
Tierless Web programming in ML
Gabriel RADANNE

Client

Server

DOM

Client

Mobile
Client

Untyped

2 / 39

Client

Server

DOM

Client

Mobile
Client

Untyped

2 / 39

Client

An HTTP Request

GET /hypertext/WWW/TheProject.html
HTTP/1.1

Host: info.cern.ch
User-Agent: Firefox/56.0
Accept: text/html
Accept-Language: en
Accept-Encoding: gzip, deflate
Referer: http://info.cern.ch/

Server

DOM

Client

Mobile
Client

Untyped

2 / 39

Client

Server

DOM

Client

Mobile
Client

Untyped

2 / 39

Client

Server

DOM

Client

Mobile
Client

Untyped

2 / 39

Client

Server

DOM

Client

Mobile
Client

Untyped

2 / 39

Client

Server

DOM

Client

Mobile
Client

Untyped

2 / 39

Client

Server

DOM

Client

Mobile
Client

Untyped

2 / 39

Client

Server

DOM

Client

Mobile
Client

Untyped

2 / 39

Client

Server

DOM

Client

Mobile
Client

Untyped

2 / 39

Client

Server

DOM

Client

Mobile
Client

Untyped

2 / 39

Client

Server

DOM

Client

Mobile
Client

Untyped

2 / 39

Client

Server

DOM

Client

Mobile
Client

Untyped

2 / 39

Client

Server

DOM

Client

Mobile
Client

Untyped

Server Send

line 1: Welcome to my defense!

Client Expect

line <number>: <text>

2 / 39

Client

Server

DOM

Client

Mobile
Client

Untyped

Server Send

1,0:Welcome to my defense!

Client Expect

line <number>: <text>

2 / 39

3 / 39

ServerClient 1

2

One program for everything

4 / 39

ServerClient 1

2

One program for everything

Tierless languages

4 / 39

Static typing

E
xi

st
in

g
ec

os
ys

tem

Dynamic slicing

One way communications

ELIOM

ELIOM

HASTE

HOP

LINKS

ML5

STIP.JS

UR/WEB

5 / 39

Static typing

E
xi

st
in

g
ec

os
ys

tem

Dynamic slicing

One way communications

ELIOM

ELIOM

HASTE

HOP

LINKS

ML5

STIP.JS

UR/WEB

5 / 39

The OCSIGEN project

OCAML

JS_OF_OCAMLSERVER

ELIOM

6 / 39

The OCSIGEN project

OCAML

JS_OF_OCAMLSERVER

ELIOM

6 / 39

The OCSIGEN project

OCAML

JS_OF_OCAMLSERVER

Language extension
Libraries

6 / 39

The OCSIGEN project

OCAML

JS_OF_OCAMLSERVER

Language extension
Libraries

6 / 39

Client and Server declarations

ServerClient
Location annotations allow to use client and server code in the same
program.

1 type%client t = ...
2

3 let%server v = ...

The program is statically sliced during compilation.

7 / 39

Building fragments of client code
inside server code

Fragments of client code can be included inside server code.

1 let%server x : int fragment = [%client 1 + 3]

8 / 39

Building fragments of client code
inside server code

Fragments of client code can be included inside server code.

1 let%server x : int fragment = [%client 1 + 3]
1 let%server y = [("foo", x) ; ("bar", [%client 2])]

8 / 39

Accessing server values in the client

Injections allow to use server values on the client.

1 let%server s : int = 1 + 2
2 let%client c : int = ~%s + 1

9 / 39

Everything at once

We can combine injections and fragments.

