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Definition: Generalized Algebraic Data Types (GADT)

The least maintainable way of writing interpreters'

"Except maybe dependent types
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ADT: Algebraic Data Types

Types with sum and products:

type list =
| Nil
| Cons of int * list
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Parametrized Algebraic Data Types

Parametrized types with sum and products:

type 'a list =
| Nil
| Cons of 'a * 'a list
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Parametrized Algebraic Data Types
Parametrized types with sum and products:

type 'a list =
| Nil : 'a list
| Cons : 'a x 'a list -> 'a list
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Generalized Algebraic Data Types
Types with sum and products where we can change the return type:

type _ t =
| A : string t
| B : int -> float t

let x : float t = B 2
let y : string t = A
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BUT,WHY?



Compact arrays

Let's say we want to have compact arrays?:
type 'a t =
| Array of 'a array
| String of string (* This is more compact! x)

2Example courtesy of Yaron Minsky “Why GADTs matter for performance”
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Compact arrays

Let's say we want to have compact arrays?:
type 'a t =

| Array of 'a array

| String of string (* This is more compact! x)
let get x i = match x with

| Array a -> Array.get a i

| String s -> String.get s i

2Example courtesy of Yaron Minsky “Why GADTs matter for performance”
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Compact arrays

Let's say we want to have compact arrays?:

type 'a t =
| Array of 'a array
| String of string (* This is more compact! x)

let get x i = match x with

| Array a -> Array.get a i

| String s -> String.get s i
You get the following type signature:
val get : char t -> int -> char

This is too specific!

2Example courtesy of Yaron Minsky “Why GADTs matter for performance”
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Compact arrays — with GADTs

Let's say we want to have compact arrays:
type 'a t =

| Array : 'a array -> 'a t

| String : string -> char t
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Compact arrays — with GADTs

Let’'s say we want to have compact arrays:

type 'a t =
| Array : 'a array -> 'a t
| String : string -> char t
let get

: type a. a t -> int -> a (x Vo.ot— int— o0 *)
= fun x i -> match x with

| Array a -> Array.get a i

| String s -> String.get s i
val get : 'a t -> int -> 'a

The type annotation is necessary!
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Compact arrays — with GADTs

# let x = String "Topinambour!" ;;
val x : char t

# get x 3 ;;

- : char = 'i'
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Compact arrays — with GADTs

# let x = String "Topinambour!" ;;
val x : char t

# get x 3 ;;

- : char = 'i'

# let y = Array [|1;2]] ;;

val y : int t

#gety 0 ;;

- sint =1
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Do you want to build an
interpreter?



Let’s write a small interpreter!
Our language will have:

» Boolean and integers constants
* If expressions

+ Addition

« Equality test
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Expressions — Type definition

type expr =
| Int of int (x 42 x)
| Bool of bool (* true x)
| Add of exprxexpr (x e + e *)
| If of exprxexprxexpr (x if b then e else ex)
| Equal of exprxexpr (x e = e x)

(x 1if 1 = 2 then 3 else 4 x)
If (Equal (Int 1, Int 2), Int 3, Int 4)
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let rec eval e = match e with
| Int i -> i
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let rec eval e = match e with
| Int i -> i
| Bool b -> (x ... x)
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type value = I of int | B of bool
let rec eval e = match e with

| Inti ->TI 1
| BooL b ->B b
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type value = I of int | B of bool

let rec eval e = match e with
| Int i > I 1
| BooL b ->B b
| Add (el,e2) ->
let vl = eval el and v2 = eval e2 in
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type value = I of int | B of bool

let rec eval e = match e with

| Inti ->TI 1

| BooL b ->B b

| Add (el,e2) ->
let vl = eval el and v2 = eval e2 in
(match v1, v2 with
| T i1, I i2 -> I (il + i2)
| - -> failwith "Moule a gaufres!")
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type value = I of int | B of bool

let rec eval e = match e with
| Inti ->TI 1
| BooL b ->B b
| Add (el,e2) ->
let vl = eval el and v2 = eval e2 in
(match v1, v2 with
| T i1, I i2 -> I (il + i2)
| - -> failwith "Moule a gaufres!")
| If (b, el, e2) ->
(match eval b with
| B true -> eval el
| B false -> eval e2

| T _ -> failwith "Anacoluthe!")
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type value = I of int | B of bool

let rec eval e = match e with

| Inti ->TI 1

| BooL b ->B b

| Add (el,e2) ->
let vl = eval el and v2 = eval e2 in
(match v1, v2 with
| T i1, I i2 -> I (il + i2)
| - -> failwith "Moule a gaufres!")

