
A sequent-calculus presentation of type-theory

Gabriel Radanne
Under the supervision of Jean-Philippe Bernardy

ENS Rennes — Chalmers University of Technology

February 20, 2014

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Plan

1 An Introduction to dependent types

2 Limitations of current typecheckers
Efficiency issues
The “case decomposition” issue
The monolithic approach

3 nanoAgda and microAgda
Goals
nanoAgda
microAgda
Results

4 Conclusion

2/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Imagine we want to define lists, but with guarantees on the length
of the list.
We have the length operation:
| [’a’ ; ’b’ ; ’c’] | = 3.

We can define the head function like this in OCaml:
let head x = match x with

| [] -> failwith "PANIC"

| (h::t) -> h

head l should only be valid if |l| > 0.

3/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Imagine we want to define lists, but with guarantees on the length
of the list.
We have the length operation:
| ’a’ :: ’b’ :: ’c’ :: [] | = 3.

We can define the head function like this in OCaml:
let head x = match x with

| [] -> failwith "PANIC"

| (h::t) -> h

head l should only be valid if |l| > 0.

3/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Imagine we want to define lists, but with guarantees on the length
of the list.
We have the length operation:
| ’a’ :: ’b’ :: ’c’ :: [] | = 3.

We can define the head function like this in OCaml:
let head x = match x with

| [] -> failwith "PANIC"

| (h::t) -> h

head l should only be valid if |l| > 0.

3/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Imagine we want to define lists, but with guarantees on the length
of the list.
We have the length operation:
| ’a’ :: ’b’ :: ’c’ :: [] | = 3.

We can define the head function like this in OCaml:
let head x = match x with

| [] -> failwith "PANIC"

We want the type-system to ensure this doesn’t happen.

| (h::t) -> h

head l should only be valid if |l| > 0.

3/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Let’s start by natural numbers:
data Nat : Set where

Zero : Nat

Succ : Nat → Nat

three : Nat

three = Succ (Succ (Succ Zero))

We can now define a special kind of list:
data Vec (A : Set) : Nat → Set where

Nil : Vec A Zero

Cons : {n : Nat} → A → Vec A n → Vec A (Succ n)

myVec : Vec Char three

myVec = Cons ’a’ (Cons ’b’ (Cons ’c’ Nil))

4/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Let’s start by natural numbers:
data Nat : Set where

Zero : Nat

Succ : Nat → Nat

three : Nat

three = Succ (Succ (Succ Zero))

We can now define a special kind of list:
data Vec (A : Set) : Nat → Set where

Nil : Vec A Zero

Cons : {n : Nat} → A → Vec A n → Vec A (Succ n)

myVec : Vec Char three

myVec = Cons ’a’ (Cons ’b’ (Cons ’c’ Nil))

4/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Let’s start by natural numbers:
data Nat : Set where

Zero : Nat

Succ : Nat → Nat

three : Nat

three = Succ (Succ (Succ Zero))

We can now define a special kind of list:
data Vec (A : Set) : Nat → Set where

Nil : Vec A Zero

Cons : {n : Nat} → A → Vec A n → Vec A (Succ n)

myVec : Vec Char three

myVec = Cons ’a’ (Cons ’b’ (Cons ’c’ Nil))

4/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Let’s start by natural numbers:
data Nat : Set where

Zero : Nat

Succ : Nat → Nat

three : Nat

three = Succ (Succ (Succ Zero))

We can now define a special kind of list:
data Vec (A : Set) : Nat → Set where

Nil : Vec A Zero

Cons : {n : Nat} → A → Vec A n → Vec A (Succ n)

myVec : Vec Char three

myVec = Cons ’a’ (Cons ’b’ (Cons ’c’ Nil))

4/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

data Nat : Set where

Zero : Nat

Succ : Nat → Nat

data Vec (A : Set) : Nat → Set where

Nil : Vec A Zero

Cons : {n : Nat} → A → Vec A n → Vec A (Succ n)

The head function:
head : forall { A n } → Vec A (Succ n) → A

head (Cons x xs) = x

head Nil ← This is a type error.

5/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

data Nat : Set where

Zero : Nat

Succ : Nat → Nat

data Vec (A : Set) : Nat → Set where

Nil : Vec A Zero

Cons : {n : Nat} → A → Vec A n → Vec A (Succ n)

The head function:
head : forall { A n } → Vec A (Succ n) → A

head (Cons x xs) = x

head Nil ← This is a type error.

