also follow the same mechanisms
through the use of uniquely defined URLs. In all these cases, the
means of identification for a given object is generally passed around
explicitly, instead of being abstracted. Since client and server code
are usually written separately, the programmer must expose the
internal details to the outer world, including how to identify objects.

By combining tierless annotations and the abstraction capabili-
ties provided by modules, we can recover that lost abstraction. Fig. 6
presents an API that encapsulates unique ids for HTML elements.
The API is composed of an abstract type, id, and two operations.
The server function with_id takes an HTML element, generates a
fresh id and returns a pair composed of the HTML element with
that id and the id. The client function find takes an id and retrieves
the associated element as a DOM node on the client. The id type is
abstract. Both the client and the server functions can use the real
definition of id since they are both inside the module. The outer
world, however, can not. Mixed modules allow us to allow abstrac-
tion to extends over the client-server boundary. This can provide
further benefits in the case of more complex data-structures, as we
will see in the next section.

1 module%mixed HtmlID : sig

2 type id

3 val%server with_id : Html.t -> Html.t * id

4 val%client get : id -> DomHtml.t

5 end

Figure 5: Interface of abstract HTML ids

1 module%mixed HtmlID = struct

2 type id = string

3 let%server with_id elem =

4 let myid = random_string () in

5 let elem_with_id = Html.add_id elem myid in

6 (elem_with_id , myid)

7 let%client find myid =

8 get_element_by_id myid

9 end

Figure 6: Implementation of abstract HTML ids

4.4 Mixed data structures

We now want to implement a system of client-side search and
filtering of comments. The user should be able to search and filter
comments directly on the client, without the need to reload the
page. For this purpose, we need to maintain the sets of comments
both on the server and on the client. One simple way to do that is
to create a replicated cache of comments which ensures that all the
comments available on the server are also available on the client.

We use the Map module as inspiration and create a functor that
takes as argument a module describing the keys. The idea is that
adding an entry to a server-side table also adds the element to the
client-side table. Consequently, the server-side representation of a
table needs to include a client-side one.

The result API is shown in Fig. 7. The resulting module contains
both a client and a server side types, both named 'a table, which
represent the local table. The module also exposes traditional Map

functions. The implementation, shown in Fig. 8, is more interesting.
We exploit the fact that client and server namespaces are distinct,
and name both client and server map modules M. On the server, the
cache is implemented as a pair of a server-side and a client-side
dictionary. The server-side add implementation stores a new value
locally in the expected way, but additionally builds a fragment
that has the side-effect of performing a client-side addition. The
retrieval operation (find) returns a shared value that contains both
the server side version and the client side. On the client, however,
we can directly use the local values. Since the client-side type
exactly corresponds to a regular map, we can directly use the usual
definitions for the various map operations. This is done by including
the client M module on the client.

Note that this functor cannot be implemented in a decomposed
way without sacrifying either abstraction or modularity. Indeed,
the server implementation relies on the client-side version of the
functor argument (Comparable) to implement proper usage of the
keys. Furthermore, the signature of the functor ensures that the
server-side and client-side parts of the cache are in sync without
leaking any implementation details. Separating this mixed func-
tors in two would require exposing the guts of the data-structure.
Abstraction also makes it easy to extend such modules with new
features. For example, it would possible to add full-blown replica-
tion through “push” or “pull” communications between the client
and the server. Thanks to the abstraction provided by the signature
of the module, this can even be done while keeping the API of the
functor unchanged.

