
Linear types, Quésaco?!

Gabriel Radanne

Motivation ?

La sûreté mémoire est la source de nombreux bugs et failles de sécurité.

Classification récente (2015-2020) des “high severity security bugs” dans Chromium:

2/42

“Use after free”

Un “Use after free” en C

char *s = malloc(len);
/* ... */
free(s);
/* ... */
s[i] // bug!

New data

3/42

“Use after free”

Des vecteurs auto-redimensionnés en C

struct vector {
int* data; int limit; int size;

};

struct vector v = init();
/* ... */
int *a = v.data; // Pointe sur le contenu
/* ... */
push(v,2); // Le vecteur peut-être agrandi
/* ... */
a[i] // bug!

data

New data

va

3/42

“Use after free”

Des vecteurs auto-redimensionnés en C

struct vector {
int* data; int limit; int size;

};

struct vector v = init();
/* ... */
int *a = v.data; // Pointe sur le contenu
/* ... */
push(v,2); // Le vecteur peut-être agrandi
/* ... */
a[i] // bug!

data

New data

va

3/42

“Use after free”

Utilisons un langage plus sûr: OCaml!

New data

3/42

“Use after free”

Utilisons un langage plus sûr: OCaml!

let file = open_out "myfile" in
write file "hello";
(* ... *)
close file;
(* ... *)
write file "world"; (* bug! *)

New data

"myfile"

file

3/42

“Use after free”

Utilisons un langage plus sûr: OCaml!

let file = open_out "myfile" in
write file "hello";
(* ... *)
close file;
(* ... *)
write file "world"; (* bug! *)

New data

"myfile"

file

3/42

“Use after free”

Les types affines à la rescousse!

Les vecteurs en Rust

let mut v = vec![];
/* ... */
let a = &mut v[0]; // Pointe sur le contenu
/* ... */
v.push(12); // Le vecteur peut-être agrandi
/* ... */
a[1]; // 8 Erreur de compilation !

data

New data

va

3/42

The main idea

Main idea:
Limit usage of variables
We call such systems “sub-structural”

In the rest of this talk:

• We use the word “resource” for things we want to limit the usage of

• We use some imaginary ML-ish syntax

4/42

The main idea

Main idea:
Limit usage of variables
We call such systems “sub-structural”

In the rest of this talk:

• We use the word “resource” for things we want to limit the usage of

• We use some imaginary ML-ish syntax

4/42

Plan

Some examples

The beginning

Session types

Ownership

Aliasing

Data-structures

A primer on linear type systems

Lay of the land

5/42

Linear types: the beginning

Modality determine usage:

• Linear (lin): Used exactly once [1]

• Affine (aff): Used at most once [0− 1]

• Unrestricted (un): Used arbitrarily many time [0−∞]

Examples:

• file descriptors are linear

• GC-managed strings are unrestricted

6/42

Linear types: A file API

Let’s create an Database API together!

module Dbm : sig
type t : lin (* Databases are linear *)
val open : filename -> t
val close : t -> unit

end

7/42

Linear types: A file API

Let’s create an Database API together!

module Dbm : sig
type t : lin (* Databases are linear *)
val open : filename -> t
val close : t -> unit

end

let main () =
let a = Dbm.open "foo" in
.... (* a is linear *)
Dbm.close a

7/42

Linear types: A file API

Let’s create an Database API together!

module Dbm : sig
type t : lin (* Databases are linear *)
val open : filename -> t
val close : t -> unit

end

let main () =
let a = Dbm.open "foo" in
.... (* a is linear *)
Dbm.close a ;
f a (* 8 No! *)

7/42

Linear types: A file API

How to read the array ?

module Dbm : sig
type t : lin (* Databases are linear *)
val open : filename -> t
val close : t -> unit
val find : t -> string -> int (* ? *)

end

8/42

Linear types: A file API

How to read the array ?

module Dbm : sig
type t : lin (* Databases are linear *)
val open : filename -> t
val close : t -> unit
val find : t -> string -> int (* ? *)

end

let main () =
let gradeDB = Dbm.open "grades.db" in
let x = Dbm.find gradeDB "math" in
Dbm.close gradeDB (* 8 No! *)
print x

This doesn’t work!
8/42

Linear types: A file API

How to read the array ?

module Dbm : sig
type t : lin (* Databases are linear *)
val open : filename -> t
val close : t -> unit
val find : t -> string -> t * int

end

let main () =
let gradeDB = Dbm.open "grades.db" in
let gradeDB, x = Dbm.find gradeDB "math" in
Dbm.close gradeDB ;
print x

8/42

Linear types: the conclusion

We know everything about linear types!