1 let%server x : int fragment = [%client 1 + 3]
2 let%client c : int = 3 + ~%x

10 / 39

Small example – Hint button

button.eliom
1 let%server hint_button (msg : string) =
2 button
3 ~a:[a_onclick [%client fun _ -> alert ~%msg]]
4 [pcdata "Show Hint"]

button.html
1 <button onclick="...">
2 Show hint
3 </button>

11 / 39

Small example – Hint button

button.eliom
1 let%server hint_button (msg : string) =
2 button
3 ~a:[a_onclick [%client fun _ -> alert ~%msg]]
4 [pcdata "Show Hint"]

button.html
1 <button onclick="...">
2 Show hint
3 </button>

11 / 39

Before my thesis

The ELIOM “language” was already implemented as an OCAML syntax
extension by numerous contributors:

Vincent BALAT

Benedikt BECKER

Pierre CHAMBART

Grégoire HENRY

Vasilis PAPAVASILIEOU

Jérôme VOUILLON

Problem
The language was starting to get big and there was no formal
definition.

12 / 39

Before my thesis

The ELIOM “language” was already implemented as an OCAML syntax
extension by numerous contributors:

Vincent BALAT

Benedikt BECKER

Pierre CHAMBART

Grégoire HENRY

Vasilis PAPAVASILIEOU

Jérôme VOUILLON

Problem
The language was starting to get big and there was no formal
definition.

12 / 39

My contributions

A formalization of the type system, the semantics and the
compilation scheme
Improvements on the ELIOM language

New type system defined as an extension of the OCAML one
New module system

A new implementation which closely reflects the formalization

13 / 39

1 Formalization
Semantics
Compilation

2 Type system

3 Module system

14 / 39

Small example

1 let%server hint_button (msg : string) =
2 button
3 ~a:[a_onclick [%client fun _ -> alert ~%msg]]
4 [pcdata "Show hint"]
5

6 let%server thebutton = hint_button "Boo!"

How is that actually executed?

15 / 39

Small example

1 let%server hint_button (msg : string) =
2 button
3 ~a:[a_onclick [%client fun _ -> alert ~%msg]]
4 [pcdata "Show hint"]
5

6 let%server thebutton = hint_button "Boo!"

How is that actually executed?

15 / 39

Example of execution

let%server x = [%client 1 + 3]
let%client y = 3 + ~%x
return y

ELIOM program ELIOM environment

Client program Client environment

16 / 39

Example of execution

let%server x = [%client 1 + 3]
let%client y = 3 + ~%x
return y

ELIOM program ELIOM environment

let f () = 1 + 3

Client program Client environment

16 / 39

Example of execution

let%server x = r
let%client y = 3 + ~%x
return y

ELIOM program ELIOM environment

let f () = 1 + 3
let r = f ()

Client program Client environment

16 / 39

Example of execution

let%client y = 3 + ~%x
return y

ELIOM program

x 7→ r
ELIOM environment

let f () = 1 + 3
let r = f ()

Client program Client environment

16 / 39

Example of execution

let%client y = 3 + r
return y

ELIOM program

x 7→ r
ELIOM environment

let f () = 1 + 3
let r = f ()

Client program Client environment

16 / 39

Example of execution

return y

ELIOM program

x 7→ r
ELIOM environment

let f () = 1 + 3
let r = f ()
let y = 3 + r

Client program Client environment

16 / 39

Example of execution

ELIOM program

x 7→ r
ELIOM environment

let f () = 1 + 3
let r = f ()
let y = 3 + r
return y

Client program Client environment

16 / 39

Example of execution

ELIOM program

x 7→ r
ELIOM environment

let f () = 1 + 3
let r = f ()
let y = 3 + r
return y

Client program Client environment

16 / 39

Example of execution

ELIOM program

x 7→ r
ELIOM environment

let r = f ()
let y = 3 + r
return y

Client program

f 7→ fun()->1+3

Client environment

16 / 39

Example of execution

ELIOM program

x 7→ r
ELIOM environment

let y = 3 + r
return y

Client program

f 7→ fun()->1+3
r 7→ 4

Client environment

16 / 39

Example of execution

ELIOM program

x 7→ r
ELIOM environment

return y

Client program

f 7→ fun()->1+3
r 7→ 4
y 7→ 7

Client environment

16 / 39

Example of execution

ELIOM program

x 7→ r
ELIOM environment

Client program

f 7→ fun()->1+3
r 7→ 4
y 7→ 7

Client environment

7
Result

16 / 39

Example of compilation

let%server x = [%client 1 + 3]
let%client y = 3 + ~%x
return y

ELIOM code

bind "f0" (fun () -> 1 + 3);
exec ();
let y = 3 + get "i"
return y

Client code

let x = fragment "f0" ()
end ();
inject "i" x;

