
THÈSE DE DOCTORAT
de l’Université de recherche
Paris Sciences et Lettres -
PSL Research University

Préparée à
l’École normale supérieure

A Synchronous Functional Language
with Integer Clocks

par Adrien Guatto

École doctorale n°386
Spécialité : Informatique
Soutenue le 07/01/2016

Composition du jury :

M. Gérard Berry
Professeur, Collège de France
Président

Mme. Mary Sheeran
Professeur, Chalmers University
Rapporteur

M. Robert de Simone
Directeur de recherche, INRIA Sophia-Antipolis
Rapporteur

M. Stephen Edwards
Professeur, Columbia University
Examinateur

M. Dan Ghica
Professeur, Birmingham University
Examinateur

M. Marc Duranton
Senior Research Scientist, CEA
Invité

M. Albert Cohen
Directeur de recherche, INRIA Paris
Directeur de thèse

M. Marc Pouzet
Professeur, École normale supérieure et UPMC
Codirecteur de thèse

M. Louis Mandel
Research Scientist, IBM Research
Encadrant de thèse

Remerciements

I would like to thank profusely the members of my committee for their participation. I am
especially grateful for the patience shown by Robert de Simone and Mary Sheeran during the
review process. I would also like to thank Dan Ghica and Mary Sheeran for having invited me
to Birmingham and Göteborg, respectively.

Mes années de thèse au sein de l’équipe PARKAS ont été les plus enrichissantes qu’il
m’ait été donné de vivre jusqu’ici. Je profite de ces quelques paragraphes pour remercier les
personnes qui ont contribué à cette richesse.

J’aimerais avant tout remercier mes deux directeurs de thèse, Albert Cohen et Marc Pouzet,
ainsi que mon encadrant, Louis Mandel. Ils ont chacun su mettre leurs qualités propres au
service de la construction d’un environnement scientifique et humain exceptionnel. J’aimerais
en particulier rendre grâce à la générosité d’Albert, à la droiture et à la créativité de Marc, et à
la bonté de Louis. Chacun d’eux est à sa manière un modèle pour moi.

Ma thèse s’inscrit dans la droite ligne de celle de Florence Plateau. Son élégance m’a séduit
et sa clarté a beaucoup facilité mon travail. C’est une oeuvre difficile à égaler.

J’ai été accueilli au début de thèse par les grands anciens, Léonard Gérard et Cédric Pasteur,
avec qui j’ai pu travailler sur le compilateur Heptagon. Ce fut une expérience formatrice à bien
des égards. Léonard en particulier m’a transmis une bonne partie de son point de vue sur notre
sujet d’étude commun. Merci à vous deux.

J’ai partagé le bureau B11 avec Francesco Zappa Nardelli et Nhat Minh Lê durant la seconde
moitié de ma thèse. Merci à Francesco pour les conseils, pénétrants, et les bières, désaltérantes.
Merci à Nhat pour notre amitié, qui a grandement éclairé ma thèse.

Guillaume Baudart est un peu mon petit frère de thèse, même s’il me semble que c’est
normalement à l’aîné de supporter les sautes d’humeur du cadet plutôt que l’inverse. J’espère
pouvoir continuer à gravir la montagne académique à ses cotés, avec ou sans Geneviève.

Timothy Bourke transforme magiquement tout endroit où il se trouve en un lieu sympa-
thique et intéressant. Cela fonctionne même pour la cantine de l’ENS !

Je remercie également tous les autres membres de PARKAS avec qui j’ai pu interagir durant
ces quatre années. Merci donc à Cédric Auger, Thibaut Balabonski, Riyadh Baghdadi, Ulysse
Beaugnon, Guillaume Chelfi, Boubacar Diouf, Mehdi Dogguy, Brice Gelineau, Tobias Grosser,
Jun Inoue, Louis Jachiet, Michael Kruse, Cyprien Lecourt, Feng Li, Antoine Madet, Cupertino
Miranda, Robin Morisset, Antoniu Pop, Pablo Rauzy, Chandan Reddy, Konrad Trifunovic,
Ramakrishna Upadrasta, Jean Vuillemin, Zhen Zhang, Jie Zhao et aux éventuels oubliés.

Le personnel administratif du Département Informatique de l’ENS est tout à la fois char-

3

4

mant et d’une efficacité qui dépasse bien souvent ce que le professionnalisme seul impose.
Merci à Lise-Marie Bivard, Isabelle Delais, Joëlle Isnard et Valérie Mongiat. Merci également
aux assistantes de l’équipe PARKAS à l’INRIA, Anna Bednarik et Assia Saadi.

Le workshop annuel SYNCHRON rassemble les chercheurs de la communauté “langages
synchrones”. Y participer a toujours été une expérience très agréable. Merci à Benoît Cail-
laud, Gwenaël Delaval, Alain Girault, Nicolas Halbwachs, Erwan Jahier, Florence Maraninchi,
Michael Mendler, Xavier Nicollin, Pascal Raymond et Lionel Rieg.

J’ai eu plaisir à discuter avec Jean-Christophe Filliâtre et Paul-André Melliès à chacunes de
leur venues dans le passage saumon. L’érudition et la gentillesse de Jean-Christophe en font
un interlocuteur privilégié pour toute personne s’intéressant aux langages de programmation.
Paul-André incarne un point de vue radical sur la science informatique qui me convainc un
peu plus chaque jour. Merci à eux.

Pendant mes trois premières années de thèse, j’ai eu la chance d’enseigner à l’Université
Pierre et Marie Curie ainsi qu’à Polytech’UPMC. Merci à Olivier Marchetti pour les cours de
langage C et d’architecture des ordinateurs. Merci à Emmanuelle Encrenaz pour le cours
de langages synchrones. Merci à Francis Bras pour le cours-projet d’électronique, où j’ai pu
découvrir que les circuits ne transmettent pas que des zéros et des uns.

J’ai fait durant mes études universitaires des rencontres qui se sont avérées déterminantes,
et à qui je dois en large partie cette thèse. Je remercie, dans l’ordre chronologique, Christian
Queinnec, Karine Heydemann, Mathieu Jaume et Thérèse Hardin.

J’ai eu le plaisir de fréquenter le Groupe de Travail Logique de l’ENS depuis ses débuts.
J’y ai trouvé un cadre ouvert et accueillant pour les gens intéressés par l’articulation entre
logique et calcul. Merci donc à Marc Bagnol, Aloïs Brunel, Guillaume Brunerie, Charles Grellois,
Baptiste Mélès, Guillaume Munch-Maccagnoni, Pierre-Marie Pédrot, Maël Pégny, Silvain
Rideau, Gabriel Scherer, Anne-Sophie de Suzzoni et les autres.

Les personnes qui suivent comptent beaucoup pour moi. Merci, en vrac : aux salvateurs
Kévin, Sylvain, Alexandre et Camille; à Alix et Olga, si proches et si importantes; à Choupi-
choups, la meilleure équipe d’EUW; à Maël, le type le plus chouette de l’univers; à Gaïa
également; à Nhat, le kenshiro de la choupitude; à Gucile, pour la Troisième République; à
Bruno, le plus écossais de tous les français; à Anthony, troll humaniste; à Aurore, que j’admire;
aux chimistes et ex-chimistes Gabriel, Jacques-Henri, Thomas et Peter McDag; à PIM, matérial-
iste éhonté; à Guillaume-des-couettes, pour sa poker-face; à Marc, pour les traces qu’il laisse; à
Charles, pour sa rematérialisation; à Annso, pour sa capacité à être “complètement Roi Lion”; à
Laure pour son amitié et son soutien, et pour l’invitation à Lyon; à Olivier, qui est souvent un
modèle; à Karine, ainsi qu’au couple royal Homer et Heidi; à Mam’zelle, roturière et fière de
l’être.

Je remercie également ma tante, mon oncle, ma cousine, mon cousin et sa femme. Je suis
heureux de vous avoir et espère vous voir souvent.

Enfin, je remercie ma mère, pour tout.

[31/10/16, 16:38]

5

Résumé

Cette thèse traite de la conception et implémentation d’un langage de programmation
pour les systèmes de traitement de flux en temps réel et à haute performance, comme
l’encodage vidéo. Le modèle des réseaux de Kahn est bien adapté à ce domaine et y est
couramment utilisé. Dans ce modèle, un programme consiste en un ensemble de proces-
sus parallèles communicant à travers des files mono-producteur, mono-consommateur.
La force du modèle réside en son déterminisme.

Les langages synchrones fonctionnels comme Lustre sont dédiés aux systèmes embar-
qués critiques. Un programme Lustre définit un réseau de Kahn qui est synchrone, c’est
à dire, qui peut être exécuté avec des files bornées et sans blocage. Cette propriété est
principalement garantie par un système de types dédié, le calcul d’horloge, qui établit une
échelle de temps globale à un programme. Cette échelle de temps globale est utilisée pour
définir les horloges, séquences booléennes indiquant pour chaque file, et à chaque pas
de temps, si un processus produit ou consomme une donnée. Après le calcul d’horloge
vient l’ analyse de causalité, qui garantit l’absence de blocage. Les programmes corrects du
point de vue des horloges et causaux sont compilés vers des machines à état fini, réalisés
soit en logiciel soit en matériel.

Nous proposons et étudions les horloges entières dans le but d’utiliser les langages
synchrones fonctionnels pour programmer des applications de traitement de flux. Les
horloges entières sont une généralisation des horloges booléennes qui comprennent des
entiers arbitrairement grands. Elles décrivent la production ou consommation de plusieurs
valeurs depuis une même file au cours d’un instant. Nous les utilisons pour définir la
notion d’échelle de temps local, qui peut masquer des pas de temps cachés par un sous-
programme au contexte englobant. Les échelles de temps local sont introduites par une
opération dite de rééchelonnement.

Ces principes sont intégrés à un calcul d’horloge pour un langage fonctionnel d’ordre
supérieur. Ce système de types capture en une unique analyse toutes les propriétés
requises pour la génération d’une machine à état fini. En particulier, il intègre et étend
l’analyse de causalité trouvée dans les langages synchrones fonctionnels existants. Nous
étudions ses propriétés, prouvant entre autres résultats que les programmes bien typés
ne bloquent pas. Nous adaptons ensuite le schéma de génération de code dirigé par les
horloges de Lustre pour traduire les programmes bien typés vers des circuits numériques
synchrones. La génération de code est modulaire : il n’est pas nécessaire de recompiler
les appelants d’une fonction lorsque le corps de celle-ci change, aussi longtemps que son
type reste le même. L’information de typage contrôle certains compromis entre temps et
espace dans les circuits générés.

Mots-clés : langages de programmation fonctionnels; langages de programmation
synchrones; systèmes de types; compilation; circuits numériques synchrones.

[31/10/16, 16:38]

6

Abstract

This thesis addresses the design and implementation of a programming language for
high-performance real-time stream processing, such as video decoding. The model of
Kahn process networks is a natural fit for this area and has been used extensively. In this
model, a program consists in a set of parallel processes communicating through single
reader, single writer queues with blocking reads. The strength of the model lies in its
determinism.

Synchronous functional languages like Lustre are dedicated to critical embedded
systems. A Lustre program defines a Kahn process network which is synchronous, that is,
which can be executed with finite queues and without deadlocks. This is mainly enforced
by a dedicated type system, the clock calculus, which establishes a global time scale
throughout a program. The global time scale is used to define clocks: per-queue boolean
sequences indicating, for each time step, whether a process produces or consumes a token
in the queue. After the clock calculus comes the causality analysis, which guarantees
the absence of deadlocks. Well-clocked and causal programs are compiled to finite state
machines, realized either as hardware or software code.

We propose and study integer clocks in order to extend the reach of synchronous
functional languages to high-performance real-time streaming applications. Integer clocks
are a generalization of boolean clocks that feature arbitrarily big natural numbers. They
describe the production or consumption of several values from the same queue in the
course of a time step. We use integer clocks to define the notion of local time scale, which
may hide time steps performed by a sub-program from the surrounding context. Local
time scales are introduced by an operation called rescaling.

These principles are integrated into a clock calculus for a higher-order functional
language. This type system captures in a single analysis all the properties required for the
generation of a finite state machine. In particular, it subsumes and extends the causality
analysis found in other languages. We study its properties, proving among other things
that well-typed programs do not deadlock. We then adapt the clock-directed code genera-
tion scheme of Lustre to translate typed programs to digital synchronous circuits. Code
generation is modular: one does not need to recompile the callers of a function when its
body changes, as long as its type is not modified. The typing information controls certain
trade-offs between time and space in the generated circuits.

Keywords: functional programming languages; synchronous programming languages;
type systems; compilation; digital synchronous circuits.

[31/10/16, 16:38]

7

[31/10/16, 16:38]

Contents

Contents 8

1 Introduction 11
1.1 Real-Time Stream Processing . 11
1.2 Kahn Process Networks and Synchrony . 12
1.3 Synchrony and Performance . 14
1.4 Contributions . 16
1.5 Outline of the Thesis . 17

2 Streams 19
2.1 Domains . 20
2.2 Streams . 25
2.3 Segments . 27
2.4 An Informal Metalanguage . 28
2.5 Segmented Streams and Clocks . 29
2.6 Buffering and Clock Adaptability . 32
2.7 Rescaling and Clock Composition. 34
2.8 Properties of Clocks . 37
2.9 Clocked Streams . 39
2.10 Ultimately Periodic Clocks . 40
2.11 Bibliographic notes . 46

3 Language 49
3.1 Syntax and Untyped Semantics . 49
3.2 Type System .. 55
3.3 Typed Semantics . 77
3.4 Metatheoretical Properties . 86
3.5 Discussion . 106
3.6 Bibliographic notes . 109

4 Compilation 113
4.1 Overview .. 114
4.2 A Machine Construction Kit . 116

8

CONTENTS 9

4.3 Linear Higher-Order Machines . 133
4.4 The Translation . 144
4.5 From Machines to Circuits . 159
4.6 Bibliographic Notes . 164

5 Extensions 167
5.1 Bounded Linear Types . 168
5.2 Nodes . 175
5.3 Clock Polymorphism .. 187
5.4 Dependent Clock Types. 205

6 Perspectives 223
6.1 Related Work . 223
6.2 Future Work . 236
6.3 Conclusion. 251

A Index 253
Semantics. 253
Judgments . 253
Interpretations . 254

B Figures 255

Bibliography 259

[31/10/16, 16:38]

10 CONTENTS

Notations
1 = {∗} Singleton set
x↦ f (x) Set-theoretic function
X ×Y Cartesian product of sets
X ⊎Y = {ι1x ∣ x ∈ X}∪{ι2 y ∣ y ∈ Y } Disjoint union of sets
f (X ′) = { f (x′) ∣ x′ ∈ X ′} Image of a set X ′ ⊆ X under a function f ∶ X → Y
Im(f) = f (X) Image of function f ∶ X → Y
X ↪ Y Inclusion map of X into Y ; supposes that X ⊆ Y
P(X) Powerset of set X
X ∗ Finite sequences of elements of X
X + Non-empty finite sequences of elements of X
Xω Infinite sequences of elements of X
X∞ = X ∗∪Xω Finite or infinite sequences of elements of X

[31/10/16, 16:38]

Chapter 1

Introduction

1.1 Real-Time Stream Processing

Most human beings experience computing by interacting with personal computers, smart-
phones, or tablets. But while such user-facing systems are numerous, they are dwarfed by the
vast cohorts of computers that carry out autonomous supervision, control, and decision tasks.
Computers have indeed found their way into a variety of settings, including for example plant
control, autonomous vehicles, automatic trading, or network processing. In contrast with
traditional batch-oriented computing, the execution of programs involved in such systems
proceeds as a succession of reactions to an external environment. The precise nature of this
environment varies; common cases include the physical world, accessed through sensors,
or a network, accessed through an interface card. Reactions result in the production of new
information which may then be transmitted through the network or used to drive actuators.

This thesis is about programming the specific subclass of interactive computing systems
that perform what we call real-time stream processing. They are characterized by the fact that
they perform an unbounded number of reactions, each taking a bounded amount of time
and memory. In practice, such systems execute forever while consuming a finite amount of
resources. Examples include critical systems, such as the fly-by-wire software found in planes,
but also more computationally-intensive tasks like real-time video encoding or decoding,
scientific data acquisition, and low-latency packet routing. These systems consist in either
software, hardware, or a mixture of both.

Real-time stream processing is often implemented in languages such as C, assembly, or
hardware description languages such as VHDL or Verilog. This is sometimes considered part
and parcel of this application domain, with resource constraints mandating a programming
style where low-level details have to be handled with utmost care and tedious precision. In this
thesis we adopt a different point of view by contributing to the design and implementation
of specialized programming languages for real-time stream processing. We hope that higher-
level languages will lead to stronger safety and efficiency guarantees, as well as improved
programmer productivity. Moreover, we think that such an investigation is interesting in itself
because it helps uncover interesting pieces of programming language theory.

11

12 CHAPTER 1. INTRODUCTION

1.2 Kahn Process Networks and Synchrony

One may think of a stream processing application as an assemblage of processes executing
concurrently. The processes may have internal state. Each of them communicates with its
neighbors or the environment via message exchanges through dedicated channels.

While this description is reminiscent of distributed systems, it is actually much simpler.
Message inversion, duplication, and loss do not occur. Security and fault-tolerance are also
non-issues. A few simple primitives suffice to describe the communication patterns of each
process. Message reception is blocking: a process deciding to read an incoming message is
suspended until the message is effectively received. Furthermore, a process may only read on
a unique input channel at a time. Contrast with the select() function or the timeouts provided
by UNIX. An important consequence of these restrictions is determinism: assuming that the
sequence of output messages of each process depends only on its sequence of input messages,
the same is true of the application as a whole.

Kahn process networks The description of stream processing given above is both vague and
rather operational in nature. In a seminal paper, Kahn [1974] advocates a more abstract point of
view based on elementary domain theory. He interprets processes as mathematical functions
and channels as mathematical streams, which are the infinite sequences of values transmitted
through them. The functions corresponding to processes enjoy special properties that reflect
the aforementioned discipline in the use of communication primitives. Such properties ensure
that the general theory of domains applies; the benefit is that this theory immediately provides
useful constructions and results. For instance, one may use domain theory to describe the
concurrent and sequential composition of two networks, or the creation of feedback loops. It
also gives basic results such as determinism for free and includes rigorous proof techniques for
recursively defined streams.

The account given by Kahn of stream processing was so influential that nowadays an appli-
cation belonging to this framework is often referred to as a Kahn Process Network (KPN). This
is often used in a broad sense that do not involve denotational ideas: a concurrent application
is a Kahn process network when its communications obey the unique blocking read discipline,
making it deterministic.

Synchrony The original paper by Kahn proposed the use of domain theory for modeling
stream-processing applications. Reading between the lines, the proposed methodology was to
give a denotational description of an imperative program and then use the clean formalism of
domain theory to prove properties of this description.

There are several problems with this initial idea. First, it is not very practical as it forces
the programmer to deal with two very different languages, an imperative language for writing
programs and a mathematical metalanguage for proving properties. Second, real-world stream
processing must often deal with resource constraints. This often lead to optimizations that
obscure the logical structure of the application, such as the implementation of communications
over shared memory and the sequentialization of concurrency. Moreover resource constraints

[31/10/16, 16:38]

1.2. KAHN PROCESS NETWORKS AND SYNCHRONY 13

are difficult to address in the idealized denotational setting employed by Kahn, which has little
to say about space and time usage.

To circumvent these limitations while preserving the original insight, Caspi, Pilaud, Halb-
wachs, and Plaice [1987] put forward an original idea. The idea is to reverse the roles: rather
than write an imperative program and then interpret it in a domain of streams and functions,
we will program directly with streams and then generate imperative code. The goal is to get the
best of both worlds: simple high-level programs one can reason rigorously about, compiled to
resource-conscious low-level code.

The concrete embodiment of this idea is Lustre, a domain-specific functional programming
language where streams are tangible values rather than ethereal mathematical objects. Any
Lustre program describes a Kahn process network, and the role of the Lustre compiler is to
produce an implementation obeying resource constraints. More precisely, since Lustre targets
real-time critical systems, the generated code must be sequential, and work within bounded
memory and terminate in bounded time. Programs for which the compiler cannot produce
such an implementation are rejected.