• Gives us safe manual allocations and IO

• Modality (linear, affine, unrestricted) to control uses

Let’s dig a bit more

9/42

Linear types: the conclusion

We know everything about linear types!

• Gives us safe manual allocations and IO

• Modality (linear, affine, unrestricted) to control uses

Let’s dig a bit more

9/42

Session types: Intro

Session types aims to describe protocols through types.

Example: Ordering coffee

1. Choose program

2. Add Cup

3. (Get Coffee) or (Not enough grains, Add grains, Get Coffee)

Our tools:
!τ.S Send some τ then continue with S .
?τ.S Receive some τ then continue with S .

S ⊕ S ′ Internal choice between S and S ′.
S &S ′ Offer a choice between S and S ′.

10/42

Session types: Intro

Session types aims to describe protocols through types.

Example: Ordering coffee

1. Choose program

2. Add Cup

3. (Get Coffee) or (Not enough grains, Add grains, Get Coffee)

Our tools:
!τ.S Send some τ then continue with S .
?τ.S Receive some τ then continue with S .

S ⊕ S ′ Internal choice between S and S ′.
S &S ′ Offer a choice between S and S ′.

10/42

Session types: the Types

!τ.S Send some τ then continue with S .
?τ.S Receive some τ then continue with S .

S ⊕ S ′ Internal choice between S and S ′.
S &S ′ Offer a choice between S and S ′.

User point of view:
!Program. !Cup.

(?Coffee. End&!Grains. ?Coffee. End)

Coffee machine point of view:
?Program. ?Cup.

(!Coffee. End⊕?Grains. !Coffee. End)

Notion of dual of a type.

11/42

Session types: the Types

!τ.S Send some τ then continue with S .
?τ.S Receive some τ then continue with S .

S ⊕ S ′ Internal choice between S and S ′.
S &S ′ Offer a choice between S and S ′.

User point of view:
!Program. !Cup.

(?Coffee. End&!Grains. ?Coffee. End)

Coffee machine point of view:
?Program. ?Cup.

(!Coffee. End⊕?Grains. !Coffee. End)

Notion of dual of a type.

11/42

Session types: the code

let request_coffee (ch : ... channel) program =
let ch = send ch program in
let ch = send ch my_favorite_cup in
match test ch with
| Coffee ch ->

let coffee, ch = receive ch in
close ch;
coffee

| NotEnoughGrain ch ->
let grains =

GrainProvider.coffee ()
in
let ch = send ch grains in
let coffee, ch = receive ch in
close ch;
coffee

The operations:
type 'S ch
val send : (!'a. 'S) ch -> 'a -> 'S ch
val receive: (?'a. 'S) ch -> 'a * 'S ch
val test : ('S1⊕'S2) ch -> ('S1 ch | 'S2 ch)
val close : end ch -> unit

12/42

Session types: Linearity

For correction, channels must be linear!

• Must never skip/duplicate steps

• Must fully consume the channel
...
let ch1 = send ch program in
let ch2 = send ch my_favorite_cup in 8

...
ignore ch2 8

The operations:
type 'S ch
val send : (!'a. 'S) ch -> 'a -> 'S ch
val receive: (?'a. 'S) ch -> 'a * 'S ch
val test : ('S1⊕'S2) ch -> ('S1 ch | 'S2 ch)
val close : end ch -> unit

13/42

Session types: the code

We assemble the various parts thanks to duals:

let main () =
let ch, ch' = create () in
fork (coffee_machine ch);
request_coffee ch my_program

The operations:
type 'S ch
val send : (!'a. 'S) ch -> 'a -> 'S ch
val receive: (?'a. 'S) ch -> 'a * 'S ch
val test : ('S1⊕'S2) ch -> ('S1 ch | 'S2 ch)
val close : end ch -> unit

val create : unit -> 'S ch * (dual 'S) ch

14/42

Session types

• Linear types as a building block

• Static verification of conformance to “protocols”

• ⇒ Encode state automatons in types

Billions of extensions (recursive, multi-party, multi-tiers, OOP, asynchronous, . . .).
Some practical use in limited communities (OS ∩ Static typing = { Rust, Mirage, . . . })

« But Gabriel, this code is too functional, it’s a PITA to write and it’s probably slow
as $"£#! »

– The public, when I prepare my talk alone

15/42

Let’s go imperative

The Database API is back:

module Dbm : sig
type t : lin (* Databases are linear *)
val create : int -> 'a -> t
val close : 'a t -> unit
val find : t -> string -> t -> int (* ??? *)

end

We need to pass the database around, this is very inconvenient.