Server code

17 / 39

Execution of the compiled code

let%server x =
[%client 1 + 3]

let%client y = 3 + ~%x
return y

ELIOM program

let x = fragment "f0" ()
end ();
inject "i" x;

Server program

Server environment

Queue Injections

bind "f0" (fun()->1+3);
exec ();
let y = 3 + get "i"
return y

Client program

Client environment

18 / 39

Execution of the compiled code

let%server x =
[%client 1 + 3]

let%client y = 3 + ~%x
return y

ELIOM program

let x = "r"
end ();
inject "i" x;

Server program

Server environment

"r" 7→ "f0"()

Queue Injections

bind "f0" (fun()->1+3);
exec ();
let y = 3 + get "i"
return y

Client program

Client environment

18 / 39

Execution of the compiled code

let%server x =
[%client 1 + 3]

let%client y = 3 + ~%x
return y

ELIOM program

end ();
inject "i" x;

Server program

x 7→ "r"

Server environment

"r" 7→ "f0"()

Queue Injections

bind "f0" (fun()->1+3);
exec ();
let y = 3 + get "i"
return y

Client program

Client environment

18 / 39

Execution of the compiled code

let%server x =
[%client 1 + 3]

let%client y = 3 + ~%x
return y

ELIOM program

inject "i" x;

Server program

x 7→ "r"

Server environment

"r" 7→ "f0"()
end

Queue Injections

bind "f0" (fun()->1+3);
exec ();
let y = 3 + get "i"
return y

Client program

Client environment

18 / 39

Execution of the compiled code

let%server x =
[%client 1 + 3]

let%client y = 3 + ~%x
return y

ELIOM program

Server program

x 7→ "r"

Server environment

"r" 7→ "f0"()
end

Queue

"i" 7→ "r"

Injections

bind "f0" (fun()->1+3);
exec ();
let y = 3 + get "i"
return y

Client program

Client environment

18 / 39

Execution of the compiled code

let%server x =
[%client 1 + 3]

let%client y = 3 + ~%x
return y

ELIOM program

Server program

x 7→ "r"

Server environment

"r" 7→ "f0"()
end

Queue

"i" 7→ "r"

Injections

bind "f0" (fun()->1+3);
exec ();
let y = 3 + get "i"
return y

Client program

Client environment

18 / 39

Execution of the compiled code

let%server x =
[%client 1 + 3]

let%client y = 3 + ~%x
return y

ELIOM program

Server program

x 7→ "r"

Server environment

"r" 7→ "f0"()
end

Queue

"i" 7→ "r"

Injections

exec ();
let y = 3 + get "i"
return y

Client program

"f0" 7→ fun()->1+3

Client environment

18 / 39

Execution of the compiled code

let%server x =
[%client 1 + 3]

let%client y = 3 + ~%x
return y

ELIOM program

Server program

x 7→ "r"

Server environment

end

Queue

"i" 7→ "r"

Injections

exec ();
let y = 3 + get "i"
return y

Client program

"f0" 7→ fun()->1+3
"r" 7→ 4

Client environment

18 / 39

Execution of the compiled code

let%server x =
[%client 1 + 3]

let%client y = 3 + ~%x
return y

ELIOM program

Server program

x 7→ "r"

Server environment

Queue

"i" 7→ "r"

Injections

let y = 3 + get "i"
return y

Client program

"f0" 7→ fun()->1+3
"r" 7→ 4

Client environment

18 / 39

Execution of the compiled code

let%server x =
[%client 1 + 3]

let%client y = 3 + ~%x
return y

ELIOM program

Server program

x 7→ "r"