| If (b, el, e2) ->
(match eval b with
| B true -> eval el
| B false -> eval e2
| T _ -> failwith "Anacoluthe!")

| Equal _ -> (*x ... %) 19189



Expressions — problems

Problems:
* It's annoying to write
* It scales poorly to many different values

» The OCAML type system doesn’t help us
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Expressions — problems

Problems:
* It's annoying to write
* It scales poorly to many different values
» The OCAML type system doesn’t help us
Enter GADTs!
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Expressions — the GADT way

We add a new type parameter
type 'a expr =
| Int: int -> int expr
Bool: bool -> bool expr

|

| Add: int expr x int expr -> int expr

| If: bool expr *x 'a expr * 'a expr -> 'a expr
|

Equal: 'a expr * 'a expr -> bool expr
(x 1f 1 = 2 then 3 else 4 x)
let e : int expr =

If (Equal (Int 1, Int 2), Int 3, Int 4)
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let rec eval
type a. a expr -> a (*x Va. o expr— a *)
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let rec eval
: type a. a expr -> a (x V. o expr— o *)
= fun e -> match e with

| Int i -> i

| Bool b -> b
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let rec eval

: type a. a expr -> a (x V. o expr— o *)
= fun e -> match e with
| Int i -> 1
| Bool b -> b
| Add (el,e2) ->
let vl = eval el and v2 = eval e2 in
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let rec eval
: type a. a expr -> a (x V. o expr— o *)
= fun e -> match e with
| Int i -> i
| Bool b -> b
| Add (el,e2) ->
let vl = eval el and v2 = eval e2 in
vl + v2
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let rec eval

: type a. a expr -> a (x V. o expr— o *)
= fun e -> match e with

Inti > 1

Bool b -> b

Add (el,e2) ->

let vl = eval el and v2 = eval e2 in
vl + v2

If (b, el, e2) ->

if eval b then eval el else eval e2
Equal (el, e2) -> (eval el = eval e2)
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let rec eval

: type a. a expr -> a (x V. o expr— o *)
= fun e -> match e with

Inti > 1

Bool b -> b

Add (el,e2) ->

let vl = eval el and v2 = eval e2 in
vl + v2

If (b, el, e2) ->

if eval b then eval el else eval e2
Equal (el, e2) -> (eval el = eval e2)

# eval e ;;
:int = 4
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let rec eval

: type a. a expr -> a (x V. o expr— o *)
= fun e -> match e with

Inti > 1

Bool b -> b

Add (el,e2) ->

let vl = eval el and v2 = eval e2 in
vl + v2

If (b, el, e2) ->

if eval b then eval el else eval e2
Equal (el, e2) -> (eval el = eval e2)

# eval e ;;
:int = 4

Tada!
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Expressions with GADTs

This is usually called HOAS (High Order Abstract Syntax).

Pros:
* It's so cool.
» The type system checks that your evaluation function is correct.
« Validity of expressions is encoded in the type system.
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Expressions with GADTs

This is usually called HOAS (High Order Abstract Syntax).
Pros:

* It's so cool.
» The type system checks that your evaluation function is correct.
« Validity of expressions is encoded in the type system.
Cons:
* You can only express things that are valid in the host type system.
» Moving from the untyped world to the typed world is difficult.
parse : string -> ? expr
« Transformations must be type preserving.
+ It doesn’t scale at all with the complexity of the domain.
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Expressions with GADTs

This is usually called HOAS (High Order Abstract Syntax).
Pros:

* It's so cool.
» The type system checks that your evaluation function is correct.
« Validity of expressions is encoded in the type system.
Cons:
* You can only express things that are valid in the host type system.
» Moving from the untyped world to the typed world is difficult.
parse : string -> ? expr
« Transformations must be type preserving.
+ It doesn’t scale at all with the complexity of the domain.

= Almost only usable for toy languages. Otherwise, it creates an unmaintainable mess.
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Results on GADTSs, aka. Poor man’s dependent types

Invented by 3 different groups:
* Augustsson & Petersson (1994): Silly Type Families
» Cheney & Hinze (2003): First-Class Phantom Types.
+ Xi, Chen & Chen (2003): Guarded Recursive Datatype Constructors.

Type inference is undecidable.

Checking of exhaustiveness in pattern matching is undecidable (Garrigue and Le Normand
(2015): GADTs and Exhaustiveness: Looking for the Impossible).

Interaction with subtyping is a mess (Scherer, Rémy (2013) GADTs Meet Subtyping).