5/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

data Nat : Set where

Zero : Nat

Succ : Nat → Nat

data Vec (A : Set) : Nat → Set where

Nil : Vec A Zero

Cons : {n : Nat} → A → Vec A n → Vec A (Succ n)

When we concatenate two vectors, |append l l’| = | l|+ | l’|.

append : forall { n m A } →
Vec A n → Vec A m → Vec A (n + m)

append Nil ys = ys

append (Cons x xs) ys = Cons x (append xs ys)

6/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

data Nat : Set where

Zero : Nat

Succ : Nat → Nat

data Vec (A : Set) : Nat → Set where

Nil : Vec A Zero

Cons : {n : Nat} → A → Vec A n → Vec A (Succ n)

When we concatenate two vectors, |append l l’| = | l|+ | l’|.
append : forall { n m A } →

Vec A n → Vec A m → Vec A (n + m)

append Nil ys = ys

append (Cons x xs) ys = Cons x (append xs ys)

6/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Dependent types

What have we done?

We defined a type with a term as parameter: Vec A n.

We used these values to enforce properties... by
type-checking.

We manipulated these values inside the type: Vec A (n+m).

Types depends on terms.

7/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Dependent types

What have we done?

We defined a type with a term as parameter: Vec A n.

We used these values to enforce properties.

.. by
type-checking.

We manipulated these values inside the type: Vec A (n+m).

Types depends on terms.

7/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Dependent types

What have we done?

We defined a type with a term as parameter: Vec A n.

We used these values to enforce properties... by
type-checking.

We manipulated these values inside the type: Vec A (n+m).

Types depends on terms.

7/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Dependent types

What have we done?

We defined a type with a term as parameter: Vec A n.

We used these values to enforce properties... by
type-checking.

We manipulated these values inside the type: Vec A (n+m).

Types depends on terms.

7/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Dependent types

What have we done?

We defined a type with a term as parameter: Vec A n.

We used these values to enforce properties... by
type-checking.

We manipulated these values inside the type: Vec A (n+m).

Types depends on terms.

7/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Dependent types

Dependent types:

Strongly related to Curry-Howard
Isomorphism.

Introduce as a type-theory by
Martin-Löf in 1971. Proposed as
foundation of mathematics.

Has gained popularity recently for
theorem-proving with Coq,

but also in programming: Agda,
Idris, ATS,. . .

Martin-Löf

8/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Dependent types

Dependent types:

Strongly related to Curry-Howard
Isomorphism.

Introduce as a type-theory by
Martin-Löf in 1971. Proposed as
foundation of mathematics.

Has gained popularity recently for
theorem-proving with Coq,

but also in programming: Agda,
Idris, ATS,. . .

Martin-Löf

8/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Dependent types

Dependent types:

Strongly related to Curry-Howard
Isomorphism.

Introduce as a type-theory by
Martin-Löf in 1971. Proposed as
foundation of mathematics.

Has gained popularity recently for
theorem-proving with Coq,

but also in programming: Agda,
Idris, ATS,. . .

Martin-Löf

8/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Dependent types

Dependent types:

Strongly related to Curry-Howard
Isomorphism.

Introduce as a type-theory by
Martin-Löf in 1971. Proposed as
foundation of mathematics.

Has gained popularity recently for
theorem-proving with Coq,

but also in programming: Agda,
Idris, ATS,. . .

Martin-Löf

8/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Dependent types

Dependent types:

Strongly related to Curry-Howard
Isomorphism.

Introduce as a type-theory by
Martin-Löf in 1971. Proposed as
foundation of mathematics.

Has gained popularity recently for
theorem-proving with Coq,

but also in programming: Agda,
Idris, ATS,. . .

Martin-Löf

8/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Dependent types

Dependent types:

Strongly related to Curry-Howard
Isomorphism.

Introduce as a type-theory by
Martin-Löf in 1971. Proposed as
foundation of mathematics.

Has gained popularity recently for
theorem-proving with Coq,

but also in programming: Agda,
Idris, ATS,. . .

Martin-Löf

8/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Limitations of current typecheckers

1 An Introduction to dependent types

2 Limitations of current typecheckers
Efficiency issues
The “case decomposition” issue
The monolithic approach

3 nanoAgda and microAgda
Goals
nanoAgda
microAgda
Results

4 Conclusion

9/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Efficiency issues

Agda’s type checker uses a natural deduction style:

Inference duplicates parts of terms.