The inner working of a Lustre compiler is based on a principle called synchrony. Synchrony
is a sufficient condition for a Kahn network to be implementable within bounded space. Two
streams are synchronous when their elements are computed simultaneously. This involves a
notion of time step shared between subprograms; one goal of the Lustre compiler is to actually
establish such a time base, and use it to check synchrony. The notion is actually so integral to
Lustre that the language is generally designated as a synchronous language.

Operationally, the fact that all streams in a Kahn network are synchronous means that any
value that is produced can be consumed instantaneously. This has several important conse-
quences for its compilation to sequential imperative code. First, streams can be implemented
as local variables since no buffering between time steps is required. Second, during the course
of a time step, the production of an element must occur before its consumption. A Lustre
program where it is indeed the case is said to be causal, a property which is also enforced by
the compiler. This ensures that the underlying Kahn network is deadlock-free.

Compilation We can now give a broad overview of the most idiosyncratic stages of a Lustre
compiler following the principles outlined above. This is a very schematic view that we will
detail and refine during the course of the thesis.

First, the compiler checks for synchrony. This is done using a dedicated static analysis,
the clock calculus. This consists in associating to each stream a clock, which describes the
time step at which its elements are computed. Technically, a clock is a boolean stream which
represents the presence and absence of data in another stream. Two streams that have the
same clock are necessarily synchronous. The clock calculus is often implemented as a type
system [Caspi and Pouzet, 1996].

Second, the compiler checks that the program is causal. This is what its causality analy-
sis [Cuoq and Pouzet, 2001] does, by checking that during a time step, no cyclic dependency
between computation occurs. Lustre proposes a special delay operator which makes it possible
to transmit a value from one time step to the next. As its current output never depends on its

[31/10/16, 16:38]

14 CHAPTER 1. INTRODUCTION

current input, this operator is handled in a special way by the causality analysis. This is why
the definition of recursive streams is possible as long as self-references occur through delays.

Finally, the compiler may generate code implementing the Kahn network. A traditional
focus of Lustre has been bounded-memory C code, but this is not the only possibility. An
interesting alternative is the generation of synchronous digital circuits, which are not very
different from causal synchronous Kahn networks anyway. Targeting sequential software code
actually requires more work than targeting digital circuits, since each program piece has to
be scheduled so that productions occurs before consumptions. In a circuit this scheduling
is done in a dynamic and implicit way by electrical currents. Schedulability is a sufficient
condition for causality, and is in practice also checked by the causality analysis.

1.3 Synchrony and Performance

Lustre and its compilation technique based on synchrony has turned out to be well-adapted to
the implementation of critical control systems. Its industrial variant, SCADE [Esterel Technolo-
gies, 2015], is widely used in aircrafts, nuclear plants, trains, or industrial systems. The success
of Lustre can be traced back to several factors. An important practical reason is its proximity to
difference equations, the traditional formalism used by control scientists. Another explanation
which is closer to our concerns is the fact that control programs involve inexpensive but tightly
synchronized computations for which synchrony is a natural condition.

In other subfields of stream processing, the situation is quite different. Consider for instance
a real-time video processing program. Such a program naturally decomposes as a pipeline
of filters. Each filter performs thousands of arithmetic operations on image chunks, and
communicates with its neighbor by rare but large messages. Implementing such programs in
Lustre is difficult, mainly because of the synchrony condition. Concretely, synchrony forces
the programmer to introduce buffering by hand. This is a tedious and error-prone process
without tool support. In practice it leads to low-level code in which the static analyses of the
compiler are more of a hindrance than help.

An important step towards addressing this limitation of synchrony was its generalization
to n-synchrony by Cohen et al. [2006]. Communication between synchronous streams can be
implemented with a buffer of size zero, that is with no buffer at all. Communication between
n-synchronous streams can be implemented with a buffer of size n. The clock calculus of Lustre
can be extended to check n-synchrony rather than ordinary 0-synchrony. Lucy-n [Mandel et al.,
2010] is an experimental n-synchronous variant of Lustre in which the compiler infers clocks
and buffer sizes. Interestingly, there are several valid clocks for the same program; distinct
clocks describe distinct implementations of the Kahn network as a state machine, and may
express space/time trade-offs.

The adoption of n-synchronous Kahn networks makes possible the automatic inference of
buffers and buffer sizes from high-level code manipulating streams, avoiding manual coding
altogether. But it does not solve another problem that arise when trying to implement efficient
stream processing in Lustre-like languages. High-performance stream processing frequently
involve sporadic but large transfers of data on which uniform treatments are applied. For effi-

[31/10/16, 16:38]

1.3. SYNCHRONY AND PERFORMANCE 15

The JPEG image encoding process is organized as a series of transformations. The three last steps are
the discrete cosine transform (DCT), followed by the zigzag scan, before finally going through entropy
coding. We focus on real-time implementations of the zigzag scan.

zigzag
x y

The goal of the zigzag scan is to reorder the numbers produced by the DCT in order to expose
redundancies exploitable by the entropy coder. In a real-time JPEG encoder, the input of the zigzag
scan would typically consist in a stream of elements of matrices serialized in the left-to-right, top-
to-bottom order. Its output is a stream featuring the same elements, reordered by “zigzaging” along
the diagonal of each matrix. The figure above describes this process for 3x3 matrices.

x a0 a1 a2 a3 a4 a5 a6 a7 a8 b0 b1 b2 . . .

y a0 a1 a3 a6 a4 a2 a5 a7 a8 . . .

The chronogram above describes a real-time implementation of the zigzag scan that processes at
most one element per time step. The first line represents the input stream x, produced by the DCT,
the second the output stream y , fed to the entropy coder. Thick vertical gray bars represent time
steps and thin black lines represent dependencies. The dependencies that cross time steps must be
implemented using memory.

x a0 a1 a2 a3 a4 a5 a6 a7 a8 b0 b1 b2 . . .

y a0 a1 a3 a6 a4 a2 a5 a7 a8 . . .

Another possibility is to process the input stream matrix line by matrix line, as in the chronogram
above. More values are produced and consumed per time step, and the amount of memory needed
changes.

x a0 a1 a2 a3 a4 a5 a6 a7 a8 b0 b1 b2 . . .

y a0 a1 a3 a6 a4 a2 a5 a7 a8 b0 b1 b3 . . .

Finally, an implementation may process a full matrix at each time step, as above. As shown in
the chronogram above, no memory is needed. However, such an implementation will be more
demanding in terms of code size or circuit area.

Figure 1.1: The JPEG Zigzag Scan

[31/10/16, 16:38]

16 CHAPTER 1. INTRODUCTION

ciency reasons, one generally wants the generated code to take advantage of this loose coupling
between computations, which is a form of locality. In software, programmers use blocking
to add or modify loops and arrays in judicious places; this is particularly common in signal
processing code. In hardware, circuit designers use retiming, slowdown, and unfolding to trade
between throughput, latency, area, and frequency (e.g., Leiserson and Saxe [1991]; Parhi and
Messerschmitt [1991]). Figure 1.1 illustrates implementation choices for a simple function.

A direct solution to this second problem is to introduce arrays in the source language and
use them to program batched computations and communications. Unfortunately, while the
extension of Lustre with arrays and array operators is well-studied [Morel, 2002; Gérard et al.,
2012], the integration between array-oriented code and scalar code is not as tight as one could
wish for. It is difficult to translate from one style, or even particular array size, to another. For
example, in order to transform a stream of scalars into a stream of arrays, the programmer
must introduce a hand-rolled serial-to-parallel converter. The amount of memory needed by
such a converter depends on the rest of the program, and must be guessed by the programmer.
This is brittle and error-prone. The same is true in other synchronous languages that feature
arrays, such as Esterel v7 [Esterel Technologies, 2005]. This is problematic when exploring
performance trade-offs in the implementation of a given function.

1.4 Contributions

In this thesis we propose several extensions to Lustre-like languages in order to make them
more suitable for programming real-time stream processing systems. In particular, we address
the aforementioned issues with the exploitation of locality and decoupling in high-performance
applications. We believe that our contributions improve both the expressiveness of the lan-
guage, its compilation process, and its metatheory.

Integer clocks In Lustre, at most one element of a given stream is computed during a time
step. This is reflected by the fact that clocks are boolean streams. We relax this restriction by
allowing arbitrarily large numbers to appear in clocks; we call this extension integer clocks.
This models the simultaneous computation of several elements of a stream. We extend the
clock calculus and code generation of Lucy-n to deal with integer clocks. The code generation
scheme now produces code with arrays from a purely scalar source. The size of arrays is
completely determined by clocks, and serial/parallel conversions are implicit. A benefit is the
smooth interoperability between scalar and array-oriented programs.

Local time scales and rescaling A natural complement to integer clocks is the notion of local
time scale. A subprogram that executes within a local time scale may go faster or slower than
the outside world, and thus possibly hide some of its internal steps. The operation that creates
a local time scale around a block of code is called rescaling. Rescaling is a generalization of
the traditional activation conditions of Lustre and SCADE (see, e.g., Halbwachs [2005, Section
4]). We explain its action on clocks and give a typing rule characterizing correct uses. Each
rescaling gives rise to a loop (in software) or an unfolded circuit (in hardware). A programmer

[31/10/16, 16:38]

1.5. OUTLINE OF THE THESIS 17

may trade space for time in the implementation of a function by combining rescaling and
integer clocks, while being guaranteed that the final code.

Linear higher-order functions Lustre is a first-order functional language. The addition of
higher-order functions has been studied in the Lucid Synchrone language of Caspi and Pouzet
[1996], but in existing work its implementation relies on dynamic memory allocation or is
incompatible with separate compilation. Inspired by recent work in category theory and
hardware-oriented compilation [Joyal et al., 1996; Ghica, 2007], we propose submitting higher-
order functions to a linear typing discipline. This restriction enables modular compilation to
finite-state code.

Simplified metatheory We combine integer clocks, rescaling, and linear higher-order func-
tions in a single type system. Thanks to rescaling we are able to express causality checking
at the level of clocks. Thus, our type system fuses the separate typing, clock calculus, and
causality analysis of existing languages into a single system. We believe that this type system is
actually simpler than the previous ones. To demonstrate this fact we give full rigorous proofs
of metatheoretical results, such as deadlock-freedom and refinement for well-typed programs,
as well as a formal type-directed compilation scheme to circuits. This development relies on
standard concepts of programming language theory.

1.5 Outline of the Thesis

The thesis consists in a description of AcidS, a tentative Lustre-like language featuring a novel
treatment of clocks, activation conditions, and higher-order functions. We consider its core
to be Chapters 2 and 4, which explain in much greater detail the points touched upon in this
introduction. The thesis should be read in a sequential manner, as every chapter depends on
all the previous ones.

Chapter 2 The first technical chapter of this thesis details the mathematical description of
Kahn networks. We give a brief introduction to elementary denotational semantics before
spending time on the domain of streams. The rest of the chapter describes the theory of integer
clocks and how they characterize operational properties in the denotational setting.

Chapter 3 In the next chapter we describe µAS, a core higher-order synchronous language
akin to Lucy-n. The language is endowed with a clock type system featuring ultimately periodic
integer clocks, rescaling, and linear higher-order function. Programs have both untyped and
typed denotational semantics built using the notions introduced in the previous chapter. We
prove that for well-typed programs, the typed semantics is a deadlock-free synchronization of
the untyped one, in a certain technical sense. These properties correspond to the soundness of
the type system.

[31/10/16, 16:38]

18 CHAPTER 1. INTRODUCTION

Chapter 4 We introduce a small language of machines for modeling synchronous digital
circuits. This language is typed, first-order, and has a simple non-deterministic operational
semantics. We build a higher-order layer on top of the first-order base using a source-to-
source translation. The resulting higher-order machine language serves as a target for the
type-directed code generation process of µAS. We prove that compilation is sound via a logical
relation defined using a model of the target language.

Chapter 5 As a programming language, µAS is very restrictive, lacking traditional features
from Lustre. The chapter presents four language extensions. The first one relaxes the linearity
restriction on higher-order functions by allowing a function to be called a statically-fixed
number of times. The second one shows how nodes, i.e. closed functions, can be reused at
will as in Lustre. We finish with two extensions that increase the expressiveness of the type
system, first with polymorphism and then with data dependency. The latter makes it possible
to write programs whose behavior is not always periodic. These extensions, combined together,
form AcidS.

Chapter 6 This thesis ends with a summary of related and future work. We compare our
proposal to existing synchronous, dataflow, and functional languages, as well as analytic
models for streaming systems such as Synchronous Dataflow graphs of Lee and Messerschmitt
[1987]. Several issues remain to be addressed before a realistic implementation of AcidS is
possible. We discuss type inference and software code generation in detail, benefiting from
our experiments with the implementation of a prototype compiler. The chapter finishes with a
compendium of short- as well as long-term theoretical questions.

[31/10/16, 16:38]

Chapter 2

Streams

As explained in the first part of the thesis, synchronous functional languages are mainly con-
cerned with the construction and manipulation of infinite sequences of data, called streams.
They belong to the family of so-called dataflow synchronous languages because of the promi-
nent role of streams; but in contrast with a language such as Signal [Le Guernic et al., 1991],
programs denote functions rather than relations. A program written in a synchronous func-
tional language describes a deterministic parallel network of operators connected through
queues.

This vision dates back to the seminal article of Kahn [1974]. He studied networks of
imperative processes communicating only through single-producer, single-consumer channels
via blocking reads. Such programs are deterministic because blocking reads force processes to
be latency-insensitive: once a process starts reading an input channel, it has no choice but to
wait until a value arrives. Thus, communication delays or scheduling choices cannot affect the
values computed by processes in any way.

Kahn argued that such programs were best described as set-theoretic functions rather than
state machines, since in general state machines are more difficult to describe and manipulate
mathematically. The inputs and outputs of these functions are streams that represent the his-
tories of values transmitted through each input or output queue of a process. Yet, in order to
make this processes-as-functions idea rigorous, one needs to overcome two roadblocks.

• One needs to model processes that produce only a finite amount of items on their output
queues. In the extreme case, a process may not even produce anything on a given queue,
and other processes trying to read from this same queue will get stuck forever. This may
lead to partial or total deadlocks in the network.

• One should provide mathematical analogues to the ways in which processes may be
composed. On the one hand, it is clear that connecting the outputs of one process to
the inputs of another corresponds to ordinary function composition, or that one can
use the cartesian product of streams and its associated projections to model processes
having multiple inputs or multiple outputs. On the other hand, process networks also
feature arbitrary feedback loops whose set-theoretic meaning is less evident. This seems
to indicate that the functions in consideration should admit a fixpoint operation.

19

20 CHAPTER 2. STREAMS

These two difficulties were solved by Kahn through the use of domain theory, introduced
by Scott [1969] a few years earlier and intensively studied since. Domain theory provides a
simple order-theoretic framework for describing computations between large or even infinite
objects, such as streams. Its fundamental insight is that computable functions, when acting
on infinite objects, are fully characterized by their action on finite approximations to these
objects. This suggests the use of partially ordered sets where the order describes this notion
of approximation, and where least upper bounds of sets of compatible approximants exist.
Computable functions then naturally correspond to continuous functions, a class of functions
behaving well with respect to approximation.

The notion of approximation provides a solution to the first problem above: the domain of
streams consists not only in infinite streams but also in their finite approximants, which can be
thought of as finite prefixes. Moreover, a continuous function always has a least fixpoint, which
thus provides a natural way to model feedback loops, solving the second problem. Thus, in
theory, one can define process networks as continuous functions, and use the tools and proof
techniques provided by domain theory for reasoning, avoiding stateful code.

The language proposed in this thesis describes Kahn process networks with additional
properties, such as deadlock-freedom and bounded buffers. Its mathematical semantics relies
on the ideas introduced above. The goal of this chapter is to introduce them formally and
describe some of their properties, paving the way for the mathematical study of the language
in the rest of this thesis. Following Kahn, we will make elementary use of domain theory. The
first section of this chapter provides a very brief introduction with pointers to more complete
treatments.

Synchronous functional languages generally define a notion of clock to model the schedul-
ing of Kahn networks; we will not depart from this rule. The clocks studied in this thesis, the
so-called integer clocks, generalize previous definitions and will enable a finer-grained study of
dependencies between computations. We develop the theory of integer clocks by reusing and
extending notations and results from Plateau [2010].

2.1 Domains

Most of the formal developments in this thesis rely either implicitly or explicitly on elemen-
tary Domain Theory. Domain Theory is the mathematical theory of special kinds of ordered
sets, called domains, and structure-preserving functions between them. It provides a frame-
work for building denotational semantics of programming languages, where one interprets
programs as mathematical objects and studies the objects obtained in the hope that they will
shed light on properties that are difficult to grasp from a syntactic point of view.

This section gives a hurried introduction to the elementary aspects of Domain Theory
used in this thesis. We merely state the theorems we need and direct the curious reader to
the bibliography given in the end of this section for proofs and additional explanations. Our
notations are mostly taken from the monograph of Abramsky and Jung [1994].

[31/10/16, 16:38]

2.1. DOMAINS 21

Partial Orders A (partial) ordering relation on a set X is a binary relation ⊑ that is reflexive,
transitive and antisymmetric. Then, given x, y, z ∈ X , we say that z is an upper bound of x and y
when x ⊑ z and y ⊑ z. We say that a non-empty subset F of X is directed when any pair of
elements of F has an upper bound in F . When it exists, we write⊔F for the least upper bound,
or lub, on an arbitrary subset F of X . Similarly, given x, y ∈ X we write x ⊔ y for⊔{x, y} when it
exists.

Given two ordered sets (X ,⊑X) and (Y ,⊑Y), a function f ∶ X → Y is said to be monotonic
when it is order-preserving i.e., for any x, y ∈ X , x ⊑X y implies f (x) ⊑Y f (y).

Domains and continuous functions We call predomain a directed-complete partial order.
Such a partial order D consists in a pair (∣D ∣,⊑D), that is a set ∣D ∣ endowed with a partial
order ⊑D such that given any directed subset F ⊆ ∣D ∣, the least upper bound ⊔ F of F exists
in ∣D ∣. Such a predomain D is a domain when there is an element �D ∈ ∣D ∣ minimal for ⊑D . We
drop the indices from ⊑D and �D when D can be deduced from the context, and sometimes
implicitly identify D with ∣D ∣.

We say that a subset X of ∣D ∣ is a sub-domain of D when it contains �D and the least upper
bounds⊔F of all directed sets F ⊆ X ⊆ ∣D ∣, considered with regard to ⊑D .

A function f ∶ A→B between (pre)domains A and B is continuous when it preserves the
least upper bounds of directed sets. Such functions are necessarily monotonic. The identity
function is continuous and function composition preserves continuity. We write A →c B for
the set of continuous functions between A and B . Two such functions f , g ∈ A →c B can be
compared, with f ⊑ g when ∀x ∈ A, f (x) ⊑ g(x). This ordering relation is sometimes called
the extensional order.

Fixpoints Suppose given a domain D and a continuous function f ∶D →c D . Let us write f i

for f composed i times with itself, that is f 0 = id and f i+1 = f ○ f i .

Theorem 1 (Kleene’s fixpoint theorem). The least fixed point fix f of f exists and is such that

fix f =⊔
i≥0

(f i�)

This result makes it possible to take fixpoints of arbitrary continuous functions as long
as one deals with extra � elements. This reflects the fact that in a Turing-complete program-
ming languages one may define arbitrary recursive functions, at the price of allowing non-
termination.

Special functions We now introduce some vocabulary regarding important properties of
continuous functions between (pre)domains.

• Strictness: a function between domains is said to be strict when it preserves least ele-
ments.

[31/10/16, 16:38]

22 CHAPTER 2. STREAMS

• Deflation: a deflation is a continuous function f ∶D →c D such that f ⊑ idD and f ○ f = f .
Deflations are sometimes called projections in the literature. We choose to use the
term “deflation” to avoid ambiguities with regard to the next definition.

• Embeddings and projections: an embedding-projection pair (e, p) between two predo-
mains A and B is a pair of continuous maps e ∶ A →c B and p ∶ B →c A such that we
have p ○e = id and e ○p ⊑ id. We then write (e, p) ∶ A ⊲B , and more generally say that A
is a retract of B , written A ⊲ B when such an embedding-projection pair exists. The
composite e ○p is always a deflation since e ○p ○e ○p = e ○ id ○p = e ○p. We sometimes
abbreviate the term “embedding-projection pair” as e-p pair.