We can now use this cache for our comment system by us-
ing, for example, the DateID module for the keys. This is done
in Fig. 9. Adding a new comment to the page is done through the
add_comment server function. This function creates the associated
HTML using the widget defined in Section 3.4 and adds it to the
cache. We can then create the webpage containing all the comments
simply by collecting all the comments and putting them inside a
div. This is done by the generate_page server function. Finally,
the client function filter_comments filters the shown comments
on the client. It takes as argument a predicate function and the cur-
rent client cache. It uses this predicate function to filter the cache,
using the function CommentCache.filter, which directly uses the

1 module%mixed MakeCache (Key : COMPARABLE) : sig

2 type%client 'a t

3 type%server 'a t

4
5 val%client add : Key.t -> 'a -> 'a t -> 'a t

6 val%server add : Key.t -> 'a -> 'a t -> 'a t

7 (* ... *)

8 end

Figure 7: Interface of MakeCache

1 module%mixed MakeCache (Key : COMPARABLE) = struct

2 module%client M = Map.Make(Key)

3 module%server M = Map.Make(Key)

4
5 include%client M

6
7 type%server 'a table = 'a M.t * 'a M.t fragment

8 let%server add id v (tbl_server , tbl_client) =

9 [% client M.add ~%id ~%v ~% tbl_client];

10 M.add id v tbl_server

11 (* ... *)

12 end

Figure 8: Implementation of MakeCache

6

1 module%mixed DateKey = DateID

2 module%mixed CommentCache = MakeCache(DateKey)

3
4 let%server add_comment id cache =

5 let html = make_comment id in

6 CommentCache.add id html cache

7
8 let%server generate_page cache =

9 Html.div a:[a_id "comments"] [CommentCache.elements cache]

10
11 let%client filter_comments predicate cache =

12 let filtered_cache = CommentCache.filter predicate cache in

13 let comment_container = get_element_by_id "comments" in

14 Dom.replace_children

15 comment_container

16 (CommentCache.elements filtered_cache)

Figure 9: Using MakeCache

equivalent function from the Map module. We then find the HTML
element containing all the elements and replace them them by the
updated list.

Through these various examples, we demonstrated how we can
combine traditional tierless features with advanced features of the
OCaml module system to create powerful and expressive APIs.
One one hand, tierless languages traditionally allows for complex
interplay of client and server code. Module systems, on the other
hand, allows to manipulate large pieces of code while preserving ab-
straction, encapsulation and modularity. The Eliommodule system,
and mixed functors in particular, allows to preserve these abstrac-
tion capabilities while enjoying the free-form tierless programming
style.

5 UNDER THE HOOD

Rich module systems such asML’s are notoriously difficult to for-
malize and implement. The best evidence of this is the very rich
body of work attempting to provide a theoretic background for
modules [Crary 2017; Dreyer 2005; Lee et al. 2007; Leroy 1994, 1995;
Rossberg et al. 2014; Tofte 1988] compared to the very few imple-
mentations in modern languages [Leroy et al. 2016; Milner et al.
1990]. Adding tierless elements to the mix certainly does not make
the situation simpler.

For space reasons, we do not attempt to provide a complete de-
scription of our module language. Instead, we highlight a few key
elements that are novel in our approach. We first present some
notes in the typechecking of modules (Section 5.1) and the compi-
lation process (Section 5.3). We also give a quick description of our
implementation in Section 5.5.

5.1 Typechecking and Specialization

On several occasions, we used base, client, server or even mixed
modules in conjunction. We even applied a base functor such as
Map.Make on a client module. Typechecking such a mix of base
and non-base modules is not so trivial. Indeed, let us consider the
functor application Map.Make(JsDate) presented in Section 4.2.
Both the input and output signatures of Map.Make contain base
fields. However, JsDate only contains client fields. Furthermore,
one would expect JsMap, the result of the application, to be only
usable on the client. In all these cases, we must “specialize” the
Map.Makemodule to be usable on the client. This problem is similar
to the application of a polymorphic function. Indeed, when checking
the application of a function of type ∀α .α → α to an argument

of type int , we first instantiate the function to int → int before
checking the application.