These parts are not shared in the Agda core representation
anymore.

Typechecking must be done multiple times, causing
performance penalties.

λx.(f x x) (...)

f (...) (...)

10/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

The “case decomposition” issue

Natural deduction style makes propagating typing constraints to
subterms difficult.
For example, Agda’s typechecker has no knowledge of which
branch was taken while it typechecks the body of a case.

myFun x with f x

... | Foo = (No knowledge that f x ≡ Foo)

... | Bar = (No knowledge that f x ≡ Bar)

11/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

The monolithic approach

Agda currently does not have a core language that can be
reasoned about and formally verified.
Coq, on the other hand, is built as successive extensions of a core
language (CIC).

Coq

CIC

Agda

12/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

The monolithic approach

Agda currently does not have a core language that can be
reasoned about and formally verified.
Coq, on the other hand, is built as successive extensions of a core
language (CIC).

Coq

CIC

Agda

nanoAgda

12/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Goals

Our goals are to have a language that is:

A type-theory: Correctness should be expressible via types.

Low-level: One should be able to translate high-level
languages into this language while retaining properties such as
run-time behaviour, complexity, etc.

Minimal: The language should be well defined and it should
be possible to formally verify the type-checking algorithm.

13/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Goals

Our goals are to have a language that is:

A type-theory: Correctness should be expressible via types.

Low-level: One should be able to translate high-level
languages into this language while retaining properties such as
run-time behaviour, complexity, etc.

Minimal: The language should be well defined and it should
be possible to formally verify the type-checking algorithm.

13/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Goals

Our goals are to have a language that is:

A type-theory: Correctness should be expressible via types.

Low-level: One should be able to translate high-level
languages into this language while retaining properties such as
run-time behaviour, complexity, etc.

Minimal: The language should be well defined and it should
be possible to formally verify the type-checking algorithm.

13/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

nanoAgda

id : (a : Set) → a → a

id _ x = x

in Agda

TERM

f = λa → (

f‘ = λx → (r=x; r);

f‘) ;

f

TYPE

set = ?0 ;

f_ty = (a : set) → (

a‘ = a ;

a2a = (x : a‘) → a‘;

a2a

) ;

f_ty

in nanoAgda

14/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

nanoAgda

id : (a : Set) → a → a

id _ x = x

in Agda

TERM

f = λa → (

f‘ = λx → (r=x; r);

f‘) ;

f

TYPE

set = ?0 ;

f_ty = (a : set) → (

a‘ = a ;

a2a = (x : a‘) → a‘;

a2a

) ;

f_ty

in nanoAgda

14/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

nanoAgda

id : (a : Set) → a → a

id _ x = x

in Agda

TERM

f = λa → (

f‘ = λx → (r=x; r);

f‘) ;

f

TYPE

set = ?0 ;

f_ty = (a : set) → (

a‘ = a ;

a2a = (x : a‘) → a‘;

a2a

) ;

f_ty

in nanoAgda

14/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

nanoAgda

id : (a : Set) → a → a

id _ x = x

in Agda

TERM

f = λa → (

f‘ = λx → (r=x; r);

f‘) ;

f

TYPE

set = ?0 ;

f_ty = (a : set) → (

a‘ = a ;

a2a = (x : a‘) → a‘;

a2a

) ;

f_ty

in nanoAgda

14/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

nanoAgda

id : (a : Set) → a → a

id _ x = x

in Agda

TERM

f = λa → (

f‘ = λx → (r=x; r);

f‘) ;

f

TYPE

set = ?0 ;

f_ty = (a : set) → (

a‘ = a ;

a2a = (x : a‘) → a‘;

a2a

) ;

f_ty

in nanoAgda

14/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Sequent calculus

There are various definitions of sequent calculus. Here, we mean
that every intermediate result or sub-term are bound to a variable.

λx.(f x x) (...)

f (...) (...)

in natural deduction style

let x ′ = (...) in f x ′ x ′

in sequent calculus style

15/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Sequent calculus

There are various definitions of sequent calculus. Here, we mean
that every intermediate result or sub-term are bound to a variable.

