
Heartbeat Scheduling:
Provable Efficiency for Nested Parallelism
Umut A. Acar

Carnegie Mellon University and Inria

USA

umut@cs.cmu.edu

Arthur Charguéraud

Inria and Univ. of Strasbourg, ICube

France

arthur.chargueraud@inria.fr

Adrien Guatto

Inria

France

adrien@guatto.org

Mike Rainey

Inria and Center for Research in

Extreme Scale Technologies (CREST)

USA

me@mike-rainey.site

Filip Sieczkowski

Inria

France

filip.sieczkowski@inria.fr

Abstract
A classic problem in parallel computing is to take a high-

level parallel programwritten, for example, in nested-parallel

style with fork-join constructs and run it efficiently on a

real machine. The problem could be considered solved in

theory, but not in practice, because the overheads of creating

and managing parallel threads can overwhelm their benefits.

Developing efficient parallel codes therefore usually requires

extensive tuning and optimizations to reduce parallelism just

to a point where the overheads become acceptable.

In this paper, we present a scheduling technique that de-

livers provably efficient results for arbitrary nested-parallel

programs, without the tuning needed for controlling par-

allelism overheads. The basic idea behind our technique is

to create threads only at a beat (which we refer to as the

“heartbeat”) and make sure to do useful work in between. We

specify our heartbeat scheduler using an abstract-machine

semantics and provide mechanized proofs that the scheduler

guarantees low overheads for all nested parallel programs.

We present a prototype C++ implementation and an evalua-

tion that shows that Heartbeat competes well with manually

optimized Cilk Plus codes, without requiring manual tuning.

CCS Concepts • Software and its engineering → Par-
allel programming languages;

Keywords parallel programming languages, granularity

control

ACM acknowledges that this contribution was authored or co-authored

by an employee, contractor or affiliate of a national government. As such,

the Government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for Government purposes

only.

PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5698-5/18/06. . . $15.00

https://doi.org/10.1145/3192366.3192391

ACM Reference Format:
Umut A. Acar, Arthur Charguéraud, Adrien Guatto, Mike Rainey,

and Filip Sieczkowski. 2018. Heartbeat Scheduling: Provable Effi-

ciency for Nested Parallelism. In PLDI ’18: PLDI ’18: ACM SIGPLAN
Conference on Programming Language Design and Implementation,
June 18–22, 2018, Philadelphia, PA, USA. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3192366.3192391

1 Introduction
A longstanding goal of parallel computing is to build sys-

tems that enable programmers to write a high-level codes

using just simple parallelism annotations, such as fork-join,

parallel for-loops, etc, and to then derive from the code an

executable that can perform well on small numbers of cores

as well as large. Over the past decade, there has been signifi-

cant progress on developing programming language support

for high level parallelism. Many programming languages

and systems have been developed specifically for this pur-

pose. Examples include OpenMP [46], Cilk [26], Fork/Join

Java [38], Habanero Java [35], TPL [41], TBB [36], X10 [16],

parallel ML [24, 25, 30, 48, 51], and parallel Haskell [43].

These systems have the desirable feature that the user

expresses parallelism at an abstract level, without directly

specifying how to map lightweight threads (just threads,

from hereon) onto processors. A scheduler is then respon-

sible for the placement of threads. The scheduler does not

require that the thread structure is known ahead of time,

and therefore operates online as part of the runtime system.

Many scheduling algorithms have been developed, taking

into account a variety of asymptotic cost factors including

execution time, space consumption, and locality [1–3, 5, 9–

13, 15, 18, 29, 31, 45].

Most scheduling algorithms that come with a formal anal-

ysis establish asymptotic bounds in a simplified model in

which spawning a thread has unit cost. Correspondingly,

the job of achieving low constant factors for scheduling op-

erations is usually treated as a purely empirical question,

and approached as such. Yet, in practice, depending on the

implementation, the cost of creating a thread, scheduling it,

https://doi.org/10.1145/3192366.3192391
https://doi.org/10.1145/3192366.3192391

PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA U. Acar, A. Charguéraud, A. Guatto, M. Rainey, F. Sieczkowski

then destroying it, may amount to thousands of cycles. Thus,

in spite of the guarantees provided by the asymptotic anal-

ysis, poor management of overheads can result in massive

slowdowns in practice—sometimes as much as 50x, in our

experience. On the other extreme, it is also easy to overcom-

pensate by reducing overheads too much, thereby creating

too few threads to keep cores well fed. The key is to find

solutions that strike a balance between the two extremes,

and do so consistently.

Dozens of papers have been published on various tech-

niques for taming parallelism overheads. To our knowledge,

they fall in either of two categories: granularity control ap-
proaches [4, 19, 34, 37, 42, 47, 57], and lazy splitting ap-

proaches [26–28, 33, 44, 55]. Granularity control aims at

coarsening the leaf-level subcomputations to avoid the cre-

ation of threads involving little work. Lazy splitting aims

at creating threads on demand, postponing the creation of

threads until other workers are in need. Although many

of these techniques have entered into production systems

and have led to improved performance overall, significant

challenges remain.

In the face of nested parallelism, that is, when parallel

constructs are nested, many of these approaches have been

shown by the literature to fail to control overheads for cer-

tain classes of programs [55]. Parallelism overheads continue

to be a challenge for practitioners. Expertly implemented re-

search codes are not immune from such issues either: codes

from a popular benchmarking suite that is implemented us-

ing Cilk Plus sometimes resort to using a variety of heuristics,

such as manual loop grains, that, while controlling over-

heads well in many cases, may still perform poorly on cer-

tain classes of input [8]. Even though good results might be

achieved on the benchmark considered, there is no guaran-

tee that good performance will be achieved by the resulting

program on different input data, or on a different hardware

system [4, 53]. Given such sensitivity to input data, hardware

details, program structure, etc., we believe that an approach

based on a formally verified guarantee may be useful and

could lead to greater reliability in the face of uncertainty in

the execution environment.

Yet, among all the proposals that we are aware of, we

know of only one that provides a formal efficiency bound for

nested-parallel programs such that that bound takes into ac-

count the overheads of thread creation, namely oracle-guided
scheduling [4]. In that approach, the programmer annotates

every parallel call with an expression for computing its as-

ymptotic cost and the run-time system decides whether a

given call should be performed sequentially or in parallel.

One limitation of this approach is that it breaks down when

confronted with parallel functions whose complexity cannot

be predicted reasonably precisely, e.g., functions whose com-

plexity is data dependent (e.g., a string comparison function)

and search algorithms in which cost estimates are difficult

to make.

In this paper, we propose techniques for controlling thread-

creation costs in all fork-join (nested-parallel) parallel pro-

grams. The basic idea behind these techniques is to amortize

the cost of thread creation by ensuring that threads are cre-

ated at a “heartbeat”, i.e., periodically at intervals, each of

which include sufficiently large amount of sequential work.

This technique applies to all fork-join programs—we make

no additional assumptions on the kinds of programs—and in

particular, permits arbitrary nesting of parallel calls.

Our contribution can be summarized as follows.

• We present heartbeat scheduling, a technique for pro-

moting parallel-call frames into threads.

• We formalize heartbeat scheduling using abstract ma-

chines and present formal bounds on the work and

span, verified in Coq.

• We present empirical evidence that our approach leads

in practice to bounded overheads and competitive per-

formance, by evaluating a number of state-of-the-art

benchmarks originally designed for Cilk Plus.

In Section 2, we give an overview of our approach, the

bounds that we prove, and the implementation. In Section 3,

we describe our approach formally by means of an abstract

machine, and establish the theoretical cost bounds. In Sec-

tion 4, we discuss the concrete implementation of our ap-

proach, including a cactus-stack data structure that is crucial

to the implementation, the optimized treatment of parallel

loops, and the heartbeat interpreter used for the proof-of-

concept evaluation. In Section 5, we present benchmark re-

sults to confirm that our theoretical results on heartbeat

scheduling translate into practical benefits.

2 Overview
In heartbeat scheduling, the runtime takes, at every N steps,

the top-most stack frame corresponding to a parallel call and

promotes it into a proper thread that may be subject to load

balancing. The heartbeat period, N , is a system-dependent

parameter that is chosen once for the system. The idea is

to evaluate parallel function calls using conventional stack

frames, essentially sequentially, and to promote these frames

into proper threads when sufficient amount of sequential

work has been performed since the last promotion.

It might be tempting to view heartbeat scheduling idea as

a lazy scheduling technique [55], because heartbeat schedul-

ing delays thread creation until its costs can be amortized.

This view is partially justifiable, but not completely. In prior

approaches to lazy scheduling [55], promotion is triggered,

either directly or indirectly, by steal requests. Such a tech-

nique is unlikely to be (provably) effective for all programs.

For example, numerous steal requests may lead to a large

number of promotions, potentially resulting is large over-

heads. Or, a burst of steal requests might all have to wait for

a few processors to create parallelism (and hence blow past

span bounds) because the system has been “too lazy” and

Heartbeat Scheduling: Provable Efficiency for Nested Parallelism PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA

did not create sufficiently many parallel threads. In contrast,

heartbeat scheduling is independent from the load of the

workers in the system. It relies solely on a processor-local

decision, based on the number of cycles elapsed since the

previous promotion, and is thus never too lazy nor too eager

in creating parallelism.

