GADTs gone mild

Code at https://gabriel. radanne.net/talks

Gabriel RADANNE

https://gabriel.radanne.net/talks

Definition: Generalized Algebraic Data Types (GADT)

The least maintainable way of writing interpreters'

"Except maybe dependent types

2/39

ADT: Algebraic Data Types

Types with sum and products:

type list =
| Nil
| Cons of int * list

3/39

Parametrized Algebraic Data Types

Parametrized types with sum and products:

type 'a list =
| Nil
| Cons of 'a * 'a list

4/39

Parametrized Algebraic Data Types
Parametrized types with sum and products:

type 'a list =
| Nil : 'a list
| Cons : 'a x 'a list -> 'a list

5/39

Generalized Algebraic Data Types
Types with sum and products where we can change the return type:

type _ t =
| A : string t
| B : int -> float t

let x : float t = B 2
let y : string t = A

6/39

BUT,WHY?

Compact arrays

Let's say we want to have compact arrays?:
type 'a t =
| Array of 'a array
| String of string (* This is more compact! x)

2Example courtesy of Yaron Minsky “Why GADTs matter for performance”

8/39

Compact arrays

Let's say we want to have compact arrays?:
type 'a t =

| Array of 'a array

| String of string (* This is more compact! x)
let get x i = match x with

| Array a -> Array.get a i

| String s -> String.get s i

2Example courtesy of Yaron Minsky “Why GADTs matter for performance”

8/39

Compact arrays

Let's say we want to have compact arrays?:

type 'a t =
| Array of 'a array
| String of string (* This is more compact! x)

let get x i = match x with

| Array a -> Array.get a i

| String s -> String.get s i
You get the following type signature:
val get : char t -> int -> char

This is too specific!

2Example courtesy of Yaron Minsky “Why GADTs matter for performance”

8/39

Compact arrays — with GADTs

Let's say we want to have compact arrays:
type 'a t =

| Array : 'a array -> 'a t

| String : string -> char t

9/39

Compact arrays — with GADTs

Let’'s say we want to have compact arrays:

type 'a t =
| Array : 'a array -> 'a t
| String : string -> char t
let get

: type a. a t -> int -> a (x Vo.ot— int— o0 *)
= fun x i -> match x with

| Array a -> Array.get a i

| String s -> String.get s i
val get : 'a t -> int -> 'a

The type annotation is necessary!

9/39

Compact arrays — with GADTs

let x = String "Topinambour!" ;;
val x : char t

get x 3 ;;

- : char = 'i'

10/39

Compact arrays — with GADTs

let x = String "Topinambour!" ;;
val x : char t

get x 3 ;;

- : char = 'i'

let y = Array [|1;2]] ;;

val y : int t

#gety 0 ;;

- sint =1

10/39

Do you want to build an
interpreter?

Let’s write a small interpreter!
Our language will have:

» Boolean and integers constants
* If expressions

+ Addition

« Equality test

11/39

Expressions — Type definition

type expr =
| Int of int (x 42 x)
| Bool of bool (* true x)
| Add of exprxexpr (x e + e *)
| If of exprxexprxexpr (x if b then e else ex)
| Equal of exprxexpr (x e = e x)

(x 1if 1 = 2 then 3 else 4 x)
If (Equal (Int 1, Int 2), Int 3, Int 4)

12/39

let rec eval e = match e with
| Int i -> i

13/39

let rec eval e = match e with
| Int i -> i
| Bool b -> (x ... x)

13/39

type value = I of int | B of bool
let rec eval e = match e with

| Inti ->TI 1
| BooL b ->B b

13/39

type value = I of int | B of bool

let rec eval e = match e with
| Int i > I 1
| BooL b ->B b
| Add (el,e2) ->
let vl = eval el and v2 = eval e2 in

13/39

type value = I of int | B of bool

let rec eval e = match e with

| Inti ->TI 1

| BooL b ->B b

| Add (el,e2) ->
let vl = eval el and v2 = eval e2 in
(match v1, v2 with
| T i1, I i2 -> I (il + i2)
| - -> failwith "Moule a gaufres!")