λx.(f x x) (...)

f (...) (...)

in natural deduction style
let x ′ = (...) in f x ′ x ′

in sequent calculus style

15/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Presentation of the language

Variables: Hypotheses x and Conclusions x

Functions λx .t (f x) (x : Y)→ T

Pairs (x , y) x .1 (x : Y)× T
Enumerations ‘l case {‘l1, ‘l2, . . . }

Constructions and Destructions:
let x = c and let x = d
Universes:
?i with i ∈ N ?0 is equivalent to Set

Relation between Conclusions and Hypotheses:
let x = y A conclusion can be defined as an hypothesis.

let x = (y : Z) The cut construction.

16/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Presentation of the language

Variables: Hypotheses x and Conclusions x

Functions λx .t (f x) (x : Y)→ T

Pairs (x , y) x .1 (x : Y)× T
Enumerations ‘l case {‘l1, ‘l2, . . . }

Constructions and Destructions:
let x = c and let x = d
Universes:
?i with i ∈ N ?0 is equivalent to Set

Relation between Conclusions and Hypotheses:
let x = y A conclusion can be defined as an hypothesis.

let x = (y : Z) The cut construction.

16/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Presentation of the language

Variables: Hypotheses x and Conclusions x

Functions λx .t (f x) (x : Y)→ T

Pairs (x , y) x .1 (x : Y)× T

Enumerations ‘l case {‘l1, ‘l2, . . . }
Constructions and Destructions:
let x = c and let x = d
Universes:
?i with i ∈ N ?0 is equivalent to Set

Relation between Conclusions and Hypotheses:
let x = y A conclusion can be defined as an hypothesis.

let x = (y : Z) The cut construction.

16/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Presentation of the language

Variables: Hypotheses x and Conclusions x

Functions λx .t (f x) (x : Y)→ T

Pairs (x , y) x .1 (x : Y)× T
Enumerations ‘l case {‘l1, ‘l2, . . . }

Constructions and Destructions:
let x = c and let x = d
Universes:
?i with i ∈ N ?0 is equivalent to Set

Relation between Conclusions and Hypotheses:
let x = y A conclusion can be defined as an hypothesis.

let x = (y : Z) The cut construction.

16/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Presentation of the language

Variables: Hypotheses x and Conclusions x

Functions λx .t (f x) (x : Y)→ T

Pairs (x , y) x .1 (x : Y)× T
Enumerations ‘l case {‘l1, ‘l2, . . . }

Constructions and Destructions:
let x = c and let x = d

Universes:
?i with i ∈ N ?0 is equivalent to Set

Relation between Conclusions and Hypotheses:
let x = y A conclusion can be defined as an hypothesis.

let x = (y : Z) The cut construction.

16/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Presentation of the language

Variables: Hypotheses x and Conclusions x

Functions λx .t (f x) (x : Y)→ T

Pairs (x , y) x .1 (x : Y)× T
Enumerations ‘l case {‘l1, ‘l2, . . . }

Constructions and Destructions:
let x = c and let x = d
Universes:
?i with i ∈ N ?0 is equivalent to Set

Relation between Conclusions and Hypotheses:
let x = y A conclusion can be defined as an hypothesis.

let x = (y : Z) The cut construction.

16/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Presentation of the language

Variables: Hypotheses x and Conclusions x

Functions λx .t (f x) (x : Y)→ T

Pairs (x , y) x .1 (x : Y)× T
Enumerations ‘l case {‘l1, ‘l2, . . . }

Constructions and Destructions:
let x = c and let x = d
Universes:
?i with i ∈ N ?0 is equivalent to Set

Relation between Conclusions and Hypotheses:
let x = y A conclusion can be defined as an hypothesis.

let x = (y : Z) The cut construction.

16/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Presentation of the language

Variables: Hypotheses x and Conclusions x

Functions λx .t (f x) (x : Y)→ T

Pairs (x , y) x .1 (x : Y)× T
Enumerations ‘l case {‘l1, ‘l2, . . . }

Constructions and Destructions:
let x = c and let x = d
Universes:
?i with i ∈ N ?0 is equivalent to Set

Relation between Conclusions and Hypotheses:
let x = y A conclusion can be defined as an hypothesis.
let x = (y : Z) The cut construction.