We present bounds on the work and span of programs ex-

ecuted using heartbeat scheduling. The total work, including

thread creation overheads, is bounded as

W ≤ (1 +
τ

N
) ·w,

where w denotes the raw work (total sequential execution

time, excluding overheads), and τ denotes the cost of pro-

moting one frame and scheduling the resulting thread. The

total span, including thread creation overheads, is bounded

as:

S ≤ (1 +
N

τ
) · s,

where s denotes the span (the length of the critical path) of

a fully parallel execution, that is, an execution in which all

parallel calls are directly represented as threads. The fact that

these bounds hold is not immediate and, in particular, rests

upon promoting the oldest possible frame. Taken together,

the work and span bounds show that the overheads can be

tamed down to a small fraction of the run time, while nev-

ertheless preserving the asymptotic amount of parallelism

inherent to the program. In particular, unlike most sched-

uling techniques based on heuristics, hearbeat scheduling

cannot be defeated by adversarial programs.

Perhaps surprisingly, heartbeat scheduling is agnostic to

the specific load-balancing algorithm used for ensuring good

work distribution. For example, we may combine heartbeat

scheduling with work stealing, which guarantees an execu-

tion time of T ≤ W
P +O(S), where P denotes the number of

processors. Thus by using work stealing for load balancing,

we obtain the bound on P-processor run time of:

T ≤
(
1 +

τ

N

)
·
w

P
+O

(N
τ

· s
)
.

To limit overheads, we can choose N as a multiple of τ , i.e.,
N = kτ , for some fixed k . The bound can then be written as:

T ≤
(
1 +

1

k

)
·
w

P
+O(ks).

The above bound shows that heartbeat scheduling achieves

bounded overheads (e.g., 5% for k = 20), while increasing

the span by k . Thus, for all programs with sufficient paral-
lel slackness [56], where w

s ≫ kP , performance should be

close to optimal. In practice, this assumption is met by all

algorithms featuring a logarithmic (or polylogarithmic) span.

To implement heartbeat scheduling, we rely on a cactus
stack [32]. This representation essentially consists of pieces

of the call stack organized in a tree structure. The cactus

stack supports parallel computations without prohibitive

stack-space usage in the worst case. To support constant-

time access to the next promotable frame in the stack, we

extend the cactus stack with a doubly-linked list between the

promotable frames, i.e., the frames associated with parallel

calls or parallel loops.

We empirically validate our approach by presenting a

proof-of-concept implementation in C++. Our implementa-

tion uses an interpreter whereby benchmark programs are

represented by values of an AST (Abstract Syntax Tree). Our

interpreter explicitly allocates and deallocates frames from

the cactus stack and implements frame promotion follow-

ing the heartbeat strategy. Our implementation depends on

regular polling to realize the heartbeat.

Thanks to the fact that sequential blocks are compiled and

optimized by a conventional compiler, the resulting inter-

preter is efficient enough to enable meaningful comparison

with the performance of state-of-the-art benchmarks com-

piled using Cilk Plus. We perform this comparison using

parallel programs from the Problem Based Benchmark Suite

(PBBS). PBBS consists of nontrivial algorithms exhibiting

irregular parallelism [50]. The PBBS programs are imple-

mented in Cilk Plus using a careful combination of tech-

niques for controlling granularity.

Our benchmark results show that PBBS programs can in-

cur significant overheads, sometimes over 25% of the execu-

tion time. With heartbeat scheduling, overheads are always

less than 5%, because significantly fewer threads are created.

This result matches our theoretical bounds for the setting

of N that we consider. Despite the interpretive overheads of

our proof-of-concept implementation, our code is generally

able to match or beat the performance of PBBS programs

on 40 cores. Our results also show that heartbeat schedul-

ing achieves utilization similar to original PBBS programs,

despite creating significantly fewer threads.

3 Semantics and analysis
We introduce heartbeat scheduling, as an idealized nested-

parallel language, in the setting of an untyped λ-calculus
equipped with parallel pairs. This language allows us to

present and analyze the key ideas of heartbeat scheduling,

abstracting over implementation details. In the implemen-

tation section, we will show that the basic transitions, in

particular the operation for splitting the stack on promotion

operations, can indeed be implemented in constant time.

We give three semantics to that language: a fully-sequential
semantics, a fully-parallel semantics, and our heartbeat sched-
uling semantics. The definition is two-fold.

First, we define a variant of the CEK machine of Felleisen

and Friedman [23], which implements sequential call-by-

value evaluation. This abstract machine makes the stack ex-

plicit and is thus well-suited for describing the stack surgery

operations involved in heartbeat scheduling.

Second, we use the abstract machine to define the three

aforementioned semantics in big-step style. This big-step

PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA U. Acar, A. Charguéraud, A. Guatto, M. Rainey, F. Sieczkowski

Cost graph д F 0 | 1 | (д · д) | (д | | д)

work(0) ≜ 0

work(1) ≜ 1

work(д1 · д2) ≜ work(д1) + work(д2)
work(д1 | | д2) ≜ τ + work(д1) + work(д2)

span(0) ≜ 0

span(1) ≜ 1

span(д1 · д2) ≜ span(д1) + span(д2)
span(д1 | | д2) ≜ τ +max(span(д1), span(д2))

Figure 1. Cost graphs, and definition of work and span.

presentation allows us to describe the creation of threads in

the semantics without having to explicitly manipulate the set

of live threads. In particular, the rule describing the parallel

evaluation of a pair involves evaluation premises describing

distinct, independent instances of the abstract machine.

To formally reason about the work and span of an evalua-

tion, we instrument the big-step judgments in such a way

that, in addition to an output value, they also produce a cost
graph. This cost graph describes the operations and control

dependencies performed during the corresponding execu-

tion. All vertices have unit cost except fork-join operations,

which are given the weight τ , to reflect the overhead of

thread management. On a cost graph, we define work and

span in the usual way, as the weight of the complete graph

and as the weight of the critical path, respectively.

Based on the formal semantics and the cost graphs, we es-

tablish the correctness and the efficiency of heartbeat sched-

uling. The correctness results assert that the heartbeat se-

mantics produces the same results as the fully-sequential

and the fully-parallel semantics. The efficiency results have

two components. The first component asserts that the heart-

beat semantics adds at most a fraction
τ
N of work compared

with the fully-sequential semantics, where N is a parameter

under user control. In other words, overheads are bounded.

The second component asserts that the span of a program

executed in the heartbeat semantics increases at most by a

constant multiplicative factor (1 + N
τ) compared with the

fully-parallel semantics. Thus, the asymptotic amount of par-

allelism inherent to the program is preserved when using

heartbeat scheduling.

For increased confidence, we have formalized in the Coq

proof assistant all the technical contents of this section.

3.1 Work and span of a cost graph
We use cost graphs as a convenient way to formalize the

work and span of an execution. The execution of a fork-join

program induces a series-parallel, directed acyclic graph.

Figure 1 gives the grammar of cost graphs, which includes:

the empty graph, written 0, the one-vertex graph, written 1,

Expression e F x | λx .e | (e e) | (e | | e)

Value v F (v,v) | (λx .e){σ }

Environment σ ∈ Var →fin Val
Frame f F APPL(□, e,σ) | APPR(x , e,σ ,□)

| PAIRL(□, e,σ) | PAIRR(v,□)

Stack k F TOP | f ::k

Code c F e | v

Configuration m F
〈
c | σ | k

〉
Figure 2. Syntax of the source language, and components

of the abstract machine.

sequential composition of two graphs, written (д1 · д2), and
parallel composition of two graphs, written (д1 | | д2).
Figure 1 also gives the formal definition of the work and

span of cost graph д, written work(д) and span(д), respec-
tively. Unlike prior work, we do not assign unit cost to fork-

join operations, but instead weight these operations with

some cost τ . This fixed parameter τ represents the runtime

overhead associated with a fork-join operation.

Intuitively, the work of a cost graph is equal to the number

of vertices plus τ times the number of fork vertices involved

in the graph. The span of a cost graph is equal to the length

of the longest path in that graph, when counting τ units on

every traversal of a fork vertex.

3.2 Syntax and machine transitions
The syntax of our calculus is given in the first three lines

of Figure 2. An expression e is either a variable, an abstraction,
an application, or a parallel pair, written (e1 | | e2). Such a pair
marks an opportunity for parallelism that may or may not

actually execute in parallel, depending on the scheduling de-

cision. A value v denotes a completely evaluated expression.

It is either a pair of values (v1,v2), or a closure (λx .e){σ }.
Such a closure packages an environment σ , which consists

of a finite map from variables to values. We write σ [x 7→ v]
for the environment σ updated to map x to v . For brevity,
we omit projection functions, whose semantics is standard.