• Isomorphisms: an isomorphism (i , i−1) between two domains A and B is a pair of contin-
uous maps i ∶ A →c B and i−1 ∶B →c A such that i−1 ○ i = idA and i ○ i−1 = idB . We then
write i ∶ A ≅B , or just A ≅B when we want to indicate that such an isomorphism exists.

Domain constructors Domains can be constructed from smaller ones in various ways. We
describe several domain constructors in turn, and give some programming intuition about the
definitions.

• Lifting: given a domain D , we may form its lift D� by adding some � /∈D and extending
the partial order ⊑D to make � least.

We can always make a predomain out of a set X by endowing it with the discrete order
which is x ⊑ x for all x ∈ X . The discrete predomain X can be turned into the flat
domain X� where x ⊑ y when x = � or x = y .

One may think of a set such as B� as the set of programs whose evaluation either returns
a boolean or does not terminate.

• ’Unlifting’: one can make a predomain D↓ out of a domain D by removing its least
element �. Note that D↓ is not necessarily a domain since it does not have a least element
in general.

• Product: one can form the product A×B of two predomains A and B by ordering the
cartesian product of the underlying sets componentwise. When A and B are domains, so
is A×B and its least element �A×B is (�A,�B).

Intuitively, products correspond to lazy pairs, where the evaluation of one component
may loop without affecting the evaluation of the other. For example, (�,1) ∈ B� ×B�
models a program returning a pair whose right component evaluates to true while the
evaluation of its left component loops forever.

• Smash product: the smash product D1⊗D2 of two domains D1 and D2 is a cartesian
product where the two least elements of D1 and D2 have been identified:

D1⊗D2 = (D1↓×D2↓)�

[31/10/16, 16:38]

2.1. DOMAINS 23

This product typically models programs returning strict pairs. Given an element x ∈
B�⊗B�, either the computation of the whole pair corresponding to x loops and x = �,
or it converges to two booleans b1 and b2 and thus x = (b1,b2). Observe that there is an
embedding-projection pair (e⊗, p⊗) ∶ A⊗B ⊲ A×B .

• Sum: one can form the sum of two predomains D1,D2 by taking the disjoint union of
their elements such that x ⊑D1+D2 y just when x = ιi x′, y = ιi y ′ and x′ ⊑Di y ′, with ιi the
injection into the i -th component of a disjoint union. Note that the resulting predomain
is never a domain.

• Coalesced sum: similarly to the smash product, one may define the coalesced sum D1⊕D2

of two domains D1 and D2 as

D1⊕D2 = (D1↓+D2↓)�

The injections into the disjoint union naturally give rise to two embedding-projection
pairs (ei , pi) ∶Di ⊲D1⊕D2 by

ei(x) = { � when x = �
⌊ιi x⌋ otherwise

pi(x) = { y when x = ⌊ιi y⌋
� otherwise

Coalesced sums correspond to strict sums in the sense that D1⊕D2 does not contain
elements of the form (ιi�i): one cannot get the tag ιi without the corresponding value.

• Function space: The set of all continuous functions between two domains A and B ,
ordered extensionally, forms a domain A⇒c B , with �A⇒c B(x) = �B as least element.

In addition to their action on domains themselves, domain constructors also give rise
to new functions between domains: in category-theoretical terms, they are functors. Con-
sider the cartesian product of domains for example: given domains A, A′,B ,B ′ and two func-
tions f ∶ A⇒c B and g ∶ A′⇒c B ′, we write f × g ∶ A× A′⇒c B ×B ′ for the function mapping the
pair (x, x′) to (f (x), g(x′)).

Recursive domain equations When describing programming languages, one often wishes
to construct domains defined in terms of themselves. For example, programs written in
an untyped language featuring higher-order functions and booleans might be modeled as
elements of a domain U such that

U ≅B�⊕(U ⇒c U)� (2.1)

In the right hand side U occurs in contravariant position, that is on the left of an odd number
of arrows; this makes the existence of solutions to such equations non-trivial. Another use case

[31/10/16, 16:38]

24 CHAPTER 2. STREAMS

is languages with user-defined recursive data types, such as ML or Haskell. Such languages
typically do not restrict the use of arrows in type definitions, thus allowing the type being
defined to occur in contravariant positions in its definition.

Because of cardinality issues, the existence of such isomorphisms is not obvious. One of
the key achievements–and indeed original motivation–of Domain Theory is to prove that such
solutions actually exist for a very large class of equations. In particular, all equations built from
flat domains and domain constructors presented above are of this class. We will not work out
in detail how the construction proceeds but give a rough sketch.

Solving a recursive domain equation such as 2.1 consists in finding a domain U and an
isomorphism U ≅ F(U ,U), with F the functor modeling the right hand side of the equation.
Here, a functor is a map sending pairs of domains to domains and pairs of continuous functions
to continuous functions. More precisely, given domains A and B , we have a domain F(A,B)
and given functions f ∶ A2 →c A1 and g ∶ B1 →c B2, the functor defines a continuous func-
tion F(f , g) from F(A1,B1) to F(A2,B2).

The two arguments of the functor respectively correspond to contravariant and covariant
occurrences of U in the right hand side of the equation. For example, in the case of 2.1 one has

F(U−,U+) =B�⊕(U−⇒c U+)�

One can then form the sequence of domains Un such that U0 =∅� and Un+1 = F(Un ,Un). It
is increasing in the sense that Un ⊲ Un+1 for all n, with embedding-projection pairs given
by (e0, p0) = (�,�) and (en+1, pn+1) = (F(pn ,en),F(en , pn)). Now, we can build U as the do-
main

∣U ∣ = {∏
n∈N

xn ∣ xn ∈Un and xn = pn xn+1 for all n}

x ⊑U y = xn ⊑Un yn for all n
�U = n↦ �Un

whose elements are indexed products ordered componentwise. The domain U is the limit of
the sequence Un since each Un embeds into U and that U itself embeds uniquely into any
other domain U ′ such that U ′ ≅ F(U ′,U ′). This construction actually requires the functor F to
satisfy technical conditions [Streicher, 2006].

Reasoning on domains Domain Theory provides reasoning principles usable for metathe-
oretical investigations or program proof. Of particular importance is a simple induction
principle, often called Scott induction. This property can be used to show that the least fixpoint
of a function f ∶D →c D satisfies a certain property P , with P identified with a subset of D
well-behaved with respect to continuity.

Theorem 2 (Validity of Scott Induction). Call admissible predicate a subset of a domain D that
contains �D and is closed under directed lubs. We write P(x) for x ∈P. Then, given such a P and
a continuous function f ∶D →c D the following rule is valid

∀x.P(x)⇒P(f x)
P(fix f)

[31/10/16, 16:38]

2.2. STREAMS 25

Bibliography Domain Theory was introduced by Scott [1969] in the late sixties. The classic
book of Reynolds [1996] on programming languages features among other things an introduc-
tion to domains and denotational semantics. Winskel [1993] has another good introduction.
Streicher [2006] is more advanced and gives a technical yet clear explanation of the solution of
recursive domain equations. Abramsky and Jung [1994] give a thorough treatment of the core
mathematical aspects of the theory. The book by Amadio and Curien [1998] contains a host of
references. Pitts [1996] derives general reasoning principles for recursively defined domains.
Finally, all the ideas of this section are naturally expressed in the language of category theory.
Awodey [2006] provides an introduction fit for computer scientists.

2.2 Streams

Informally, in a Kahn process network a stream is an infinite sequence that models the suc-
cessive values transmitted through a queue during the whole execution. The only thing one
can do with a stream is to attempt to destruct it into its first element, or head, and remaining
elements, or tail. This operation may fail, because the stream might be empty. Thus, a stream
is either empty, or can be decomposed into a value and another stream, which might itself be
empty, and so on. This suggests the following definition.

Definition 1 (The Domain of Streams). Given a domain D, the domain Stream(D) of streams
of D elements is the solution of the recursive domain equation

Stream(D) ≅D⊗Stream(D)�
The solution of this equation comes equipped with an isomorphism is that defines stream

construction (via i−1
s) and destruction (via is). To make notation lighter, we write abbreviate

stream construction by x.s = is(p⊗(x, s)) where p⊗ is the projection part of the embedding-
projection pair A⊗B ⊲ A ×B . As expected since adding an element to a queue is strict, we
have �.s = � for any s ∈ Stream(D). Also, for any continuous function f ∶ A ⇒c B , we de-
fine its unique lift to streams Stream(f) ∶ Stream(A)⇒c Stream(B) in the standard way; this
corresponding to the map combinator of functional languages.

In this thesis, we will always use the above definition with D a flat domain, that is a domain
of the form X� with X a discretely ordered set. In this case, Stream(D) is isomorphic to X ∗∪Xω,
the set of finite or infinite sequences of elements in X , ordered by prefix. For example, Figure 2.1
depicts the smallest elements of the domain of boolean streams and the ordering between
them. Remember however that finite words do not model terminating computations but rather
infinite computations that “get stuck” at a certain point. In particular, consider the following
function from streams of natural numbers to the flat domain .

inf x = { 1 if x is infinite
� otherwise

This function is not continuous: given an infinite stream x, it returns � for all the finite prefixes
of x yet returns 1 for their limit. In particular, it could not be programmed as a recursive
function using only stream construction or destruction.

[31/10/16, 16:38]

26 CHAPTER 2. STREAMS

�

0.�

0.0.� 0.1.�

1.�

1.0.� 1.1.�

Figure 2.1: The domain Stream(B�) of boolean streams

The fact that the function inf is not continuous simply reflects that it cannot be imple-
mented as a program: it is impossible to decide whether a stream is infinite or not, since
this is equivalent to the halting problem. Yet, in our later investigations of AcidS and its type
system (Chapter 3), we will want to show that well-typed programs compute infinite streams.
In other words, well-typed programs do not get stuck. Thus, we need to reason on this notion
mathematically. Let us define a predicate characterizing streams holding at least n elements.
We say that such streams converge up to n. Then, a stream that converges up to n for any n is
clearly infinite.

Definition 2 (Convergence and Totality). The convergence predicate s ⇓n is inductively defined
by the following rules

s ⇓0

s ⇓n

x.s ⇓n+1

The total convergence predicate s ⇓∞ is defined by

s ⇓∞ def= ∀n ∈N, s ⇓n

We say that a stream s such that one has s ⇓∞ totally converges, or simply is total. A non-total
stream is said to be partial

Convergence up to n is of course related to the ordering on the domain of streams. In
particular, it is compatible with it in the following sense.

Property 1. Given streams xs and ys such that xs ⊑ ys and xs ⇓n , one has ys ⇓n .

Total convergence, on the other hand, is related to maximality.

Property 2. Given a flat domain D and stream xs ∈ Stream(D), xs is maximal just if xs ⇓∞.

[31/10/16, 16:38]

2.3. SEGMENTS 27

Remark 1. For any domain D , maximal elements of Stream(D) are total. The latter situation
does not arise in this thesis.

For any i , one may see convergence up to i as an approximation to totality. In particular,
this has the convenient corollary that one can use ordinary induction on n to prove that an
element is total. Another notion where this decomposition makes sense is equality. Let us
define the following relation.

Definition 3 (Prefix Equality). The judgment s =n s′ expresses that two streams xs and ys are
equal on their first n elements, and is inductively defined by the following rules

xs =0 ys

xs =n ys

x.xs =n+1 x.ys

In particular, when xs =n ys then both xs and ys converge up to n.

As expected, equality of prefixes is an approximation of equality, in the following sense.

Property 3 (Equality of Prefixes). Two streams are equal if all their prefixes are. Formally,

∀n ∈N, xs =n ys⇒ xs = ys

We will sometimes use the convergence or prefix judgments up to n in an informal way,
where the “integer” n is a member of N� rather than a plain natural number. This supposes
that we have a property ensuring n ≠ �; we will make such conditions explicit when needed.

2.3 Segments

The domain of streams defined above is one of the simplest examples of an interesting non-
flat domain; in particular, it contains infinite chains. This is to be expected since streams
model processes which may become non-productive after some time. The ordering relation on
streams reflects this: by destructing a stream repeatedly, one obtains its elements one by one;
at any point along the way, this deconstruction process may get stuck, a situation denoted by �.
Conversely, flat domains correspond to computations which either fail to terminate, providing
no information whatsoever, or return complete, total results. In synchronous functional
languages in general and this thesis in particular, we are interested in intermediate points
between these two extreme cases. More precisely, we would like to describe streams such that
when the destruction process succeeds, it returns a whole pack of values (possibly empty) in
one step. Understanding how we can coarsen a stream function will be the subject of the later
sections of this chapter, but we first have to describe such streams where destruction is coarser.

The simplest idea to introduce streams whose destruction may return several elements
while staying inside domain theory is to consider streams of strict lists. We sometimes call such
lists segments to emphasize their role as containers for contiguous elements of a stream.

[31/10/16, 16:38]

28 CHAPTER 2. STREAMS

�

[] [0] [1] [0;0] [0;1] [1;0] . . .

Figure 2.2: The domain List(B�) of boolean lists

Definition 4 (The Domain of Lists). Given a domain D, the domain List(D) of finite lists whose
elements belong to D is the solution of the recursive domain equation

List(D) ≅ 1�⊕(D⊗List(D))

The strictness of segments corresponds to the fact that list constructors force the evaluation
of their elements. In particular, if D is a flat domain then so is List(D), with ∣List(D)∣ in
bijection with ∣D ∣∗∪{�}. Figure 2.2 shows part of the domain of boolean lists.

We now define syntactic shortcuts for list construction with a syntax à la ML. If il is the
isomorphism solving the above recursive domain equation, we can write [] for the empty
list defined as [] = i−1

l (p⊕(ι1∗)), with p⊕ the projection part of the embedding-projection
pair A ⊕B ⊲ A +B . We also write x; l for the list with head x and tail l , defined as x; l =
i−1

l (p⊕(ι2(p⊗(x, l)))), and [x1; . . . ; xn] for x1; . . . ; xn ;[], and index streams by natural numbers
so that xs[i] is the i -th value if it exists and � otherwise. Finally, for any continuous func-
tion f ∶ A⇒c B we write List(f) ∶ List(A)⇒c List(B) for its unique lift to lists. This function is
traditionally written map in functional languages.

2.4 An Informal Metalanguage

The previous sections use “raw” set-theoretic functions to build convenient functions for
stream and list constructions. We feel that this is a way of explaining how things work in terms of
pure domain theory. However, the direct use of isomorphism and embedding-projection pairs
quickly becomes tedious and hard to read when one has to write bigger functions. Following
established usage—such as in the book of Winskel [1993]—we will use a high-level, informal
functional metalanguage for writing continuous functions between domains. Technically, this
is justified by the fact that the category of domains is cartesian-closed and thus provides all the
necessary combinators for interpreting a λ-calculus.

As an example, let us define a function that computes the size of a segment. We use a
Haskell-like syntax, and rely on pattern-matching.

length ∶ List(D)⇒c N�
length [] = 0
length (x; l) = 1+ length l

[31/10/16, 16:38]

2.5. SEGMENTED STREAMS AND CLOCKS 29

It is possible to translate, or “compile”, this function to the raw combinators provided by domain
theory in a systematic way. Pattern-matching can be implemented through the combined use
of list destruction, itself relying on the isomorphism that solves the domain equation defining
lists and on the projections from strict to lazy products or sums, and on the function [f ∣ g] that
maps ι1x to f x and ι2 y to g y . List constructors were explained away in the previous sections.
Recursive calls as usual correspond to least fixpoints. We overload the notation (x, y) and
use it for both ordinary products and smashed ones. Functions acting onN such as addition
are lifted to act onN�, and natural numbers themselves are injected intoN�. This process is
systematic but will not be detailed in the thesis.

Finally, as a side remark for readers fluent in Haskell, the domains of streams and segments
can be described by the following Haskell data type definitions.

data Stream a = Cons !a (Stream a)
data List a = Nil

| Cons !a !(List a)

The bang (!) annotation means that the first argument of Cons must be a value, i.e. that this
constructor is strict in its first argument. These annotations correspond, at least intuitively,
to “unlifting” in domain theory. The usual list data type of the Haskell standard library matches
neither the domain of streams nor the one of segments but rather the solution of the more
complex domain equation

HList(D) ≅ 1⊕(D ×HList(D)�)

while our segments model exactly to OCaml or SML lists.

2.5 Segmented Streams and Clocks

In the rest of this chapter, we consider given a flat domain D that will play the role of “scalars”,
that is basic elements of streams. Given this domain and the definition of segments given in the
previous section, it is now possible to define formally streams whose elements are computed
in a bursty way, segment per segment, as follows.

SStream(D) def= Stream(List(D))

We call the elements of this domain segmented streams.
Let us study the relations between streams and segmented streams. There is an obvious

way to transform a segmented stream into a stream, which consists in concatenating all the
segments. The continuous function unpack implements this transformation.

unpack ∶ SStream(D)⇒c Stream(D)
unpack ([].xs) = unpack xs
unpack ((x; l).xs) = x.(unpack (l .xs))

[31/10/16, 16:38]

30 CHAPTER 2. STREAMS

To create a segmented stream out of a raw stream, we need to know the size each segment
should have. This information can be presented as a stream of integers, with the n-th integer
describing the length of the n-th segment. We call clocks such streams of integers. Since clocks
play a prominent role in this thesis, we give their domain an explicit name.

Ck def= Stream(N�)

Given a segmented stream, we can compute its clock as the stream of lengths of its segments.

clock ∶ SStream(D)⇒c Ck
clock xs = Stream(length)

Now, given a clock w and stream xs, the continuous function packw xs computes a seg-
mented stream whose clock is given by w . It relies on an intermediate function splitAt that
takes an integer n and a stream and splits the stream into a pair of a list of length n and the
remainder of the stream by the iterated application of stream destruction.

pack ∶ Ck⇒c Stream(D)⇒c SStream(D)
packn.w xs = (l .pack w xs′)

where (l ,xs′) = splitAt n xs
splitAt 0 xs = ([],xs)
splitAt (1+n) (x.xs) = (x; l ,xs′) where (l ,xs′) = splitAt n xs

Finally, one may compose the two functions to change the clock of a segmented stream to
a new clock w using repackw .

repack ∶ Ck⇒c SStream(D)⇒c SStream(D)
repack w = pack w ○unpack

The functions packw , unpack and repackw return partial streams in certain conditions.
This is for example the case of unpack xs applied to a total segmented stream finishing with
an infinite amount of empty segments. The case of pack w xs is more complex, since the
convergence of the output stream depends on w . In the three cases, we would like to describe
the relation between the convergence of inputs and the convergence of outputs of the functions.
For this we define the cumulative functionOw of a clock w ,

O ∶ Ck⇒c N⇒c N�
Ow(0) = 0
On.w(1+ i) = n+Ow(i)

This function may return � when applied to a partial clock. When we useOw(i) as a natural
number, we implicitly suppose that w converges up to i .

Now, given a segmented stream xs that converges up to i , the total number of elements
present in all segments up to i is given byOclock xs(i). We can use this fact to characterize the
convergence of the functions pack and unpack, using the cumulative function of the clocks of
their inputs or outputs.

[31/10/16, 16:38]

2.5. SEGMENTED STREAMS AND CLOCKS 31

Property 4 (Convergence of pack). The output of pack w converges up to i if its input converges
up toOw(i).

∀w ∈Ck,∀xs ∈ Stream(D),∀i ∈N, if w ⇓i and xs ⇓Ow(i) then pack w xs ⇓i

Property 5 (Convergence of unpack). Let w be a clock. The output of unpack , applied to an
input whose clock is equal to w up to i steps, converges up toOw(i).

∀w ∈Ck,∀xs ∈ Stream(D),∀i ∈N, if clock xs =i w then unpack xs ⇓Ow(i)

Let us now discuss what we obtain by composing pack and unpack. In the case of the
composite repackw , the situation is clear—this function does nothing to an argument whose
clock is already equal to w .

Property 6 (Behavior of repackw). The function repackw acts as the identity function when its
input has the same clock w. In other words, for any i one has

repack w x =i x provided clock x =i w

For unpack ○packw , the situation is slightly more involved since w might either diverge
or be total but end with an infinite amount of zeroes. In both cases, the composite of the two
functions is smaller (for the pointwise order) than the identity function. We could stop there,
but it is easy to give finer characterization using the cumulative function of w .

