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Imagine we want to define lists, but with guarantees on the length
of the list.
We have the length operation:
| [’a’ ; ’b’ ; ’c’] | = 3.

We can define the head function like this in OCaml:
let head x = match x with

| [] -> failwith "PANIC"

| (h::t) -> h

head l should only be valid if |l| > 0.
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We have the length operation:
| ’a’ :: ’b’ :: ’c’ :: [] | = 3.

We can define the head function like this in OCaml:
let head x = match x with

| [] -> failwith "PANIC"

We want the type-system to ensure this doesn’t happen.

| (h::t) -> h

head l should only be valid if |l| > 0.
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Let’s start by natural numbers:
data Nat : Set where

Zero : Nat

Succ : Nat → Nat

three : Nat

three = Succ (Succ (Succ Zero))

We can now define a special kind of list:
data Vec (A : Set) : Nat → Set where

Nil : Vec A Zero

Cons : {n : Nat} → A → Vec A n → Vec A (Succ n)

myVec : Vec Char three

myVec = Cons ’a’ (Cons ’b’ (Cons ’c’ Nil))
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data Nat : Set where

Zero : Nat

Succ : Nat → Nat

data Vec (A : Set) : Nat → Set where

Nil : Vec A Zero

Cons : {n : Nat} → A → Vec A n → Vec A (Succ n)

The head function:
head : forall { A n } → Vec A (Succ n) → A

head (Cons x xs) = x

head Nil ← This is a type error.
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data Nat : Set where

Zero : Nat

Succ : Nat → Nat

data Vec (A : Set) : Nat → Set where

Nil : Vec A Zero

Cons : {n : Nat} → A → Vec A n → Vec A (Succ n)

When we concatenate two vectors, |append l l’| = | l|+ | l’|.

append : forall { n m A } →
Vec A n → Vec A m → Vec A (n + m)

append Nil ys = ys

append (Cons x xs) ys = Cons x (append xs ys)
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Dependent types

What have we done?

We defined a type with a term as parameter: Vec A n.

We used these values to enforce properties... by
type-checking.

We manipulated these values inside the type: Vec A (n+m).

Types depends on terms.
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Dependent types

Dependent types:

Strongly related to Curry-Howard
Isomorphism.

Introduce as a type-theory by
Martin-Löf in 1971. Proposed as
foundation of mathematics.

Has gained popularity recently for
theorem-proving with Coq,

but also in programming: Agda,
Idris, ATS,. . .

Martin-Löf
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Limitations of current typecheckers
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Efficiency issues

Agda’s type checker uses a natural deduction style:

Inference duplicates parts of terms.

These parts are not shared in the Agda core representation
anymore.

Typechecking must be done multiple times, causing
performance penalties.

λx.(f x x) (...)

f (...) (...)
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The “case decomposition” issue

Natural deduction style makes propagating typing constraints to
subterms difficult.
For example, Agda’s typechecker has no knowledge of which
branch was taken while it typechecks the body of a case.

myFun x with f x

... | Foo = ( No knowledge that f x ≡ Foo )

... | Bar = ( No knowledge that f x ≡ Bar )
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The monolithic approach

Agda currently does not have a core language that can be
reasoned about and formally verified.
Coq, on the other hand, is built as successive extensions of a core
language (CIC).

Coq

CIC

Agda
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Goals

Our goals are to have a language that is:

A type-theory: Correctness should be expressible via types.

Low-level: One should be able to translate high-level
languages into this language while retaining properties such as
run-time behaviour, complexity, etc.

Minimal: The language should be well defined and it should
be possible to formally verify the type-checking algorithm.
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nanoAgda

id : (a : Set) → a → a

id _ x = x

in Agda

TERM

f = λa → (

f‘ = λx → (r=x; r);

f‘ ) ;

f

TYPE

set = ?0 ;

f_ty = (a : set) → (

a‘ = a ;

a2a = (x : a‘) → a‘;

a2a

) ;

f_ty

in nanoAgda
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Sequent calculus

There are various definitions of sequent calculus. Here, we mean
that every intermediate result or sub-term are bound to a variable.