A machine configurationm is a triple

〈
c | σ | k

〉
, where

the code c , either a value or an expression, is executing in

an environment σ , against a stack k . A stack consists of

a list of frames terminated by the TOP token. We let the

metavariable f range over stack frames. Conceptually, a

frame is an expression constructor with a hole, written □,
and it describes a partially evaluated expression.

Figure 3 defines the judgmentm →m′
, which describes

the sequential transitions of our abstract machine. The se-

quential transition rules are standard.

For example, let us describe the steps involved in the eval-

uation of an application (e1 e2). First, the rule AppL puts the

function e1 in the code component of the machine, and ex-

tends the stack with a frame APPL(□, e2,σ), thereby saving

the argument e2 and the current environment σ . Once the

Heartbeat Scheduling: Provable Efficiency for Nested Parallelism PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA

Var

〈
x | σ | k

〉
→

〈
σ (x) | – | k

〉
Abs

〈
λx .e | σ | k

〉
→

〈
(λx .e){σ } | – | k

〉
AppL

〈
(e1 e2) | σ | k

〉
→

〈
e1 | σ | APPL(□, e2,σ) ::k

〉
AppR

〈
(λx .e){σ } | – | APPL(□, e2,σ

′) ::k
〉
→

〈
e2 | σ ′ | APPR((λx .e){σ },□) ::k

〉
Body

〈
v | – | APPR((λx .e){σ },□) ::k

〉
→

〈
e | σ [x 7→ v] | k

〉
PairL

〈
(e1 | | e2) | σ | k

〉
→

〈
e1 | σ | PAIRL(□, e2,σ) ::k

〉
PairR

〈
v1 | − | PAIRL(□, e2,σ) ::k

〉
→

〈
e2 | σ | PAIRR(v1,□) ::k

〉
Pair

〈
v2 | − | PAIRR(v1,□) ::k

〉
→

〈
(v1,v2) | − | k

〉
Figure 3. Sequential machine transitions:m →m′

.

SeqVal〈
v | – | TOP

〉
⇒seq v ; 0

SeqStep

m →m′ m′ ⇒seq v ; д

m ⇒seq v ; (1 · д)

Figure 4. Sequential semantics:m ⇒seq v ; д.

function has evaluated to a closure of the form (λx .e){σ },
the rule AppR pops the frame APPL(□, e2,σ) from the stack,

puts the argument e2 in the code component of the machine,

and extends the stack with a frame APPR((λx .e){σ },□). Once
the argument has evaluated to a value v , the rule Body pops
the frame APPR((λx .e){σ },□) from the stack, and begins the

evaluation of the body e in an extended environment ob-

tained by adding to σ a binding from x to v .
In the machine transitions, parallel pairs are evaluated in

a similar way as applications: the left branch evaluates first,

then the right branch, then the two results are paired up

into a value. In the parallel semantics presented further on,

parallel pairs have their branches evaluated concurrently by

distinct instances of the abstract machine.

3.3 Sequential and parallel cost semantics
We next present big-step judgments describing the fully-

sequential and the fully-parallel evaluation of a program.

Figure 4 presents the evaluation judgmentm ⇒seq v; д,
which is essentially a big-step wrapper around the small-step

judgmentm →m′
. This wrapper associates a cost graph д to

a sequential execution of a machinem that terminates with

result value v . The cost graph produced by such a sequential

execution consists of a long chain of 1, terminated by a 0.
Both the work and the span of the graph д are equal to

the length of that chain and match the number of machine

transitions performed during the execution.

Figure 5 presents the evaluation judgmentm ⇒par v; д,
which corresponds to the fully-parallel evaluation of a pro-

gram, that is, an evaluation in which every parallel pair gets

evaluated in parallel by spawning new machines. Concretely,

the rule ParPair evaluates a parallel pair (e1 | | e2) by consid-

ering independently the evaluation of e1 and the evaluation

of e2 in two distinct abstract machines, producing the re-

sults v1 and v2, and the cost graphs д1 and д2, respectively.
In the third premise of that rule, the pair of results (v1,v2) is

ParVal〈
v | – | TOP

〉
⇒par v ; 0

ParStep

c , (_ | | _)
〈
c | σ | k

〉
→m′ m′ ⇒par v ; д〈

c | σ | k
〉
⇒par v ; (1 · д)

ParPair〈
e1 | σ | TOP

〉
⇒par v1; д1

〈
e2 | σ | TOP

〉
⇒par v2; д2〈

(v1,v2) | – | k
〉
⇒par v ; д3〈

(e1 | | e2) | σ | k
〉
⇒par v ; ((д1 | | д2) · д3)

Figure 5. Parallel semantics:m ⇒par v ; д.

passed to the remainder of the computation, which is rep-

resented by the stack k . The third premise evaluates to a

final result v , with a corresponding cost graph called д3. The
cost graph ((д1 | | д2) · д3) that appears in the conclusion of

the rule ParPair reflects the fact that д1 and д2 are composed

in parallel, while д3 comes in sequence after the join point.

The other two rules that define the parallel evaluation

judgment, namely ParVal and ParStep, are the counter-

parts of the rules SeqVal and SeqStep from the sequential

evaluation judgment, with the only difference that the rule

ParStep includes one extra premise. This extra premise pre-

vents the rule ParStep from being triggered on parallel pairs,

which are meant to be treated by rule ParPair.

3.4 Hearbeat semantics
Figure 6 presents the evaluation judgment m;n ⇒hb v; д,
which describes the evaluation of a program using heartbeat

scheduling. It expresses that the machinem terminates with

the result value v and cost graph д, starting from a state

with n credits, indicating that n transitions were performed

on the machine since the previous promotion.

The evaluation of a parallel pair begins as in the fully-

sequential semantics. During the execution of the left branch,

either the right branch gets promoted and evaluates in par-

allel on a distinct machine; or it remains as an unpromoted

frame in the stack, in which case it gets evaluated on the

same machine as the one that processed the left branch.

PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA U. Acar, A. Charguéraud, A. Guatto, M. Rainey, F. Sieczkowski

HBVal〈
v | – | TOP

〉
;n ⇒hb v ; 0

HBStep

n < N ∨ ¬promotable(k)〈
c | σ | k

〉
→m′ m′

; (n + 1) ⇒hb v ; д〈
c | σ | k

〉
;n ⇒hb v ; (1 · д)

HBPromote

n ≥ N ¬promotable(k2)〈
c | σ | k1

〉
; 0 ⇒hb v1; д1

〈
e2 | σ

′ | TOP
〉
; 0 ⇒hb v2; д2〈

(v1,v2) | – | k2
〉
; 0 ⇒hb v ; д3〈

c | σ | k1 @ PAIRL(□, e2,σ
′) ::k2

〉
;n ⇒hb v ; ((д1 | | д2) · д3)

where promotable(k) ≜ PAIRL(□, _, _) ∈ k .

Figure 6. heartbeat semantics:m;n ⇒hb v ; д.

The first two rules that define the heartbeat evaluation

judgment, namelyHBVal andHBStep, are the counterpart of

the rules SeqVal and SeqStep from the sequential evaluation

judgment. The rule HBStep performs a sequential transition

and increments the number of credits by one unit, from n
to n + 1. Sequential transitions are performed unless the

time has come to perform a promotion, as captured by the

first premise of HBStep: “n < N ∨ ¬ promotable(k)”. The
negation of this premise asserts that the stack k contains a

frame of the form PAIRL(□, _, _) that could be promoted, and

that at least N transitions were performed since the previous

promotion.

When these two conditions are met, the rule HBPromote

applies. In short, the rule takes the oldest PAIRL frame in the

stack and promotes it by spawning the corresponding right

branch into a separate abstract machine. It also creates an-

other machine for evaluating the continuation that processes

the result of that parallel pair, i.e., the join continuation.

Let us look more closely at rule HBPromote. Its conclu-

sion asserts that the rule HBPromote applies to a configu-

ration whose stack is of the form k1 @ PAIRL(□, e2,σ
′) ::k2,

where @ denotes stack concatenation, and k1 and k2 denote
two pieces of stacks (possibly empty). The second premise,

¬promotable(k2), ensures that the frame PAIRL(□, e2,σ
′) con-

sidered for promotion is the oldest promotable frame from

the stack, that is, the frame corresponding to the outermost

parallel pair. Promoting the oldest pair is necessary to mini-

mize the span degradation, similarly to how one should steal

the oldest frame in work-stealing.

The rule HBPromote contains three evaluation premises.

The first one, with configuration

〈
c | σ | k1

〉
, describes what

remains of the machine after the promotion takes place. The

second one, with configuration

〈
e2 | σ

′ | TOP
〉
, describes the

evaluation of the right branch of the parallel pair that was

promoted. The third one, with configuration

〈
(v1,v2) | − |

k2
〉
, describes the join continuation. The join continuation

processes the pair made of the results produced by the two

branches. Just like in the rule Rule ParPair, the cost graph

involved in the rule HBPromote is of the form (д1 | | д2) · д3.

3.5 Formal results
Our correctness result asserts that the three semantics com-

pute the same output values. This result is completely in-

dependent from the cost graphs. Thereafter, to hide cost

graphs, we writem ⇒seq v as short for ∃д.(m ⇒seq v; д),
and likewise for the two other evaluation judgments.