13/39

type value = I of int | B of bool

let rec eval e = match e with
| Inti ->TI 1
| BooL b ->B b
| Add (el,e2) ->
let vl = eval el and v2 = eval e2 in
(match v1, v2 with
| T i1, I i2 -> I (il + i2)
| - -> failwith "Moule a gaufres!")
| If (b, el, e2) ->
(match eval b with
| B true -> eval el
| B false -> eval e2

| T _ -> failwith "Anacoluthe!")
13/39

type value = I of int | B of bool

let rec eval e = match e with

| Inti ->TI 1

| BooL b ->B b

| Add (el,e2) ->
let vl = eval el and v2 = eval e2 in
(match v1, v2 with
| T i1, I i2 -> I (il + i2)
| - -> failwith "Moule a gaufres!")

| If (b, el, e2) ->
(match eval b with
| B true -> eval el
| B false -> eval e2
| T _ -> failwith "Anacoluthe!")

| Equal _ -> (*x ... %) 19189

Expressions — problems

Problems:
* It's annoying to write
* It scales poorly to many different values

» The OCAML type system doesn’t help us

14/39

Expressions — problems

Problems:
* It's annoying to write
* It scales poorly to many different values
» The OCAML type system doesn’t help us
Enter GADTs!

14/39

Expressions — the GADT way

We add a new type parameter
type 'a expr =
| Int: int -> int expr
Bool: bool -> bool expr

|

| Add: int expr x int expr -> int expr

| If: bool expr *x 'a expr * 'a expr -> 'a expr
|

Equal: 'a expr * 'a expr -> bool expr
(x 1f 1 = 2 then 3 else 4 x)
let e : int expr =

If (Equal (Int 1, Int 2), Int 3, Int 4)

15/39

let rec eval
type a. a expr -> a (*x Va. o expr— a *)

16/39

let rec eval
: type a. a expr -> a (x V. o expr— o *)
= fun e -> match e with

| Int i -> i

| Bool b -> b

16/39

let rec eval

: type a. a expr -> a (x V. o expr— o *)
= fun e -> match e with
| Int i -> 1
| Bool b -> b
| Add (el,e2) ->
let vl = eval el and v2 = eval e2 in

16/39

let rec eval
: type a. a expr -> a (x V. o expr— o *)
= fun e -> match e with
| Int i -> i
| Bool b -> b
| Add (el,e2) ->
let vl = eval el and v2 = eval e2 in
vl + v2

16/39

let rec eval

: type a. a expr -> a (x V. o expr— o *)
= fun e -> match e with

Inti > 1

Bool b -> b

Add (el,e2) ->

let vl = eval el and v2 = eval e2 in
vl + v2

If (b, el, e2) ->

if eval b then eval el else eval e2
Equal (el, e2) -> (eval el = eval e2)

16/39

let rec eval

: type a. a expr -> a (x V. o expr— o *)
= fun e -> match e with

Inti > 1

Bool b -> b

Add (el,e2) ->

let vl = eval el and v2 = eval e2 in
vl + v2

If (b, el, e2) ->

if eval b then eval el else eval e2
Equal (el, e2) -> (eval el = eval e2)

eval e ;;
:int = 4

16/39

let rec eval

: type a. a expr -> a (x V. o expr— o *)
= fun e -> match e with

Inti > 1

Bool b -> b

Add (el,e2) ->

let vl = eval el and v2 = eval e2 in
vl + v2

If (b, el, e2) ->

if eval b then eval el else eval e2
Equal (el, e2) -> (eval el = eval e2)

eval e ;;
:int = 4

Tada!

16/39

Expressions with GADTs

This is usually called HOAS (High Order Abstract Syntax).

Pros:
* It's so cool.
» The type system checks that your evaluation function is correct.
« Validity of expressions is encoded in the type system.

17/39

Expressions with GADTs

This is usually called HOAS (High Order Abstract Syntax).
Pros:

* It's so cool.
» The type system checks that your evaluation function is correct.
« Validity of expressions is encoded in the type system.
Cons:
* You can only express things that are valid in the host type system.
» Moving from the untyped world to the typed world is difficult.
parse : string -> ? expr
« Transformations must be type preserving.
+ It doesn’t scale at all with the complexity of the domain.

17/39

Expressions with GADTs

This is usually called HOAS (High Order Abstract Syntax).
Pros:

* It's so cool.
» The type system checks that your evaluation function is correct.
« Validity of expressions is encoded in the type system.
Cons:
* You can only express things that are valid in the host type system.
» Moving from the untyped world to the typed world is difficult.
parse : string -> ? expr
« Transformations must be type preserving.
+ It doesn’t scale at all with the complexity of the domain.