We use a similar technique to typecheck tierless modules. Instead
of a set of type variables, we have a single “location variable” that
is always called “base”. When using a module in a client or a server
context, we specialize it to ensure that all the fields are properly
accessible. The specialization operation, noted ⌊M⌋ℓ where ℓ is
“client” or “server”, projects a “view” of the type of the module
where all the fields are in the current location. For base modules, it
simply rewrites the signature by substituting all instances of the
location “base” by the specified “client” or “server” location. Fig. 10
presents two example of specialization for base modules. Note that
before being specialized, a module should be actually accessible
in the given scope. This means that we never have to specialize a
server module on the client (or conversely).

The important part however is that specialization is completely
transparent for the user. Much like instantiation of polymorphic
function, specialization is automatically handled by the typechecker
and requires no special care from the programmer. The programmer
only has to specify client, server and base locations.

sig

type%base t

val%base x : t

end

−→

sig

type%client t

val%client x : t

end

functor(M : S)T −→ functor(M :⌊S⌋)⌊T ⌋
Figure 10: Examples of specialization – ⌊M⌋

5.2 Mixed modules

Specialization is also used to enforce proper location usage for
mixed modules. Indeed, mixed modules can be used on the client
and on the server. In these cases, only the server (resp. client) part
should be visible.

Mixed structures. For a structure, aka a collection of declarations,
specialization hides the parts of a module that are not relevant to
the current side. An example of specialization of a mixed structure is
provided in the top half of Fig. 14. Here we can see that, as is the case
for base modules, base declarations are now client. Furthermore,
we also remove all the server declarations present in the structure.
The end result is a structure that only contains client declarations.
From a runtime point of view, the specialized type is also faithful
to the content of the module: indeed, a base declaration can always
be considered to be present client-side (as well as server-side) and
declarations can be hidden thanks to module subtyping. This way,
we ensure that if a structure (struct M end) can be given a type
(sig S end), then it can also be given a type ⌊sig S end⌋ℓ .

Mixed functors. Functors bring additional complexity. A naive
implementation of specialization of mixed functors would be to
specialize on both side of the arrow and apply the resulting functor.
Let us see on an example why this solution does not work. In
Fig. 12, the functor F takes as argument a module containing a
base declaration and uses it on both sides. If the type of the functor
parameter were specialized, the functor application in Fig. 13 would
be well-typed. However, this makes no sense: M.y is supposed to
represent a fragment whose content is the client value of b, but this

7

value doesn’t exist, since b was declared on the server. There would
be no value available to inject in the declaration of y'.

The solution here is that specialization on mixed functors should
only specialize the return type, not the argument type. This is
demonstrated in the bottom half of Fig. 14. This way, the com-
plete mixed module is given as argument to the mixed functor and
specialization happens on the result of the functor only.

1 module%mixed F (A : sig val b : int end) = struct

2 let%server x = A.b

3 let%server y = [% client A.b]

4 end

Figure 12: A mixed functor using a base declaration

1 module%server M = F(struct let%server b = 2 end)

2 let%client y' = ~%M.y

Figure 13: An ill-typed application of F

sig

type%base t

val%client x : int

val%server y : t

end

−→

sig

type%client t

val%client x : int

end

functormixed (M : S)T −→ functormixed (M : S)⌊T ⌋

Figure 14: Examples of specialization on mixed modules

5.3 Compilation and execution

In Section 3.5, we presented the semantics in term of a two-stage ex-
ecution: first the server, then the client. This interpreted semantics
is easier to understand, but would involve runtime code genera-
tion which would be quite inefficient. In the implementation, the
Eliom compilers slices tierless programs in two parts, the client and
the server. The slicing is done by emitting two OCaml programs
containing additional communication primitives.

For one-sided modules, the process is fairly simple: we simply
take the whole module to the appropriate side. Similarly for mixed
structures, we cut the whole structure in two. Complications arise
for mixed functors.