λx.(f x x) (...)

f (...) (...)

in natural deduction style

let x ′ = (...) in f x ′ x ′

in sequent calculus style
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Presentation of the language

Variables: Hypotheses x and Conclusions x

Functions λx .t (f x) (x : Y )→ T

Pairs (x , y) x .1 (x : Y )× T
Enumerations ‘l case {‘l1, ‘l2, . . . }

Constructions and Destructions:
let x = c and let x = d
Universes:
?i with i ∈ N ?0 is equivalent to Set

Relation between Conclusions and Hypotheses:
let x = y A conclusion can be defined as an hypothesis.

let x = (y : Z ) The cut construction.
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microAgda

A new syntax, easier to manipulate, and that can be translated
easily into nanoAgda.

id : (a : Set) → a → a

id _ x = x

in Agda

TERM

λa → λx → x

TYPE

(a : ?1 ) → (x : a) → a

in microAgda

TERM

f = λa → (

f‘ = λx → (r=x; r);

f‘ ) ;

f

TYPE

set = ?0 ;

f_ty = (a : set) → (

a‘ = a ;

a2a = (x : a‘) → a‘;

a2a

) ;

f_ty

in nanoAgda
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Results

We implemented a typechecker and evaluator for nanoAgda.

We introduced a new intermediate language: microAgda.

We exhibited some examples that don’t typecheck in Agda
but typecheck in nanoAgda.
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Future work

Precisely evaluate the efficiency of this new approach.

Prove subject-reduction of nanoAgda (in Coq).

Introduce recursion.

Experiment with extensions of the type system (linear,
colors,. . . ).
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How to encode sum types

data MySumtype (s : Set)

: Set where

Foo : s → MySumtype s

Bar : MySumtype s

in Agda

TERM

Unit_t = { ‘unit } ;

Unit_ty = ?0 ;

Unit = Unit_t : Unit_ty ;

f = λs → (

tag = { ‘Foo , ‘Bar } ;

f‘ = (c : tag) ×
(case c of {

‘Foo → s‘ = s ; s‘ .

‘Bar → Unit‘ = Unit ;

Unit‘

}) ;

f‘) ;

f

TYPE

star0 = ?0 ;

f_ty = ( s : star0) → star0 ;

f_ty
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How to encode stupidly simple sum types

data SimpleSum : Set where

Foo : Nat → SimpleSum

Bar : Nat → SimpleSum

in Agda

TERM

{ ‘Foo ; ‘Bar } × Nat

Type

?0

in microAgda
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How to encode sum types – 2nd edition

data MySumtype (s : Set)

: Set where

Foo : s → MySumtype s

Bar : MySumtype s

in Agda

TERM

Unit = { ‘unit } : ?0 ;

λs → ( c : { ‘Foo , ‘Bar } ) ×
( case c of {

‘Foo → s.

‘Bar → Unit.

} )

TYPE

?0 → ?0

in microAgda
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Environment extension

Γ : x 7→ y The context heap, containing the type of hypotheses.

γc : x 7→ c The heap from conclusion to constructions.

γa : x 7→ y The heap for aliases on hypotheses.

γd : x 7→ d The heap from hypotheses to cuts and destructions.

γ + (x : Y) = γ with Γ← (x : Y)

γ + (x = d) = γ with γa ← (x = y) if (y = d) ∈ γd
= γ with γd ← (x = d) otherwise

γ + (x = c) = γ with γc ← (x = c)

γ + (‘l = x) = γ if (‘l = x) ∈ γc
= ⊥ if (‘m = x) ∈ γc for ‘l 6= ‘m

= γ with γc ← (‘l = x) otherwise



Reduction rules

EvalCase
h(x) = (‘li : ) h + (‘li = x) ` ti  h′ ` x

h ` case x of {‘li 7→ ti}  h′ ` x

AbstractCase
h(x) 6= (‘li : ) ∀i h + (‘li = x) ` ti  h′i ` xi

h ` case x of {‘li 7→ ti}  {hi ` xi}

EvalDestr
h ` d  h′ ` t′ h′ + (x = t′) ` t  h′′ ` x

h ` let x = d in t  h′′ ` x

AddDestr
h ` d 6 h′ ` t′ h + (x = d) ` t  h′ ` x

h ` let x = d in t  h′ ` x

AddConstr
h + (x = c) ` t  h′ ` x

h ` let x = c in t  h′ ` x

Concl

h ` x  h ` x

EvalProj1
h(y) = ((z,w) : )