= Almost only usable for toy languages. Otherwise, it creates an unmaintainable mess.

17/39

Results on GADTSs, aka. Poor man’s dependent types

Invented by 3 different groups:
* Augustsson & Petersson (1994): Silly Type Families
» Cheney & Hinze (2003): First-Class Phantom Types.
+ Xi, Chen & Chen (2003): Guarded Recursive Datatype Constructors.

Type inference is undecidable.

Checking of exhaustiveness in pattern matching is undecidable (Garrigue and Le Normand
(2015): GADTs and Exhaustiveness: Looking for the Impossible).

Interaction with subtyping is a mess (Scherer, Rémy (2013) GADTs Meet Subtyping).

Type error messages become quite baroque.

18/39

Examples of use for GADTs

There is a large body of literature with examples of use for GADTs:
+ How to program toy interpreters with GADTs in the most unreadable way
» How to encode unary numbers in types in the most verbose way

» Some far and few attempts at doing something actually useful (usually not in
publications, amusingly)3.

3This critique does not apply to the literature on dependent types.

19/39

But what can we actually do with
GADTs?

Things you can encode in GADTs

« Existential types
type t = Exists : 'a -> t (x do. a x)
 Type level (Unary) Natural numbers
» Type level lists
» Type level finite sets
» Type level tree-like inclusion hierarchies
» Small Typed DSLs

20/39

Things you can encode in GADTs

« Existential types
type t = Exists : 'a -> t (x do. a x)
 Type level (Unary) Natural numbers
» Type level lists
» Type level finite sets
» Type level tree-like inclusion hierarchies
» Small Typed DSLs

* Any property expressible by a context free language

20/39

Things you can encode in GADTs

« Existential types
type t = Exists : 'a -> t (x do. a x)
 Type level (Unary) Natural numbers
» Type level lists
» Type level finite sets
» Type level tree-like inclusion hierarchies
» Small Typed DSLs

» Any property expressible by a context free language by encoding a pushdown
automaton.

20/39

Things you can encode in GADTs

« Existential types
type t = Exists : 'a -> t (x do. a x)
 Type level (Unary) Natural numbers
» Type level lists
» Type level finite sets
» Type level tree-like inclusion hierarchies
» Small Typed DSLs

» Any property expressible by a context free language by encoding a pushdown
automaton.
+ And some contextual grammars (a"b"c")

20/39

Things you can encode in GADTs

« Existential types
type t = Exists : 'a -> t (x do. a x)
 Type level (Unary) Natural numbers
» Type level lists
» Type level finite sets
» Type level tree-like inclusion hierarchies
» Small Typed DSLs

» Any property expressible by a context free language by encoding a pushdown
automaton.
+ And some contextual grammars (a"b"c")
» Or worse (solutions to PCP)

20/39

Things you can encode in GADTs

« Existential types
type t = Exists : 'a -> t (x do. a x)
 Type level (Unary) Natural numbers
* Type level lists
» Type level finite sets
» Type level tree-like inclusion hierarchies
» Small Typed DSLs

» Any property expressible by a context free language by encoding a pushdown
automaton.
+ And some contextual grammars (a"b"c")
» Or worse (solutions to PCP)

20/39

Printf

Printf — The best bad idea in the C standard library

printf(
"We have %d potatoes which weight %f kg.",
5, 1.2);

First argument is a string with holes
* %d is an integer hole
+ %T is a floating point hole

Then, takes as many arguments as there are holes.

21/39

Printf — In OCAML

In OCAML, we also have printf:

Format.printf
"We have %d potatoes which weight %f kg."
5 1.2

This is statically checked.

3We use the Format module here. The Printf module is best avoided.

22/39

Where is the magic?

printf ;;
- : ('a, formatter, unit) format -> ‘'a

23/39

Where is the magic?

printf ;;
- : ('a, formatter, unit) format -> ‘'a

printf "%d sabords!" 1000;;
1000 sabords!