Fig. 11 presents a simplified example of the compilation of a
mixed functor. The idea is the following: we equip each mixed
module with a unique identifier. This identifier is static for mixed
structures such as X in the example, but is dynamic for modules
resulting of a functor application, such as F. On the server, this
identifier is added as a field of the module. In this example, the
field is called “id” here, but the implementation uses a field that can
not conflict with the programmer’s code. On the client, we simply
maintain a table from identifiers to modules. When applying a func-
tor, we remember the fact that the associated functor application

should be done on the client. For example if the programmer uses
F(X), during the execution we will recall that the functor associated
to “F1” should be applied to the module associated to “X0”. When
sending the page to the client, we also send this information. The
client will then ensure that this functor application is done at the
appropriate time. This process can be seen as an extended version
of the one used for Eliom fragments [Radanne et al. 2016b].

This compilation method also hints at some limitations of mixed
functors: arguments of mixed functors must have an identifier
pointing to their client half. One method is to add these identifiers
to every mixed structures and force arguments of mixed functors to
also be mixed. This restriction can be partially lifted through some
simple static analysis to insert identifiers appropriately. Evaluating
how constraining these restriction are in practice is the subject of
future work.

5.4 Formal description

Radanne [2017] gives a formal description of both the expression
and the module language. It presents the type system, the module
system, the interpreted semantics presented in Section 3.5 and the
compilation scheme. This formalization demonstrates, among other
things that the integration with OCaml works and that interpreted
and compiled semantics coincide.

5.5 Implementation

We implemented our extension of OCaml as a patch on the OCaml
compiler and typechecker, along with two OCaml packages for the
client and server runtimes1.

One peculiarity of our implementation is that locations are an-
notated on identifiers instead of binders, as could be expected. The
downside is that the specialization operation is quite invasive (it
needs to explore type expressions). However, it allows us to leave
the implementation of the typing environment mostly untouched
(no need to annotate bindings in the environment itself). This was
considered preferable for two reasons. The implementation of typ-
ing environments in the OCaml typechecker is very complex, and
modifying it would be both difficult and risky. Furthermore, this
allows us to keep the same representation of compiled objects. This
provides the great advantage that any .cmi (the typing signature
of the module) or .cmo (the output of the compiler, similar to .o for
C) compiled with the vanilla OCaml compiler can be used directly
in Eliom, along with a number of tools. It is also possible to spec-
ify that a given pure-OCaml module can be loaded either as base,
as client or as server. Another peculiarity of our implementation,
which corresponds closely to our compilation scheme, is that each

1https://github.com/ocsigen/ocaml-eliom and https://github.com/ocsigen/eliomlang

Eliom OCaml Server OCaml Client
module%mixed X = struct

let%server a = 2

let%client b = 3

end

module%mixed F (Y : S) = struct

let%server x = [% client Y.a + ~%Y.b]

end

module X = struct

let id = "X0"

let a = 2

end

module%mixed F (X : S) = struct

let id = fragment_mod "F1" X.id

let x = fragment id."f2" X.b

end

module X = struct

let b = 3

end

bind_mod "X0" X

module F (X : S) = struct

bind "f2" (fun b -> X.a + b)

end

bind_mod "F1" F

Figure 11: Simplified compilation of mixed functors

8

https://github.com/ocsigen/ocaml-eliom
https://github.com/ocsigen/eliomlang

source file emits one compiled signature but two compiled objects,
corresponding to the client and the server side.

6 RELATEDWORK

A comprehensive comparison of the tierless expression language
can be found in Radanne et al. [2016a]. It is notoriously delicate to
compare modules systems. Instead, we focus on the modularity and
abstraction aspects and in particular the interaction between tierless
programming, separate compilation and data abstraction. Within
these criteria, the various approaches can be separated into three
categories: slicing as a global compiler transformation, interpreted
languages and modular compiled languages.

6.1 Global slicing

One approach for slicing a tierless program into a client part and a
server part is to apply a whole-program transformation over the
complete program. Such approach is, by essence, incompatible with
separate compilation. Furthermore, whole-program slicing usually
relies on some other program transformations (inlining, monomor-
phisation, defunctorisation, . . .) that tend to be non-modular and
cross abstraction boundaries.