Theorem 1 (Correctness). For any machinem and value v ,

(m ⇒seq v) ⇔ (m ⇒par v) ⇔ (m; 0 ⇒hb v).

Our first efficiency result asserts that the overheads in-

duced by heartbeat scheduling are bounded by a fraction of

the work performed in the fully-sequential semantics.

Theorem 2 (Work bound). Assume: m ⇒seq v; дs . Then,
there exists a cost graph дh such thatm; 0 ⇒hb v ; дh and

work(дh) ≤

(
1 +

τ

N

)
· work(дs)

where τ is the overhead of task creation (recall §3.1), and N is
a parameter under user control (recall §3.4).

Proof. The proof is by induction on the sequential derivation.

To prove the inequality, we need to generalize the state-

ment of the theorem to deal with a nonzero number of cred-

its. The generalized induction hypothesis has for conclu-

sionm;n ⇒hb v; дh with work(дh) ≤
(
1 + τ

N

)
· work(дs) +

n · τ
N . Once the induction is set up, the remainder of the

proof is rather mechanical. We refer the reader to the Coq

formalization for additional proof details. □

Our second efficiency result asserts that the span increases

at most by a multiplicative factor compared with the fully-

sequential semantics.

Theorem 3 (Span bound). Assume: m ⇒par v; дp . Then,
there exists a cost graph дh such thatm; 0 ⇒hb v ; дh and

span(дh) ≤

(
1 +

N

τ

)
· span(дp)

where τ and N are as in Theorem 2.

Proof. The proof of the span bound is much trickier than that

of the work bound. It proceeds by induction on the parallel

derivation. Again, we generalize the induction hypothesis.

It has for conclusion

〈
c | σ | k

〉
;n ⇒hb v ; дh with

span(дh) ≤
(
1 + N

τ

)
· span(дp)

− (if promotable(k) then min(n,N) else 0).

Our proof uses as technical device an auxiliary semantics

that sits halfway between the fully-parallel and heartbeat

semantics. Interestingly, the proof critically relies on the fact

that we systematically promote the oldest promotable frame,

that is, the frame which corresponds to the outermost pair.

Again, we refer the reader to the Coq proof for details. □

Heartbeat Scheduling: Provable Efficiency for Nested Parallelism PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA

4 Implementation
This section describes the reference system, one we will refer

to as Heartbeat, that we implemented to test the practical-

ity of heartbeat scheduling. Like many other lightweight-

threading systems, such as TBB [36], Heartbeat begins by

launching one pthread per core. Each of these workers alter-
nate between evaluating a lightweight thread and participat-

ing in the load balancing scheme. Heartbeat is agnostic to

the load balancing algorithm—we discuss particular work-

stealing-based implementations in Section 5.

The cactus stack data structure. A well-known problem

in scheduling parallel computations is worst-case stack space

usage: lost stack space can become problematic as a result of

stacks being attached to suspended computations. A classic

data structure addressing this problem is the so-called cactus
stack data structure [32]. A cactus stack is a tree represen-

tation of the call stack of the program in which branching

points correspond to parallel forks. For Heartbeat, we em-

ploy a classic optimization based on stacklets [28], which
correspond to small, contiguous regions of memory (e.g., of

size 4k bytes). Stacklets enable cheap allocation of frames

and avoid allocating them on the heap. One limitation of the

cactus stack is that it requires a modified calling convention,

which breaks interoperability with legacy third-party bina-

ries. Alternative approaches have been proposed [40, 58],

but it appears that one must either sacrifice binary inter-

operability, time bounds, or space bounds. We expect that

the extension that Heartbeat uses to set up links between

promotable frames could be adapted to a number of these

alternative approaches.

We next explain why Heartbeat uses a doubly linked list

between promotable frames. To implement promotion effi-

ciently, we need constant-time access to the top-most pro-

motable frame. Once this frame is promoted, we need to

access the next one, and so on. Thus, at a minimum, we

need a singly linked list between promotable frames, from

top to bottom, i.e. starting from the oldest frames. Yet, at

the same time, the execution of a thread pushes and pops

frames at the bottom of its stack. In particular, it is possible

that a promotable frame gets popped before it is promoted

(e.g., the left branch of a pair terminates before the right

branch gets promoted). Efficiently removing the frame from

the singly linked list between promotable frames requires

reverse pointers, hence the need for a doubly linked list. To

represent this doubly linked list, promotable frames include

a prev and a next pointer, using null to terminate the list. Set-

ting up these two pointers adds a minor overhead compared

with the setting up of the frame.

Implementation of the scheduler. To evaluate our sched-

uling algorithm, we developed a reference implementation

that is based on an interpreter. Concretely, we write each of

our benchmark programs as an abstract syntax tree (AST),

whose leaves carry C++ functions describing the sequential

blocks. At load time, the AST is flattened into a control flow

graph that is ready to be executed by our interpreter. Of

course, for use in production, compiler support would be de-

sirable. We next describe the main features of our interpreter,

focusing especially on the interactions with the cactus stack.

Heartbeat exhibits features common to parallel schedulers.

In particular, each worker features a main loop for executing

ready threads, i.e. threads that have no pending dependencies.
To track dependencies, each thread stores a join counter to
count the number of pending dependencies and a pointer

to its join thread. When it terminates, a thread decrements

the join counter of its join thread. In the case that the join

counter reaches zero, the join thread becomes ready and gets

added to a pool of ready threads.

To implement the heartbeat promotion mechanism, we

rely on a combination of software polling and querying of

the hardware cycle counter. Querying the hardware counter

amounts to reading a register. Software polling is used in a

number of other scheduling techniques, such as lazy sched-

uling and private-deque work stealing [3, 21, 55]. The im-

plementation of software polling is a well-studied problem,

with both hardware and software solutions [22, 49]. However,

hardware polling based on interrupts is delicate to imple-

ment at the resolution of the order of 10µs , but it may be

possible given special hardware support. Fortunately, soft-

ware polling can be implemented in an efficient manner via

compiler (or manual) instrumentation of the code.

Given that Heartbeat is an interpreter, we implement

polling in a simple way by inserting checks: (1) in between

every sequential block being interpreted, (2) in between a

fixed number of iterations for an innermost loop whose body

does not trigger any parallel call, (3) after every iteration in

other loops. For a production implementation of heartbeat

scheduling, it should suffice to rely on one of the aforemen-

tioned solutions to polling.

In the remainder of this section, we describe the interac-

tions between Heartbeat and the cactus stack. Each thread

carries a code pointer and an instance of the cactus stack.

Each cactus-stack instance consists of a pointer to the bottom-

most frame of the stack, a pointer to the next free byte in

the stack, and the head and tail pointers of the doubly linked

list of promotable frames.

The heartbeat semantics initially performs machine tran-

sitions like the fully-sequential semantics (recall Section 3).

Now, let us first describe the transitions involved in a non-

parallel call. When it makes a function call, a thread pushes a

frame on the current stack (possibly triggering the allocation

of a new stacklet). When returning from the call, that frame

gets popped. Eventually, the stack becomes empty, indicating

that the thread has completed.

Before we explain the promotion transition, let us describe

what would happened if our scheduler executed a parallel

pair according to the fully-parallel semantics. In that case,

PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA U. Acar, A. Charguéraud, A. Guatto, M. Rainey, F. Sieczkowski

the scheduler would immediately create two new threads.

The first is a thread for left branch. This thread reuses the

current stack. This stack is then altered with the write of

a null-pointer as parent-frame pointer in order to delimit

the execution of the left branch. The second is a thread for

the right branch. This thread is initialized with a fresh stack.

The currently running thread is used to represent the join

continuation, and as such its join counter is set to 2. This

thread also carries the current stack, but note that this stack

will be used only after the left branch completes.

In heartbeat scheduling, the evaluation of a parallel pair

begins according to the fully-sequential semantics, pushing

a frame in the stack to describe the right branch. Eventually,

that frame might be subject to promotion. When this pro-

motion happens, the scheduler creates two threads. The first

thread is for the right branch, and uses a fresh stack. The

second thread is for what remains of the left branch, whose
execution has already begun. This thread captures the cur-

rent stack, here again altered by nullifying the parent-frame

pointer. The currently-running thread is reused to describe

the join continuation, as described in the previous paragraph.

In summary, the promotion process is similar to the eager cre-

ation of threads from the fully-parallel semantics, with one

main difference: when a promotion occurs, the left-branch

has already begun its execution. In addition to thread cre-

ation, a promotion operation also involves updating the head

of the doubly linked list of promotable frames.

Native support for parallel loops. Finally, we describe, at a
high level, our treatment of parallel loops. In theory, parallel

loops can be encoded using fork-join, by creating a binary

tree of threads. Past work gives this approach the name Eager

Binary Splitting and identifies a number of limitations, such

as manual tuning effort and poor portability across different

inputs and hardware configurations [54].