23/39

Where is the magic?

printf ;;

- : ('a, formatter, unit) format -> 'a

printf "%d sabords!" 1000;;

1000 sabords!

printf "%d sabords!" 10.5;;

Error: This expression has type float but
an expression was expected of type int

23/39

Where is the magic?

printf ;;

- : ('a, formatter, unit) format -> 'a

printf "%d sabords!" 1000;;

1000 sabords!

printf "%d sabords!" 10.5;;

Error: This expression has type float but
an expression was expected of type int

printf "%d sabords!";;

- : int -> unit

23/39

Where is the magic?

printf ;;

- : ('a, formatter, unit) format -> 'a

printf "%d sabords!" 1000;;

1000 sabords!

printf "%d sabords!" 10.5;;

Error: This expression has type float but
an expression was expected of type int

printf "%d sabords!";;

- : int -> unit

fun s -> printf s 1000;;

(int -> 'a, formatter, unit) format -> 'a

23/39

Where is the magic?

printf ;;

- : ('a, formatter, unit) format -> 'a

printf "%d sabords!" 1000;;

1000 sabords!

printf "%d sabords!" 10.5;;

Error: This expression has type float but
an expression was expected of type int

printf "%d sabords!";;

- : int -> unit

fun s -> printf s 1000;;

(int -> 'a, formatter, unit) format -> 'a

Wat.

23/39

An interlude in Prolog

Very short introduction to prolog

Prolog is an (untyped) logic programming language (more precisely, first order logic). If you
have the occasion, learn it, it’s very fun.

24/39

Very short introduction to prolog

Prolog is an (untyped) logic programming language (more precisely, first order logic). If you
have the occasion, learn it, it’s very fun.

?7- length([1, 3, 6], L).

L = 3.

24/39

Very short introduction to prolog

Prolog is an (untyped) logic programming language (more precisely, first order logic). If you
have the occasion, learn it, it’s very fun.

?7- length([1, 3, 6], L).

L = 3.

?7- append([3], [2, 1], Z).

Z=1[3, 2, 1].

24/39

Very short introduction to prolog

Prolog is an (untyped) logic programming language (more precisely, first order logic). If you
have the occasion, learn it, it’s very fun.

?7- length([1, 3, 6], L).

L = 3.

?- append([3], [2, 1], Z).

Z=1[3, 2, 1].

?- append([3], X, [3, 4, 5]).

X = [4, 5].

24/39

Very short introduction to prolog

Prolog is an (untyped) logic programming language (more precisely, first order logic). If you
have the occasion, learn it, it’s very fun.

?7- length([1, 3, 6], L).

L = 3.

?7- append([3], [2, 1], Z).

Z =13, 2, 1].

?- append([3], X, [3, 4, 5]).
X = [4, 5].

?7- append([H], T, Z).
Z = [H|T].

24/39

Difference lists

You can keep the tail of a list as a variable: [a,b,c,d|T]
Then, appending is easy: you just need to unify T.

?- L= 1[a,b,c,d|T], T =1[1,2,3].
L=1[a, b, ¢, d, 1, 2, 3]

With difference lists, concatenation is O(1).
A difference listis a pair or a list and its tail: [a,b,c,d|T]-T.

25/39

Prolog shows us that we can compute on lists with unification.
Hindley-Milner type systems are great at doing unification.

26/39

Prolog shows us that we can compute on lists with unification.
Hindley-Milner type systems are great at doing unification.

Greenspun’s Tenth Rule

Any sufficiently complicated C or Fortran program contains an ad hoc informally-specified
bug-ridden slow implementation of half of Common Lisp.

26/39

Prolog shows us that we can compute on lists with unification.
Hindley-Milner type systems are great at doing unification.

The prolog rule of type systems

Any sulfficiently complicated type system contains an ad hoc slow implementation of half
of prolog.

26/39

Prolog in the OCAML type system

Type level lists

"ty is the type level list.
"var is the unification variable at the tail.

type ('ty, 'var) t

27/39

Type level lists

"ty is the type level list.
"var is the unification variable at the tail.

type ('ty, 'var) t =
| Nil : ('var, 'var) t

27/39

Type level lists

"ty is the type level list.
‘var is the unification variable at the tail.
type ('ty, 'var) t =
| Nil : ('var, 'var) t
| Cons
'a x ("ty, 'var) t -> ('a -> 'ty, 'var) t

We count with the number of arrows!

