On over-squashing and expressivity: can GNNs mix variables? From theory to physics-inspired solutions

Abstract

I will discuss how Message Passing Neural Networks (MPNNs) model mixing among features in a graph. I will show that MPNNs need as many layers as the commute time between nodes to model strong mixing. This allows to derive a measure for over-squashing and to clarify how the latter limits the expressivity of MPNNs to learn functions with long-range interactions. I will then discuss a novel paradigm for message-passing that determines “when” messages are being propagated based on the geometry of the data and introduces a delay mechanism to greatly enhance the power of MPNNs to capture long-range interactions achieving superior performance than Graph-Transformers even remaining sub-quadratic.

Date
Friday, October 20, 2023 15:00 Europe/Paris
Event
GReTA seminar
Francesco Di Giovanni
Francesco Di Giovanni
Research Associate

I am currently a Research Associate at the University of Cambridge, working in Pietro Lio ’s group on Geometric Deep Learning and Graph Neural Networks. Previously, I was a postdoctoral ML Researcher at Twitter Cortex working with Michael Bronstein. I finished my PhD in Mathematics at UCL with a thesis on analysis of singularity formation of rotationally symmetric Ricci Flows. I am now interested in investigating Deep Learning through the lens of Differential Geometry and Physics, with emphasis on graph structured data.