Another possible approach is to introduce one frame for

each parallel loop. While this approach would improve the

situation, overheads might still be significant in the worst

case. Consider, for example, a program featuring an outer

loop whose body contains an inner parallel-loop that, on

the input data provided, only runs for a couple iterations. In

that case, each iteration of the outer loop would trigger the

creation of a frame, yet would involve insufficient work to

amortize the cost of that creation.

In Heartbeat, we chose to introduce frames for function

calls only. Heartbeat provides dedicated support for the loop

nests that may in function bodies. To describe a range of

iterations to be performed within a loop nest, we use loop
descriptors (a.k.a. task descriptors for nested loops). A loop

descriptor consists of: (1) a code pointer, (2) for each loop

enclosing that code pointer, the range of remaining iterations

to be processed for these loops, and (3) a pointer to the frame

storing the local variables involved in that code fragment.

For a promotion operation, the scheduler considers the

outermost parallel loop with remaining iterations (in addi-

tion to the current iteration). It splits the range of that loop in

half, leading to the creation of an independent loop descrip-

tor describing the upper half of the split range. In addition,

the scheduler creates one join thread per loop instance, but

creates these threads only when the first promotion occurs.

The exact implementation details are specific to Heartbeat

and the fact that it is an interpreter.

5 Empirical evaluation
We present a study of ten benchmarks taken from the Prob-

lem Based Benchmark Suite (PBBS) [8]. The benchmarks

represent state-of-the-art algorithms for multicore architec-

tures, solving problems on sequences, strings, and graphs,

and in geometry and graphics.

The PBBS codes were implemented using Cilk Plus, a par-

allel version of C++ in which a few Cilk keywords are used as

hints to express opportunities parallelism. The benchmarks

include irregular parallel applications, where granularity

control is particularly challenging. The authors’ original

code therefore relies on a number of manual techniques to

control granularity, with careful engineering to select the

techniques and hand-tune threshold settings. In particular,

three main techniques are involved:

• A number of data-parallel loops were parallelized by sys-

tematically splitting input sequences into fixed-size blocks

of 2048 items. This approach is used throughout the PBBS

sequence library and used extensively by all PBBS bench-

marks. This technique works well under certain assump-

tions. We replaced all such loops with Heartbeat’s parallel-

loop construct.

• In many cases outside of the sequence library, parallel

loops were expressed using Cilk parallel for-loops. The

algorithm underlying Cilk for-loops uses a heuristic that

splits the loop range into min(8P , 2048) blocks, where P is

the number of cores. This heuristic ensures that sufficient

parallelism is created to feed all P cores. However, in an

already-parallel context, it might end up creating an over-

whelming number of threads. We replaced all such loops

with Heartbeat’s native parallel loop construct.

• A number of loops were forced to always make one spawn

per iteration, by forcing the grain size to be 1. Doing so is

crucial in situations where any nontrivial grain size may

dramatically reduce parallelism, for example, in the case of

an outermost parallel loop with potentially few iterations.

We replaced such loops with Heartbeat’s parallel-looping

construct, simply dropping the grain size annotation.

In summary, the PBBS codes apply careful granularity con-

trol to ensure good performance. In contrast, the heartbeat

approach uses a single, uniform method. Such uniformity

greatly reduces the burden of performance tuning.

Heartbeat Scheduling: Provable Efficiency for Nested Parallelism PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA

5.1 Benchmarking environment
Input data and baseline setup. Our experiments usemuch

of the same input data as was used in the original PBBS

study [8], as well as some non-synthetic inputs that we added.

Owing to space limitations, we summarize the input data in a

technical appendix. We use as baselines for each benchmark

the authors’ original code. This code was tuned by the au-

thors offline, on a collection of inputs, using a test machine

similar to ours, and using GCC, like we did.

Hardware and software environment. We used an Intel

machine with 40 cores, featuring four 10-core Intel E7-4870

chips, at 2.4GHz, with 32Kb of L1 and 256Kb L2 cache per

core, 30Mb of L3 cache per chip, and 32GB RAM, and runs

Ubuntu Linux kernel v3.13.0-66-generic. We compiled the

code using GCC (version 6.3, options -O2 -march=native),
using for PBBS Cilk Plus extensions (option -fcilkplus).
Parallel runs involve a little bit of noise (with standard devi-

ation usually around 3% to 5%). Thus for each data point we

report the average over 30 runs.

We have also run our experiments on a 48-core AMD

machine; the results—not shown, due to space limitation—are

very similar to the ones presented throughout this section.

Load balancing. Cilk relies on work stealing implemented

with concurrent deques [17, 26]. In contrast, Heartbeat cur-

rently supports three load-balancing algorithms: work steal-

ing with concurrent deques, work stealing with private de-

ques (as described in [3]), as well as a mixed variant that in-
volves both a concurrent cell for storing the top-most deque

item and a private deque for storing all other items.
1
Pre-

liminary experiments suggest that the three variants give

similar results, with a slight advantage for the mixed variant

of work stealing. For this reason, we benchmark Heartbeat

using this mixed variant.

Setting for the parameter N. Recall that the parameter N
controls the pace at which promotions are performed in

heartbeat scheduling. We illustrate in Figure 7 the effect of

the choice ofN through two examples that are representative

of what we have observed over a range of benchmarks.

As the figure shows, values of N below 10µs are subopti-
mal due to significant parallelism overheads (overparalleliza-

tion). At the same time, values of N above 100µs are also
suboptimal, due to poor utilization (underparallelization).

The exact point at which performance degrades for large

values of N depends on the benchmark considered, but all

programs ultimately suffer from too-large values of N . Some-

where in between, for values of N close to 30µs , we find the

1
The mixed variant of work stealing that we consider here benefits from

reduced latency for serving steals. The structure requires a local CAS only

for acquiring the last item locally available, all other deque operations

require no atomic operations. Each successful steal involves a single CAS

operation. The structure involves polling on the top-most cell for populating

that cell when it becomes empty as a result of a successful steal.

0
5

10
15

20

Ex
ec

ut
io

n
tim

e
(s

)

remove−duplicates
suffix−array

2 10 30 100 103 104 105

Value of N (µs)
Figure 7. Impact of varying the value of the parameter N
on the 40-core run time for two sample PBBS benchmarks.

sweet spot that we seek. The existence of a sweet spot, as

predicted by the theoretical analysis, enables Heartbeat to

deliver bounded overheads (e.g., 3% or 5%), while preserving

as much parallelism as possible.

As explained in Section 2, the value of N is a system-wide

setting that should be set once-and-for-all to a multiple of

the value of τ . Recall, the value τ denotes the cost of thread

creation. For example, to ensure overheads below 5%, it suf-

fices to set the value of N to 20τ . We next describe a simple

protocol for measuring the value of τ on a given architecture.

Although this protocol requires performing measures on

one particular benchmark program, all benchmark programs

should yield similar estimates.

The protocol for measuring τ requires performing single-

core runs of a parallel program. First, execute the program

with a very large value of N (e.g., 10
7µs), so as to generate

zero (or few) threads, and measure the execution time T .
Then, execute the same program with a small value of N for

which overheads are significant (e.g., 1µs). For that run, letT ′

denote the execution time, and let C denote the number of

threads created. The ratio
T ′−T
C gives a good estimate of the

cost of creating one thread.

On our machine, following this protocol on several bench-

mark programs, we systematically measured values for τ
between 1.2µs and 1.9µs , with an average close to 1.5µs .
Hence, to target overheads below 5%, we set N = 30µs .

5.2 Benchmark results
Overheads of the Heartbeat interpreter. We implemented

Heartbeat as an interpreter for basic blocks, and thus we

pay a cost for interpretive overhead. To evaluate these over-

heads, we compare the sequential elision of the original PBBS
program (using Cilk) and its Heartbeat counterpart. The se-

quential elision is a mode in which no parallel threads are

created. More precisely, a sequential elision in Cilk replaces

parallel function calls with conventional calls: (cilk_spawn
and cilk_sync become no-ops) and the parallel for-loop

cilk_for becomes the ordinary, sequential for. Regarding

PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA U. Acar, A. Charguéraud, A. Guatto, M. Rainey, F. Sieczkowski