Type error messages become quite baroque.
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Examples of use for GADTs

There is a large body of literature with examples of use for GADTs:
+ How to program toy interpreters with GADTs in the most unreadable way
» How to encode unary numbers in types in the most verbose way

» Some far and few attempts at doing something actually useful (usually not in
publications, amusingly)3.

3This critique does not apply to the literature on dependent types.
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But what can we actually do with
GADTs?



Things you can encode in GADTs

« Existential types
type t = Exists : 'a -> t (x do. a x)
 Type level (Unary) Natural numbers
» Type level lists
» Type level finite sets
» Type level tree-like inclusion hierarchies
» Small Typed DSLs
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 Type level (Unary) Natural numbers
* Type level lists
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Printf




Printf — The best bad idea in the C standard library

printf(
"We have %d potatoes which weight %f kg.",
5, 1.2);

First argument is a string with holes
* %d is an integer hole
+ %T is a floating point hole

Then, takes as many arguments as there are holes.
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Printf — In OCAML

In OCAML, we also have printf:

Format.printf
"We have %d potatoes which weight %f kg."
5 1.2

This is statically checked.

3We use the Format module here. The Printf module is best avoided.
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Where is the magic?

# printf ;;
- : ('a, formatter, unit) format -> ‘'a
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Where is the magic?

# printf ;;
- : ('a, formatter, unit) format -> ‘'a

# printf "%d sabords!" 1000;;
1000 sabords!
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Where is the magic?

# printf ;;

- : ('a, formatter, unit) format -> 'a

# printf "%d sabords!" 1000;;

1000 sabords!

# printf "%d sabords!" 10.5;;

Error: This expression has type float but
an expression was expected of type int
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Where is the magic?

# printf ;;

- : ('a, formatter, unit) format -> 'a

# printf "%d sabords!" 1000;;

1000 sabords!

# printf "%d sabords!" 10.5;;

Error: This expression has type float but
an expression was expected of type int

# printf "%d sabords!";;

- : int -> unit
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Where is the magic?

# printf ;;

- : ('a, formatter, unit) format -> 'a

# printf "%d sabords!" 1000;;

1000 sabords!

# printf "%d sabords!" 10.5;;

Error: This expression has type float but
an expression was expected of type int

# printf "%d sabords!";;

- : int -> unit

# fun s -> printf s 1000;;

(int -> 'a, formatter, unit) format -> 'a
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Where is the magic?

# printf ;;

- : ('a, formatter, unit) format -> 'a

# printf "%d sabords!" 1000;;

1000 sabords!

# printf "%d sabords!" 10.5;;

Error: This expression has type float but
an expression was expected of type int

# printf "%d sabords!";;

- : int -> unit

# fun s -> printf s 1000;;

(int -> 'a, formatter, unit) format -> 'a

Wat.
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An interlude in Prolog




Very short introduction to prolog

Prolog is an (untyped) logic programming language (more precisely, first order logic). If you
have the occasion, learn it, it’s very fun.
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X = [4, 5].

24/39



Very short introduction to prolog

Prolog is an (untyped) logic programming language (more precisely, first order logic). If you
have the occasion, learn it, it’s very fun.

?7- length([1, 3, 6], L).

L = 3.

?7- append([3], [2, 1], Z).

Z =13, 2, 1].

?- append([3], X, [3, 4, 5]).
X = [4, 5].

?7- append([H], T, Z).
Z = [H|T].
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Difference lists

You can keep the tail of a list as a variable: [a,b,c,d|T]
Then, appending is easy: you just need to unify T.

?- L= 1[a,b,c,d|T], T =1[1,2,3].
L=1[a, b, ¢, d, 1, 2, 3]

With difference lists, concatenation is O(1).
A difference listis a pair or a list and its tail: [a,b,c,d|T]-T.
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Prolog shows us that we can compute on lists with unification.
Hindley-Milner type systems are great at doing unification.
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Prolog shows us that we can compute on lists with unification.
Hindley-Milner type systems are great at doing unification.

Greenspun’s Tenth Rule

Any sufficiently complicated C or Fortran program contains an ad hoc informally-specified
bug-ridden slow implementation of half of Common Lisp.
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Prolog shows us that we can compute on lists with unification.
Hindley-Milner type systems are great at doing unification.