16/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

microAgda

A new syntax, easier to manipulate, and that can be translated
easily into nanoAgda.

id : (a : Set) → a → a

id _ x = x

in Agda

TERM

λa → λx → x

TYPE

(a : ?1) → (x : a) → a

in microAgda

TERM

f = λa → (

f‘ = λx → (r=x; r);

f‘) ;

f

TYPE

set = ?0 ;

f_ty = (a : set) → (

a‘ = a ;

a2a = (x : a‘) → a‘;

a2a

) ;

f_ty

in nanoAgda

17/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

microAgda

A new syntax, easier to manipulate, and that can be translated
easily into nanoAgda.

id : (a : Set) → a → a

id _ x = x

in Agda

TERM

λa → λx → x

TYPE

(a : ?1) → (x : a) → a

in microAgda

TERM

f = λa → (

f‘ = λx → (r=x; r);

f‘) ;

f

TYPE

set = ?0 ;

f_ty = (a : set) → (

a‘ = a ;

a2a = (x : a‘) → a‘;

a2a

) ;

f_ty

in nanoAgda

17/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

microAgda

A new syntax, easier to manipulate, and that can be translated
easily into nanoAgda.

id : (a : Set) → a → a

id _ x = x

in Agda

TERM

λa → λx → x

TYPE

(a : ?1) → (x : a) → a

in microAgda

TERM

f = λa → (

f‘ = λx → (r=x; r);

f‘) ;

f

TYPE

set = ?0 ;

f_ty = (a : set) → (

a‘ = a ;

a2a = (x : a‘) → a‘;

a2a

) ;

f_ty

in nanoAgda

17/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

microAgda

A new syntax, easier to manipulate, and that can be translated
easily into nanoAgda.

id : (a : Set) → a → a

id _ x = x

in Agda

TERM

λa → λx → x

TYPE

(a : ?1) → (x : a) → a

in microAgda

TERM

f = λa → (

f‘ = λx → (r=x; r);

f‘) ;

f

TYPE

set = ?0 ;

f_ty = (a : set) → (

a‘ = a ;

a2a = (x : a‘) → a‘;

a2a

) ;

f_ty

in nanoAgda

17/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

microAgda

A new syntax, easier to manipulate, and that can be translated
easily into nanoAgda.

id : (a : Set) → a → a

id _ x = x

in Agda

TERM

λa → λx → x

TYPE

(a : ?1) → (x : a) → a

in microAgda

TERM

f = λa → (

f‘ = λx → (r=x; r);

f‘) ;

f

TYPE

set = ?0 ;

f_ty = (a : set) → (

a‘ = a ;

a2a = (x : a‘) → a‘;

a2a

) ;

f_ty

in nanoAgda

17/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

microAgda

A new syntax, easier to manipulate, and that can be translated
easily into nanoAgda.

id : (a : Set) → a → a

id _ x = x

in Agda

TERM

λa → λx → x

TYPE

(a : ?1) → (x : a) → a

in microAgda

TERM

f = λa → (

f‘ = λx → (r=x; r);

f‘) ;

f

TYPE

set = ?0 ;

f_ty = (a : set) → (

a‘ = a ;

a2a = (x : a‘) → a‘;

a2a

) ;

f_ty

in nanoAgda

17/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Results

We implemented a typechecker and evaluator for nanoAgda.

We introduced a new intermediate language: microAgda.

We exhibited some examples that don’t typecheck in Agda
but typecheck in nanoAgda.

18/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

Future work

Precisely evaluate the efficiency of this new approach.

Prove subject-reduction of nanoAgda (in Coq).

Introduce recursion.

Experiment with extensions of the type system (linear,
colors,. . .).

19/20

Questions ?

Questions ?

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

How to encode sum types

data MySumtype (s : Set)

: Set where

Foo : s → MySumtype s

Bar : MySumtype s

in Agda

TERM

Unit_t = { ‘unit } ;

Unit_ty = ?0 ;

Unit = Unit_t : Unit_ty ;

f = λs → (

tag = { ‘Foo , ‘Bar } ;

f‘ = (c : tag) ×
(case c of {

‘Foo → s‘ = s ; s‘ .