h ` y.1  h ` z

EvalProj2
h(y) = ((z,w) : )

h ` y.2  h ` w

EvalApp
h(y) = (λw.t : ) h ` t[z/w]  h′ ` x

h ` (y z)  h′ ` x



Equality rules

γ ` let x = d in t = t′ −→ γ
′ + (x = t′′) ` t = t′

γ ` let x = c in t = t′ −→ γ + (x = c) ` t = t′

γ ` case x of {‘li 7→ ti} = t −→ ∀i γ + (x = ‘li) ` ti = t

γ ` x = y −→ x ≡ y ∧ γ ` γc (x) = γc (y)

γ ` ‘l = ‘l −→ true

γ ` ? i = ?j −→ i = j

γ ` x = y −→ x ∼= y

γ ` λx.t = λy.t′ −→ γ + (x = y) ` t = t′

γ ` (x, y) = (x′, y′) −→ γ ` x = x′ ∧ γ ` y = y′

γ ` (x : y)→ t = (x′ : y′)→ t′ −→ γ ` y = y′ ∧ γ + (x = x′) ` t = t′

γ ` (x : y)× t = (x′ : y′)× t′ −→ γ ` y = y′ ∧ γ + (x = x′) ` t = t′

γ ` {‘li} = {‘mi} −→ ∀i ‘li = ‘mi

γ ` λx.t = y −→ γ + (x = x) + (z = y x) ` t = z

γ ` (x, x′) = y −→ γ + (z = y.1) ` x = z ∧ γ + (z = y.2) ` x′ = z



Typing rules

Case
∀ i γ + (‘li = x) ` ti ⇔ T Γ(x) = {‘li}

γ ` case x of {‘li 7→ ti} ⇔ T

Constr
γ + (x = c) ` t ⇔ T

γ ` let x = c in t ⇔ T

Concl
γc (x) = c γ ` c ⇔ T

γ ` x ⇔ T

Destr
γ ` d ⇒ T′

γ ` d  γ
′ ` t′ γ

′ + (x = t′) + (x : T′) ` t ⇔ T

γ ` let x = d in t ⇔ T

Eval
γ ` T  {γ′ i ` Xi} ∀i γ

′
i ` Xi ⇔ X

γ ` t ⇔ T

Figure : Typechecking a term: γ ` t ⇔ T



Typing rules

App
Γ(y) = (z : X)→ T γ ` z ⇔ X

γ ` y z ⇒ T

Proj1

Γ(y) = (z : X)× T

γ ` y.1 ⇒ X

Proj2

Γ(y) = (z : X)× T

γ ` y.2 ⇒ T

Cut
γ ` x ⇔ X

γ ` (x : X) ⇒ X

Figure : Inferring the type of a destruction: γ ` d ⇒ T.

TyDestr
γ + (x = d) ` c ⇔ T

γ ` c ⇔ let x = d in T

TyConstr
γ + (x = c) ` c ⇔ T

γ ` c ⇔ let x = c in T

TyCase
∀ i γ + (‘li = x) ` c ⇔ Ti γ ` x ⇒ {‘li}

γ ` c ⇔ case x of {‘li 7→ Ti}

TyConcl
γc (x) = C γ ` c ⇔ C

γ ` c ⇔ x

Infer
Γ(x) = X γ ` X = T

γ ` x ⇔ T

Figure : Typechecking a construction against a term: γ ` c ⇔ T.



Typing rules

Pair
γ ` y ⇔ X γ + (x = (y : X)) ` z ⇔ T

γ ` (y, z) ⇔ (x : X)× T

Lambda
γ + (y : X) + (x = y) ` t ⇔ T

γ ` λy.t ⇔ (x : X)→ T

Label
‘l ∈ {‘li}

γ ` ‘l ⇔ {‘li}

Sigma
γ ` y ⇔ ? i γ + (x : y) ` t ⇔ ? i

γ ` (x : y)× t ⇔ ? i

Pi
γ ` y ⇔ ? i γ + (x : y) ` t ⇔ ? i

γ ` (x : y)→ t ⇔ ? i

Fin

γ ` {‘li} ⇔ ? i

Universe
i < j

γ ` ? i ⇔ ? j

Figure : Typechecking a construction against a construction: γ ` c ⇔ C.
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