The prolog rule of type systems

Any sulfficiently complicated type system contains an ad hoc slow implementation of half
of prolog.
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Prolog in the OCAML type system




Type level lists

"ty is the type level list.
"var is the unification variable at the tail.

type ('ty, 'var) t
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Type level lists

"ty is the type level list.
"var is the unification variable at the tail.

type ('ty, 'var) t =
| Nil : ('var, 'var) t
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Type level lists

"ty is the type level list.
‘var is the unification variable at the tail.
type ('ty, 'var) t =
| Nil : ('var, 'var) t
| Cons
'a x ("ty, 'var) t -> ('a -> 'ty, 'var) t

We count with the number of arrows!
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Type level lists

"ty is the type level list.
"var is the unification variable at the tail.
type ('ty, 'var) t =

| Nil : ('var, 'var) t

| Cons :

'a x ('ty, 'var) t -> ('a -> "ty, 'var) t

We count with the number of arrows!
# Cons(1,Nil);;
- ¢ (int -> 'v, 'v) t
# Cons("foo", Cons(false,Nil));;
(string -> bool -> 'v, 'v) t
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Terrible arithmetic for apprentice type magicians

# let one x = Cons (x, Nil) ;;
val one : 'a -> ('a -> 'v, 'v) t
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Terrible arithmetic for apprentice type magicians

# let one x = Cons (x, Nil) ;;
val one : 'a -> ('a -> 'v, 'v) t

ty=0—'v
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Terrible arithmetic for apprentice type magicians

# let one x = Cons (x, Nil) ;;
val one : 'a -> ('a -> 'v, 'v) t

ty=0—'v

ty—-v=u«o
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Append for difference lists

# Cons("foo", Cons(false,Nil));;

(string -> bool -> 'vl, 'vl) t

# Cons(1,Nil);;

- ¢ (int -> 'v2, 'v2) t

# Cons("foo", Cons(false, Cons(1,Nil)));;
(string -> bool -> int -> 'v3, 'v3) t

We replace 'vlinstring -> bool -> 'vlbyint -> 'v2.
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Append for difference lists

# Cons("foo", Cons(false,Nil));;

- ¢ (string -> bool -> 'vl, 'vl) t

# Cons(1,Nil);;

- ¢ (int -> 'v2, 'v2) t

# Cons("foo", Cons(false, Cons(1,Nil)));;

- : (string -> bool -> int -> 'v3, 'v3) t

We replace 'vlinstring -> bool -> 'vlbyint -> 'v2.
We can deduce the type for append:

val append:
("tyl,'ty2) t -> ("ty2,'v) t -> ('tyl,'v) t
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Append for difference lists

val append:
("tyl,'ty2) t -> ("ty2,'v) t -> ("tyl,'v) t

s —ty2

+ ,tY2 —'v

="ty;—'v
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Append for difference lists — Implementation

let rec append
: type tyl ty2 v.
(tyl, ty2) t ->
(ty2, v ) t ->
(tyl, v ) t
= fun 11 12 -> match 11 with
| NAl -> 12
| Cons (h, t) -> Cons (h, append t 12)
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Append for difference lists — Implementation

let rec append
: type tyl ty2 v.
(tyl, ty2) t ->
(ty2, v ) t ->

(tyl, v ) t
= fun 11 12 -> match 11 with
| Nil -> 12

| Cons (h, t) -> Cons (h, append t 12)

The other lists functions are left as an exercise for the audience.
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Back to printf




What is a format

There is a bit of compiler magic in OCAML to recognize formats:

# ("%s | %s" : _ format) ;;
- : (string -> string -> 'a, 'b, 'a) format

This type looks like our new list datatype!
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The format datatype
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The format datatype

type ('ty,'v) t =
| End : ('v,'v) t
| Constant : string * ('ty,'v) t -> ('ty,'v) t
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The format datatype

type ('ty,'v) t =
| End : ('v,'v) t
| Constant : string * ('ty,'v) t -> ('ty,'v) t
| Hole : ('ty, 'v) t -> (string -> 'ty, 'v) t

33/39



The format datatype

type ('ty,'v) t =
| End : ('v,'v) t
| Constant : string * ('ty,'v) t -> ('ty,'v) t
| Hole : ('ty, 'v) t -> (string -> 'ty, 'v) t

# Hole (Constant (" | ", Hole End)) ;;
- : (string -> string -> 'v, 'v) format
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printf — Implementation

We want to implement printf

val printf: ('ty, string) t -> 'ty}

But the number of argument could be arbitrary!

Instead, we implement first by continuation:

val kprintf: (string -> 'v) -> ('ty, 'v) format -> 'ty
This is easy to write, you can try it :)

The whole implementation is included in the supported code.
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Real World Printf

You might be wondering: is this really how printf works?