⇒ We want to write imperative code to mutate the world!

16/42

Let’s go imperative

The Database API is back:

module Dbm : sig
type t : lin (* Databases are linear *)
val create : int -> 'a -> t
val close : 'a t -> unit
val find : &t -> string -> int (* A borrow! *)

end

let main () =
let gradeDB = Dbm.open "grades.db" in
let x = Dbm.find &gradeDB "math" in
Dbm.close gradeDB ;
print x

Nice imperative-like code using borrows! 4

16/42

Borrows

A borrow is a temporary loan of a resource a

• Shared borrows &a are for observing the resource

• Exclusive borrows &!a are for modifying the resource

17/42

Borrows

A borrow is a temporary loan of a resource a

• Shared borrows &a are for observing the resource

• Exclusive borrows &!a are for modifying the resource

A correct usage of borrows:

let avg =
(Dbm.find &gradeDB "math" + Dbm.find &gradeDB "compsci") / 2
(* 4 Multiple shared borrows *)

in
Dbm.add &!gradeDB "average" avg (* 4 One exclusive borrow *)

Unrestricted – un

Affine – aff

17/42

Borrows – Example of uses

Rule 1: Cannot use a borrow and the resource itself simultaneously

let gradeDB = ... in
f (gradeDB, &gradeDB) (* 8 Conflicting use and borrow! *)

18/42

Borrows – Example of uses

Rule 2: Cannot use an exclusive borrow and any other borrow simultaneously

let gradeDB = ... in
f (&!gradeDB, &gradeDB) (* 8 Conflicting borrows! *)

18/42

Borrows – Example of uses

Rule 3: Borrows must not escape

let f () =
let gradeDB = ... in
let x = (&gradeDb, "mygrades") in
x
(* 8 Borrow escaping its scope! *)

Regions ensure that borrows do not escape!

18/42

Borrows – Example of uses

Rule 3: Borrows must not escape

let f () =
let gradeDB = ... in
{| let x = (&gradeDb, "mygrades") in
x |}
(* 8 Borrow escaping its scope! *)

Regions ensure that borrows do not escape!

18/42

Borrows – Example of uses

Rule 3: Borrows must not escape

let f () =
let gradeDB = ... in
{| let x = (&gradeDb, "mygrades") in
x |}
(* 8 Borrow escaping its scope! *) A Region!

Regions ensure that borrows do not escape!

18/42

Borrows

In Rust:

• Regions are not so lexical

• The compiler tries very hard to guess what the user meant

• Much more control over allocations, C++-like.

⇒ Lot’s of tools to tangle yourself ... but safely!

That’s all for safety, let’s look at performances!

19/42

Borrows

In Rust:

• Regions are not so lexical

• The compiler tries very hard to guess what the user meant

• Much more control over allocations, C++-like.

⇒ Lot’s of tools to tangle yourself ... but safely!

That’s all for safety, let’s look at performances!

19/42

Linearity for optimisations

Futhark is a pure functional language for GPGPUs.

Example: Radix sort in Futhark
let radix_sort_step [n] (xs: [n]u32) (b: i32): [n]u32 =
let bits = map (\x -> (i32.u32 (x >> u32.i32 b)) & 1) xs
let bits_neg = map (1-) bits
let offs = reduce (+) 0 bits_neg
let idxs0 = map2 (*) bits_neg (scan (+) 0 bits_neg)

let idxs1 = map2 (*) bits (map (+offs) (scan (+) 0 bits))

let idxs2 = map2 (+) idxs0 idxs1

let idxs = map (\x->x-1) idxs2

scatter (copy xs) (map i64.i32 idxs) xs

Linearity used as an
aliasing analysis

Can transform all these
operation to in-place
versions!
,

20/42

Linearity for data-structures

We can use linearity to enforce hybrid data-structure performance contracts [Conchon and
Filliâtre, 2007, Puente, 2017]

Example: Hash-Array-Mapped-Tries (HAMT)

• Persistent immutable operations
set : ('k, 'v) hamt -> 'k -> 'v -> ('k, 'v) hamt
For cold path, O(log(N)), some copies
Use locks/copies, support concurrency and backtracking

• Transient mutable operations
set : ('k, 'v) hamt -> 'k -> 'v -> unit
For hot path, O(1), no copies
Use (potentially dynamically-checked) linearity to allow in-place operations

⇒ Requires hybrid languages, with both linear and non-linear accesses and borrows.