‘Bar → Unit‘ = Unit ;

Unit‘

}) ;

f‘) ;

f

TYPE

star0 = ?0 ;

f_ty = (s : star0) → star0 ;

f_ty

22/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

How to encode sum types

data MySumtype (s : Set)

: Set where

Foo : s → MySumtype s

Bar : MySumtype s

in Agda

TERM

Unit_t = { ‘unit } ;

Unit_ty = ?0 ;

Unit = Unit_t : Unit_ty ;

f = λs → (

tag = { ‘Foo , ‘Bar } ;

f‘ = (c : tag) ×
(case c of {

‘Foo → s‘ = s ; s‘ .

‘Bar → Unit‘ = Unit ;

Unit‘

}) ;

f‘) ;

f

TYPE

star0 = ?0 ;

f_ty = (s : star0) → star0 ;

f_ty

22/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

How to encode stupidly simple sum types

data SimpleSum : Set where

Foo : Nat → SimpleSum

Bar : Nat → SimpleSum

in Agda

TERM

{ ‘Foo ; ‘Bar } × Nat

Type

?0

in microAgda

23/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

How to encode stupidly simple sum types

data SimpleSum : Set where

Foo : Nat → SimpleSum

Bar : Nat → SimpleSum

in Agda

TERM

{ ‘Foo ; ‘Bar } × Nat

Type

?0

in microAgda

23/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

How to encode stupidly simple sum types

data SimpleSum : Set where

Foo : Nat → SimpleSum

Bar : Nat → SimpleSum

in Agda

TERM

{ ‘Foo ; ‘Bar } × Nat

Type

?0

in microAgda

23/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

How to encode sum types – 2nd edition

data MySumtype (s : Set)

: Set where

Foo : s → MySumtype s

Bar : MySumtype s

in Agda

TERM

Unit = { ‘unit } : ?0 ;

λs → (c : { ‘Foo , ‘Bar }) ×
(case c of {

‘Foo → s.

‘Bar → Unit.

})

TYPE

?0 → ?0

in microAgda

24/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

How to encode sum types – 2nd edition

data MySumtype (s : Set)

: Set where

Foo : s → MySumtype s

Bar : MySumtype s

in Agda

TERM

Unit = { ‘unit } : ?0 ;

λs → (c : { ‘Foo , ‘Bar }) ×
(case c of {

‘Foo → s.

‘Bar → Unit.

})

TYPE

?0 → ?0

in microAgda

24/20

An Introduction to dependent types Limitations of current typecheckers nanoAgda and microAgda Conclusion

How to encode sum types – 2nd edition

data MySumtype (s : Set)

: Set where

Foo : s → MySumtype s

Bar : MySumtype s

in Agda

TERM

Unit = { ‘unit } : ?0 ;

λs → (c : { ‘Foo , ‘Bar }) ×
(case c of {

‘Foo → s.

‘Bar → Unit.

})

TYPE

?0 → ?0

in microAgda

24/20

Questions ?

Environment extension

Γ : x 7→ y The context heap, containing the type of hypotheses.

γc : x 7→ c The heap from conclusion to constructions.

γa : x 7→ y The heap for aliases on hypotheses.

γd : x 7→ d The heap from hypotheses to cuts and destructions.

γ + (x : Y) = γ with Γ← (x : Y)

γ + (x = d) = γ with γa ← (x = y) if (y = d) ∈ γd
= γ with γd ← (x = d) otherwise

γ + (x = c) = γ with γc ← (x = c)

γ + (‘l = x) = γ if (‘l = x) ∈ γc
= ⊥ if (‘m = x) ∈ γc for ‘l 6= ‘m

= γ with γc ← (‘l = x) otherwise

Reduction rules

EvalCase
h(x) = (‘li :) h + (‘li = x) ` ti h′ ` x

h ` case x of {‘li 7→ ti} h′ ` x

AbstractCase
h(x) 6= (‘li :) ∀i h + (‘li = x) ` ti h′i ` xi

h ` case x of {‘li 7→ ti} {hi ` xi}

EvalDestr
h ` d h′ ` t′ h′ + (x = t′) ` t h′′ ` x

h ` let x = d in t h′′ ` x

AddDestr
h ` d 6 h′ ` t′ h + (x = d) ` t h′ ` x

h ` let x = d in t h′ ` x

AddConstr
h + (x = c) ` t h′ ` x

h ` let x = c in t h′ ` x

Concl

h ` x h ` x

EvalProj1
h(y) = ((z,w) :)

h ` y.1 h ` z

EvalProj2
h(y) = ((z,w) :)

h ` y.2 h ` w

EvalApp
h(y) = (λw.t :) h ` t[z/w] h′ ` x

h ` (y z) h′ ` x

Equality rules

γ ` let x = d in t = t′ −→ γ
′ + (x = t′′) ` t = t′

γ ` let x = c in t = t′ −→ γ + (x = c) ` t = t′

γ ` case x of {‘li 7→ ti} = t −→ ∀i γ + (x = ‘li) ` ti = t

γ ` x = y −→ x ≡ y ∧ γ ` γc (x) = γc (y)