Property 7 (Behavior of unpack ○pack). Given clock w and stream xs, for any i ≥ 0 one has

(unpack ○packw) xs =Ow(i) xs provided w ⇓i

Finally, algorithmic manipulation on clocks will often make use of the index function Iw ,
the quasi-inverse of the cumulative sum. We write Iw(j) for this function, which returns the
smallest i such thatOw(i) ≥ j , if it exists.

Definition 5 (Index Function).

I_(_) ∶ Ck⇒c N�⇒c N�
Iw(0) = 0
In.w(j) = 1+Iw(j −n)

Note that Iw(j) may be equal to � when the clock ends with an infinite amount of zeroes
and j is too large. We will sometimes use Iw as a partial function from natural numbers to
natural numbers, rather than a continuous function on domains.

Remark 2. The cumulative sum and index functions can be traced back to the Thèse d’État
of Halbwachs [1984] and to his joint work with Caspi [Caspi and Halbwachs, 1986]. In these
works, the cumulative sum Ow(_) is called the event counter and the index function Iw(_)
the time function. The authors remark that, for a fixed clock w , these functions are Galois
adjoint and thus quasi-inverses of each other. This is the case here as well; in particular, we
haveOw(Iw(j)) ≤ j . Let us remark that when w is binary, as in the thesis of Plateau [2010],
the above inequality tightens toOw(Iw(j)) = j .

[31/10/16, 16:38]

32 CHAPTER 2. STREAMS

2.6 Buffering and Clock Adaptability

The previous section did not directly discuss the convergence of repack. One may see this
function as a denotational analogue to a buffering process, as the following example shows.
The notation 02(1)ω is a shortcut for the clock beginning with two zeroes followed by an infinite
amount of ones.

xs = [0].[2].[4].[6].[8].[10].[12] . . .
ys = repack02(1)ω xs = [].[].[0].[2].[4].[6].[8].[10] . . .

Imagine that there exists some global, discrete time scale. The stream ys carries the same values
as xs, but they arrive two time steps later. This is what the following chronogram shows, with
vertical alignment representing simultaneity.

xs [0] [2] [4] [6] [8] [10] [12] . . .
ys = repack02(1)ω xs [] [] [0] [2] [4] [6] [8] . . .

Number of buffered items 1 2 2 2 2 2 2 . . .

The lowest row of the table shows the amount of items from xs that should be stored inside the
buffer.

This buffering process is well-behaved because at each time step i , the prefix of length i of
xs has provided enough data to create the prefix of length i of ys. Here, the situation gives a bit
more freedom: remark that at time step i , we have received enough elements from xs to produce
a prefix of ys of length i +2. This gives rise to an order relation on clocks called precedence, as
in the thesis of Plateau [2010].

Definition 6 (Precedence). Given clocks w and w ′ and k ≥ 0, we say that w k-precedes w ′,
denoted by w ⪯k w ′, when

∀i ∈N, Ow(i) ≥Ow ′(i +k)
Moreover, we say that w precedes w ′ and write w ⪯ w ′ when w ⪯0 w ′.

With this notion, one may characterize the convergence of repack when the clock of its
input k-precedes the clock of its output.

Property 8 (Convergence of repack, precedence case). Let w and w ′ be clocks and k ≥ 0 such
that w ⪯k w ′. Then the output of repack w ′ , applied to an input whose clock is equal to w up
to i steps, converges up to i +k.

∀w, w ′ ∈Ck,∀xs ∈ Stream(D),∀k, i ∈N, if w ⪯k w ′ and clock xs =i w then repack w ′ xs ⇓i+k

Proof. One has the following chain of inferences.

xs ⇓i

unpack xs ⇓Ow(i) (Property 5, hypothesis clock xs =i w)
unpack xs ⇓Ow′(i+k) (Ow(i) ≥Ow ′(i +k), ⇓ prefix-closed)

pack w ′ (unpack xs) ⇓i+k (Property 4)
repack w ′ xs ⇓i+k (Definition of repack)

[31/10/16, 16:38]

2.6. BUFFERING AND CLOCK ADAPTABILITY 33

i

Data O(1)ω(i)

O02(1)ω(i)

(a) (1)ω <∶2 02(1)ω
i

Data O(1 0 1)(i)

O(0 0 2)(i)

(b) (1 0 1)ω <∶0 (0 0 2)ω

The precedence relation only characterizes causality: it ensures that the current outputs
of the buffer only depend on the inputs received up to now. It does not force the buffer to be
of finite size. For that, we introduce a relation expressing that the amount of data produced
and consumed in a buffer are asymptotically equivalent, and thus that their difference stays
bounded.

Definition 7 (Rate and Synchronizability). We call rate of a clock the limit of its cumulative
function when times grows toward infinity.

rate(w) = lim
i→∞
Ow(i)

i

The limit might not exist, in which case the rate of the clock is not defined. Two clocks are
synchronizable, denoted by w &w ′, when rate(w) = rate(w ′).

Definition 8 (Adapatability). Given clocks w and w ′ and k ≥ 0, we say that w is k-adaptable
to w ′ if they are synchronizable and that w k-precedes w ′.

w <∶k w ′def= w &w ′ and w ⪯k w ′

Moreover, we say that w is adaptable to w ′ when it is 0-adaptable to it.

Figure 2.6 gives a graphical view of adaptability. The left side illustrates the example
introducing this section (1)ω <∶2 02(1)ω; precedence corresponds to the fact that the dashed
curve stays above the plain one, and synchronizability the fact that the difference between the
two at each i stays bounded (by 2, in this case). It is furthermore 2-adaptable since the dashed
curve shifted twice to the right would still be above the plain curve. The right side shows an
example with integer clocks, (1 0 1)ω <∶0 (0 0 2)ω. This relation can be realized by a buffer of
size one. The clock (1)ω is at most 0-adaptable but not 1-adaptable since shifting the dashed
curve to the right even once makes it lie below the plain one at i = 2.

[31/10/16, 16:38]

34 CHAPTER 2. STREAMS

2.7 Rescaling and Clock Composition

The previous sections defined clocks as streams of integers that describe a segmented stream.
Through the use of the repack function, one may pass from one segmented stream to an-
other; Property 8 gives a simple result on the convergence of the output in terms of both the
input clock and desired output clock. This property, however, does not characterize all the
changes of clocks we are interested in, because of the conditionOw(i) ≥Ow ′(i +k).

Example 1 Consider the following streams, where we write (1)ω for the constant clock of
infinitely many ones.

xs = [0;1].[].[2;3].[].[4;5].[].[6;7].[] . . .
ys = repack(1)ω xs = [0].[1].[2].[3].[4].[5].[6].[7] . . .

There are two ways to relate xs and ys.
The first one was explained in the previous section: imagine that there exists some global,

discrete time scale, that one segment of xs is computed per time step, and that they have a
length of two at even time steps and zero at odd time steps. In other words, the stream xs has
clock (2 0)ω. Then, the above use of repack corresponds to some buffering process that stores
two items at every even time step and releases one item at each time step. This use case is
captured by Property 8: at any step i we have O(2 0)ω(i) ≥ O(1)ω(i) and clock xs =i (2 0)ω,
thus repack(1)ω xs converges up to i . This interpretation could be represented as follows, with
vertical alignment denoting simultaneity.

xs [0;1] [] [2;3] [] [4;5] [] [6;7] [] . . .
ys = repack(1)ω xs [0] [1] [2] [3] [4] [5] [6] [7] . . .

Taking an operational view of process networks, we may think of the above situation as a
case of simple synchronization between the producer of xs and the consumer of ys, with both
running in lockstep. Yet, we could imagine a different scenario where several activations of the
consumer of ys occur for one of xs, or vice versa. For example, ys could be consumed twice at
even time steps, which means that its consumer would run twice faster than the producer of xs.
At odd time steps, there is no value left, so the consumer of ys does not run at all. This is what
the next chronogram depicts.

xs [0;1] [] [2;3] [] [4;5] [] [6;7] [] . . .
ys = repack(1)ω xs [0] [1] [2] [3] [4] [5] [6] [7] . . .

One may think of this example as a situation where time passes faster for the consumer of ys
than for the producer of xs. We say that these two processes are in different time scales, or that
a change of scale, or rescaling, occurs. This usage is not covered at all by Property 8: what we
would like to say is that, given xs ⇓2i , one obtains repack(1)ω xs ⇓2i+1.

[31/10/16, 16:38]

2.7. RESCALING AND CLOCK COMPOSITION 35

Example 2 Rather than trying to deduce a more general result now, we first continue our
investigations. The situation above is quite peculiar because one can understand it either as
buffering or as rescaling. This is not always the case. Consider the following two streams.

xs = [0;1;1].[2;3;5].[8;13;21].[34;55;89] . . .
ys = repack(1 2)ω xs = [0].[1;1].[2].[3;5].[8].[13;21].[34].[55;89] . . .

Clearly, this clock transformation cannot be implemented via a finite-state buffer. Remem-
bering the previous section, we observe that xs and ys are not synchronizable since they have
different rates: rate((3)ω) = 3 but rate((1 2)ω) = 3

2 . The following chronogram shows the
unbounded growth of the amount of items stored in the buffer.

xs [0;1;1] [2;3;5] [8;13;21] [34;55;89] . . .
ys = repack(1 2)ω xs [0] [1;1] [2] [3;5] . . .

Number of buffered items 2 3 5 6 . . .

On the other hand, this describes a valid rescaling where the consumer of ys runs exactly twice
faster than the producer of xs, and whose second activation consumes a segment of length two.

xs [0;1;1] [2;3;5] [8;13;21] [34;55;89] . . .
ys = repack(1 2)ω xs [0] [1;1] [2] [3;5] [8] [13;21] [34] [55;89] . . .

Here, we would like a result on the convergence of repack expressing that for any i ≥ 0, xs ⇓i

implies repack(1 2)ω xs ⇓2i .

Example 3 We have, up to now, considered situations where the consumer of ys runs faster
than the producer of xs, but the reverse situation also makes sense. Let us swap the roles of xs
and ys.

xs = [0].[1;1].[2].[3;5].[8].[13;21].[34].[55;89] . . .
ys = repack(3)ω xs = [0;1;1].[2;3;5].[8;13;21].[34;55;89] . . .

Now, this clock transformation could not even be implemented with a buffer of unbounded
size, since it would need to know the segment received at the second time step to produce its
first segment. The chronogram below highlights the first items where this non-causal behavior
occurs.

xs [0] [1;1] [2] [3;5] . . .
ys = repack(3)ω xs [0;1;1] [2;3;5] [8;13;21] [34;55;89] . . .

Yet, this makes sense as a change of scale where the producer of xs runs twice faster than the
consumer of ys, in a completely symmetric manner compared to our previous example.

xs [0] [1;1] [2] [3;5] [8] [13;21] [34] [55;89] . . .
ys = repack(3)ω xs [0;1;1] [2;3;5] [8;13;21] [34;55;89] . . .

What are the rules governing changes of scale? They should be characterized through
three pieces of information: the clock counting in internal time–that of ys in the first two

[31/10/16, 16:38]

36 CHAPTER 2. STREAMS

examples and that of xs in the last one–, the clock counting in external time–conversely,
twice that of xs and then that of ys–and the local time clock describing the relation between
internal and external time–respectively (2 0)ω in example 1 and (2)ω in examples 2 and 3. The
intuition supported by the above examples is that the external clock should be equal to the clock
obtained by fusing the numbers present in the internal clock, with the amount of numbers to
fuse described by the local time clock. This fusion process is called clock composition and is
defined mathematically by the following operator.

Definition 9 (Clock Composition). The composition of two clocks w and w ′ is denoted w on w ′
and defined as follows.

(n.w) on w ′ = (sum l).(w on w ′′) where (l , w ′′) = splitAt n w ′
sum [] = 0
sum (x; l) = x + sum l

In each example, let us call we the external clock, w the local time clock and wi the internal
clock. The table below shows that in each example, we have precisely we = w on wi.

Example External clock we Internal Clock wi Local Time Clock w
1 clock xs = (2 0)ω (2 0)ω clock ys = (1)ω
2 clock xs = (3)ω (2)ω clock ys = (1 2)ω
3 clock ys = (3)ω (2)ω clock xs = (1 2)ω

Clock composition has good distributivity properties with regard to cumulative functions.
In fact, it corresponds exactly to their reverse composition.

Property 9 (Cumulative Function of Compound Clocks). Given clocks w and w ′, one has

Ow on w ′ =Ow ′ ○Ow

This result leads to an immediate characterization of the action of repack w xs in the case
where either w or clock xs is a compound clock.

Property 10 (Convergence of repack, rescaling case). Let w and wi be clocks and write we
for w on wi. We consider two applications of the function repack.

First, the function repackwi maps a stream whose clock is equal to we up to i steps to a
stream converging up toOw(i).

∀xs ∈ Stream(D),∀k, i ∈N, if we =i w on wi and clock xs =i we then repackwi xs ⇓Ow(i)

Second, the function repackwe maps a stream whose clock is equal to wi up toOw(i) steps
to a stream converging up to i .

∀xs ∈ Stream(D),∀k, i ∈N, if we =i w on wi and clock xs =Ow(i) we then repackwi xs ⇓i

[31/10/16, 16:38]

2.8. PROPERTIES OF CLOCKS 37

Proof. The two properties are very similar. For the first case, we have

xs ⇓i

unpack xs ⇓Owe(i) (Property 5, clock xs =i we)
unpack xs ⇓Ow on wi(i) (Property 9)
unpack xs ⇓Owi(Ow(i)) (Hypothesis we = w on wi)

packwi (unpack xs) ⇓Ow(i) (Property 4)
repackwi xs ⇓Ow(i) (Definition of repack)

and for the second case

xs ⇓Ow(i)
unpack xs ⇓Owi(Ow(i)) (Property 5, clock xs =Ow(i) wi)
unpack xs ⇓Ow on wi(i) (Property 9)
unpack xs ⇓Owe(i) (Hypothesis we = w on wi)

packwe (unpack xs) ⇓i (Property 4)
repackwi xs ⇓i (Definition of repack)

which concludes the proof.

2.8 Properties of Clocks

In order to improve our understanding of clock composition, and the range of changes of scale
that we may perform, let us study its algebraic properties. In what follows, we say that a clock
is binary if it holds no natural number strictly larger than one, and that it is strictly positive if it
holds no zero.

Property 11 (The Clock Monoid). The domain of clocks Ck equipped with the clock composition
operator “on” and the clock (1)ω as neutral element forms a monoid. Additionally, the clock (0)ω
is an absorbing element.

However, this monoid is not an inverse monoid, and thus not a group. Given clocks w
and w ′, w ′ is a left-inverse for w when w ′ on w = (1)ω and a right-inverse when w on w ′ = (1)ω.
Some clocks, such as (2)ω, have no left-inverse, and several right-inverses; for example, (1 0)ω
and (0 1)ω. Reciprocally, a clock such as (1 0 1)ω has several left-inverses, for example (2 1)ω
and (1 2)ω, but no right-inverse. This is in fact a general result, stated below.

Property 12 (Inverses of Clocks). A clock w has left-inverses if and only if it is binary and of
non-null rate, and has right-inverses if and only if it is strictly positive. Moreover, the left-inverses
of binary clocks of non-null rate are strictly positive, and the right-inverses of strictly-positive
clocks are binary.

Proof. Consider two clocks w and w ′ such that w on w ′ = (1)ω. By definition of clock compo-
sition, any zero appearing in w must appear in w on w ′, and thus here w is strictly positive.
Conversely, since numbers appearing in w on w ′ ≤ (1)ω are sums of numbers appearing
in w ′, w ′ may not contain integer larger than one.

[31/10/16, 16:38]

38 CHAPTER 2. STREAMS

The monoid is not cancellative either: it has elements which are either not left cancellative
or not right cancellative. A clock w is left cancellative if for any w ′ and w ′′, one has w on w ′ =
w on w ′′ implies w ′ = w ′′. This is clearly not the case since, as explained above, (2)ω has two
right inverses. Binary clocks provide similar counter-examples for right cancellativity.

Property 13 (Factoring of Clocks). Any clock w factors as wb on wp , with wb a binary clock
and wp a strictly positive one. Moreover, if w has non-null rate, this factorization is unique.

Proof. The clock wb is the minimum of w and (1)ω, and wp is w with zeroes removed. In
case wb has null rate, it ends with an infinite sequence of zeroes, and in this case wb may end
with a sequence of arbitrary strictly positive integers.

This situation with regard to inverses leads us to adopt the following relational notation for
changes of scales.

Definition 10 (Clock Scattering and Gathering). We say that w1 scatters into w2 up to w, which
we write w1 ↓w w2, when w1 = w on w2. Conversely, w1 gathers into w2 up to w, which we
write w2 ↑w w1, when w on w2 =w1.

At this point, the reader may find strange that we adopt two distinct notations for what
appears to be the same relation, reversed. Our main motivation is that, when one considers
only the first two words of each triple, scatter and gather are very different: there are several w2

such that w1 ↓w w2 while there is only one w1 such that w2 ↑w w1—because clock composition
is a function. Let us make this remark precise by defining the two following functions on sets
of clocks.

↓w ∶ P(Ck)→P(Ck)
↓w X

def= {y ∣ x ↓w y, x ∈ X}

↑w ∶ P(Ck)→P(Ck)
↑w X

def= {y ∣ x ↑w y, x ∈ X}
One can then show that these two functions bear a special relationship.

Property 14 (The Galois Surjection between Clock Gathering and Scattering). The function
pair (↑w ,↓w) forms a Galois connection on P(Ck) ordered by inclusion. In other words, for
any X ,Y ⊆ Ck, we have

↑w X ⊆ Y ⇔ X ⊆ ↓w Y

Since it is a Galois connection, we have X ⊆ ↓w↑w X for any X . Moreover, ↑w↓w X = X which means
that it is a Galois surjection.

Proof. Let us first prove that X ⊆ ↓w↑w X and ↑w↓w X = X for any X . Showing that for any X one
has X ⊆ ↓w↑w X can be done simply by unfolding the definition: since, ↓w↑w X = {x′ ∣ w on x =
w on x′}, clearly x ∈ ↓w↑w X . Observe that in general X ⊊ ↓w↑w X since for example (1 0)ω ∈
↓(2)ω↑(2)ω{(0 1)ω}. Finally, ↑w↓w X = {w on y ∣ x ∈ X , x = w on y} = X .

[31/10/16, 16:38]

2.9. CLOCKED STREAMS 39

These two results imply, and in fact are equivalent to, the existence of a Galois connec-
tion: ↑w X ⊆ Y implies ↓w↑w X ⊆ ↓w Y by monotonicity of ↓w and thus X ⊆ ↓w Y by transitivity.
The reverse direction is similar, X ⊆ ↓w Y implies ↑w X ⊆ ↑w↓w Y = Y .

This result motivates the notation by showing an asymmetry between scattering and
gathering. We give examples and intuitions for these relations at the end of Section 2.10.
Another justification for the notation is that in the next chapters we will also consider scattering
and gathering for objects more complex than streams, such as functions. In this case the two
notions will be even more asymmetric.

2.9 Clocked Streams

The domain of segmented streams SStream(A), introduced in Section 2.5, models queues in
which one produces and consumes data by batch rather than one-by-one. Each segmented
stream can be mapped to its clock, which describes how it grows as time passes. However,
we will often be interested in the reverse direction: given a clock w , can we describe a do-
main CStream w(A) of streams compatible with w in some sense? It turns out that there is a
simple way to define this domain using the following lemma.

Lemma 1 (Strict Idempotents and Sub-Domains). Let f be a strict and idempotent continuous
function from a domain D to itself. Then Im(f) is a sub-domain of D.

Proof. Recall that Im(f) = {y ∣ ∃x ∈D, f (x) = y}. First, since f (�) = � one has � ∈ Im(f). Then,
suppose Y ⊆ Im(f) is a directed set; we want to show that⊔Y ∈ Im(f). Observe that because f
is continuous, f (⊔Y) =⊔ f (Y); but f (Y) = Y since f is idempotent. Hence f (⊔Y) =⊔Y and
thus⊔Y ∈ Im(f).

Now, consider the function cutw ∶ SStream(D)⇒c SStream(D) defined as follows, with w a
clock.

cut_ _ ∶ Ck⇒c SStream(D)⇒c SStream(D)

cutn.w (l .xs) = { l .(cutw xs) when length l =n
� otherwise

This function maps its argument to its longest prefix whose clock is a prefix of w . For a
fixed w , cutw is a deflation, and hence is strict and idempotent. Its image consists of all
streams whose clocks are prefixes of w , and by virtue of Lemma 1, it is a domain. We adopt it
as definition of CStream w(A).