Very promising lead, not fully realized yet.
21/42

Linear types: Why ?

Linear types have many uses:

• Direct uses for safety: channels, memory alloc, . . .
This has reached “mainstream” (Rust) 4

• Advances safety uses: session types, type-states, . . .
This is still very active research. Some basic encoding exists.

• Optimisation uses
Very promising prototypes, still requires key compiler/langage improvements

⇒ We have yet to find all the programming uses of linear types

This was Why
Let’s now see How

22/42

Linear types: Why ?

Linear types have many uses:

• Direct uses for safety: channels, memory alloc, . . .
This has reached “mainstream” (Rust) 4

• Advances safety uses: session types, type-states, . . .
This is still very active research. Some basic encoding exists.

• Optimisation uses
Very promising prototypes, still requires key compiler/langage improvements

⇒ We have yet to find all the programming uses of linear types

This was Why
Let’s now see How

22/42

How can I use my variables?

let r = create_resource()
begin
shadok r; (* Can I pass it as argument? *)
r (* And still use it after? *)

end
let x = (r, r) (* Can I duplicate it? *)
let f x = write r x (* Can I capture it? *)
let {foo; bar} = r (* Can I decompose it? *)
...
r (* Can I return it? *)

23/42

Humble beginnings: Linear logic

Simple questions on variable:

• Do I have to use it ? (Weakening)

• Can I use it several time ? (Contraction)

• Is the order of definition important ? (Exchange)

Weakening
Γ1, Γ2 ` e : τ

Γ1, (x : τ), Γ2 ` e : τ

Contraction
Γ1, (x1 : τ), (x2 : τ), Γ2 ` e : τ

Γ1, (x : τ), Γ2 ` e[x1, x2 → x] : τ

Exchange
Γ1, (x1 : τ1), (x2 : τ2), Γ2 ` e : τ

Γ1, (x2 : τ2), (x1 : τ1), Γ2 ` e : τ

24/42

The Sub-structural lattice

25/42

A simple linear calculus

26/42

A simple linear calculus

q ::= un | lin (Modality)

e ::= c | x | e e′ (Expressions)

| q λ(x : T).e

| q <e, e′>

| let x , y = e in e′

P ::= T ∗ T | T → T (Pretypes)

T ::= q P (Types)

Γ ::= (x : T)∗ (Environments)

λ(x:un int).x+x 4

λ(x:lin int).x+1 4

λ(x:lin int).x+x 8

λ(x:lin int).3 8

(λz.λy.<free z,free y>) x x 8

let r:lin int = 3 in
let f = λx.(r+x) in
<f 1, f 2> 8

27/42

A simple linear calculus

q ::= un | lin (Modality)

e ::= c | x | e e′ (Expressions)

| q λ(x : T).e

| q <e, e′>

| let x , y = e in e′

P ::= T ∗ T | T → T (Pretypes)

T ::= q P (Types)

Γ ::= (x : T)∗ (Environments)

λ(x:un int).x+x 4

λ(x:lin int).x+1 4

λ(x:lin int).x+x 8

λ(x:lin int).3 8

(λz.λy.<free z,free y>) x x 8

let r:lin int = 3 in
let f = λx.(r+x) in
<f 1, f 2> 8

27/42

A simple linear calculus

q ::= un | lin (Modality)

e ::= c | x | e e′ (Expressions)

| q λ(x : T).e

| q <e, e′>

| let x , y = e in e′

P ::= T ∗ T | T → T (Pretypes)

T ::= q P (Types)

Γ ::= (x : T)∗ (Environments)

λ(x:un int).x+x 4

λ(x:lin int).x+1 4

λ(x:lin int).x+x 8

λ(x:lin int).3 8

(λz.λy.<free z,free y>) x x 8

let r:lin int = 3 in
let f = λx.(r+x) in
<f 1, f 2> 8

27/42

Playing with environments

The most important ingredient: How to manipulate environments!

Secret Sauce 1: We restrict Contraction to specific variables during split

28/42

Playing with environments

The most important ingredient: How to manipulate environments!