1 2 3 4 5 6 7 8 9

Sequential elision 1-core execution 40-core execution

Application/input PBBS Heartbeat PBBS Heartbeat PBBS Heartbeat Heartbeat / PBBS

(s) (relative to elision) (s) Idle time Nb threads

radixsort
random 3.39 +8.6% +0.5% +1.5% 0.21 -8.4% -6.8% -94.2%

exponential 3.46 +6.9% +0.1% +2.0% 0.20 -9.0% -7.9% -95.7%

random pair 5.63 +5.0% +46.3% +1.7% 0.51 -24.8% -25.3% -94.1%

samplesort
random 22.77 +43.5% +64.9% +1.8% 1.21 -14.6% -14.0% -8.9%

exponential 16.48 +34.8% +59.4% +1.3% 0.91 -18.9% -18.2% -35.5%

almost sorted 7.55 +108.3% +137.4% +1.9% 0.71 -17.9% -16.4% -47.7%

suffixarray
dna 23.62 +1.5% +22.7% +3.1% 1.33 -10.4% -14.7% -98.0%

etext 85.96 +3.5% +25.5% +2.6% 4.08 -6.2% -8.4% -90.7%

wikisamp 75.90 +2.4% +21.4% +2.7% 3.65 -5.9% -7.9% -89.5%

removeduplicates
random 10.12 +33.4% +11.5% +3.6% 0.48 +9.5% +11.3% -46.2%

bounded random 2.97 +15.2% -3.1% -0.2% 0.22 -16.5% -11.2% -93.2%

exponential 7.08 +8.2% +0.4% +3.0% 0.38 -7.4% -4.7% -81.1%

string trigrams 11.27 +0.0% -0.1% +2.1% 0.54 -25.1% -23.5% +1.6%

convexhull
in circle 14.27 -0.8% -1.7% +2.8% 0.69 -6.5% -4.6% -67.0%

kuzmin 8.65 +5.0% -0.5% -2.7% 0.48 -16.4% -7.7% -92.6%

on circle 10.77 -1.1% +192.3% +4.3% 1.35 -63.9% -65.0% -68.4%

nearestneighbors
kuzmin 26.66 +17.8% +10.7% +4.3% 1.35 +0.9% -0.7% -89.0%

plummer 32.80 +14.0% +8.6% +4.7% 2.35 -12.9% +17.1% -92.1%

delaunay
in square 90.47 -2.3% -1.1% +1.5% 3.53 +5.7% -14.7% -96.7%

kuzmin 97.80 -1.0% +0.3% +2.7% 4.13 +6.1% -12.8% -98.1%

raycast
happy 11.15 +8.9% +6.1% +3.3% 0.48 +1.3% -2.5% -92.8%

xyzrgb 359.79 +1.2% +0.7% +0.7% 9.25 +0.9% +1.3% -73.2%

mst
cube 49.46 +17.0% +25.7% +1.7% 2.57 +0.0% -9.2% -91.5%

rMat24 44.11 +14.1% +22.5% +1.5% 2.40 -1.8% -6.6% -91.4%

spanning
cube 13.74 +8.5% +3.2% +2.0% 0.68 -11.9% +3.5% -96.3%

rMat24 8.78 +8.8% +3.4% +2.1% 0.50 -7.5% +3.2% -96.5%

Figure 8. Benchmark results. Negative numbers indicate that Heartbeat is performing better. Column 3 gives an estimate

of the interpretive overhead of Heartbeat. Column 4 gives a lower bound on the overheads of the original PBBS code, with

figures relative to column 2. Column 5 gives an estimate of the thread-creation overheads in Heartbeat, with figures relative to

column 3. For 40-core runs, column 6 gives PBBS execution time, and column 7 gives the Heartbeat figure relative to column 6.

Columns 8 and 9 shows the ratios Heartbeat divided by PBBS for total idle time and for number of threads created.

Heartbeat, we simply set a flag to disable promotion. Con-

cretely, Heartbeat’s frames remain in the stack and never get

promoted, and the innermost parallel loops in the benchmark

codes are turned into purely sequential loops.

Column 3 from Figure 8 shows the relative performance

difference between Heartbeat sequential elision and PBBS se-

quential elision. Figures vary greatly across the rows. Indeed,

the interpretive overheads depend largely on the contents

of the basic block containing the critical loops. In fact, when

Heartbeat Scheduling: Provable Efficiency for Nested Parallelism PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA

there are several such critical loops, the overheads depend on

the extent to which each critical loop is being exercised by

the input data. Thus, even for the same benchmark program,

the interpretive overheads may vary significantly with the

input data (as, e.g., for sample-sort).

For most benchmarks, the overheads are below 20%. (Only

sample-sort and one instance of remove-duplicates have

greater interpretive overheads.) Such limited interpretive

overheads are achieved thanks to the fact that the compiler

is able to optimize every basic block independently of our

interpreter. Overall, we believe that the performance penalty

is small enough to draw a meaningful comparison against

the original Cilk programs.

Overheads of thread creation. Wenext evaluate parallelism

overheads both in PBBS and in Heartbeat. To evaluate the

overheads of thread creation in the original PBBS codes, we

compare the execution of the sequential elision of each pro-

gram against the single-core execution of the Cilk parallel

binary. Whereas the former eliminates all spawn-sync con-

structs and sequentializes all loops, the latter is slowed down

by compiler instrumentation, including thread creation. The

estimation of overheads in Cilk may be incomplete because

the Cilk system in some places detects at runtime that there

is only one active worker thread in the system. Nevertheless,

the comparison should give us a lower bound on the paral-

lelism overheads affecting Cilk programs. Column 4 from

Figure 8 shows that these overheads can be significant in

some benchmarks, in 10 cases (out of 28) over 25%, and in 2

cases over 100%.

To evaluate the overheads of thread creation in Heartbeat,

we compare in a similar fashion the sequential elision against

the single-core execution of the parallel code. This time, the

only difference between the two programs is that the former

never tries to promote the parallel fork points, while the latter

does so at regular pace. Promotion events occur every 30µs
in Heartbeat—a fraction more in practice, because Heartbeat

waits for the first polling event beyond the 30µs time interval

before actually performing a promotion. Column 5 from

Figure 8 shows that, when setting N such that
τ
N ≈ 5%, the

overheads of thread creation (and destruction) in Heartbeat

executions are systematically below 5%, as desired.

In practice, overheads may be less than the theoretical up-

per bound. One example is a program that involves strands

of sequential work that do not produce any parallelism for a

duration exceeding N , in a context where there are no pro-

motable frames left in the stack. In our benchmarks, Heart-

beat overheads exceed 3% in only 6 cases.

Parallel execution time. We now compare the execution

time of PBBS and Heartbeat on parallel runs involving 40

cores. Columns 6 and 7 from Figure 8 show the results. These

results show that Heartbeat, despite its interpretive over-

heads, is able to match (or improve over) the performance

of PBBS codes. Thus, Heartbeat delivers a runtime-based ap-

proach that makes unnecessary the manual selection of gran-

ularity control technique and the manual tuning involved

in the original PBBS programs. Replacing the Heartbeat in-

terpreter with a compiler-based implementation could only

improve the execution time.

To gain further insight on the parallel-execution-time dif-

ferences between PBBS andHeartbeat programs, we included

two additional columns in Figure 8. Column 8 shows the ratio

between idle time (counting periods during which workers

are out of work) in Heartbeat and idle time in PBBS. The

figures show that the idle time is of the same order of mag-

nitude.
2
Column 9 shows the ratio between the number of

threads created (i.e. the number of promotions) in Heartbeat

and the number of threads created in PBBS. There, figures

show that Heartbeat creates fewer threads, in many cases at

least one order magnitude fewer. Taken together, these last

two columns indicate that Heartbeat is able to achieve sim-

ilar utilization despite generating manyfold fewer threads,

and as a result, the Heartbeat running time often benefits

from the correspondingly decreased overheads.

6 Related Work
Parallel Scheduling. Brent’s theorem [14] gives the first

bound for scheduling a parallel program with workW and

span S on P processors as
W
P + S by showing that a “level-

by-level” schedule would yield such a bound. Brent’s re-

sult was later generalized to greedy schedulers, which do

not allow a processor to idle if there is work that can be

performed [7, 20]. Blumofe and Leiserson [13] show that

randomized work stealing algorithm can generate greedy

schedules for fork-join parallel programs, also when includ-

ing certain scheduling costs, e.g., steals. Their results were

subsequently generalized to broader classes of parallel pro-

grams by Arora et al [6]. The space consumption of various

scheduling algorithms have also been studied [5, 11, 12, 45],

as well as their locality properties [1, 2, 9, 10, 18, 39, 52].

Nearly all of the aforementioned work assumes that spawn-

ing a thread has unit or asymptotically constant cost.

Taming overheads of thread creation. Reducing the thread-
creation overheads involves reducing either the number of

threads created, or reducing the cost of creating a thread. The

naive approach is to create, for each parallel fork, a thread

for the right branch and a thread for the join continuation.

Cilk’s clone optimization [26] avoids the cost of creating

certain threads when both branches of a parallel fork execute

on the same processor. In such a case, clone optimization

reuses the current stack and avoids a synchronization opera-

tion before executing the join continuation.

2
Because utilization in these benchmarks is generally between 80% and 99%,

the total idle time represents less than 20% of the total execution time, thus

a 20% change in idle time would affect the execution time by less than 4%.

PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA U. Acar, A. Charguéraud, A. Guatto, M. Rainey, F. Sieczkowski

Tzannes et al. propose lazy scheduling, a scheduling tech-

nique where the creation of parallel threads is guided by

demand for parallel work [55]. That demand is estimated by

observing the occupancy of the local deque. This heuristic

can fail and sometimes increase the span significantly, as

also remarked by Tzannes et al. The authors give an upper

bound execution time, but for the case of a single parallel

loop taken in isolation, not for the whole program.