Server environment

Queue

"i" 7→ "r"

Injections

let y = 3 + "r"
return y

Client program

"f0" 7→ fun()->1+3
"r" 7→ 4

Client environment

18 / 39

Execution of the compiled code

let%server x =
[%client 1 + 3]

let%client y = 3 + ~%x
return y

ELIOM program

Server program

x 7→ "r"

Server environment

Queue

"i" 7→ "r"

Injections

return y

Client program

"f0" 7→ fun()->1+3
"r" 7→ 4

y 7→ 7

Client environment

18 / 39

Execution of the compiled code

let%server x =
[%client 1 + 3]

let%client y = 3 + ~%x
return y

ELIOM program

Server program

x 7→ "r"

Server environment

Queue

"i" 7→ "r"

Injections

Client program
"f0" 7→ fun()->1+3
"r" 7→ 4

y 7→ 7

Client environment7
Result

18 / 39

Theorem (Compilation preserves semantics)

Given a slicable program P which reduces to v with a trace θ . Then:

The server compilation 〈P〉s reduces to the queue ξ and the
injections ζ with the trace θs.

The client compilation 〈P〉c , the queue ξ and the injections ζ

reduces to the value v with the trace θc .

θ is equal to the concatenation of θs and θc .

19 / 39

Theorem (Compilation preserves semantics)

If converters are well-behaved,
Given a slicable program P which reduces to v with a trace θ . Then:

The server compilation 〈P〉s reduces to the queue ξ and the
injections ζ with the trace θs.

The client compilation 〈P〉c , the queue ξ and the injections ζ

reduces to the value v with the trace θc .

θ is equal to the concatenation of θs and θc .

19 / 39

1 Formalization
Semantics
Compilation

2 Type system

3 Module system

Type universes

Client and server types are distinct in ELIOM!

1 let%server s : int = 1 + 2
2 let%client c : int = ~%s + 1

21 / 39

Type universes

Client and server types are distinct in ELIOM!

1 let%server s : ints = 1 + 2
2 let%client c : intc = ~%s + 1

21 / 39

How to typecheck injections?

Client and server types are in distinct universes

We send values from the server to the client

We need to specify how to send values! This problem is known as
cross-stage persistency.

1 let%server s : ints = 1 + 2
2 let%client c : intc = cint%s + 1

With the predefined converters:

1 val%server cint : (ints, intc) converter
2 val%server cfrag : (’a fragment, ’a) converter

22 / 39

How to typecheck injections?

Client and server types are in distinct universes

We send values from the server to the client

We need to specify how to send values! This problem is known as
cross-stage persistency.

1 let%server s : ints = 1 + 2
2 let%client c : intc = cint%s + 1

With the predefined converters:

1 val%server cint : (ints, intc) converter
2 val%server cfrag : (’a fragment, ’a) converter

22 / 39

Semantics of converters

Converters are “functions” that cross the client/server boundaries.

Definition
A converter is said “well-behaved” if it can be decomposed into a
server serialization and a client deserialization function.

1 type (’a, ’b) converter = {
2 serialize: ’a -> serial ;
3 deserialize: (serial -> ’b) fragment ;
4 }

23 / 39

Semantics of converters

Converters are “functions” that cross the client/server boundaries.

Definition
A converter is said “well-behaved” if it can be decomposed into a
server serialization and a client deserialization function.

1 type%server (’a, ’b[@client]) converter = {
2 serialize: ’a -> serial ;
3 deserialize: (serial -> ’b) fragment ;
4 }

23 / 39

Theorem (Compilation preserves typing)

Given a well typed program P, then the client and server compilation,
〈P〉s and 〈P〉c are also well typed.
Types for the compiled programs can trivially be deduced from the
original ones.

This theorem ensures that the ML parts of ELIOM programs are typed
“like ML”.

24 / 39

1 Formalization
Semantics
Compilation

2 Type system

3 Module system

Why modules?

With the ELIOM language thus far, we have location-aware
programming in expressions.