Ur/Web [Chlipala 2015a,b] is a statically typed ML-like tierless
programming language. It only provides compilation units, not
modules. Its approach to compilation is similar toMLton [MLton
2014]: it applies a set of whole-program optimizations to remove
all high order calls, then slices the program. This process is incom-
patible with separate compilation.

There has been a lot of work on bringing static slicing to JavaScript
[Chong et al. 2007; Philips et al. 2014, 2016]. These approaches do
not provide any tools to talk about modules and are whole-program
transformations. Furthermore, JavaScript modules do not provide
any form of data abstraction.

6.2 Dynamic slicing

Some interpreted languages relies on slicing at runtime to extract
the client part of the program and send it alongside the generated
Web page. While this is more expressive, it does not provide any of
the guarantees provided by static slicing.

Hop [Boudol et al. 2012; Serrano and Queinnec 2010] is a di-
alect of Scheme for programming Web applications. Its successor,
Hop.js [Serrano and Prunet 2016] takes the same concepts and
brings them to JavaScript. There is no static typing, JavaScript
modules do not provide any data abstraction feature and the slicing
is not modular.

Meteor.js [Meteor.js 2017] is a framework where both client
and server side of an application are written in JavaScript. It does
not provide static typing nor any form of abstraction.

Links [Cooper et al. 2006] is an experimental functional language
for client-server Web programming with a type and effect system.
The slicing is type-directed, leveraging effects to annotate client,
server or database functions. The current implementation of Links
is interpreted and relies on dynamic slicing. It does not have a
module system. Some work has been done on introducing static
compilation [Cheney et al. 2013], but it relies on normalization
by evaluation, which is not immediately compatible with separate
compilation.

6.3 Modular languages

Haste [Ekblad and Claessen 2014] is an extension of Haskell
similar to Eliom. Instead of using syntactic annotations, it embeds
client and server code into monads. It inherits theHaskell features
in term of modules and data abstraction. Furthermore, the tierless
compiler forHaste relies heavily on the GHC, providing support for
separate-compilation. Kilpatrick et al. [2014] developed a complete
expressive module language for Haskell.

MetaOCaml [Kiselyov 2014] is an extension of OCaml for
staged meta-programming. While the expression language is quite
similar to the one in Eliom, MetaOCaml provides no support for
modules. Staging annotations are only on expressions, not on dec-
larations. Code generation and checking of the generated code is
dynamic.

Modular macros [Nicole 2016; Yallop and White 2015] are an-
other extension of OCaml. It uses staging to implement macros. It
provides both a quotation-based expression language along with
staging annotations on declarations. It also aims to support modules
and functors. Contrary to Eliom, there is only one type universe.
Furthermore, the slicing can also be seen as dynamic (since code is
executed at compile time to produce pieces of programs). In particu-
lar, this allows to lift most of the restriction imposed on multi-stage
functors.

Acute [Sewell et al. 2007] is an extension of OCaml for dis-
tributed programming. It provides typesafe serialization and dese-
rialization and also allows arbitrary loading of modules at runtime.
Like Eliom, it provides a full-blown module system. However, it
takes an opposite stance on the execution model: each actor runs
independent programs and communications are completely dy-
namic. Handling of multiple type universes is done by providing a
description of the type with each message and by versioning APIs.

CONCLUSION

We presented a module system for Eliom, a statically typed func-
tional tierless Web programming language based on OCaml. It
combines a powerful tierless expression language, as described by
[Radanne et al. 2016a,b], and a rich ML-style module language. To
achieve this, we propose to annotate declarations with four loca-
tions: base, client, server or mixed. These locations allows to express
tierless libraries conveniently while providing all the essential prop-
erties of a module system. In particular, Eliom is the only language
that supports an efficient static compilation scheme, proper data ab-
straction and separate compilation. Furthermore, Eliom integrates
seamlessly with the OCaml language and its ecosystem. We im-
plemented this language as an extension of the OCaml compiler
which includes typechecking, compilation and a runtime.