Definition 11 (Clocked Streams). Given a clock w ∈ Ck, the domain CStream w(D) of w-
clocked streams is defined as

CStream w(D) = Im(repackw)

Figure 2.3 shows the full domain CStream2.0.1.�(B�). It corresponds to the first four levels
of the domain CStream(2 0 1)ω(B�). This example shows that w ⊑ w ′ implies CStream w(D) ⊲

[31/10/16, 16:38]

40 CHAPTER 2. STREAMS

�

[0;0].�

[0;0].[].�

[0;0].[].[0].� [0;0].[].[1].�

[0;1].�

[0;1].[].�

[0;1].[].[0].� [0;1].[].[1].�

[1;0].�

[1;0].[].�

[1;0].[].[0].� [1;0].[].[1].�

[1;1].�

[1;1].[].�

[1;1].[].[0].� [1;1].[].[1].�

Figure 2.3: The domain CStream2.0.1.�(B�)

CStream w ′(D). On the other hand, when studying the semantics of functional synchronous
languages, we will often be interested in comparing/embedding the domain of w-clocked
streams, for a certain w , with/into other stream domains, not necessarily clocked. The two
following properties describe this kind of relation between domains.

Property 15 (Clocked Streams and Segmented Streams). For any fixed clock w, the domain
of w-clocked streams is a retract of the domain of segmented streams. The embedding is given by
the inclusion map CStream w(D)↪ SStream(D) and the projection by cutw .

(↪,cutw) ∶CStream w(D) ⊲ SStream(D)

The next property is more interesting, and will be useful later on when relating the typed
and untyped semantics of a language.

Property 16 (Clocked Streams and Streams). For any fixed clock w, the domain of w-clocked
streams is a retract of the domain of streams. The embedding is given by unpack and the
projection by packw .

(unpack,packw) ∶CStream w(D) ⊲ Stream(D)

Additionally, if rate(w) > 0, then this retraction is in fact an isomorphism.

(unpack,packw) ∶CStream w(D) ≅ Stream(D) when rate(w) > 0

2.10 Ultimately Periodic Clocks

As elements of a domain, clocks are ideal objects that model in an abstract way the commu-
nications of Kahn networks. As such, most interesting relations on them, including equality
and adaptability, are at best semi-decidable. In our later investigations of clock-related type
systems, we will sometimes need to restrict ourselves to a more syntactic class of clocks where

[31/10/16, 16:38]

2.10. ULTIMATELY PERIODIC CLOCKS 41

relations of interest are decidable. This section describes such a set of clocks, the ultimately
periodic ones.

Ultimately periodic clocks have been studied in detail in the PhD thesis of Plateau [2010,
Chapter 4] in the binary case. She outlined how to extend the binary case to the more general
setting of integers greater than one in Chapter 11. We continue this extension here, following
her notations and general style.

2.10.1 Definitions

Definition 12 (Ultimately Periodic Words). An ultimately periodic word is a pair of sequences
of natural numbers (u, v) ∈N∗×N+. Note that v is non-empty.

We write u(v) for this pair, or (v) when u is empty. We say that u is the prefix part and v
the periodic part of u(v).

Definition 13 (Ultimately Periodic Clocks). Each ultimately periodic word u(v) gives rise to a
clock u(v)ω, described by the following function, considering u and v as elements of List(N).

()ω ∶ List(N�)×List(N�)⇒c Stream(N�)
[](v)ω = v(v)ω
(n;u)(v)ω = n.u(v)ω

We call ultimately periodic clocks the clocks obtained in this way. Additionally, clocks of the
form (v)ω are said to be (strictly) periodic.

We write ∣s∣ for the length of a sequence of natural numbers s and ∣s∣1 =∑1≤i≤∣s∣ s[i] for the
sum of its elements. Because v is non-empty, a clock u(v)ω is always total, and we thus often
write u(v)ω[i] for its i -th integer. By convention, u(v)ω[1] is the first number in u(v)ω and
we take u(v)ω[0] = 0. Finally, given a sequence s, we write si for s concatenated i times with
itself.

Lemma 2. A clock w is ultimately periodic if and only if there exists two numbers a and b
with a > 0 such that w[i +a j +b] = w[i +b] for all numbers i and j such that i > 0. We call a
the period and b the phase.

Proof. For the left to right direction, assuming w = u(v)ω, take a = ∣v ∣ and b = ∣u∣. First,
show that for any k one has u(v)ω[k + ∣v ∣+ ∣u∣] = u(v)ω[k + ∣u∣]. Conclude by induction on j
that u(v)ω[i + ∣v ∣ j + ∣u∣] =u(v)ω[i + ∣u∣].

For the right to left one, form the words u = w[1] . . . w[b] and v = w[b+1] . . . w[b+a] and
show w =u(v)ω.

2.10.2 Equality of Clocks and Equivalence of Words

We have seen that an ultimately periodic word (u, v) describes a unique clock u(v)ω. The
converse is not true however, for the same ultimately periodic clock arises from an infinite

[31/10/16, 16:38]

42 CHAPTER 2. STREAMS

number of words. For example, one has (2 0)ω = (2 0 2 0)ω = 2(0 2)ω = 2(0 2 0 2)ω and so on.
Words denoting the same clock will be said to be equivalent.

Definition 14 (Equivalence of Words). Two ultimately periodic words u1(v1) and u2(v2) are
said to be equivalent whenever u1(v1)ω =u2(v2)ω. We then write u1(v1) ≡u2(v2).

The examples above exposed two transformations on words that preserve equivalence.
They will turn out to be relevant to the algorithmic manipulation of ultimately periodic words.

Definition 15 (Rotation and Expansion). We define as follows the rotation function rot and,
given i > 1, the expansion function expi .

rot(u(nv)) = un(vn)
expi (u(v)) = u(v i)

As an example, the earlier equivalences come from exp2 (2 0) = (2 0 2 0), rot(2 0) = 2(0 2)
and exp2 (rot(2 0)) = 2(0 2 0 2). This also shows that these functions preserve equivalence.

Property 17. For any ultimately periodic word p and integer i > 0,

p ≡ rot(p) and p ≡ expi (p)

In addition, rotation and expansion are in fact essential when one studies the equivalence
of words. Indeed, observe that for any two words p1 and p2 such that p1 ≡ p2, one can always
obtain one from the other through a sequence of applications of rot and expi . This suggests that
an equivalence class of words always has a smallest element from which all the other ones can
be obtained through rotations and expansions. Given a word p, we will call nf (p) the smallest
word to which it is equivalent, found by applying the inverses of rotations and expansions as
much as possible. Then, to decide whether p1 ≡ p2, simply check whether nf (p1) =nf (p2).

Remark 3. Another solution is to check whether the clocks u1(v1)ω and u2(v2)ω are equal up
to the point where both reach their periodic behavior. This can be done by computing their
prefixes of length max(∣u1∣, ∣u2∣)+ lcm(∣v1∣, ∣v2∣)

2.10.3 Composition

In order to prove that ultimately periodic clocks are closed by composition, we now build up
a series of results on cumulative sums and compound clocks. Because we will apply these
results to ultimately periodic clocks, we now assume that all the clocks involved are total.
The following properties and lemmas could be extended to partial clocks by working with
domains instead of plain sets, but we do not feel that the increased generality would be worth
the additional formal noise.

Lemma 3. For any total clocks w1 and w2, one has.

(w1 on w2)[i] =∑
k

w2[k] forOw1(i −1) < k ≤Ow1(i)

[31/10/16, 16:38]

2.10. ULTIMATELY PERIODIC CLOCKS 43

Property 18. Let us call drop the following function.

drop ∶ N�⇒c Stream(D)⇒c Stream(D)
drop n xs = xs′ where (_,xs′) = splitAt n xs

Now, one can decompose the cumulative sum of a clock through the following equation.

Ow(a+b) =Ow(a)+Odrop a w(b)

Lemma 4. Let u1(v1)ω and u2(v2)ω be two ultimately periodic clocks such that ∣u1∣1 = ∣u2∣
and ∣v1∣1 = ∣v2∣. Then their composition is ultimately periodic.

Proof. Call w the clock u1(v1)ω on u2(v2)ω to be shown ultimately periodic. Let us show that
for any i > 0 and j , w[i + ∣v1∣× j + ∣u1∣] = w[i + ∣u1∣]. On the one hand, we have

w[i + ∣u1∣]
= ∑Ou1(v1)

ω(i+∣u1∣−1)+1≤k≤Ou1(v1)
ω(i+∣u1∣) u2(v2)ω[k] (Lemma 3)

= ∑O(v1)
ω(i−1)+Ou(v)ω(∣u1∣)+1≤k≤O(v1)

ω(i)+Ou(v)ω(∣u1∣) u2(v2)ω[k] (Property 18)

= ∑O(v1)
ω(i−1)+∣u1∣1+1≤k≤O(v1)

ω(i)+∣u1∣1 u2(v2)ω[k] (Definition of ∣s∣1)

= ∑O(v1)
ω(i−1)+1≤k≤O(v1)

ω(i) u2(v2)ω[k + ∣u1∣1]
= ∑O(v1)

ω(i−1)+1≤k≤O(v1)
ω(i) u2(v2)ω[k + ∣u2∣] (Hyp. ∣u1∣1 = ∣u2∣)

= ∑O(v1)
ω(i−1)+1≤k≤O(v1)

ω(i) (v2)ω[k]

and on the other

w[i + ∣v1∣ j + ∣u1∣]
= ∑Ou1(v1)

ω(i+∣v1∣ j+∣u1∣−1)+1≤k≤Ou1(v1)
ω(i+∣v1∣ j+∣u1∣) u2(v2)ω[k] (Lemma 3)

= . . .
= ∑O(v1)

ω(i+∣v1∣ j−1)+1≤k≤O(v1)
ω(i+∣v1∣ j) (v2)ω[k] (As above)

= ∑O(v1)
ω(i−1)+O(v1)

ω(∣v1∣ j)+1≤k≤O(v1)
ω(i)+O(v1)

ω(∣v1∣ j) (v2)ω[k] (Property 18 and i > 0)

= ∑O(v1)
ω(i−1)+∣v1∣1 j+1≤k≤O(v1)

ω(i)+∣v1∣1 j (v2)ω[k] (Definition of ∣s∣1)

= ∑O(v1)
ω(i−1)+1≤k≤O(v1)

ω(i) (v2)ω[k + ∣v1∣1 j]
= ∑O(v1)

ω(i−1)+1≤k≤O(v1)
ω(i) (v2)ω[k + ∣v2∣ j] (Hyp. ∣v1∣1 = ∣v2∣)

= ∑O(v1)
ω(i−1)+1≤k≤O(v1)

ω(i) (v2)ω[k]

thus the equality holds. We conclude by Lemma 2.

To show that arbitrary ultimately periodic clocks are closed by composition, we build upon
this lemma. We will show that its hypotheses are not restrictive since they can always be
achieved in all non-trivial cases.

Theorem 3. The composition of two ultimately periodic clocks p1 =u1(v1)ω and p2 =u2(v2)ω
is ultimately periodic.

[31/10/16, 16:38]

44 CHAPTER 2. STREAMS

Proof. Call w the clock p1 on p2. In the case where ∣v1∣1 is 0, this clock is ultimately periodic
since then rate(w) = 0 and hence w =u(0)ω for some u by definition. Now, assuming ∣v1∣1 > 0,
the goal is to find p′1 =u′1(v ′1) and p′2 =u′2(v ′2) satisfying the hypotheses of Lemma 4 and such
that p1 ≡ p′1 and p2 ≡ p′2.

First, consider the prefixes u1 and u2. If ∣u1∣1 < ∣u2∣, increase ∣u1∣ until it is larger than ∣u2∣,
obtaining a new prefix u′1; because ∣v1∣ > 0, this is always possible. Then, if ∣u′1∣1 > ∣u2∣, in-
crease ∣u2∣ by rotating ∣u2∣− ∣u′1∣1 times the word p1, obtaining a sequence u′2. Second, the
periodic parts v1 and v2 should be expanded into v ′1 and v ′2 so that ∣v ′1∣1 = ∣v ′2∣. This is always
possible because of the assumption that ∣v1∣1 > 0 and because ∣v2∣ > 0 by definition.

We thus look for words u′1(v ′1) and u′2(v2)′ with the following lengths for their prefixes and
periodic parts.

∣u′1∣ = max(∣u1∣,Iu1(v1)ω(∣u2∣)) ∣v ′1∣ = ∣v1∣×lcm(∣v1∣1,∣v2∣)
∣v1∣1

∣u′2∣ = max(∣u2∣,Ou1(v1)ω(∣u′1∣)) ∣v ′2∣ = lcm(∣v1∣1, ∣v2∣)

This words can be obtained using the following operations, for i ∈ [1,2].

p′i = expai
(rotbi pi) with ai = ∣v ′i ∣

∣vi ∣ and bi = ∣u′i ∣− ∣ui ∣

These two words have been constructed such that ∣u′1∣1 = ∣u′2∣ and ∣v ′1∣1 = ∣v ′2∣, and are respec-
tively equivalent to p1 and p2 by virtue of Property 17. Lemma 4 thus proves that w is ultimately
periodic.

Remark 4. The proof of Theorem 3 actually gives an algorithm to compute the word u3(v3)
such that u3(v3)ω = u1(v1)ω on u2(v2)ω. Since ∣u3∣ = ∣u′1∣ and ∣v3∣ = ∣v ′1∣, the formulas present
in the proof give the size of the prefix and periodic part of the composition. One can then
compute the composition, for example by applying Lemma 3 for i ∈ [1, ∣u3∣+ ∣v3∣].

2.10.4 Adaptability

We finally turn to the question of k-adaptability of ultimately periodic clocks. Remember that
according to Definition 8 two clocks are k-adaptable if they are both synchronizable and if the
first k-precedes the second. These two notions are decidable for ultimately periodic clocks,
and thus so is k-adaptability.

Synchronizability Let us begin with synchronizability. Two clocks are synchronizable if they
have the same rate. In the case of an ultimately periodic clock presented by a word u(v), the
rate is a computable rational number, and synchronizability is thus decidable.

Property 19. The rate of an ultimately periodic clock u(v)ω is characterized by

rate(u(v)ω) = ∣v ∣1
∣v ∣

[31/10/16, 16:38]

2.10. ULTIMATELY PERIODIC CLOCKS 45

Precedence For the precedence relation, the reasoning is similar to that of Remark 3: to
check whether a clock w1 =u1(v1)ω k-precedes a clock w2 =u2(v2)ω, one checks that

Ow1(i) ≥Ow2(i +k)

for all i up to max(∣u1∣, ∣u2∣)+ lcm(∣v1∣, ∣v2∣).

Examples We finish with some examples, in addition to the ones already given in Section 2.7.

Example 1. The inequation (1)ω <∶2 02(1)ω models a two-place buffer. No instantaneous
communication happens; in fact, this buffer is even able to satisfy the demands of the consumer
for the current and next time step without consuming its current input: the input is 2-adaptable
to the output.

Example 2. While (1 1 0 0 1)ω <∶0 (0 0 1 1 1)ω also models a two-place buffer, there is no con-
stant decoupling between the producer and the consumer. The two clocks are 0-adaptable but
not 1-adaptable. This comes from the fact that at the fifth time step there is an instanataneous
dependency between production and consumption.

Example 3. The inequation (1)ω <∶0 (0 0 3)ω models a buffer which stores its input for the first
two time steps out of three. At the third time step, the accumulated values are transmitted to
the consumer. This buffer implements a form of trade-off between latency and throughput.

2.10.5 Scattering and Gathering

We have seen in Section 2.8 how the gathering and scattering relations model how clocks
evolve when leaving and entering a local time scale. When the clocks involved are all ultimately
periodic, these relations are decidable: one may decide p1 ↑p p2 or p2 ↓p p1, with p, p1 and p2

ultimately periodic words, by checking whether p on p1 ≡ p2. Let us give some examples that
should help the reader build intuitions.

Example 4. The examples of gathering that do not fuse data are arguably the simplest ones.
This corresponds to local time scales that hide time steps at which nothing was computed.
From the point of view of clocks, this can also be seen as the case where gathering removes
zeroes. Such examples include (1 0)ω ↑(2)ω (1)ω and (0 1)ω ↑(2)ω (1)ω which model data going
out of a local time scale driven by (2)ω. The internal clock is not necessarily binary, as we have
(0 2 0)ω ↑(3)ω (2)ω and (3 0)ω ↑(2)ω (3)ω for instance. The external clock may still retain some
zeroes, as in (1 0)ω ↑(1 2)ω (1 1 0 1)ω or (0 1 0 0)ω ↑(2)ω (1 0)ω . Note that in all these cases, the
driving clock is striclty positive, since it must not insert any zero.

Example 5. We know that w1 ↑w w2 holds iff w2 ↓w w1. Applying this principle to the previous
examples gives us scattering relations that do not split data. This is uninteresting when
the external clock is binary, since there is striclty speaking no data to be split. Consider for
instance (2)ω ↓(3)ω (0 2 0)ω. The chunk of size two is consumed as a whole at the second local
time step out of three, rather than split into several ones. From the point of view of clocks,
these scattering relations are the ones that only add zeroes.

[31/10/16, 16:38]

46 CHAPTER 2. STREAMS

Example 6. Some gathering relations fuse several chunks together, and some scattering rela-
tions divide them apart. This is the case in 02(1 0 1)ω ↑(3)ω 1(2)ω and 1(2)ω ↓(3)ω 02(1 0 1)ω ,
for instance. Note that this cannot happen when scattering a binary clock, since in this case
there are no chunks to divide.

Example 7. Local time scales driven by binary clocks are interesting, as they correspond to
the activation conditions of Lustre and SCADE. They are however expressed at the level of
clocks, while activation conditions are untyped operators. Gathering by a binary clock inserts
some zeroes, as in (3 2)ω ↑1(1 0)ω 3(2 0 3 0)ω or (1 0)ω ↑(0 1)ω (0 1 0 0)ω . This models the fact
that during some time steps the local time scale is idle, and thus produces no data.

Example 8. It is important to understand the effect of scattering by a binary clock, which is
slightly counterintuitive. Consider how a stream of clock (2 0)ω may enter a local time scale
driven by (1 0)ω. At the first external step, the two values are used in the local time scale. At
the second external step, no data is availabe, which is fine since there is no corresponding local
step. This shows that the internal clock is (2)ω and explains why (2 0)ω ↓(1 0)ω (2)ω holds. In
contrast, there is no clock wi such that (1)ω ↓(1 0)ω wi holds, since the value arriving at the
second external step cannot be processed by the time scale, which is idle at this point. Thus,
from the point of view of clocks, this kind of scattering can be understood as an operation
which filters zeroes from the input clock when they occur at the same position in the driving
clock. In operational terms, this corresponds to removing empty chunks that arrive when the
time scale is idle. Moreover, the relation guarantees that when no local step is performed no
input data may be present.

2.11 Bibliographic notes

We have described basic properties of streams and segmented streams in a denotational
fashion, and shown how to use clocks to characterize the relation between these two domains.
By studying the convergence of the rescaling function, we had a taste of how clocks can be
used to describe temporal phenomena. The next chapter builds upon these ideas to describe a
concrete language. Before that, we discuss some bibliographical references.

Synchronous languages As explained in the introduction, the ideas of the present work can
be traced back to the seminal paper of Kahn [1974] on deterministic parallel programs. The
contribution of this chapter is to allow the presence of integers greater than one in clocks,
or, equivalently, of allowing clocks that assign the same time step to several consecutive
elements of a stream. The notion of rescaling goes hand-in-hand with integer clocks, and was
a motivation for their introduction.

The use of clocks to compile synchronous languages comes from Lustre [Caspi et al., 1987].
They became vital to the compilation process with Lucid Synchrone [Pouzet, 2006] which
pioneered the compilation techniques used in SCADE6 [Biernacki et al., 2008]. This chapter
adopts the point of view of n-synchronous Kahn networks [Cohen et al., 2006] as implemented
in the language Lucy-n [Mandel et al., 2010] by Plateau and Mandel, including their description

[31/10/16, 16:38]

2.11. BIBLIOGRAPHIC NOTES 47

of the monoid of clocks and of the adaptability relation. In particular, we pay heavy debt to the
exposition of binary clocks found in chapter 3 of the PhD thesis of Plateau [2010]. This latter
thesis itself builds upon the work of Caspi and Halbwachs [1986].