In fact, more generally, any approach that makes irrevo-

cable sequentialization decisions could increase span signifi-

cantly. For example, suppose that, at a time of high load, one

processor Pi proceeds to sequentialize a large task and starts
to work on it. Throughout we use the term “task” to refer

to each branch (part) of a parallel fork. Assume that, soon

afterwards, all other processors run out of work and com-

plete executing the threads in Pi ’s work queue. There then

remains only one active thread: the large task that Pi sequen-
tialized. Thus, only one is processor working, even though

that task could have been executed in parallel. The work of

the sequentialized task, which is large, now directly factors

into the span of the execution, which could have been small

if the task were executed in parallel. A technique based on

estimating the work of parallel calls, such as oracle-guided

scheduling [4], could avoid this problem in some cases.

Granularity control using cost estimation. One way to

tame the total overhead of thread creation is to control the

granularity of threads, ensuring that each thread created

holds a sizeable piece work. Perhaps the oldest technique for

granularity control is to use a manual, programmer-inserted

“cut-off” condition, that switches from a parallel to a sequen-

tial mode of execution. Cilk programmers sometimes anno-

tate parallel cilk_for loops to batch several parallel iter-

ations into a sequential unit of work—the exact batching

factor can be made parametric in the number of processors.

Iwasaki et al. present a static analysis technique for synthe-

sizing cut-offs for divide-and-conquer functions in Cilk-style

programs [37]. Such granularity control, while pragmatic, is

necessarily brittle in the presence of irregular control-flow.

In contrast to static approaches, dynamic approaches may

exploit valuable information depending on the input data.

Duran et al. [19] propose a method for controlling granu-

larity in nested parallel loops, relying on profiling informa-

tion collected at runtime. For recursive algorithms, older

work [47, 57] has proposed to make sequentialization deci-

sions based on the height or depth of the recursion tree. Yet,

as Iwasaki et al. point out [37], making irrevocable sequen-

tialization decisions may significantly harm parallelism.

One way to ensure that sequentializing a task will not

harm parallelism in irregular applications is to have some

guarantee that sequentialized tasks are small. Lopez et al. [42]

propose, in the context of logic programming, an approach

by which the programmer annotates functions with asymp-

totic cost annotations. The cost annotations are evaluated

online, by the runtime, to make sequentialization decisions.

However, using the asymptotic cost alone can lead to poor

outcomes, because, on modern processors, execution time

depends also on constant factors. Constant factors can be

large due to, e.g., effects of caching, pipelining, etc.

Oracle-guided scheduling [4] considers a cost model that

accounts for the cost of thread creation. Under certain as-

sumptions on the shape of the computation graph, the au-

thors establish work and span bounds for nested-parallel

programs. Its formal bounds take into account the overheads

of making time predictions, as well as the gap between pre-

dicted and effective values of the execution time. The authors

also provide an implementation strategy that requires the

programmer to provide an asymptotic cost function for each

parallel task and that performs run-time measurements to

estimate the constant factors missing from the asymptotic

notation. As discussed in Section 1, oracle-guided scheduling

does not apply to highly irregular programs where size of

parallel tasks are difficult to estimate in advance.

7 Conclusion
In the current state of the art, writing fast parallel programs

requires extensive optimization and tuning to limit the over-

heads of parallelism. One reason is that the existing schedul-

ing techniques do not provide tight theoretical or practical

bounds on the cost of creating and destroying threads. In

this paper, we show that such bounds are achievable for all

nested parallel programs written in the fork-join model, both

in theory and in practice.

To this end, we present an algorithm that controls the over-

heads of thread creation by restricting thread creation to oc-

cur at periodic intervals, in effect, the heartbeat of the compu-

tation. The insight is to promote, at each beat, a stack frame

that holds potential for parallelism to a thread. We specify

the technique by formalizing it as an abstract-machine se-

mantics and proving that the overheads are always bounded

by a small fraction of the sequential work, the cost of which is

to slightly increase the span (and thus decrease parallelism).

Our implementation and experiments show that heart-

beat scheduling can eliminate a variety of tuning parameters

and heuristics and still remain competitive with the hand-

optimized codes. One notable result is that heartbeat sched-

uling is able to reduce the number of created threads, some-

times by 90% relative to hand-tuned codes and do so without

unnecessarily reducing parallelism and performance.

Acknowledgments
This research is partially supported by the European Re-

search Council (grant ERC-2012-StG-308246).

Heartbeat Scheduling: Provable Efficiency for Nested Parallelism PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA

References
[1] Umut A. Acar, Guy Blelloch, Matthew Fluet, and Stefan K.

Mullerand Ram Raghunathan. 2015. Coupling Memory and Computa-

tion for Locality Management. In Summit on Advances in Programming
Languages (SNAPL).

[2] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. 2002. The data

locality of work stealing. Theory of Computing Systems (TOCS) 35, 3
(2002), 321–347.

[3] Umut A. Acar, Arthur Charguéraud, andMike Rainey. 2013. Scheduling

Parallel Programs byWork Stealingwith Private Deques. In Proceedings
of the 19th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’13).

[4] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. 2016. Oracle-

guided scheduling for controlling granularity in implicitly parallel

languages. Journal of Functional Programming (JFP) 26 (2016), e23.
[5] Shivali Agarwal, Rajkishore Barik, Dan Bonachea, Vivek Sarkar, R. K.

Shyamasundar, and Katherine A. Yelick. 2007. Deadlock-free sched-

uling of X10 computations with bounded resources. In SPAA 2007:
Proceedings of the 19th Annual ACM Symposium on Parallelism in Al-
gorithms and Architectures, San Diego, California, USA, June 9-11, 2007.
229–240. https://doi.org/10.1145/1248377.1248416

[6] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 1998. Thread

scheduling for multiprogrammedmultiprocessors. In Proceedings of the
tenth annual ACM symposium on Parallel algorithms and architectures
(SPAA ’98). ACM Press, 119–129.

[7] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 2001. Thread

Scheduling for Multiprogrammed Multiprocessors. Theory of Comput-
ing Systems 34, 2 (2001), 115–144.

[8] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian

Shun. 2012. Internally deterministic parallel algorithms can be fast. In

PPoPP ’12. 181–192.
[9] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Har-

sha Vardhan Simhadri. 2011. Scheduling irregular parallel computa-

tions on hierarchical caches. In Proceedings of the 23rd ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA ’11). 355–366.

[10] Guy E. Blelloch and Phillip B. Gibbons. 2004. Effectively sharing

a cache among threads. In SPAA. https://doi.org/10.1145/1007912.
1007948

[11] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. 1999. Provably

efficient scheduling for languages with fine-grained parallelism. J.
ACM 46 (March 1999), 281–321. Issue 2.

[12] Robert D. Blumofe and Charles E. Leiserson. 1998. Space-Efficient

Scheduling of Multithreaded Computations. SIAM J. Comput. 27, 1
(1998), 202–229.

[13] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling mul-

tithreaded computations by work stealing. J. ACM 46 (Sept. 1999),

720–748. Issue 5.

[14] Richard P. Brent. 1974. The parallel evaluation of general arithmetic

expressions. J. ACM 21, 2 (1974), 201–206.

[15] F. Warren Burton and M. Ronan Sleep. 1981. Executing functional

programs on a virtual tree of processors. In Functional Programming
Languages and Computer Architecture (FPCA ’81). ACM Press, 187–194.

[16] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-

awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek

Sarkar. 2005. X10: an object-oriented approach to non-uniform cluster

computing. In Proceedings of the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications
(OOPSLA ’05). ACM, 519–538.

[17] David Chase and Yossi Lev. 2005. Dynamic circular work-stealing

deque. In SPAA ’05. 21–28.
[18] Rezaul Alam Chowdhury and Vijaya Ramachandran. 2008. Cache-

efficient dynamic programming algorithms for multicores. In Proc. 20th
ACM Symposium on Parallelism in Algorithms and Architectures. ACM,

New York, NY, USA, 207–216. https://doi.org/10.1145/1378533.1378574

[19] A. Duran, J. Corbalan, and E. Ayguade. 2008. An adaptive cut-off

for task parallelism. In 2008 SC - International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–11.

[20] Derek L. Eager, John Zahorjan, and Edward D. Lazowska. 1989.

Speedup versus efficiency in parallel systems. IEEE Transactions on
Computing 38, 3 (1989), 408–423.

[21] Marc Feeley. 1992. A Message Passing Implementation of Lazy Task

Creation. In Parallel Symbolic Computing. 94–107.
[22] Marc Feeley. 1993. Polling efficiently on stock hardware. In Proceedings

of the conference on Functional programming languages and computer
architecture (FPCA ’93). 179–187.

[23] Matthias Felleisen and Daniel P. Friedman. 1987. Control Operators,

the SECD-Machine, and the Lambda-Calculus. In Formal Description of
Programming Concepts - III, M.Wirsing (Ed.). Elsevier Science Publisher

B.V. (North-Holland), 193–219.

[24] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. 2011. Im-

plicitly threaded parallelism in Manticore. Journal of Functional Pro-
gramming 20, 5-6 (2011), 1–40.

[25] Matthew Fluet, Mike Rainey, John H. Reppy, and Adam Shaw. 2008.

Implicitly-threaded parallelism in Manticore. In ICFP. 119–130.
[26] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The

Implementation of the Cilk-5 Multithreaded Language. In PLDI. 212–
223.