The need for a module system which integrates tierless anno-
tations comes directly from the development of libraries and Web
applications as part of Ocsigen. Web sites have become increas-
ingly complex in the past decade. While several solutions for the
“tiers” problem has been proposed, very few tackle the practical
issues raised by programming large web applications with tier-
less languages. We believe that good support for modularity and
abstraction is essential for any serious large-scale programming.

9

REFERENCES

Vincent Balat. 2014. Rethinking Traditional Web Interaction: Theory and Imple-
mentation. International Journal on Advances in Internet Technology (2014).
http://www.iariajournals.org/internet_technology/

Vincent Balat, Jérôme Vouillon, and Boris Yakobowski. 2009. Experience report:
Ocsigen, a Web programming framework. In ICFP, Graham Hutton and Andrew P.
Tolmach (Eds.). ACM, 311–316.

Gérard Boudol, Zhengqin Luo, Tamara Rezk, and Manuel Serrano. 2012. Reasoning
about Web Applications: An Operational Semantics for HOP. ACM Trans. Program.
Lang. Syst. 34, 2 (2012), 10.

James Cheney, Sam Lindley, Gabriel Radanne, and Philip Wadler. 2013. Effective
Quotation. CoRR abs/1310.4780 (2013). http://arxiv.org/abs/1310.4780

Adam Chlipala. 2015a. An Optimizing Compiler for a Purely Functional Web-
Application Language. In ICFP.

Adam Chlipala. 2015b. Ur/Web: A Simple Model for Programming the Web. In
Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL ’15). ACM, New York, NY, USA, 153–165.
https://doi.org/10.1145/2676726.2677004

Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng, and Xin
Zheng. 2007. Secure Web Applications via Automatic Partitioning. In Proceedings
of Twenty-first ACM SIGOPS Symposium on Operating Systems Principles (SOSP ’07).
ACM, New York, NY, USA, 31–44. https://doi.org/10.1145/1294261.1294265

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2006. Links: Web Pro-
gramming Without Tiers. In FMCO. 266–296.

Karl Crary. 2017. Modules, abstraction, and parametric polymorphism. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D.
Gordon (Eds.). ACM, 100–113. http://dl.acm.org/citation.cfm?id=3009892

Derek Dreyer. 2005. Understanding and Evolving the ML Module System. Ph.D. Disser-
tation. CMU. https://people.mpi-sws.org/~dreyer/thesis/main.pdf

Anton Ekblad and Koen Claessen. 2014. A Seamless, Client-centric Programming
Model for Type Safe Web Applications. In Proceedings of the 2014 ACM SIGPLAN
Symposium on Haskell (Haskell ’14). ACM, New York, NY, USA, 79–89. https:
//doi.org/10.1145/2633357.2633367

Eliom 2017. Eliom web site. https://ocsigen.org/eliom.
Hashids 2017. Hashids. http://hashids.org/.
Scott Kilpatrick, Derek Dreyer, Simon L. Peyton Jones, and Simon Marlow. 2014.

Backpack: retrofitting Haskell with interfaces. In The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego,
CA, USA, January 20-21, 2014, Suresh Jagannathan and Peter Sewell (Eds.). ACM,
19–32. https://doi.org/10.1145/2535838.2535884

Oleg Kiselyov. 2014. The Design and Implementation of BER MetaOCaml - System
Description. In Functional and Logic Programming - 12th International Symposium,
FLOPS 2014, Kanazawa, Japan, June 4-6, 2014. Proceedings (Lecture Notes in Computer
Science), Michael Codish and Eijiro Sumii (Eds.), Vol. 8475. Springer, 86–102. https:
//doi.org/10.1007/978-3-319-07151-0_6

Daniel K. Lee, Karl Crary, and Robert Harper. 2007. Towards a mechanized metatheory
of standard ML. In Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2007, Nice, France, January 17-
19, 2007, Martin Hofmann and Matthias Felleisen (Eds.). ACM, 173–184. https:
//doi.org/10.1145/1190216.1190245