From a more semantic point of view, we feel that the work of Caspi [1992] on the nature and
role of clocks is of paramount importance. In this paper, Caspi shows how clocks characterize
subsets of the inputs of a process network where the network can be implemented as a finite-
state machine. Interestingly, he explicitly ponders the case of integer clocks but chooses not to
investigate it further. Quoting Caspi:

We may now understand why the oversampling case is more complex [...] the
corresponding [soundness] theorem would be more difficult to state, as the mgsm
[multiple generalized sequential machine] property depends now on the posi-
tion of the fbys, along the cycles of the network, with respect to the position of
corresponding lasts and muxs.

The foundational aspects of the relation between binary clocks and Kahn networks are studied
and developed in the second half of the PhD thesis of Gérard [2013]. A similar treatment of
integer clocks has not yet been achieved.

Regarding the rescaling operation, this is to our knowledge the first time it has been de-
scribed in a synchronous functional language. In synchronous languages in general, let us
mention the work of Mandel et al. [2013] on adding clock domains to ReactiveML, the work
of Gemünde et al. [2013] on clock refinement in Quartz, and the work of Benveniste et al.
[1992] on the foundations of the relational language Signal. More generally, one may find
analogues to special cases of rescaling in the literature. On the one hand, rescaling by binary
clocks broadly corresponds to the activation conditions of Lustre and SCADE (as described
by Halbwachs [2005, Section 4], for example), and to the guards inserted by modern compilers
for synchronous functional languages during compilation [Biernacki et al., 2008]. On the other
hand, rescaling by strictly positive constant clocks corresponds to loop unrolling or circuit
unfolding (e.g., [Parhi and Messerschmitt, 1991]).

Static scheduling Another related line of work lies in models for static, cyclic scheduling,
such as the well-known Synchronous Dataflow Graphs from Lee and Messerschmitt [1987]
or the older Computation Graphs of Karp and Miller [1966]. These models typically consider
a sub-class of Kahn process networks where communication rates between processes are
statically known. Hence, one can apply powerful scheduling techniques at compile-time to
check properties—for example the absence of deadlocks–or look for schedules optimizing
various criteria—for example throughput, or buffer sizes. We will see a modest analogue to
these techniques in our setting in Chapter 5.

In contrast to most of these works, (n-)synchronous languages offer the ability to compose
programs into bigger ones. The essential tool is clock composition, which makes it possible to
use clocks for describing both communication patterns and schedules. In particular, if we see
a clock w1 as a schedule and a clock w2 as the communication pattern of some component,
then w1 on w2 can be seen as the updated communication pattern of the same component

[31/10/16, 16:38]

48 CHAPTER 2. STREAMS

after it has been scheduled according to w1. Also, while these models describe processes
communicating in a bursty manner, their schedules remain binary clocks, and they do not
consider time scale changes.

Another difference is that the scheduling community only considers schedules that are
finitely presentable (typically periodic or ultimately periodic), in contrast to the theory of
this chapter where clocks are arbitrary integer streams. We believe that one of the main
contributions of the programming language point of view on scheduling, as introduced in
the original n-synchronous paper [Cohen et al., 2006], is the separation it enables between
algorithms and semantics. It is possible to describe the nature and properties of clocks in
a general setting and state results once and for all. The algorithmic side can then reuse the
general properties and focus on clever scheduling techniques.

[31/10/16, 16:38]

Chapter 3

Language

We now turn to the description of a concrete language for writing stream functions. This
language is equipped with clock types, in order to ensure that programs execute within bounded
time and space. Its description relies on the basic semantic tools introduced in Chapter 2. More
precisely, this chapter introduces and studies a minimal language, named µAS, where semantic
questions can be studied with as little formal baggage as possible. As such, it is quite restricted
compared to a more usable language, yet exhibits all the interesting issues arising from integer
clocks and the scaling operation. We study more expressive languages in Chapter 5.

This chapter goes as follows. First, we introduce the basic features of the language. It is a
variant of the linear λ-calculus with fixpoints and ad hoc operators for stream manipulation.
We describe a simple untyped semantics for the language in terms of a universal domain;
it serves as an ideal, clock-free, semantics where programs manipulate streams of scalars.
Then, we give a clock type system for the language, and a typed semantics interpreting typing
derivations as functions on segmented streams. The type system includes rules for buffering
and scaling. We discuss and prove its soundness using a time-indexed realizability predicate.
We conclude by discussing how the typed semantics can be seen as witnesses for properties of
the untyped one, and more generally the relationship between the two.

3.1 Syntax and Untyped Semantics

Clocks, as presented in the previous chapter, are a denotational tool for describing operational
properties of streams and stream functions. It should always be possible, however, to under-
stand the meaning of a program in a way that is independent of clocks. In technical terms, we
wish to have a naive semantics where functions act upon streams of scalars.

What are the main ingredients of a functional language for stream manipulation? We claim
that they are twofold. First, one should have the ability to manipulate streams and apply various
operations to them. We can restrict ourselves to three elementary operations: scalar-wise
transformations, with constant streams as a special case; stream sampling, where one removes
some elements from a stream; and stream merging, where one interleaves elements from two
streams. Both sampling and merging take a boolean stream describing whether to keep an

49

50 CHAPTER 3. LANGUAGE

e ∶∶= x Variable
∣ fun x.e Function
∣ e e Application
∣ (e,e) Pair constructor
∣ let (x, x) = e in e Pair destructor
∣ fix e Recursive definition
∣ s Constant stream
∣ op Lifted stream operator
∣ merge p Stream merging
∣ when p Stream sampling

s ∶∶= n ∈ Int Integer literal
∣ b ∈B Boolean literal
∣ . . .

op ∶∶= + ∣ ∗ ∣ . . . Scalar function
p ∶∶= u(v) Ultimately periodic word
u ∶∶= s∗ List of scalar literals
v ∶∶= s+ Non-empty list of scalar literals

Figure 3.1: Syntax of µAS

element or not (for sampling) or from which stream to take (for merging). Second, one should
be able to use the usual features of the λ-calculus to define and combine functions as usual in
functional programming. We see anonymous functions, applications and the manipulation of
pairs as wiring combinators enabling the modular construction of programs. In addition, the
language should have a fixpoint operator for introducing feedback loops in the Kahn network.

In addition to these general principles, one should design the language so that we can
equip it with a clock type system. As usual, capturing a large class of correct programs requires
an expressive type system with a complex metatheory. Because in this chapter we want the
latter to be as simple as possible, we restrict ourselves to a simplistic programming language.
In particular, we would like to have a simple one-to-one correspondence between clocks and
clock types, a principle which does not hold in languages such as Lucid Synchrone which
feature clock polymorphism.

For all these reasons, we study a language where programs have a ultimately periodic
behavior. This is a quite restrictive choice since, for example, it makes it impossible to write
functions for which the convergence of outputs depends on the value of inputs. It is not
completely inexpressive however, as one can write non-trivial programs such as the examples
found in the thesis in Plateau [2010].

Syntax The syntax of the language is given in Figure 3.1. We suppose given an infinite
countable set of variables V = {x, y, z . . .}. The first six constructs of the language describe

[31/10/16, 16:38]

3.1. SYNTAX AND UNTYPED SEMANTICS 51

a λ-calculus with pairs and recursive definitions. We also have constant streams s, with s a
scalar literal, pointwise liftings of scalar operators op such as addition or multiplication, stream
merging and sampling. Integer literals belong to a finite set Int of bounded natural numbers.
This bound is arbitrary; we take 264−1 in order to model unsigned 64 bit integers. Merging
and sampling are parametrized by a condition, which is an ultimately periodic word p =u(v),
with u the (possibly empty) prefix and v a periodic pattern.

The syntax of this language and its untyped semantics make it a straightforward variation on
Lustre and its descendants, such as the functional core of Lucid Synchrone or Lucy-n. It shares
with Lucid Synchrone its higher-order nature, and with Lucy-n the restriction to ultimately
periodic conditions. There is one small syntactic difference however: we choose to write when
and merge with their condition on the side. Readers familiar with synchronous functional
languages might find this formulation unappealing in the case of when, which is generally
written in an infix manner—in our syntax one writes when p e rather than e when p. This
difference is purely stylistic however, and it will pay off by lowering the amount of bureaucracy
in later definitions, statements and proofs.

Semantic combinators We now turn to the description of the untyped semantics of the
language. It is a function from the syntax of programs to some mathematical model, here
domains, which makes it a denotational semantics. Since our semantics is completely untyped,
it attributes meanings to all syntactically valid programs, even nonsensical ones such as 1+
(fun x. x). We again rely on domain theory and its built-in handling of partiality to build a
space where this kind of operation can be described. Let us describe the traditional solution to
this problem that we adopt here.

Our language includes streams of scalar values, pairs and functions. We suppose given a
domain V of scalar values such that the e-p pairs

(bool,unbool) ∈ B� ⊲V
(int,unint) ∈ Int� ⊲V

exist. Note that the streams of the language cannot transport complex values such as functions
but only simple scalars. Now, what would be a good domainK for interpreting the language?
Since it includes streams of scalars, singletons, pairs, and functions, we want the e-p pairs

(stream,unstream) ∈ V ⊲ K

(unit,ununit) ∈ 1� ⊲ K

(pair,unpair) ∈ K×K ⊲ K

(fun,unfun) ∈ K⇒c K ⊲ K

to exist. Since we need nothing more, we define K as the solution of the following recursive
domain equation.

K ≅ Stream(V) ⊕ (K×K) ⊕ (K⇒c K)
ML programmers may think of this domain as a (denotational analogue to a) recursive variant
type, with one variant for each kind of value in our semantics.

[31/10/16, 16:38]

52 CHAPTER 3. LANGUAGE

The untyped semantics of the language is unremarkable since it is a λ-calculus with ad hoc
constructs for stream processing. The only definitions that are not standard in the theory of
functional languages are those concerning stream-related constructs. We define the denota-
tional counterpart to each of these four constructs. They appeared first in Caspi and Pouzet
[1996].

const ∈ S⇒c Stream(S)
const s = s.const s

The const is used to interpret literal constant streams. It repeats a scalar constant s an un-
bounded number of times.

merge ∈ Stream(S)⇒c Stream(S)×Stream(S)⇒c Stream(S)
merge ((bool 1).cs) ((x.xs),ys) = x.(merge cs (xs,ys))
merge ((bool 0).cs) (xs,(y.ys)) = y.(merge cs (xs,ys))

The function merge cs (xs,ys) intersperses the elements of xs and ys according to a condition,
the stream cs corresponding to p in the syntax of Figure 3.1. When the first element of cs is one,
the next output is the first element of xs, and symmetrically for zero and ys. The condition is a
stream of scalars, all of which should be booleans; hence the use of the embedding bool in the
left-hand side of the above definition to express an implicit use of the unbool projection in the
definition of the function.

when ∈ Stream(S)⇒c Stream(S)⇒c Stream(S)
when ((bool 0).cs) (x.xs) = when cs xs
when ((bool 1).cs) (x.xs) = x.(when cs xs)

The sampling function when filters its input according to a condition cs. More precisely, the
function removes elements of the stream xs when the boolean of same rank in cs is false.

mapn ∈ (S× ⋅ ⋅ ⋅×S⇒c S)⇒c (Stream(S)× ⋅ ⋅ ⋅×Stream(S))⇒c Stream(S)
mapn = λ f .λ(x1.xs1, . . . , xn .xsn).(f (x1, . . . , xn)).(mapn f (xs1, . . . ,xsn))

The family of function mapn∈N applies an n-ary function f pointwise to n streams. Following
categorical spirit, we sometimes write Stream(f) for map1 f .

unroll ∈ List(S)⇒c List(S)⇒c Stream(S)
unroll (n;u) v = n.(unroll u v)
unroll [] v = unroll v v

Finally, the function unroll builds the ultimately periodic stream unroll u v from its syntactic
representation as a pair of lists u(v).

Environments An expression e may contain free variables, the set of which is written FV (e)
and defined as in Figure 3.2. The interpretation must be parametrized by an environment
assigning a value to each free variable. We adopt a simple solution: an environment simply is a

[31/10/16, 16:38]

3.1. SYNTAX AND UNTYPED SEMANTICS 53

FV (x) = {x}
FV (fun x.e) = FV (e)∖{x}

FV (e e′) = FV ((e,e′)) = FV (e)∪FV (e′)
FV (let (x, y) = e1 in e2) = FV (e1)∪(FV (e2)∖{x, y})

FV (fix e) = FV (e)
FV (s) = FV (op) = FV (merge p) = FV (when p) = ∅

Figure 3.2: Syntax of µAS - free variables

continuous function from V , seen as a discretely ordered predomain, toK. We abbreviate the
domain ofK-valued environment as

Env(K) def= V ⇒c K

An environment σ ∈ Env(K) is extended with a new binding (x,k) ∈V ×K via

σ[x↦ k] def= λy.if y = x then k else σ(y)

and the value of a variable x can be obtained by applying σ to x.

Interpretation functions Interpretation functions map syntactic objects to their denotations.
We define four functions, one for each distinct syntactic category. The first two categories, s
and op, are left abstract since the precise language of scalars and operators is mostly inde-
pendent from the rest of the language. We assume that their interpretations have been given
Overloading notations, we write both of these functions J_K, relying on context to disambiguate
them. These functions should have type

JsK ∈ S

JopK ∈ S×S⇒c S

since scalar literals correspond to elements of S and operators to binary functions on S.
We later reuse the functions J_K directly in the typed semantics. In contrast, the interpre-

tation functions for conditions and expressions are specific to the untyped semantics and,
overloading notation again, we write them KJ_K. We use the letter K to recall the terms Kahn
semantics, sometimes used informally to describe the untyped semantics of synchronous func-
tional languages [Pouzet, 2002]. The semantics KJpK for ultimately periodic words p =u(v),
with u and v lists of scalars, consists in using the unroll function defined above. It is given
in Figure 3.3 (a).

The interpretation KJeK of an expression e is a map from environments Env(K) to K. Its
definition is given in Figure 3.3 (b). It is mainly routine that injects and extracts values from
or to the universal domainK, as needed. The first six clauses are standard in interpretations
of the untyped (or pure) λ-calculus. The remaining ones dedicated to stream processing
constructs rely on the previously defined functions, wrapped with the appropriate embedding
and projections to make them inhabitants ofK.

[31/10/16, 16:38]

54 CHAPTER 3. LANGUAGE

KJpK

KJpK ∈ Stream(V)
KJu(v)K = unroll (List(KJ_K) u) (List(KJ_K) v)

(a) Semantics of Ultimately Periodic Words

KJeK

KJeK ∈ Env(K)⇒c K

KJxK σ = σ(x)
KJfun x.eK σ = fun(λv.KJeK σ[x↦ v])
KJe e′K σ = (unfun (KJeK σ))(KJe′K σ)
KJ(e1,e2)K σ = pair (KJe1K σ,KJe2K σ)
KJlet (x, y) = e1 in e2K σ = (λ(dx ,dy).KJe2K σ[x↦ dx , y ↦ dy]) (unpair (KJe1K σ))
KJfix eK σ = fix(unfun (KJeK σ))
KJsK σ = stream (const JsK)
KJopK σ = fun(stream○map2 JopK○(unstream×unstream)○unpair)
KJmerge pK σ = fun(stream○merge JpK○(unstream×unstream)○unpair)
KJwhen pK σ = fun (stream○when JpK ○unstream)

(b) Semantics of Expressions

Figure 3.3: Untyped semantics

Discussion The language as defined above can be seen as an untyped fragment of Haskell
with a unique base type, that of streams. In particular, it allows programs of dubious behavior
in the context of real-time stream processing. Let us describe three classes of behaviors that
we wish to rule out.

1. Programs having the usual “type errors” where one tries to combine data having in-
compatible shapes, such as for example 1 (fun x. x) and 1+ (4,2). In general their
interpretation in the untyped semantics defined above is �K.

2. Programs with recursive definitions that produce partial rather than total streams, such
as fix (fun x. x). We may think of these programs as process networks that deadlock.

3. Programs whose memory usage grows without bound as time passes. They correspond
to process networks with buffers that cannot be bounded without introducing artificial
deadlocks, or that have an unbounded number of processes.

The first issue is addressed by traditional type systems. Let us discuss the ways in which
memory usage may increase over time.

[31/10/16, 16:38]

3.2. TYPE SYSTEM 55

First, there are programs that combine streams in ways that inherently use an unbounded
amount of memory for buffering intermediate results. Consider for example the function

fun x.(x +when (1 0) x)

which requires buffering an unbounded amount of elements of the stream x as time passes.
Such programs are well-known in functional synchronous programming and it is the role of
ordinary clock types to reject them.

Second, recursive functions may also use an unbounded amount of memory for storing
intermediate results. A practical consequence of this behavior in general-purpose functional
languages is the possibility of stack overflow. Real-time synchronous languages such as Lustre
generally forbid such functions.

Third, higher-order functions bring their own set of problems. The standard modular
scheme for compiling higher-order functions assumes both dynamic memory management
and the presence of code pointers in the target language. While the removal of certain features,
such as streams of functions, may help avoid dynamic memory allocation, the need for code
pointers remains.

We tackle all these problems in the next section through the use of a dedicated type system
ensuring that programs are free of type errors, produce infinite streams, and work within
bounded memory. Our final objective is to compile well-typed programs to static hardware.

3.2 Type System

3.2.1 Motivation

The problems outlined above stem from the unrestricted use of three features: sampling and
merging stream combinators, recursive definitions, and higher-order functions. We would
like to reject programs that use these features in a way that is either unsafe, or that cannot be
compiled to circuits. Since these questions are undecidable in general, we settle for a sufficient
syntactic condition; since we wish to allow for separate compilation, we look for modular
criteria. These goals suggest the use of some sort of type system, which we outline in the next
paragraphs before giving its formal description.

Why clock types? Memory usage problems described above are linked with the growth of
streams along program execution. Say that a stream function is length-preserving if, given
inputs converging up to n steps, its outputs converge up to n steps. Such functions are
well-behaved in that they map total streams to total streams; it is also easier to characterize
whether they can be implemented as finite state machines. In particular, if one sees the action
of running a state machine on an input sequence as a stream function, then this function
is length-preserving. This intuition suggests taking length-preservation as a criterion for
functions that can be turned into state machines.

Unfortunately, many interesting programs sample or merge streams in ways that make
their denotations fall outside of this class of functions. Yet, the notions of clock and clocked

[31/10/16, 16:38]

56 CHAPTER 3. LANGUAGE

streams introduced in Chapter 2 offer a way out. We have shown in Chapter 2 that, given two
clocks w and w ′, there exists an embedding-retraction pair

(desync,sync) ∶CStream w(N�)⇒c CStream w ′(N�) ⊲ Stream(N�)⇒c Stream(N�)

between functions on clocked streams and functions on streams. Thus, one can project a
function f on streams to a function sync(f) on clocked streams. The interesting thing is that,
under certain conditions, sync(f) is better behaved than f itself; in particular, sync(f) might
preserve lengths even when f does not. One of the main roles of the clock type system is
precisely to give a syntactic characterization of these conditions and to enforce additional
properties of sync(f), such as deadlock-freedom.

From a more technical point of view, the fact that a closed program e has type t in our
system ensures that KJeK has certain good properties. Because such properties are independent
from t , the existence of any type t and typing derivation d whose conclusion is ◻⊢ e ∶ t implies
that they are satisfied by KJeK. One can then run the program using any implementation of
the untyped semantics, such as a shallow embedding into Haskell. In this case, types can
be considered as irrelevant to execution. On the other hand, we will see in the later parts of
this chapter that a typing derivation d gives rise to a function SJdK that precisely corresponds
to the function sync(f) from above. This function and the typing derivation that underlies
it give precious information that we will use to give a more efficient implementation of the
program e. Moreover, and in contrast with the reasoning above where one is interested in d
and t themselves but in their mere existence, distinct derivations d get compiled to distinct
state machines. We then say that types are relevant to the compilation process1.

Thus, clock types are not only used to reject unsafe programs, but also provide powerful
hints to describe how the same program may be compiled to different implementations. In
particular, we will see how the two clock transformations studied in the previous chapter,
buffers and scatter/gather, make it possible to describe and implement various space/time
trade-offs in an abstract manner.