[27] Seth Copen Goldstein, Klaus Erik Schauser, and David Culler. 1995. En-

abling Primitives for Compiling Parallel Languages. In Third Workshop
on Languages, Compilers, and Run-Time Systems for Scalable Computers.
Troy, New York.

[28] Seth Copen Goldstein, Klaus Erik Schauser, and David E Culler. 1996.

Lazy threads: Implementing a fast parallel call. J. Parallel and Distrib.
Comput. 37, 1 (1996), 5–20.

[29] John Greiner and Guy E. Blelloch. 1999. A Provably Time-efficient

Parallel Implementation of Full Speculation. ACM Transactions on
Programming Languages and Systems 21, 2 (March 1999), 240–285.

[30] Adrien Guatto, Sam Westrick, Ram Raghunathan, and Umut A.

Acarand Matthew Fluet. 2018. Hierarchical Memory Management

for Mutable State. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPOPP). ACM Press.

[31] Robert H. Halstead, Jr. 1984. Implementation of Multilisp: Lisp on a

Multiprocessor. In Proceedings of the 1984 ACM Symposium on LISP
and functional programming (LFP ’84). ACM, 9–17.

[32] E. A. Hauck and B. A. Dent. 1968. Burroughs’ B6500/B7500 Stack

Mechanism. In Proceedings of the April 30–May 2, 1968, Spring Joint
Computer Conference (AFIPS ’68 (Spring)). ACM, New York, NY, USA,

245–251. https://doi.org/10.1145/1468075.1468111
[33] Tasuku Hiraishi, Masahiro Yasugi, Seiji Umatani, and Taiichi Yuasa.

2009. Backtracking-based load balancing. Proceedings of the 2009 ACM
SIGPLAN Symposium on Principles & Practice of Parallel Programming
44, 4 (February 2009), 55–64. https://doi.org/10.1145/1594835.1504187

[34] Lorenz Huelsbergen, James R. Larus, and Alexander Aiken. 1994. Using

the run-time sizes of data structures to guide parallel-thread creation.

In Proceedings of the 1994 ACM conference on LISP and functional pro-
gramming (LFP ’94). 79–90.

[35] Shams Mahmood Imam and Vivek Sarkar. 2014. Habanero-Java library:

a Java 8 framework for multicore programming. In 2014 International
Conference on Principles and Practices of Programming on the Java
Platform Virtual Machines, Languages and Tools, PPPJ ’14. 75–86.

[36] Intel. 2011. Intel Threading Building Blocks. https://www.
threadingbuildingblocks.org/.

[37] Shintaro Iwasaki and Kenjiro Taura. 2016. A static cut-off for task

parallel programs. In Proceedings of the 2016 International Conference
on Parallel Architectures and Compilation. ACM, 139–150.

[38] Doug Lea. 2000. A Java fork/join framework. In Proceedings of the
ACM 2000 conference on Java Grande (JAVA ’00). 36–43.

https://doi.org/10.1145/1248377.1248416
https://doi.org/10.1145/1007912.1007948
https://doi.org/10.1145/1007912.1007948
https://doi.org/10.1145/1378533.1378574
https://doi.org/10.1145/1468075.1468111
https://doi.org/10.1145/1594835.1504187
https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/

PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA U. Acar, A. Charguéraud, A. Guatto, M. Rainey, F. Sieczkowski

[39] I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Zhunping

Zhang, and Jim Sukha. 2015. On-the-Fly Pipeline Parallelism. TOPC 2,

3 (2015), 17:1–17:42. https://doi.org/10.1145/2809808
[40] I-Ting Angelina Lee, Silas Boyd-Wickizer, Zhiyi Huang, and Charles E.

Leiserson. 2010. Using Memory Mapping to Support Cactus Stacks in

Work-stealing Runtime Systems. In Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques (PACT
’10). ACM, New York, NY, USA, 411–420. https://doi.org/10.1145/
1854273.1854324

[41] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. 2009. The

design of a task parallel library. In Proceedings of the 24th ACM SIG-
PLAN conference on Object Oriented Programming Systems Languages
and Applications (OOPSLA ’09). 227–242.

[42] P. Lopez, M. Hermenegildo, and S. Debray. 1996. A methodology for

granularity-based control of parallelism in logic programs. Journal
of Symbolic Computation 21 (June 1996), 715–734. Issue 4-6. https:
//doi.org/10.1006/jsco.1996.0038

[43] Simon Marlow. 2013. Parallel and Concurrent Programming in Haskell.
O’Reilly.

[44] E. Mohr, D. A. Kranz, and R. H. Halstead. 1991. Lazy task creation: a

technique for increasing the granularity of parallel programs. IEEE
Transactions on Parallel and Distributed Systems 2, 3 (1991), 264–280.

[45] Girija J. Narlikar and Guy E. Blelloch. 1999. Space-Efficient Scheduling

of Nested Parallelism. ACM Transactions on Programming Languages
and Systems 21 (1999).

[46] OpenMP Architecture Review Board. [n. d.]. OpenMP Application

Program Interface. http://www.openmp.org/
[47] Joseph Pehoushek and Joseph Weening. 1990. Low-cost process cre-

ation and dynamic partitioning in Qlisp. In Parallel Lisp: Languages
and Systems, Takayasu Ito and Robert Halstead (Eds.). Lecture Notes

in Computer Science, Vol. 441. Springer Berlin / Heidelberg, 182–199.

[48] Ram Raghunathan, Stefan K. Muller, Umut A. Acar, and Guy Blelloch.

2016. Hierarchical Memory Management for Parallel Programs. In

ICFP 2016. ACM Press.

[49] Daniel Sanchez, Richard M. Yoo, and Christos Kozyrakis. 2010. Flexible

architectural support for fine-grain scheduling. In Proceedings of the
fifteenth edition of ASPLOS on Architectural support for programming
languages and operating systems (ASPLOS ’10). ACM, New York, NY,

USA, 311–322. https://doi.org/10.1145/1736020.1736055
[50] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons,

Aapo Kyrola, Harsha Vardhan Simhadri, and Kanat Tangwongsan. 2012.

Brief Announcement: The Problem Based Benchmark Suite. In Pro-
ceedings of the Twenty-fourth Annual ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA ’12). 68–70.

[51] K. C. Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. 2014.

MultiMLton: A multicore-aware runtime for standard ML. Journal of
Functional Programming FirstView (6 2014), 1–62.

[52] Daniel Spoonhower, Guy E. Blelloch, Phillip B. Gibbons, and Robert

Harper. 2009. Beyond Nested Parallelism: Tight Bounds on Work-

stealing Overheads for Parallel Futures. In Proceedings of the Twenty-
first Annual Symposium on Parallelism in Algorithms and Architectures
(SPAA ’09). ACM, New York, NY, USA, 91–100.

[53] Alexandros Tzannes, George C. Caragea, Rajeev Barua, and Uzi

Vishkin. 2010. Lazy binary-splitting: a run-time adaptive work-stealing

scheduler. In Symposium on Principles & Practice of Parallel Program-
ming. 179–190.

[54] Alexandros Tzannes, George C. Caragea, Rajeev Barua, and Uzi

Vishkin. 2010. Lazy binary-splitting: a run-time adaptive work-stealing

scheduler. In PPoPP ’10. 179–190.
[55] Alexandros Tzannes, George C. Caragea, Uzi Vishkin, and Rajeev

Barua. 2014. Lazy Scheduling: A Runtime Adaptive Scheduler for

Declarative Parallelism. TOPLAS 36, 3, Article 10 (Sept. 2014), 51 pages.
https://doi.org/10.1145/2629643

[56] Leslie G. Valiant. 1990. A bridging model for parallel computation.

CACM 33 (Aug. 1990), 103–111. Issue 8.

[57] Joseph S. Weening. 1989. Parallel Execution of Lisp Programs. Ph.D.
Dissertation. Stanford University. Computer Science Technical Report

STAN-CS-89-1265.

[58] Chaoran Yang and JohnMellor-Crummey. 2016. A Practical Solution to

the Cactus Stack Problem. In Proceedings of the 28th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA ’16). ACM, New

York, NY, USA, 61–70. https://doi.org/10.1145/2935764.2935787

https://doi.org/10.1145/2809808
https://doi.org/10.1145/1854273.1854324
https://doi.org/10.1145/1854273.1854324
https://doi.org/10.1006/jsco.1996.0038
https://doi.org/10.1006/jsco.1996.0038
http://www.openmp.org/
https://doi.org/10.1145/1736020.1736055
https://doi.org/10.1145/2629643
https://doi.org/10.1145/2935764.2935787

	Abstract
	1 Introduction
	2 Overview
	3 Semantics and analysis
	3.1 Work and span of a cost graph
	3.2 Syntax and machine transitions
	3.3 Sequential and parallel cost semantics
	3.4 Hearbeat semantics
	3.5 Formal results

	4 Implementation
	5 Empirical evaluation
	5.1 Benchmarking environment
	5.2 Benchmark results

	6 Related Work
	7 Conclusion
	References