# ("%s | %s" : _ format) ;;
- : (string -> string -> 'a, 'b, 'a) format
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Real World Printf

You might be wondering: is this really how printf works?
# ("%s | %s" : _ format) ;;

- : (string -> string -> 'a, 'b, 'a) format =
CamlinternalFormatBasics. (Format (

String (No_padding, String_literal (" | "

String (No_padding, End_of_format))),
||c>/°S | o/osll))

’
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Real World Printf

You might be wondering: is this really how printf works?
# ("%s | %s" : _ format) ;;
- : (string -> string -> 'a, 'b, 'a) format =
CamlinternalFormatBasics. (Format (

String (No_padding, String_literal (" | ",

String (No_padding, End_of_format))),

"%Ss | %s"))
Originally written in 1996 by Pierre Weis (GADT didn’t even existed!?)*
Rewritten in 2014 by Benoit Vaugon using GADTs. The actual implementation is a lot more
complex than our toy example.

4|t was full of Obj .magic
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Wrapping up

» We can use unification to compute in types.
» GADTs allow us to define such datatype relatively easily.
* Prolog is fun.

+ We can use GADT for useful things.
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Wrapping up

» We can use unification to compute in types.

» GADTs allow us to define such datatype relatively easily.
* Prolog is fun.

+ We can use GADT for useful things.

» You will only understand this by practice.
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Real World GADTs

Bigarray Controlling memory layout
Format Type level lists for Printf
Hmap Heterogeneous maps
SLAP Linear algebra with statically checked sizes

Many type-safe DSLs:
URL routing, GraphQL APlIs, Typed regular expressions, SMT terms,
Organize devices for unikernels
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Real World Printf

Commit e0b000527 by Gabriel Scherer about Printf
[..] The short summary is [...] that proving things by writing GADT functions in OCami
reveals that Coq’s Ltac is a miracle of usability.

38/39



Questions ?

Code at https://gabriel.radanne.net/talks
Detailed blog post on https://drup.github.i0/2016/08/02/difflists/
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Troubles in GADT paradise

For technical reasons, our GADT type is not covariant, which mean we don’t enjoy the
relaxed value restriction.
# append
(Cons (1, Cons ("bla", Nil)))
(Cons (2., Nil))
- : (int -> string -> float -> '_v, '_v) t

This means formats are a bit annoying to use in a functional way.



printf — Implementation

We want to implement printf: ('ty, string) t -> 'ty.



printf — Implementation

We want to implement printf: ('ty, string) t -> 'ty.

# let x = Hole (Constant (" | ", Hole End)) ;;
val x : (string -> string -> 'v, 'v) format
# printf x;;

- : string -> string -> string



printf — Implementation

We want to implement printf: ('ty, string) t -> 'ty.
let rec printf
: type ty v. (ty,v) t -> ty
= fun k -> function
| End -> ""
| Constant (const, fmt) ->
const ©~ printf fmt (* oups *)
| Hole fmt ->
fun x -> x ~ printf fmt (* oups x)

Recursive calls to printf might have more arguments. That doesn’t work.



printf — Implementation

We want to implement printf: ('ty, string) t -> 'ty.
Instead, we are going to implement by continuation:
val kprintf:

(string -> 'v) -> ('ty, 'v) format -> 'ty



printf — Implementation

We want to implement printf: ('ty, string) t -> 'ty.
let rec kprintf
: type ty v. (string -> v) -> (ty,v) t -> ty
= fun k -> function
| End -> k ""
| Constant (const, fmt) ->
kprintf (fun str -> k (const © str)) fmt
| Hole fmt ->
let f s =
kprintf (fun str -> k (s © str)) fmt
in f



printf — Implementation

We want to implement printf: ('ty, string) t -> 'ty.
let rec kprintf
: type ty v. (string -> v) -> (ty,v) t -> ty
= fun k -> function
| End -> k ""
| Constant (const, fmt) ->

kprintf (fun str -> k (const ©~ str)) fmt
| Hole fmt ->
let f s =

kprintf (fun str -> k (s © str)) fmt

in f
let é?intf fmt = kprintf (fun x -> x) fmt



Balanced parens

type zero = Zero
type 'a succ = Succ

type _ t =
| End : zero t
| R: 'at ->"asucct
| L : 'asucct ->"'at

type start = Start of zero t

(x (()()) *)
let x = Start (L (L (R (L (R (REnd)))))) ;;

We can encode any FSA with an arbitrary (finite) number of registers.
Note: not a minsky machine: no conditional jumps.
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