Secret Sauce 1: We restrict Contraction to specific variables during split

28/42

Sub-sumption

where q(T), if and only if T = q′P and q v q′

We have lin v un

Secret Sauce 2: We can “upgrade” modality along the lattice

29/42

Playing with environments

where q(Γ), if for every binding (x : T) ∈ Γ we have q(T)

Secret Sauce 3: We restrict Weakening to specific variables during usage/capture

30/42

Let’s typecheck together

(x : lin int), (y : un int) ` lin <(λ(z : lin int).z + 1) (x + y), y> : ?

31/42

Properties

We can prove:

• Decidability and completeness of typing

• Soundness with an oblivious λ-calculus semantics

• Soundness with a heap-aware λ-calculus semantics (which de-allocate linear resources
aggressively)

32/42

Extensions

We can easily extend to:

• Algebraic data-types

• Polymorphism

• Arrays/references/. . .

Some more unusual ideas:

• “Managed” (GC) or “Ref counted” can also be modalities!

• Control space and time(!) complexity of programs
Example: If we only use affine variables, programs are polynomial

• Modeling of stack allocations
If we restrict Exchange, resources can only be removed in-order, like a stack.

⇒ Of great theoretical interest (c.f. Plume), but so far little used for programming.

33/42

Extensions

We can easily extend to:

• Algebraic data-types

• Polymorphism

• Arrays/references/. . .

Some more unusual ideas:

• “Managed” (GC) or “Ref counted” can also be modalities!

• Control space and time(!) complexity of programs
Example: If we only use affine variables, programs are polynomial

• Modeling of stack allocations
If we restrict Exchange, resources can only be removed in-order, like a stack.

⇒ Of great theoretical interest (c.f. Plume), but so far little used for programming.

33/42

Simple linear lambda calculus: Wrap up

The main principle of substructural type systems:
By restricting Contraction/Weakening/Exchange for some variables, we can control usage.

To design a new linear type system
You need to answer three questions:

• How to decide on which variables to apply Contraction?

• How to decide on which variables to apply Weakening?

• Can (and How) a variable change modality?

• How much polymorphism do you allow

This is where the design space explodes a little bit . . .

34/42

Simple linear lambda calculus: Wrap up

The main principle of substructural type systems:
By restricting Contraction/Weakening/Exchange for some variables, we can control usage.

To design a new linear type system
You need to answer three four questions:

• How to decide on which variables to apply Contraction?

• How to decide on which variables to apply Weakening?

• Can (and How) a variable change modality?

• How much polymorphism do you allow

This is where the design space explodes a little bit . . .

34/42

Simple linear lambda calculus: Wrap up

The main principle of substructural type systems:
By restricting Contraction/Weakening/Exchange for some variables, we can control usage.

To design a new linear type system
You need to answer three four questions:

• How to decide on which variables to apply Contraction?

• How to decide on which variables to apply Weakening?

• Can (and How) a variable change modality?

• How much polymorphism do you allow

This is where the design space explodes a little bit . . .

34/42

The design space

The design space: Subsumption

Can (and How) a variable change modality?

Example with the linear λ-calculus:

let f
: lin int -> lin int
= λx.(2*x+1)

let x : un int = 3
let y = f x

36/42

The design space: Subsumption

Can (and How) a variable change modality?

• Unrestricted can become Linear/Affine
⇒ Linear/Affine types
Good for safety, can limit optimisations
“Linearity means it will never be aliased in the future”
Examples: Rust, Affe, Mezzo, Almost everything you know

• LinearUnique can become Unrestricted
⇒ Unique types
Enable aggressive optimisations
“Uniqueness means it was never aliased in the past”
Examples: Futhark, Clean, Idris.

• Combination of both/neither/requires additional proofs

37/42

The design space: Subsumption

Can (and How) a variable change modality?

• Unrestricted can become Linear/Affine
⇒ Linear/Affine types
Good for safety, can limit optimisations
“Linearity means it will never be aliased in the future”
Examples: Rust, Affe, Mezzo, Almost everything you know

• LinearUnique can become Unrestricted
⇒ Unique types
Enable aggressive optimisations
“Uniqueness means it was never aliased in the past”
Examples: Futhark, Clean, Idris.

• Combination of both/neither/requires additional proofs

37/42

The design space: Variables

How to decide on which variables to apply Contraction/Weakening?

Examples
Pros Cons

Types Linear λ-calculus, Clean,
Futhark, Object systems,
C++’s unique_ptr

Simple Inflexible

Arrows Linear Haskell Looks like linear logic I stopped counting
Type classifiers
(Kinds, Classes, De-
pendent, . . .)

Rust, Affe, Alms, Idris,
. . .