We also want location-aware programming in the large!

In particular, we want:

A good integration with OCAML

Ability to load libraries at a chosen location

Signatures that inform us about locations

Separate compilation

⇒We need a module system that accounts for locations.

26 / 39

Why modules?

With the ELIOM language thus far, we have location-aware
programming in expressions.

We also want location-aware programming in the large!

In particular, we want:

A good integration with OCAML

Ability to load libraries at a chosen location

Signatures that inform us about locations

Separate compilation

⇒We need a module system that accounts for locations.

26 / 39

Why modules?

With the ELIOM language thus far, we have location-aware
programming in expressions.

We also want location-aware programming in the large!

In particular, we want:

A good integration with OCAML

Ability to load libraries at a chosen location

Signatures that inform us about locations

Separate compilation

⇒We need a module system that accounts for locations.

26 / 39

Integration with OCAML

On top of client and server, there is also a third location, base, which
is usable everywhere.

1 let%base f x = ...
2 let%client a = f 2
3 let%server b = f 5

Theorem (Base/ML correspondance)

ELIOM modules, expressions and types on base location correspond
exactly to the ML language.

⇒ Compilation objects from the OCAML compiler can be reused
directly!

27 / 39

Integration with OCAML

On top of client and server, there is also a third location, base, which
is usable everywhere.

1 let%base f x = ...
2 let%client a = f 2
3 let%server b = f 5

Theorem (Base/ML correspondance)

ELIOM modules, expressions and types on base location correspond
exactly to the ML language.

⇒ Compilation objects from the OCAML compiler can be reused
directly!

27 / 39

Integration with OCAML

On top of client and server, there is also a third location, base, which
is usable everywhere.

1 let%base f x = ...
2 let%client a = f 2
3 let%server b = f 5

Theorem (Base/ML correspondance)

ELIOM modules, expressions and types on base location correspond
exactly to the ML language.

⇒ Compilation objects from the OCAML compiler can be reused
directly!

27 / 39

Integration with OCAML

On top of client and server, there is also a third location, base, which
is usable everywhere.

1 let f x = ...
2 let%client a = f 2
3 let%server b = f 5

Theorem (Base/ML correspondance)

ELIOM modules, expressions and types on base location correspond
exactly to the ML language.

⇒ Compilation objects from the OCAML compiler can be reused
directly!

27 / 39

Modules and locations

We can also declare modules on the location of our choice! The
content of the module must be the same than its location.

1 module%client JsMap : sig
2 type%client ’a t
3

4 val%client empty : ’a t
5 val%client add : ’a t -> string -> ’a -> unit
6

7 ...
8 end

We can even omit annotations inside the module!

28 / 39

Modules and locations

We can also declare modules on the location of our choice! The
content of the module must be the same than its location.

1 module%client JsMap : sig
2 type ’a t
3

4 val empty : ’a t
5 val add : ’a t -> string -> ’a -> unit
6

7 ...
8 end

We can even omit annotations inside the module!

28 / 39

Mixed modules

We can also declare “mixed” modules which contain declarations in
different locations.

1 module%mixed M = struct
2 let f x = ...
3 let%client c = f 2
4 let%server s = f 5
5 end

You can then use the content of the module as expected:

1 let%client x = ... M.c ...
2

3 let%server y = ... M.s ...

But using them in the wrong location is prevented:

1 let%client x = ... M.s ... (* 8 Error! *)

29 / 39

Mixed modules

We can also declare “mixed” modules which contain declarations in
different locations.

1 module%mixed M = struct
2 let f x = ...
3 let%client c = f 2
4 let%server s = f 5
5 end

You can then use the content of the module as expected:

1 let%client x = ... M.c ...
2

3 let%server y = ... M.s ...

But using them in the wrong location is prevented:

1 let%client x = ... M.s ... (* 8 Error! *)

29 / 39

Mixed modules

We can also declare “mixed” modules which contain declarations in
different locations.