27/39

Type level lists

"ty is the type level list.
"var is the unification variable at the tail.
type ('ty, 'var) t =

| Nil : ('var, 'var) t

| Cons :

'a x ('ty, 'var) t -> ('a -> "ty, 'var) t

We count with the number of arrows!
Cons(1,Nil);;
- ¢ (int -> 'v, 'v) t
Cons("foo", Cons(false,Nil));;
(string -> bool -> 'v, 'v) t

27/39

Terrible arithmetic for apprentice type magicians

let one x = Cons (x, Nil) ;;
val one : 'a -> ('a -> 'v, 'v) t

28/39

Terrible arithmetic for apprentice type magicians

let one x = Cons (x, Nil) ;;
val one : 'a -> ('a -> 'v, 'v) t

ty=0—'v

28/39

Terrible arithmetic for apprentice type magicians

let one x = Cons (x, Nil) ;;
val one : 'a -> ('a -> 'v, 'v) t

ty=0—'v

ty—-v=u«o

28/39

Append for difference lists

Cons("foo", Cons(false,Nil));;

(string -> bool -> 'vl, 'vl) t

Cons(1,Nil);;

- ¢ (int -> 'v2, 'v2) t

Cons("foo", Cons(false, Cons(1,Nil)));;
(string -> bool -> int -> 'v3, 'v3) t

We replace 'vlinstring -> bool -> 'vlbyint -> 'v2.

29/39

Append for difference lists

Cons("foo", Cons(false,Nil));;

- ¢ (string -> bool -> 'vl, 'vl) t

Cons(1,Nil);;

- ¢ (int -> 'v2, 'v2) t

Cons("foo", Cons(false, Cons(1,Nil)));;

- : (string -> bool -> int -> 'v3, 'v3) t

We replace 'vlinstring -> bool -> 'vlbyint -> 'v2.
We can deduce the type for append:

val append:
("tyl,'ty2) t -> ("ty2,'v) t -> ('tyl,'v) t

29/39

Append for difference lists

val append:
("tyl,'ty2) t -> ("ty2,'v) t -> ("tyl,'v) t

s —ty2

+ ,tY2 —'v

="ty;—'v

30/39

Append for difference lists — Implementation

let rec append
: type tyl ty2 v.
(tyl, ty2) t ->
(ty2, v) t ->
(tyl, v) t
= fun 11 12 -> match 11 with
| NAl -> 12
| Cons (h, t) -> Cons (h, append t 12)

31/39

Append for difference lists — Implementation

let rec append
: type tyl ty2 v.
(tyl, ty2) t ->
(ty2, v) t ->

(tyl, v) t
= fun 11 12 -> match 11 with
| Nil -> 12

| Cons (h, t) -> Cons (h, append t 12)

The other lists functions are left as an exercise for the audience.

31/39

Back to printf

What is a format

There is a bit of compiler magic in OCAML to recognize formats:

("%s | %s" : _ format) ;;
- : (string -> string -> 'a, 'b, 'a) format

This type looks like our new list datatype!

32/39

The format datatype

33/39

The format datatype

type ('ty,'v) t =
| End : ('v,'v) t
| Constant : string * ('ty,'v) t -> ('ty,'v) t

33/39

The format datatype

type ('ty,'v) t =
| End : ('v,'v) t
| Constant : string * ('ty,'v) t -> ('ty,'v) t
| Hole : ('ty, 'v) t -> (string -> 'ty, 'v) t

33/39

The format datatype

type ('ty,'v) t =
| End : ('v,'v) t
| Constant : string * ('ty,'v) t -> ('ty,'v) t
| Hole : ('ty, 'v) t -> (string -> 'ty, 'v) t

Hole (Constant (" | ", Hole End)) ;;
- : (string -> string -> 'v, 'v) format

33/39

printf — Implementation

We want to implement printf

val printf: ('ty, string) t -> 'ty}

But the number of argument could be arbitrary!

Instead, we implement first by continuation:

val kprintf: (string -> 'v) -> ('ty, 'v) format -> 'ty
This is easy to write, you can try it :)

The whole implementation is included in the supported code.

34/39

Real World Printf

You might be wondering: is this really how printf works?