BecauseµAS features only ultimately periodic conditions, in this chapter clock types denote
ultimately periodic clocks. This makes the metatheory much simpler while still exhibiting
most of the interesting features and issues related to integer clocks. In particular, a clock
type denotes exactly one clock, which will no longer be the case in some of the type systems
of Chapter 5.

Why linearity? We have explained that higher-order functions are problematic when one
wants to statically bound memory usage. This problem hinges upon the conceptual difference
between functions as first- and second-class objects.

In the case of first-order languages, functions are second-class citizens: they cannot be
passed around or returned, and thus a function name always refers to some fixed piece of code.
Calls to such functions can be compiled by instantiating the callee inside its caller, either in
hardware or software.

1This philosophy is similar to that of Proof Theory, where one is interested not only in provability but in proofs
themselves. It also corresponds to what type theorists call proof-relevance, the idea that the proofs of certain
propositions carry non-trivial computational content.

[31/10/16, 16:38]

3.2. TYPE SYSTEM 57

• Hardware Description Languages such as VHDL or Verilog offer built-in facilities for
instantiating closed circuits, typically called components. Synthesis tools replace each
instance declaration with a copy of the corresponding component early in the compi-
lation process. The resulting flat description is then turned into a physical object or a
configuration file for an FPGA.

• In software, this inlining process is unnecessary: a stream function is compiled to a
description of its internal state and to a transition function that can be reused freely.
Each call to a function f in g gives rise to a new copy of the state of f in that of g , passed
to its transition function.

In the case of higher-order functions, this approach is no longer sufficient: even if f is
a function from, for example, streams of integers to streams of integers, its body may refer
to variables whose values are provided by its environment at definition time. Consider for
example the two stream functions below, written in the metalanguage of Chapter 2.

g ∈ (Stream(N�)⇒c Stream(N�))⇒c Stream(B�)
g f = . . .

h ∈ Stream(N�)⇒c Stream(B�)
h x = g f where f y = (o where o = x + y +0.o)

The function g is a second-order function; h receives an integer stream x and calls g with a
function f that computes the cumulative sum o of the stream x + y , where y is the stream
passed to f by g . From the perspective of g , f is a function that, given a stream of natural
numbers, returns a stream of natural numbers; but the value computed by f depends on x,
which g knows nothing about. The variable x is free in f and bound in h. Thus, one cannot
simply instantiate the body of f inside g , since it would need to be passed with the value of x
which is not available there. There are two standard solutions to this difficulty.

1. There are several whole-program techniques that statically transform a program with
higher-order functions into one that is completely first-order. For example, one can
replace g with its definition everywhere, and similarly for every higher-order function.
Another possibility that is less expensive in terms of code size is to use the defunctional-
ization technique of Reynolds [1972].

2. As alluded to in the previous section, one can perform closure conversion [Landin, 1964;
Appel, 2006] to implement higher-order functions in a language such as C or assembly.
In our example, the function f would be represented in the compiled code of g as a pair
formed of a (pointer to) the compiled body of f next to a structure holding the value of
its free variables. This pair, or closure, would have to be created by h, storing the value
of x in its second component.

Unfortunately, both approaches appear unsatisfactory to us. Whole-program transfor-
mations are incompatible with separate compilation. Closure-conversion assumes that the

[31/10/16, 16:38]

58 CHAPTER 3. LANGUAGE

g ′

f

y

o
x

r

Figure 3.4: Circuit composition in h′

target language is able to represent code pointers. This is not the case in hardware: functions
are compiled to circuits, which are—at least conceptually—physical objects that cannot be
abstracted over.

Now, imagine that the behavior of g is to test whether the natural number 42 is mapped
to 27 by f . The body of g would actually be the following.

g ∈ (Stream(N�)⇒c Stream(N�))⇒c Stream(B�)
g f = (f 42) = 27

This function g calls f exactly once. Following the terminology introduced by Girard [1987],
we say that g is linear. In this case, the only dialogue possible between g and f is that g sends
to f one input, and f sends to g one output. In the general, non-linear case, this dialogue
may involve an unbounded number of exchanges between the two functions. The important
point is that a linear g does not need to know the body of f , only its input and output. This
suggests that g can actually be rewritten into a first-order function g ′ that takes as an argument
the output of f and returns as an additional result the input passed to f by g .

g ′ ∈ Stream(N�)⇒c Stream(N�)×Stream(B�)
g ′ o = (42,o = 27)

Now, knowing that g is linear, h can be rewritten into a function h′ adapted to g ′. The func-
tion h′ relies on the additional output of g ′ as a substitute for the variable y that was previously
bound by f , making the code completely first-order.

h′ ∈ Stream(N�)⇒c Stream(B�)
h′ x = r where (y,r) = g ′ o

o = f y
f y = o where o = x + y +0.o

Because the resulting functions are first-order, they can be compiled as usual to digital
circuits. Figure 3.4 gives an intuitive depiction of the result in the case of g ′ and h′. Note that

[31/10/16, 16:38]

3.2. TYPE SYSTEM 59

the variable x free in f has here been represented as an additional input to the function. The
underlying principle can be extended to functions of arbitrary order, and will serve as a basis
for the compilation of our full language.

We have seen that a higher-order function g using its functional argument f in a linear
fashion can be understood as a first-order function receiving the output of f and returning the
input to f . Application can then be translated to a kind of parallel feedback between f and g ,
as shown in Figure 3.4. This translation process will be made systematic when we compile our
programs to state machine; but first, we need to make sure that each higher-order argument
used by a function is used linearly. This is why our type system uses linear arrow types to check
that a function is used exactly once.

As a side note, let us add that it is possible to design more flexible systems that count
the number of times a function is called, and make it possible to reuse closed functions an
arbitrary number of times. We will propose such a type system in Chapter 5. The simple system
proposed offers a more pedagogical introduction and will serve as a basis to more expressive
extensions.

3.2.2 Formal Definition

We now describe the type system based on the principles outlined above, mixing (integer)
clock types and linear higher-order functions. It is based on three type constructors, a main
well-typedness judgment for expressions, and a number of additional judgments that either
reflect relations on clocks at the level of clock types or manage the linear aspects of the system.

Types The following grammar defines the syntax of types.

t ∶∶= dt ∶∶ ct Clocked stream of scalars
∣ t ⊗ t Product
∣ t ⊸ t Function

dt ∶∶= bool ∣ int ∣ . . . Scalar type
ct ∶∶= p Ultimately periodic clock type

∣ ct on ct Compound clock type

Types t classify expressions e. We allow expressions to denote either streams of scalars with a
specified clock, products t ⊗ t ′ or functions t ⊸ t ′. We use ⊗ and⊸ as type constructors rather
than the more common × and→ to insist on the linear aspect of the type system, following
notations dating back from Girard [1987]. The type of streams dt ∶∶ ct describes both the data
type dt of the scalars held in the stream, and the clock type ct. Intuitively, data types dt should
classify elements of the domain S, and so must contain at least integer and boolean types.
As explained above, clock types denote ultimately periodic clocks and can be either a literal
constant p or a compound clock ct on ct′.

[31/10/16, 16:38]

60 CHAPTER 3. LANGUAGE

Contexts The typing judgment relies on a notion of context Γ to describe the types of free
variables of an expression. Our definition is standard.

Γ ∶∶= ◻ Empty context
∣ Γ, x ∶ t Augmented context

Contexts are lists of bindings. A binding is a pair of a variable x and a type t . A variable x
appearing in a binding of Γ is said to be bound in Γ; the set dom(Γ) of all such variables is
defined as follows.

dom(◻) = ∅
dom(Γ, x ∶ t) = dom(Γ)∪{x}

Typings Finally, we sometimes need to manipulate pairs (Γ, t) of context and type. Such
a pair is called a typing and written Γ ⊢ t for clarity. Typings with empty contexts are often
written ⊢ t instead of ◻ ⊢ t .

Typing expressions Figure 3.5 defines the judgment Γ⊢ e ∶ t stating that the expression e has
type t under context Γ, or that Γ ⊢ t is a typing for e. We detail each rule.

• Rule VAR assigns to a variable the type given by its rightmost binding in the context.
Since the type system is linear, the rest of the context should be erasable.

VAR

⊢ Γ value

Γ, x ∶ t ⊢ x ∶ t

The premise ⊢ Γ value ensures that Γ is a value context, which can be duplicated or
erased. There is a corresponding judgment ⊢ t value for types. Both judgments are
defined in Figure 3.6. A value type can only be a clocked stream or a product of value
types. A value context is a context which holds only value types.

• Rule WEAKEN removes useless bindings from the context, when they bind value types.

WEAKEN

Γ⊢ e ∶ t ⊢ t ′ value x /∈ FV (e)
Γ, x ∶ t ′ ⊢ e ∶ t

• Rule LAMBDA introduces function parameters in the context.

LAMBDA

Γ, x ∶ t ⊢ e ∶ t ′

Γ⊢ fun x.e ∶ t ⊸ t ′

This is the usual rule of typed λ-calculi.

[31/10/16, 16:38]

3.2. TYPE SYSTEM 61

Γ⊢ e ∶ t

VAR

⊢ Γ value

Γ, x ∶ t ⊢ x ∶ t

WEAKEN

Γ⊢ e ∶ t ⊢ t ′ value x /∈ FV (e)
Γ, x ∶ t ′ ⊢ e ∶ t

LAMBDA

Γ, x ∶ t ⊢ e ∶ t ′

Γ⊢ fun x.e ∶ t ⊸ t ′

APP

Γ⊢ Γ1⊗Γ2 Γ1 ⊢ e ∶ t ⊸ t ′ Γ2 ⊢ e′ ∶ t
Γ⊢ e e′ ∶ t ′

PAIR

Γ⊢ Γ1⊗Γ2 Γ1 ⊢ e1 ∶ t1 Γ2 ⊢ e2 ∶ t2

Γ⊢ (e1,e2) ∶ t1⊗ t2

LETPAIR

Γ⊢ Γ1⊗Γ2 Γ1 ⊢ e ∶ t1⊗ t2 Γ2, x ∶ t1, y ∶ t2 ⊢ e′ ∶ t
Γ⊢ let (x, y) = e in e′ ∶ t

FIX

Γ⊢ e ∶ t ⊸ t ′ ⊢ t ′ <∶1 t ⊢ t ′ value

Γ⊢ fix e ∶ t ′

CONST

◻⊢ s ∶ dtof (s) ∶∶ ct

OP

◻⊢ op ∶ (int ∶∶ ct)⊗(int ∶∶ ct)⊸ (int ∶∶ ct)

MERGE

p ≤ (1)
◻⊢ merge p ∶ (dt ∶∶ ct on p)⊗(dt ∶∶ ct on p)⊸ (dt ∶∶ ct)

WHEN

p ≤ (1)
◻⊢ when p ∶ (dt ∶∶ ct)⊸ (dt ∶∶ ct on p)

SUB

Γ⊢ e ∶ t ⊢ t <∶k t ′

Γ⊢ e ∶ t ′

RESCALE

⊢ Γ ↓ct Γ
′ Γ′ ⊢ e ∶ t ′ ⊢ t ′ ↑ct t

Γ⊢ e ∶ t

Figure 3.5: Typing - main judgment

⊢ t value and ⊢ Γ value

VALSTREAM

⊢ dt ∶∶ ct value

VALPROD

⊢ t1 value ⊢ t2 value

⊢ t1⊗ t2 value

VALCTXEMPTY

⊢ ◻ value

VALCTXCONS

⊢ Γ value ⊢ t value

⊢ Γ, x ∶ t value

Figure 3.6: Typing - value judgment

[31/10/16, 16:38]

62 CHAPTER 3. LANGUAGE

Γ⊢ Γ1⊗Γ2

SEPEMPTY

◻⊢ ◻⊗◻

SEPCONTRACT

Γ⊢ Γ1⊗Γ2 ⊢ t value

Γ, x ∶ t ⊢ Γ1, x ∶ t ⊗Γ2, x ∶ t

SEPLEFT

Γ⊢ Γ1⊗Γ2 x /∈ dom(Γ2)
Γ, x ∶ t ⊢ Γ1, x ∶ t ⊗Γ2

SEPRIGHT

Γ⊢ Γ1⊗Γ2 x /∈ dom(Γ1)
Γ, x ∶ t ⊢ Γ1⊗Γ2, x ∶ t

Figure 3.7: Typing - splitting judgment

• Rule APP expresses that a function of type t ⊸ t ′ can be applied to an argument of
type t to obtain a result of type t ′.

APP

Γ⊢ Γ1⊗Γ2 Γ1 ⊢ e ∶ t ⊸ t ′ Γ2 ⊢ e′ ∶ t
Γ⊢ e e′ ∶ t ′

The function and its argument are typed in contexts Γ1 and Γ2 obtained by splitting Γ in
two. This is necessary since one cannot use Γ in both premises. This would duplicate Γ,
which may contain non-value types.

The judgment Γ ⊢ Γ1⊗Γ2 describes how Γ is split in two contexts Γ1 and Γ2 that may
only share value types. Figure 3.7 gives its definition. There is nothing to split in an
empty context (SEPEMPTY). A value type can be duplicated, and hence may go in both
contexts (SEPCONTRACT). In general, a binding can only go into either Γ1 or Γ2, not
both (SEPLEFT and SEPRIGHT). Note that when a binding goes to Γ1 via SEPLEFT, it
cannot be bound in Γ2, and conversely for SEPRIGHT. Without this restriction, it would
be possible to make a variable that has been shadowed by a binder visible again, breaking
the lexical scope of the language.

• Rules PAIR and LETPAIR are standard except for the splitting of contexts.

PAIR
Γ⊢ Γ1⊗Γ2 Γ1 ⊢ e1 ∶ t1 Γ2 ⊢ e2 ∶ t2

Γ⊢ (e1,e2) ∶ t1⊗ t2

LETPAIR
Γ⊢ Γ1⊗Γ2 Γ1 ⊢ e ∶ t1⊗ t2 Γ2, x ∶ t1, y ∶ t2 ⊢ e′ ∶ t

Γ⊢ let (x, y) = e in e′ ∶ t

• Rule FIX allows recursive definitions as long as they are productive. The expression e
should have type t ⊸ t ′. The type t ′ should be a value, which forbids recursive func-
tions. More importantly, the premise ⊢ t ′ <∶1 t enforces that the output of e does not
depend instantaneously on its input.

FIX

Γ⊢ e ∶ t ⊸ t ′ ⊢ t ′ <∶1 t ⊢ t ′ value

Γ⊢ fix e ∶ t ′

[31/10/16, 16:38]

3.2. TYPE SYSTEM 63

We describe the judgment ⊢ t <∶k t ′ later, for now, think of it as reflecting at the level of
clock types the notion of adaptability between clocks defined in Definition 8.

• Rule CONST expresses that constant literals denote streams of arbitrary clocks.

CONST

◻⊢ s ∶ dtof (s) ∶∶ ct

The function dtof maps a scalar s to its data type dtof (s). Constants may inhabit any
clock type ct because, intuitively, const s has no input stream and thus no dependencies
that could constrain the clock of its output.

• Rule OP checks that the input of an operator is a pair of integer streams. The output is
also a stream of integers. Inputs and output should have the same clock type.

OP

◻⊢ op ∶ (int ∶∶ ct)⊗(int ∶∶ ct)⊸ (int ∶∶ ct)

Intuitively, this is sound because the untyped semantics of op gives rise to a length-
preserving function.

• Rule MERGE forces the parameter p of merge p to be binary. Assuming this holds, the
rule expresses that merge is a function receiving a pair of inputs. The two inputs have
type ct on p and ct on p, with p denoting the elementwise negation of p.

MERGE

p ≤ (1)
◻⊢ merge p ∶ (dt ∶∶ ct on p)⊗(dt ∶∶ ct on p)⊸ (dt ∶∶ ct)

Note that, in general, the clock denoted by ct holds larger integers than both ct on p
and ct on p. This reflects the fact that the output of merge p generally converges more
than its inputs.

• Rule WHEN is similar to rule MERGE.

WHEN

p ≤ (1)
◻⊢ when p ∶ (dt ∶∶ ct)⊸ (dt ∶∶ ct on p)

Here, in general, the output clock ct on p features integers that are smaller than the ones
in ct. This reflects the fact that the output of when p converges less than its input.

• Rule SUB adds a bounded buffer to an expression.

SUB

Γ⊢ e ∶ t ⊢ t <∶k t ′

Γ⊢ e ∶ t ′

[31/10/16, 16:38]

64 CHAPTER 3. LANGUAGE

⊢ t <∶k t ′

ADAPTSTREAM

nf (ct) <∶k nf (ct′)
⊢ dt ∶∶ ct <∶k dt ∶∶ ct′

ADAPTPROD

⊢ t1 <∶k t ′1 ⊢ t2 <∶k t ′2
⊢ t1⊗ t2 <∶k t ′1⊗ t ′2

ADAPTARROW

⊢ t ′1 <∶0 t1 ⊢ t2 <∶k t ′2
⊢ t1⊸ t2 <∶k t ′1⊸ t ′2

Figure 3.8: Typing - adaptability judgment

The buffer is modeled by the judgment ⊢ t <∶k t ′ that we have already encountered in the
rule for recursive definitions. The type t characterizes the input of the buffer and t ′ its
output.

• Rule RESCALE wraps an expression e in a local time scale driven by the clock type ct.

RESCALE

⊢ Γ ↓ct Γ
′ Γ′ ⊢ e ∶ t ′ ⊢ t ′ ↑ct t

Γ⊢ e ∶ t

One first scatters the variables present in Γ according to ct in order to obtain a context Γ′
in the local time scale. This is expressed by the premise ⊢ Γ ↓ct Γ′. Then, the computation
of e happens in Γ′, leading to a result of type t ′ in the local time scale. In order to move
this result into the external time scale, one gathers it according to ct, obtaining t . This is
expressed by the premise ⊢ t ′ ↑ct t .

Remark 5. As mentioned in the introduction, previous synchronous functional languages
did not check productivity at the level of clock types but as an independent static analysis
called causality analysis (e.g., Cuoq and Pouzet [2001]). This analysis runs after clock typing.
We compare our approach to the usual causality analysis in Section 3.5.

Adaptability The judgment ⊢ t <∶k t ′ expresses that a computation behaving according to
type t up to a given time step n can be transformed into a computation that behaves according
to type t ′ up to a time step n +k through the introduction of bounded buffers. Its rules are
given in Figure 3.8 and explained below.

• Rule ADAPTSTREAM checks the k−adaptability of clocks by computing the ultimately pe-
riodic clocks nf (ct) and nf (ct′) corresponding to the clock types ct and ct′. As explained
in Chapter 2, on such clocks the k-adaptability relation is decidable. The function nf (ct)
reduces a clock type to an ultimately periodic clock.

nf (p) = p
nf (ct on ct′) = nf (ct) on nf (ct′)

• Rule ADAPTPROD is traditional. It introduces buffers on both components.

[31/10/16, 16:38]

3.2. TYPE SYSTEM 65

⊢ t ↑ct t ′ and ⊢ t ↓ct t ′

UPSTREAM

nf (ct′) ↑nf (ct) nf (ct′′)
⊢ dt ∶∶ ct′ ↑ct dt ∶∶ ct′′

DOWNSTREAM

nf (ct′) ↓nf (ct) nf (ct′′)
⊢ dt ∶∶ ct′ ↓ct dt ∶∶ ct′′

UPPROD

⊢ t1 ↑ct t ′1 ⊢ t2 ↑ct t ′2
⊢ t1⊗ t2 ↑ct t ′1⊗ t ′2

DOWNPROD

⊢ t1 ↓ct t ′1 ⊢ t2 ↓ct t ′2
⊢ t1⊗ t2 ↓ct t ′1⊗ t ′2

UPARROW

⊢ t ′1 ↓ct t1 ⊢ t2 ↑ct t ′2
⊢ t1⊸ t2 ↑ct t ′1⊸ t ′2

DOWNARROW

⊢ t ′1 ↑ct t1 ⊢ t2 ↓ct t ′2 ct ≤ (1)
⊢ t1⊸ t2 ↓ct t ′1⊸ t ′2

UPON

⊢ t ↑ct′ t ′′ ⊢ t ′′ ↑ct t ′

⊢ t ↑ct on ct′ t ′

DOWNON

⊢ t ↓ct t ′′ ⊢ t ′′ ↓ct′ t ′

⊢ t ↓ct on ct′ t ′

UPINV

⊢ t ↓ct′ t ′ ct on ct′ ≡ (1)
⊢ t ↑ct t ′

DOWNINV

⊢ t ↑ct′ t ′ ct on ct′ ≡ (1)
⊢ t ↓ct t ′

DOWNCTXEMPTY

⊢ ◻ ↓ct ◻

DOWNCTXCONS

⊢ Γ ↓ct Γ
′ ⊢ t ↓ct t ′

⊢ Γ, x ∶ t ↓ct Γ
′, x ∶ t ′

Figure 3.9: Typing - gathering/scattering judgments

• Rule ADAPTARROW is also traditional, except that we have to handle the delay k. Be-
cause we seek the most general rule, we want the delay in the conclusion as large as
possible and the ones in the premises as small as possible. Thus, the only delay that
matters is the one on the output of the function.