1 module%mixed M = struct
2 let f x = ...
3 let%client c = f 2
4 let%server s = f 5
5 end

You can then use the content of the module as expected:

1 let%client x = ... M.c ...
2

3 let%server y = ... M.s ...

But using them in the wrong location is prevented:

1 let%client x = ... M.s ... (* 8 Error! *)

29 / 39

What about locations and Functors?
The location of the result of the functor depends on the location of the
functor and its argument.

F (X)
base base

Functor location Argument location Result location
base base base

server server server
server base ?
base server ?

⇒We need a mechanism to modify locations in signatures.

30 / 39

What about locations and Functors?
The location of the result of the functor depends on the location of the
functor and its argument.

F (X)
server server

Functor location Argument location Result location
base base base

server server server

server base ?
base server ?

⇒We need a mechanism to modify locations in signatures.

30 / 39

What about locations and Functors?
The location of the result of the functor depends on the location of the
functor and its argument.

F (X)
server base

Functor location Argument location Result location
base base base

server server server
server base ?

base server ?

⇒We need a mechanism to modify locations in signatures.

30 / 39

What about locations and Functors?
The location of the result of the functor depends on the location of the
functor and its argument.

F (X)
server base

Functor location Argument location Result location
base base base

server server server
server base server

base server ?

⇒We need a mechanism to modify locations in signatures.

30 / 39

What about locations and Functors?
The location of the result of the functor depends on the location of the
functor and its argument.

F (X)
base server

Functor location Argument location Result location
base base base

server server server
server base server
base server ?

⇒We need a mechanism to modify locations in signatures.

30 / 39

What about locations and Functors?
The location of the result of the functor depends on the location of the
functor and its argument.

F (X)
base server

Functor location Argument location Result location
base base base

server server server
server base server
base server server

⇒We need a mechanism to modify locations in signatures.

30 / 39

What about locations and Functors?
The location of the result of the functor depends on the location of the
functor and its argument.

F (X)
base server

Functor location Argument location Result location
base base base

server server server
server base server
base server server

⇒We need a mechanism to modify locations in signatures.

30 / 39

Polymorphism to the rescue

Consider this function application:

(f x)

α→α int

We instantiate f to int→int before typechecking the function
application.
We can do something similar for locations and functors.

31 / 39

Specialization

Consider this function application:

F (X)

base server

We “specialize” F to the current location before typechecking the
functor application.
We only have one “location variable”: base

32 / 39

Specialization

Consider this function application:

F (X)

server server

We “specialize” F to the current location before typechecking the
functor application.
We only have one “location variable”: base

32 / 39

Specialization – details

1 sig
2 type%base t
3 val%base x : t
4 end

−→

1 sig
2 type%client t
3 val%client x : t
4 end

functor(M :S)T −→ functor(M :bSc)bTc

33 / 39

Mixed functors

We also have (limited) supports for mixed functors!

1 module type COMPARABLE = sig
2 type t
3 val compare : t -> t -> int
4 end
5

6 module%mixed MixedMap (Key : COMPARABLE) = struct
7 module M = Map.Make(Key)
8

9 type%server (’a, ’b) table = {
10 srv : ’a M.t ;
11 cli : ’b M.t fragment ;
12 }
13

14 let%server add id v tbl = ...
15 end

34 / 39

Mixed functors vs. Specialization

Mixed functors are more difficult:

1 module type S = sig
2 type t
3 end
4

5 module%mixed F (A : S) = struct
6 type%server bilocated = {
7 srv : A.t ;
8 cli : A.t fragment ;
9 }

10 end

The body of a mixed functor can depend on a base declaration on both
side.
⇒ Analogous to forall quantification in function arguments.
⇒We can’t specialize the argument of a mixed functor!