Xavier Leroy. 1994. Manifest Types, Modules, and Separate Compilation. In Con-
ference Record of POPL’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Portland, Oregon, USA, January 17-21, 1994, Hans-
Juergen Boehm, Bernard Lang, and Daniel M. Yellin (Eds.). ACM Press, 109–122.
https://doi.org/10.1145/174675.176926

Xavier Leroy. 1995. Applicative Functors and Fully Transparent Higher-Order
Modules. In Conference Record of POPL’95: 22nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, San Francisco, California, USA,
January 23-25, 1995, Ron K. Cytron and Peter Lee (Eds.). ACM Press, 142–153.
https://doi.org/10.1145/199448.199476

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme
Vouillon. 2016. The OCaml system release 4.04, Documentation and user’s manual.
Projet Gallium, INRIA.

David B. MacQueen. 1984. Modules for Standard ML. In LISP and Functional Program-
ming. 198–207.

Meteor.js 2017. Meteor.js. http://meteor.com.
Robin Milner, Mads Tofte, and Robert Harper. 1990. Definition of standard ML. MIT

Press.
Yaron Minsky, Anil Madhavapeddy, and Jason Hickey. 2013. Real World OCaml -

Functional Programming for the Masses. O’Reilly. https://realworldocaml.org/
MLton 2014. MLton. (2014). http://mlton.org/Home
Olivier Nicole. 2016. Bringing typed, modular macros to OCaml. (2016). https:

//oliviernicole.github.io/about_macros.html
Ocsigen Toolkit 2017. Ocsigen Toolkit. http://ocsigen.org/ocsigen-toolkit/.
Laure Philips, Coen De Roover, Tom Van Cutsem, and Wolfgang De Meuter. 2014.

Towards Tierless Web Development Without Tierless Languages. In Proceedings of

the 2014 ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software (Onward! 2014). ACM, New York, NY, USA, 69–81.
https://doi.org/10.1145/2661136.2661146

Laure Philips, Joeri De Koster, Wolfgang De Meuter, and Coen De Roover. 2016.
Dependence-driven delimited CPS transformation for JavaScript. In Proceedings
of the 2016 ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences, GPCE 2016, Amsterdam, The Netherlands, October 31 -
November 1, 2016, Bernd Fischer and Ina Schaefer (Eds.). ACM, 59–69. https:
//doi.org/10.1145/2993236.2993243

Gabriel Radanne. 2017. Tierless Web Programming in ML. Ph.D. Dissertation. Paris
Diderot. https://www.irif.fr/~gradanne/papers/phdthesis.pdf

Gabriel Radanne, Vasilis Papavasileiou, Jérôme Vouillon, and Vincent Balat. 2016a.
Eliom: tierless Web programming from the ground up. In IFL 2016, Leuven, Belgium,
August 31 - September 2, 2016, Tom Schrijvers (Ed.). ACM, 8:1–8:12. https://doi.
org/10.1145/3064899.3064901

Gabriel Radanne, Jérôme Vouillon, and Vincent Balat. 2016b. Eliom: A Core ML
Language for TierlessWeb Programming. InAPLAS 2016, Hanoi, Vietnam, November
21-23, 2016, Proceedings (Lecture Notes in Computer Science), Atsushi Igarashi (Ed.),
Vol. 10017. 377–397. https://doi.org/10.1007/978-3-319-47958-3_20

Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. 2014. F-ing modules. J. Funct.
Program. 24, 5 (2014), 529–607. https://doi.org/10.1017/S0956796814000264

Claudio V. Russo. 2000. First-Class Structures for Standard ML. Nord. J. Comput. 7, 4
(2000), 348–374.