("%s | %s" : _ format) ;;
- : (string -> string -> 'a, 'b, 'a) format

35/39

Real World Printf

You might be wondering: is this really how printf works?
("%s | %s" : _ format) ;;

- : (string -> string -> 'a, 'b, 'a) format =
CamlinternalFormatBasics. (Format (

String (No_padding, String_literal (" | "

String (No_padding, End_of_format))),
||c>/°S | o/osll))

’

35/39

Real World Printf

You might be wondering: is this really how printf works?
("%s | %s" : _ format) ;;
- : (string -> string -> 'a, 'b, 'a) format =
CamlinternalFormatBasics. (Format (

String (No_padding, String_literal (" | ",

String (No_padding, End_of_format))),

"%Ss | %s"))
Originally written in 1996 by Pierre Weis (GADT didn’t even existed!?)*
Rewritten in 2014 by Benoit Vaugon using GADTs. The actual implementation is a lot more
complex than our toy example.

4|t was full of Obj .magic

35/39

Wrapping up

» We can use unification to compute in types.
» GADTs allow us to define such datatype relatively easily.
* Prolog is fun.

+ We can use GADT for useful things.

36/39

Wrapping up

» We can use unification to compute in types.

» GADTs allow us to define such datatype relatively easily.
* Prolog is fun.

+ We can use GADT for useful things.

» You will only understand this by practice.

36/39

Real World GADTs

Bigarray Controlling memory layout
Format Type level lists for Printf
Hmap Heterogeneous maps
SLAP Linear algebra with statically checked sizes

Many type-safe DSLs:
URL routing, GraphQL APlIs, Typed regular expressions, SMT terms,
Organize devices for unikernels

37/39

Real World Printf

Commit e0b000527 by Gabriel Scherer about Printf
[..] The short summary is [...] that proving things by writing GADT functions in OCami
reveals that Coq’s Ltac is a miracle of usability.

38/39

Questions ?

Code at https://gabriel.radanne.net/talks
Detailed blog post on https://drup.github.i0/2016/08/02/difflists/

39/39

https://gabriel.radanne.net/talks
https://drup.github.io/2016/08/02/difflists/

Troubles in GADT paradise

For technical reasons, our GADT type is not covariant, which mean we don’t enjoy the
relaxed value restriction.
append
(Cons (1, Cons ("bla", Nil)))
(Cons (2., Nil))
- : (int -> string -> float -> '_v, '_v) t

This means formats are a bit annoying to use in a functional way.

printf — Implementation

We want to implement printf: ('ty, string) t -> 'ty.

printf — Implementation

We want to implement printf: ('ty, string) t -> 'ty.

let x = Hole (Constant (" | ", Hole End)) ;;
val x : (string -> string -> 'v, 'v) format
printf x;;

- : string -> string -> string

printf — Implementation

We want to implement printf: ('ty, string) t -> 'ty.
let rec printf
: type ty v. (ty,v) t -> ty
= fun k -> function
| End -> ""
| Constant (const, fmt) ->
const ©~ printf fmt (* oups *)
| Hole fmt ->
fun x -> x ~ printf fmt (* oups x)

Recursive calls to printf might have more arguments. That doesn’t work.

printf — Implementation

We want to implement printf: ('ty, string) t -> 'ty.
Instead, we are going to implement by continuation:
val kprintf:

(string -> 'v) -> ('ty, 'v) format -> 'ty

printf — Implementation

We want to implement printf: ('ty, string) t -> 'ty.
let rec kprintf
: type ty v. (string -> v) -> (ty,v) t -> ty
= fun k -> function
| End -> k ""
| Constant (const, fmt) ->
kprintf (fun str -> k (const © str)) fmt
| Hole fmt ->
let f s =
kprintf (fun str -> k (s © str)) fmt
in f

printf — Implementation

We want to implement printf: ('ty, string) t -> 'ty.
let rec kprintf
: type ty v. (string -> v) -> (ty,v) t -> ty
= fun k -> function
| End -> k ""
| Constant (const, fmt) ->

kprintf (fun str -> k (const ©~ str)) fmt
| Hole fmt ->
let f s =

kprintf (fun str -> k (s © str)) fmt

in f
let é?intf fmt = kprintf (fun x -> x) fmt

Balanced parens

type zero = Zero
type 'a succ = Succ

type _ t =
| End : zero t
| R: 'at ->"asucct
| L : 'asucct ->"'at

type start = Start of zero t

(x (()()) *)
let x = Start (L (L (R (L (R (REnd)))))) ;;

We can encode any FSA with an arbitrary (finite) number of registers.
Note: not a minsky machine: no conditional jumps.

	Do you want to build an interpreter?
	Printf
	An interlude in Prolog
	Prolog in the OCaml type system
	Back to printf
	Appendix