35 / 39

Specialization – Mixed modules

1 sig
2 type%base t
3 val%client x : int
4 val%server y : t
5 end

−→

1 sig
2 type%client t
3 val%client x : int
4 end

functormixed(M :S)T −→ functormixed(M :S)bTc

36 / 39

Using mixed functors

Replicated Shared data-structures
1 module Cache (Key : T) = struct
2 module M = Map.Make(Key)
3

4 type%shared (’a, ’b) table =
5 (’a M.t, ’b M.t) Shared.t
6

7 include%client M
8

9 let%server add id v tbl =
10 [%client M.add ~%id ~%v ~%tbl];
11 M.add id v.srv tbl.srv
12

13 let%server find id tbl =
14 { srv = M.find id tbl ;
15 cli = [%client M.find ~%id ~%tbl]
16 }
17

18 (* ... *)
19 end

37 / 39

Conclusion

I presented my work on ELIOM, an extension of OCAML for tierless
Web programming. During my thesis, I worked on:

A formalization of ELIOM as an extension of OCAML.
Ensures correct communication
Slice tierless programs statically
Efficient execution

New features:
A new typesystem featuring converters
A location-aware module systems

A new implementation:
Compiler:
https://github.com/ocsigen/ocaml-eliom
Runtime: https://github.com/ocsigen/eliomlang

38 / 39

https://github.com/ocsigen/ocaml-eliom
https://github.com/ocsigen/eliomlang

Questions ?

Why functor and locations ?

Imagine we want dictionaries where keys are JAVASCRIPT strings.

Application of a base functor to a client module
1 module%client JsString = struct
2 type%client t = Js.string
3 let%client compare = Js.compare_string
4 end
5

6 module%client JsMap = Map.Make(JsString)

Map.Make comes from the OCAML standard library, it’s on base!

1 / 18

4 Using converters: RPC

5 Implementation
Converters

6 Comparison

7 Bibliography

Using converters for fun and profit

Remote Procedure Call (or RPC) is the action of a client calling the
server without loading a new page and potentially getting a value back.

ServerClient

3 / 18

Remote Procedure Calls

A simplified RPC API:

rpc.eliomi
1 type%server (’i,’o) t
2 type%client (’i,’o) t = ’i -> ’o
3

4 val%server create : (’i -> ’o) -> (’i, ’o) t

An example using Rpc
1 let%server plus1 : (int, int) Rpc.t =
2 Rpc.create (fun x -> x + 1)
3

4 let%client f x = ~%plus1 x + 1

4 / 18

Remote Procedure Calls

A simplified RPC API:

rpc.eliomi
1 type%server (’i,’o) t
2 type%client (’i,’o) t = ’i -> ’o
3

4 val%server create : (’i -> ’o) -> (’i, ’o) t

An example using Rpc
1 let%server plus1 : (int, int) Rpc.t =
2 Rpc.create (fun x -> x + 1)
3

4 let%client f x = ~%plus1 x + 1

4 / 18

Implementing RPC with converters

1 type%server (’i,’o) t = {
2 url : string ;
3 handler: ’i -> ’o ;
4 }
5

6 type%client (’i, ’o) t = ’i -> ’o
7

8 let%server serialize t = serialize_string t.url
9 let%client deserialize x =

10 let url = deserialize_string x in
11 fun i -> XmlHttpRequest.get url i
12

13 let conv = {
14 serialize = serialize ;
15 deserialize = [%client deserialize] ;
16 }
17

18 let%server create handler =
19 let url = "/rpc/" ^ generate_new_id () in
20 serve url handler ;
21 { url ; handler }

5 / 18

Widget + Rpc

We can now use counter and Rpc together!

1 let%server save_counter_rpc : (int, unit) Rpc.t =
2 Rpc.create save_counter
3

4 let%server widget_with_save : Html.element =
5 let f = [%client ~%save_counter_rpc] in
6 counter f

6 / 18

4 Using converters: RPC

5 Implementation
Converters

6 Comparison

7 Bibliography

Compilation
Slicing Regular OCAML toolchain

JS_OF_OCAML

toolchain

.eliom
ELIOM

Typed AST

.cmi

Server
OCAML AST

.server.{cmo,cmx}

Client
OCAML AST

.client.cmo
JAVASCRIPT

program

Modified
Typing

For each .eliom file:
One .cmi
Two .cm[ox]

We change the magic of .cmis that comes from .eliom files.
cmi lookup is a more complicated:

Two new options: -client-I and -server-I
Practical hack: Special handling for .client.cmi and
.server.cmi files.