Language integration
Polymorphism

Complicated internals

Permissions/Logic
assertions

Mezzo, (F*), . . . Expressive Complicated to use

Discharge as
Proof obligation

Separation logic, ATS,
. . .

You are in a proof assistant

38/42

The design space: Variables

How to decide on which variables to apply Contraction/Weakening?

Examples
Pros Cons

Types Linear λ-calculus, Clean,
Futhark, Object systems,
C++’s unique_ptr

Simple Inflexible

Arrows Linear Haskell Looks like linear logic I stopped counting
Type classifiers
(Kinds, Classes, De-
pendent, . . .)

Rust, Affe, Alms, Idris,
. . .

Language integration
Polymorphism

Complicated internals

Permissions/Logic
assertions

Mezzo, (F*), . . . Expressive Complicated to use

Discharge as
Proof obligation

Separation logic, ATS,
. . .

You are in a proof assistant

38/42

The design space: Variables

How to decide on which variables to apply Contraction/Weakening?

Examples
Pros Cons

Types Linear λ-calculus, Clean,
Futhark, Object systems,
C++’s unique_ptr

Simple Inflexible

Arrows Linear Haskell Looks like linear logic I stopped counting
Type classifiers
(Kinds, Classes, De-
pendent, . . .)

Rust, Affe, Alms, Idris,
. . .

Language integration
Polymorphism

Complicated internals

Permissions/Logic
assertions

Mezzo, (F*), . . . Expressive Complicated to use

Discharge as
Proof obligation

Separation logic, ATS,
. . .

You are in a proof assistant

38/42

The lay of the land

Rust
Weakening: Always (Affine!)
Contraction: Controlled via traits Copy and Clone

Subsumption: Only for borrows, via traits
Polymorphism: Partially, via traits

Bonuses 4: Borrows, rich elision rules to avoid annotations, non-lexical regions, concurrency . . .
Maluses 8: No GC, Limited support for closures

39/42

The lay of the land

Affe (Kindly Bent to Free Us, ICFP2020)

Weakening:
Kinds (lin,aff,un)

Contraction:
Subsumption: Subkinding
Polymorphism: Yes, polymorphic kinds

Bonuses 4: With GC, Borrows, Functional+Imperative prog, Full type inference
Maluses 8: With GC, Limited regions, No concurrency

40/42

Conclusion

We have explored linear types:

Why:

• Soundness. Partially achieved, but we can go futher!

• Performance (Compiler and Data-structures). Still WIP in many respect

How:

• Control how variable behaves

• Use language construct to decide which variable to control

Leads and WIP:

• Hybridization with other programming construct/style

41/42

A glimpse of the bleeding edge

Linear types + Static analysis:

In Rust, there is a construct: unsafe.

unsafe {
let my_slice: &[u32] = slice::from_raw_parts(pointer, length);
assert_eq!(some_vector.as_slice(), my_slice);

}

Allow to say “I know this piece of code doesn’t respect the borrow checker, please let me”

⇒ Opportunity for static analysis: The RustBelt project!

We might want the same thing for functional linear languages.

42/42

A glimpse of the bleeding edge

Linear types + Static analysis:

In Rust, there is a construct: unsafe.

unsafe {
let my_slice: &[u32] = slice::from_raw_parts(pointer, length);
assert_eq!(some_vector.as_slice(), my_slice);

}

Allow to say “I know this piece of code doesn’t respect the borrow checker, please let me”

⇒ Opportunity for static analysis: The RustBelt project!

We might want the same thing for functional linear languages.

42/42

Close(Talk)

42/42

References i

Sylvain Conchon and Jean-Christophe Filliâtre. A persistent union-find data structure. In
Claudio V. Russo and Derek Dreyer, editors, Proceedings of the ACM Workshop on ML,
2007, Freiburg, Germany, October 5, 2007, pages 37–46. ACM, 2007. doi:
10.1145/1292535.1292541. URL https://doi.org/10.1145/1292535.1292541.

Juan Pedro Bolívar Puente. Persistence for the masses: RRB-vectors in a systems language.
PACMPL, 1(ICFP):16:1–16:28, 2017. doi: 10.1145/3110260. URL
https://doi.org/10.1145/3110260.

https://doi.org/10.1145/1292535.1292541
https://doi.org/10.1145/3110260

	Some examples
	The beginning
	Session types
	Ownership
	Aliasing
	Data-structures

	A primer on linear type systems
	Lay of the land
	Appendix
	References