Manuel Serrano and Vincent Prunet. 2016. A glimpse of Hopjs. In Proceedings of the
21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016,
Nara, Japan, September 18-22, 2016, Jacques Garrigue, Gabriele Keller, and Eijiro
Sumii (Eds.). ACM, 180–192. https://doi.org/10.1145/2951913.2951916

Manuel Serrano and Christian Queinnec. 2010. A multi-tier semantics for Hop. Higher-
Order and Symbolic Computation 23, 4 (2010), 409–431.

Peter Sewell, James J. Leifer, Keith Wansbrough, Francesco Zappa Nardelli, Mair
Allen-Williams, Pierre Habouzit, and Viktor Vafeiadis. 2007. Acute: High-level
programming language design for distributed computation. J. Funct. Program. 17,
4-5 (2007), 547–612. https://doi.org/10.1017/S0956796807006442

Mads Tofte. 1988. Operational Semantics and Polymorphic Type Inference. Ph.D. Disser-
tation. University of Edinburgh.

TyXML 2017. TyXML. http://ocsigen.org/tyxml/.
Jérôme Vouillon and Vincent Balat. 2014. From bytecode to JavaScript: the Js_of_-

ocaml compiler. Software: Practice and Experience 44, 8 (2014), 951–972. https:
//doi.org/10.1002/spe.2187

Jeremy Yallop and Leo White. 2015. Modular macros. OCaml Workshop (2015). http:
//www.lpw25.net/ocaml2015-abs1.pdf

10

http://www.iariajournals.org/internet_technology/
http://arxiv.org/abs/1310.4780
https://doi.org/10.1145/2676726.2677004
https://doi.org/10.1145/1294261.1294265
http://dl.acm.org/citation.cfm?id=3009892
https://people.mpi-sws.org/~dreyer/thesis/main.pdf
https://doi.org/10.1145/2633357.2633367
https://doi.org/10.1145/2633357.2633367
https://ocsigen.org/eliom
http://hashids.org/
https://doi.org/10.1145/2535838.2535884
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1145/1190216.1190245
https://doi.org/10.1145/1190216.1190245
https://doi.org/10.1145/174675.176926
https://doi.org/10.1145/199448.199476
http://meteor.com
https://realworldocaml.org/
http://mlton.org/Home
https://oliviernicole.github.io/about_macros.html
https://oliviernicole.github.io/about_macros.html
http://ocsigen.org/ocsigen-toolkit/
https://doi.org/10.1145/2661136.2661146
https://doi.org/10.1145/2993236.2993243
https://doi.org/10.1145/2993236.2993243
https://www.irif.fr/~gradanne/papers/phdthesis.pdf
https://doi.org/10.1145/3064899.3064901
https://doi.org/10.1145/3064899.3064901
https://doi.org/10.1007/978-3-319-47958-3_20
https://doi.org/10.1017/S0956796814000264
https://doi.org/10.1145/2951913.2951916
https://doi.org/10.1017/S0956796807006442
http://ocsigen.org/tyxml/
https://doi.org/10.1002/spe.2187
https://doi.org/10.1002/spe.2187
http://www.lpw25.net/ocaml2015-abs1.pdf
http://www.lpw25.net/ocaml2015-abs1.pdf

	Abstract
	1 Introduction
	1.1 Modules
	1.2 Eliom
	1.3 Modules for tierless web programming

	2 Of comments and camels
	2.1 Abstraction and encapsulation
	2.2 Functors
	2.3 Going further

	3 Tierless widgets
	3.1 Sections
	3.2 Client fragments
	3.3 Injections
	3.4 Comment widget
	3.5 Notes on semantics
	3.6 Further reading

	4 Tierless modular programming
	4.1 Interaction with OCaml
	4.2 Modules and locations
	4.3 Mixed modules
	4.4 Mixed data structures

	5 Under the hood
	5.1 Typechecking and Specialization
	5.2 Mixed modules
	5.3 Compilation and execution
	5.4 Formal description
	5.5 Implementation

	6 Related work
	6.1 Global slicing
	6.2 Dynamic slicing
	6.3 Modular languages

	References