8 / 18

Slicing

To track the current side:
One global references (just like levels. . .)
Hacks to propagate sides inside exceptions (for error messages)

Slicing at the typedtree level
Manipulating typedtrees is very difficult, so we produce two
parsetrees, and retype client and server independently.

9 / 18

Internal representation

Prime directive of the implementation:

“Thou shall not change data structures”

.cmi files are compatible. We only add extra attributes.

Tooling works.

We still change the magic number.

ident.ml
1 type t = { stamp: int; name: string; mutable flags: int }
2

3 let global_flag = 1
4 let predef_exn_flag = 2
5

6 let client_flag = 4
7 let server_flag = 8

10 / 18

An implementation for converters
A signature for converters

1 module type CONV = sig
2 type%server t
3 type%client t
4 val%server serialize : t -> serial
5 val%client deserialize : serial -> t
6 end
7

8 implicit%mixed String : CONV
9 with type%server t = string and type%client t = string

10

11 implicit%mixed Fragment {M : sig type%client t end} : CONV
12 with type%server t = M.t fragment
13 and type%client t = M.t
14

15 val%client (~%) : {C : CONV} -> C.t(*server*) -> C.t(*client*)

Uses modular implicits

Leverage mixed functors

11 / 18

4 Using converters: RPC

5 Implementation
Converters

6 Comparison

7 Bibliography

Tierless languages – HOP

button.js
1 function hint_button (msg) {
2 <button onclick= ~{alert (${msg}) } >
3 Show hint
4 </button>
5 }

No static typing!

13 / 18

Tierless languages – UR/WEB

button.ur
1 fun hint_button msg =
2 return <xml>
3 <button onclick= {fn _ => alert msg} >
4 Show hint
5 </button>
6 </xml>

button.urs
1 val hint_button : string -> page

Location information is not syntactic

No separate compilation

14 / 18

Tierless languages – ELIOM

button.eliom
1 let%server hint_button msg =
2 button
3 ~a:[a_onclick [%client fun _ -> alert ~%msg]]
4 [pcdata "Show hint"]

button.eliomi
1 val%server hint_button : string -> Html.element

Static slicing during compilation

Efficient execution

Extension of OCAML, Part of the OCSIGEN project

15 / 18

Tierless languages – ML5

button.ml5
1 fun hint_button msg =
2 let val m = from server get msg in
3 [<button onclick="[say alert m]">
4 Show hint
5 </button>]

button.mli5 – Not actually writable!
1 val hint_button : string -> html @ server

Location directly inside the types.

Support an arbitrary number of locations.

No module system!

No separate compilation!

16 / 18

4 Using converters: RPC

5 Implementation
Converters

6 Comparison

7 Bibliography

ELIOM bibliography

Gabriel Radanne and Jérôme Vouillon and Vincent Balat
ELIOM: A core ML language for Tierless Web programming
https://hal.archives-ouvertes.fr/hal-01349774
APLAS 2016

Gabriel Radanne and Vasilis Papavasileiou and Jérôme Vouillon
and Vincent Balat
ELIOM: tierless Web programming from the ground up
https://hal.archives-ouvertes.fr/hal-01407898
IFL 2016

Gabriel Radanne and Jérôme Vouillon
Tierless Modules
https://hal.archives-ouvertes.fr/hal-01485362

18 / 18

https://hal.archives-ouvertes.fr/hal-01349774
https://hal.archives-ouvertes.fr/hal-01407898
https://hal.archives-ouvertes.fr/hal-01485362

	Formalization
	Semantics
	Compilation

	Type system
	Module system
	Appendix
	Using converters: RPC
	Implementation
	Converters

	Comparison
	Bibliography