γ ` ‘l = ‘l −→ true

γ ` ? i = ?j −→ i = j

γ ` x = y −→ x ∼= y

γ ` λx.t = λy.t′ −→ γ + (x = y) ` t = t′

γ ` (x, y) = (x′, y′) −→ γ ` x = x′ ∧ γ ` y = y′

γ ` (x : y)→ t = (x′ : y′)→ t′ −→ γ ` y = y′ ∧ γ + (x = x′) ` t = t′

γ ` (x : y)× t = (x′ : y′)× t′ −→ γ ` y = y′ ∧ γ + (x = x′) ` t = t′

γ ` {‘li} = {‘mi} −→ ∀i ‘li = ‘mi

γ ` λx.t = y −→ γ + (x = x) + (z = y x) ` t = z

γ ` (x, x′) = y −→ γ + (z = y.1) ` x = z ∧ γ + (z = y.2) ` x′ = z

Typing rules

Case
∀ i γ + (‘li = x) ` ti ⇔ T Γ(x) = {‘li}

γ ` case x of {‘li 7→ ti} ⇔ T

Constr
γ + (x = c) ` t ⇔ T

γ ` let x = c in t ⇔ T

Concl
γc (x) = c γ ` c ⇔ T

γ ` x ⇔ T

Destr
γ ` d ⇒ T′

γ ` d γ
′ ` t′ γ

′ + (x = t′) + (x : T′) ` t ⇔ T

γ ` let x = d in t ⇔ T

Eval
γ ` T {γ′ i ` Xi} ∀i γ

′
i ` Xi ⇔ X

γ ` t ⇔ T

Figure : Typechecking a term: γ ` t ⇔ T

Typing rules

App
Γ(y) = (z : X)→ T γ ` z ⇔ X

γ ` y z ⇒ T

Proj1

Γ(y) = (z : X)× T

γ ` y.1 ⇒ X

Proj2

Γ(y) = (z : X)× T

γ ` y.2 ⇒ T

Cut
γ ` x ⇔ X

γ ` (x : X) ⇒ X

Figure : Inferring the type of a destruction: γ ` d ⇒ T.

TyDestr
γ + (x = d) ` c ⇔ T

γ ` c ⇔ let x = d in T

TyConstr
γ + (x = c) ` c ⇔ T

γ ` c ⇔ let x = c in T

TyCase
∀ i γ + (‘li = x) ` c ⇔ Ti γ ` x ⇒ {‘li}

γ ` c ⇔ case x of {‘li 7→ Ti}

TyConcl
γc (x) = C γ ` c ⇔ C

γ ` c ⇔ x

Infer
Γ(x) = X γ ` X = T

γ ` x ⇔ T

Figure : Typechecking a construction against a term: γ ` c ⇔ T.

Typing rules

Pair
γ ` y ⇔ X γ + (x = (y : X)) ` z ⇔ T

γ ` (y, z) ⇔ (x : X)× T

Lambda
γ + (y : X) + (x = y) ` t ⇔ T

γ ` λy.t ⇔ (x : X)→ T

Label
‘l ∈ {‘li}

γ ` ‘l ⇔ {‘li}

Sigma
γ ` y ⇔ ? i γ + (x : y) ` t ⇔ ? i

γ ` (x : y)× t ⇔ ? i

Pi
γ ` y ⇔ ? i γ + (x : y) ` t ⇔ ? i

γ ` (x : y)→ t ⇔ ? i

Fin

γ ` {‘li} ⇔ ? i

Universe
i < j

γ ` ? i ⇔ ? j

Figure : Typechecking a construction against a construction: γ ` c ⇔ C.

	An Introduction to dependent types
	Limitations of current typecheckers
	Efficiency issues
	The ``case decomposition'' issue
	The monolithic approach

	nanoAgda and microAgda
	Goals
	nanoAgda
	microAgda
	Results

	Conclusion