Scattering and gathering types Finally, let us describe the judgments related to local time
scales. The gathering judgment ⊢ t ↑ct t ′ states that all the inhabitants of a type t computed
in a local time scale driven by ct can be seen as inhabitants of the type t ′ in the external time
scale. Conversely, the scattering judgment ⊢ t ↓ct t ′ states that all the inhabitants of a type t
computed in the external time scale can be seen as inhabitants of the type t ′ in the local time
scale driven by ct. Their rules are defined in Figure 3.9 and explained below.

• The first group of rules handle type constructors.

– Rules UPSTREAM and DOWNSTREAM use the gathering and scattering relations
on clocks defined in Section 2.8. These relations are decidable when the clocks

[31/10/16, 16:38]

66 CHAPTER 3. LANGUAGE

involved are ultimately periodic, as is the case here.

UPSTREAM

nf (ct′) ↑nf (ct) nf (ct′′)
⊢ dt ∶∶ ct′ ↑ct dt ∶∶ ct′′

DOWNSTREAM

nf (ct′) ↓nf (ct) nf (ct′′)
⊢ dt ∶∶ ct′ ↓ct dt ∶∶ ct′′

– Rules UPPROD and DOWNPROD are standard, lifting the components pairwise

UPPROD

⊢ t1 ↑ct t ′1 ⊢ t2 ↑ct t ′2
⊢ t1⊗ t2 ↑ct t ′1⊗ t ′2

DOWNPROD

⊢ t1 ↓ct t ′1 ⊢ t2 ↓ct t ′2
⊢ t1⊗ t2 ↓ct t ′1⊗ t ′2

– Rule UPARROW and DOWNARROW make functions leave and enter a local time
scale, respectively. The former scatters the input of the function, making it enter
the time scale, and gather its output, making it leave the time scale. The latter is
symmetric, except that it only applies in time scales driven by binary clocks.

UPARROW

⊢ t ′1 ↓ct t1 ⊢ t2 ↑ct t ′2
⊢ t1⊸ t2 ↑ct t ′1⊸ t ′2

DOWNARROW

⊢ t ′1 ↑ct t1 ⊢ t2 ↓ct t ′2 ct ≤ (1)
⊢ t1⊸ t2 ↓ct t ′1⊸ t ′2

We discuss why this rule is unsound without the ct ≤ (1) premise in the example
section below.

• The second group of rules express that gathering and scattering are compatible with
certain algebraic properties of clocks.

– Rules DOWNON and UPON relate gathering and scattering to clock composition.
A time scale driven by a compound clock ct on ct′ can be decomposed into two time
scales. The first one, which is driven by ct′, is nested into the second one, which is
driven by ct. Thus, for gathering, one leaves the innermost time scale before leaving
the outermost one. Conversely, for scattering, one enters the outermost time scale
before entering the innermost one.

UPON

⊢ t ↑ct′ t ′′ ⊢ t ′′ ↑ct t ′

⊢ t ↑ct on ct′ t ′

DOWNON

⊢ t ↓ct t ′′ ⊢ t ′′ ↓ct′ t ′

⊢ t ↓ct on ct′ t ′

– Rules DOWNINV and UPINV relate clock inverses and the duality between gather-
ing and scattering. They express that gathering by ct is equivalent to scattering by a
right inverse ct′ of ct, and symmetrically.

UPINV

⊢ t ↓ct′ t ′ ct on ct′ ≡ (1)
⊢ t ↑ct t ′

DOWNINV

⊢ t ↑ct′ t ′ ct on ct′ ≡ (1)
⊢ t ↓ct t ′

[31/10/16, 16:38]

3.2. TYPE SYSTEM 67

VALCTXEMPTY ⊢ ◻ valueVAR
x ∶ (1)⊢ x ∶ (1)

FUN ⊢ fun x.x ∶ (1)⊸ (1)

(A)

VALCTXEMPTY ⊢ ◻ valueVAR
x ∶ (1)⊢ x ∶ (1)

(1) <∶1 0(1)
ADAPTSTREAM ⊢ (1) <∶1 0(1)

SUB
x ∶ (1)⊢ x ∶ 0(1)

FUN ⊢ fun x.x ∶ (1)⊸ 0(1)

(B)

Figure 3.10: Example 9 - typing the identity function

Examples We omit data types, for clarity, considering that they are all equal.

Example 9 (Identity function). Consider the identity function on streams, id, defined below.

id
def= fun x.x

This function may receive several distinct clock types.

• Perhaps the most intuitive clock type is (1)⊸ (1). The corresponding derivation is given
in Figure 3.10 (A). More generally, id might receive any clock type of the form p ⊸ p,
with p a fixed ultimately periodic word.

• One may add a buffer between input and output, conceptually “shifting” the outputs to
the right in the ambient time scale. A simple example would be the clock type (1)⊸ 0(1),
with the corresponding derivation given in Figure 3.10 (B). Compared to the clock type
in Figure 3.10 (A), here the output has been delayed for one step.

Example 10 (Linearity). Consider the typing derivations given in Figure 3.11.

• Derivation (a) types fun x.fun f.f x. The context splitting judgment sends x to the
left premise, which is the function, and f to the right one, which is the argument. No
contraction is needed in this example, as x occurs only once in the body of the function.

• Derivation (b) types the same expression but differs from (a). It features a useless con-
traction, making x appear in the context where the body of the function applied is typed.
But since x denotes a stream, which is a value, it can be erased in the VAR rule.

• Derivation (c) types fun x.fun f.(f x,x). In this case, x appears twice and thus contrac-
tion is actually needed. The sub-derivation of f ∶ (1)⊸ (2),x ∶ (1) ⊢ f x ∶ (2) has been
elided since it is similar to the one in derivation (a).

Example 11 (Sampling). Consider the function half which filters out the elements at even
indices from its input stream.

half
def= fun x.when (1 0) x

[31/10/16, 16:38]

68 CHAPTER 3. LANGUAGE

S
E

PE
M

P
T

Y
◻⊢◻⊗◻

S
E

PR
IG

H
T

x∶(1)⊢◻⊗
x∶(1)

S
E

PL
E

F
T

x∶(1),f∶(1)⊸
(2)⊢

f∶(1)⊸
(2)⊗

x∶(1)
V

A
LC

T
XE

M
P

T
Y
⊢◻

valu
e

V
A

R
f∶(1)⊸

(2)⊢
f∶(1)⊸

(2)
V

A
LE

M
P

T
Y
⊢◻

valu
e

V
A

R
x∶(1)⊢

x∶(1)
A

P
P

x∶(1),f∶(1)⊸
(2)⊢

f
x∶(2)

F
U

N
x∶(1)⊢

f
u
n
f

.f
x∶((1)⊸

(2))⊸
(2)

F
U

N
⊢
f
u
n
x

.f
u
n
f

.f
x∶(1)⊸

((1)⊸
(2))⊸

(2)

(a)
-

Typ
in

g
d

erivatio
n

fo
r
f
u
n
x.f

u
n
f.f

x

S
E

PE
M

P
T

Y
◻⊢◻⊗◻

S
E

PC
O

N
T

R
A

C
T

x∶(1)⊢
x∶(1)⊗

x∶(1)
S

E
PL

E
F

T
x∶(1),f∶(1)⊸

(2)⊢
x∶(1),f∶(1)⊸

(2)⊗
x∶(1)

V
A

LC
T

XE
M

P
T

Y
⊢◻

valu
e

V
A

LS
T

R
E

A
M
⊢(1)

valu
e

V
A

LC
T

XC
O

N
S

⊢
x∶(1)

valu
e

V
A

R
x∶(1),f∶(1)⊸

(2)⊢
f∶(1)⊸

(2)
V

A
LE

M
P

T
Y
⊢◻

valu
e

V
A

R
x∶(1)⊢

x∶(1)
A

P
P

x∶(1),f∶(1)⊸
(2)⊢

f
x∶(2)

F
U

N
x∶(1)⊢

f
u
n
f

.f
x∶((1)⊸

(2))⊸
(2)

F
U

N
⊢
f
u
n
x

.f
u
n
f

.f
x∶(1)⊸

((1)⊸
(2))⊸

(2)

(b
)

-
Typ

in
g

d
erivatio

n
fo

r
f
u
n
x.f

u
n
f.f

x,featu
rin

g
u

seless
co

n
tractio

n

S
E

PL
E

F
T

◻⊢◻⊗◻
S

E
PE

M
P

T
Y

f∶(1)⊸
(2)⊢

f∶(1)⊸
(2)⊗◻

V
A

LS
T

R
E

A
M
⊢(1)

valu
e

S
E

PC
O

N
T

R
A

C
T

f∶(1)⊸
(2),x∶(1)⊢

f∶(1)⊸
(2),x∶(1)⊗

x∶(1)
...

A
P

P
f∶(1)⊸

(2),x∶(1)⊢
f
x∶(2)

V
A

LC
T

XE
M

P
T

Y
⊢◻

valu
e

V
A

R
x∶(1)⊢

x∶(1)
P

A
IR

f∶(1)⊸
(2),x∶(1)⊢(f

x
,x)∶(2)⊗(1)

F
U

N
f∶(1)⊸

(2)⊢
f
u
n
x

.(f
x

,x)∶(1)⊸
(2)⊗(1)

F
U

N
⊢
f
u
n
f

.f
u
n
x

.(f
x

,x)∶((1)⊸
(2))⊸

(1)⊸
(2)⊗(1)

(c)
-

Typ
in

g
d

erivatio
n

fo
r
f
u
n
f.f

u
n
x.(f

x,x)

F
igu

re
3.11:E

xam
p

le
10

-
typ

in
g

d
erivatio

n
s

[31/10/16, 16:38]

3.2. TYPE SYSTEM 69

(1 0)⊸ (0 1)

(1 0)⊸ (1 0) (0 1)⊸ (0 1)

(0 1)⊸ (1 0)

<∶ ∶>

∶> <∶

(1)⊸ (1)

↑ (2)ω

↑ (2)ω

↑ (2)ω

↑ (2)ω
↑ (1 0)ω

↑ (0 1)ω

Figure 3.12: Example 13 - gathering, adaptability, and equivalence classes

1. A valid clock type is (1)⊸ (1 0). According to this binary clock type, the function con-
sumes one element per time step but only produces at even time steps. A corresponding
derivation is shown in Figure 3.13 (A). In the instance of the WHEN rule, we have reasoned
up to the equivalence of the clock types (1) on (1 0) and (1 0).

2. Another possibility is (2)⊸ (1 0). Here the function produces one element of the output
stream per time step, at the price of needing two input elements. A possible derivation
for this type is shown in Figure 3.13 (B). It is essentially the same as Figure 3.13 (A), the
only difference being that the output clock type is (2) on (1 0) which is equivalent to (1).

3. Figure 3.13 (C) gives a conceptually different derivation of ⊢ half ∶ (2)⊸ (1). In contrast
with the derivation (B), in (C) we rescale the derivation (A) by (2) to obtain the desired
clock type from ⊢ half ∶ (1)⊸ (1 0).

Remark 6. Rescaling, like buffering, is generic in the sense that it does not need to peer inside
the body of the rescaled (or buffered) expression. Example 11 (3) shows that (1)⊸ (1 0)
is at least as general as (2)⊸ (1) since one can go from the former to the latter in such a
generic manner. It is in fact strictly more general because one cannot transform (2)⊸ (1)
into (1)⊸ (1 0) via rescaling or buffering alone. This comes from the fact that (2)⊸ (1)
describes computations in which the first element of the output stream might depend on the
first element of the input stream, while in (1)⊸ (1 0) this can never be the case.

Remark 7. Chapter 4 will make clear that the typing derivations (B) and (C) from Figure 3.13
compile to different circuits. Intuitively, the derivation (C) leads to a “large” circuit, since it
contains two copies of the circuit obtained by compiling the derivation (A).

Example 12 (Buffering and Integer Clocks). Consider the function sumhalf defined below.

sumhalf
def= fun x.+(when (1 0) x, when (0 1) x)

Informally, the element yn in the output stream is the sum of x2n and x2n+1 in the input stream.

[31/10/16, 16:38]

70 CHAPTER 3. LANGUAGE

...
x
∶(1)⊢◻

⊗
x
∶(1)

W
H

E
N

⊢
w
h
e
n
(1

0)∶(1)⊸
(1

0)
⊢◻

valu
e

V
A

R
x
∶(1)⊢

x
∶(1)

A
P

P
x
∶(1)⊢

w
h
e
n
(1

0)
x
∶(1

0)
F

U
N

⊢
f
u
n
x

.w
h
e
n
(1

0)
x
∶(1)⊸

(1
0)

(A
)

...
x
∶(2)⊢◻

⊗
x
∶(2)

W
H

E
N

⊢
w
h
e
n
(1

0)∶(2)⊸
(1)

⊢◻
valu

e
V

A
R

x
∶(2)⊢

x
∶(2)

A
P

P
x
∶(2)⊢

w
h
e
n
(1

0)
x
∶(1)

F
U

N
⊢
f
u
n
x

.w
h
e
n
(1

0)
x
∶(2)⊸

(1)

(B
)

⊢◻
↓
(2

) ◻
(A

)

⊢
f
u
n
x

.w
h
e
n
(1

0)
x
∶(1)⊸

(1
0)

(2)
ω
=
(2)

ω
on

(1)
ω

D
O

W
N

S
T

R
E

A
M

⊢
(2)↓

(2
) (1)

(2)
ω

on
(1

0)
ω
=
(1)

ω

D
O

W
N

S
T

R
E

A
M

⊢
(1

0)↑
(2

) (1)
U

PA
R

R
O

W
⊢
(1)⊸

(1
0)↑

(2
) (2)⊸

(1)
R

E
S

C
A

L
E

⊢
f
u
n
x

.w
h
e
n
(1

0)
x
∶(2)⊸

(1)

(C
)

F
igu

re
3.13:E

xam
p

le
11

-
typ

in
g

d
erivatio

n
s

[31/10/16, 16:38]

3.2. TYPE SYSTEM 71

..
.

x
∶
(

1)
⊢
◻⊗

x
∶
(

1)
⊢
+
∶
(

0
1)
⊗
(

0
1)
⊸

(
0

1)

..
.

x
∶
(

1)
⊢
x
∶
(

1)
⊗
x
∶
(

1)

..
.

x
∶
(

1)
⊢
w
h
e
n
(

1
0)

x
∶
(

1
0)

..
.

⊢
(

1
0)
<
∶ 1
(

0
1)

x
∶
(

1)
⊢
w
h
e
n
(

1
0)

x
∶
(

0
1)

..
.

x
∶
(

1)
⊢
w
h
e
n
(

0
1)

x
∶
(

0
1)

x
∶
(

1)
⊢
(
w
h
e
n
(

1
0)

x
,
w
h
e
n
(

0
1)

x
)
∶
(

0
1)
⊗
(

0
1)

x
∶
(

1)
⊢
+
(
w
h
e
n
(

1
0)

x
,
w
h
e
n
(

0
1)

x
)
∶
(

0
1)

⊢
f
u
n
x

.+
(
w
h
e
n
(

1
0)

x
,
w
h
e
n
(

0
1)

x
)
∶
(

1)
⊸

(
0

1)

(A
)

..
.

x
∶
(

2)
⊢
◻⊗

x
∶
(

2)
⊢
+
∶
(

1)
⊗
(

1)
⊸

(
1)

..
.

x
∶
(

2)
⊢
x
∶
(

2)
⊗
x
∶
(

2)
..

.
x
∶
(

2)
⊢
w
h
e
n
(

1
0)

x
∶
(

1)
..

.
x
∶
(

2)
⊢
w
h
e
n
(

0
1)

x
∶
(

1)

x
∶
(

2)
⊢
(
w
h
e
n
(

1
0)

x
,
w
h
e
n
(

0
1)

x
)
∶
(

1)
⊗
(

1)

x
∶
(

2)
⊢
+
(
w
h
e
n
(

1)
x

,
w
h
e
n
(

1)
x
)
∶
(

1)

⊢
f
u
n
x

.+
(
w
h
e
n
(

1
0)

x
,
w
h
e
n
(

0
1)

x
)
∶
(

2)
⊸

(
1)

(B
)

F
ig

u
re

3.
14

:E
xa

m
p

le
12

-
ty

p
in

g
d

er
iv

at
io

n
s

[31/10/16, 16:38]

72 CHAPTER 3. LANGUAGE

1. A possible clock type is (1)⊸ (0 1). Figure 3.14 (A) gives a possible derivation, in which
rule names and easily guessable subderivations have been elided. This derivation buffers
the output of when (1 0) for one step, using the adaptability judgment ⊢ (1 0) <∶1 (0 1).
A value cannot be produced at the first time step since the second input has not been
received yet. Thus, all the derivations for this clock type necessarily involve such a
buffering process.

2. Another possibility is (2)⊸ (1). Figure 3.14 (B) gives a derivation, which works in the
same way as Figure 3.13 (B). No buffering is involved here since, at each time step, the
function has exactly the data needed to produce its next output.

This example shows how different choices of clock types may influence the amount of memory
needed in a typed program.

Example 13 (Gathering). We now show the results of gathering for four first-order functions,
with respect to a local time scale where time passes twice faster than in the global context.

(1 0)⊸ (0 1) ↑(2) (1)⊸ (1) (a)
(1 0)⊸ (1 0) ↑(2) (1)⊸ (1) (b)
(0 1)⊸ (0 1) ↑(2) (1)⊸ (1) (c)
(0 1)⊸ (1 0) ↑(2) (1)⊸ (1) (d)

These examples show that, in general, gathering by an integer clock hides implementation
details, transforming complex types into simpler ones. In contrast, gathering by a binary clock
only adds zeroes for the time steps at which the time scale is idle. This is what the example
below shows.

(1)⊸ (1) ↑(1 0) (1 0)⊸ (1 0) (e)
(1)⊸ (1) ↑(0 1) (0 1)⊸ (0 1) (f)

The gathering relations (e) and (f) above invert the (b) and (c) ones.

Remark 8. The types and gathering relations of Example 13 are represented in Figure 3.12. This
figure also depicts the adaptability relations that exist between these types. The combination
of gathering adaptability and gathering defines a preorder whose equivalence classes are
represented in light grey. Remark that (0 1)⊸ (1 0) is, here, the most general type: the five
other types can be obtained from it, but not reciprocally. Indeed, its inhabitants have the
lowest amount of dependencies between inputs and outputs.

Example 14 (Unsound DOWNARROW). The DOWNARROW rule in Figure 3.9 is restricted to
local time scales driven by binary clocks. We may now explain why this hypothesis is needed.
Consider the scattering relations shown in Example 13. If scattering arrow types by non-binary
clocks is allowed, we can reverse them all.

(1)⊸ (1) ↓(2) (1 0)⊸ (0 1) (A)
(1)⊸ (1) ↓(2) (1 0)⊸ (1 0) (B)
(1)⊸ (1) ↓(2) (0 1)⊸ (0 1) (C)
(1)⊸ (1) ↓(2) (0 1)⊸ (1 0) (D)

[31/10/16, 16:38]

3.2. TYPE SYSTEM 73

UPSTREAM ⊢ (1) ↑
(1 0 1) (1 0 1) DOWNSTREAM ⊢ (2 0 1) ↓

(1 0 1) (2 1)
DOWNARROW ⊢ (1 0 1)⊸ (2 0 1) ↓

(1 0 1) (1)⊸ (2 1)

(A)

DOWNSTREAM ⊢ (0 1) ↓
(0 1) (1) UPSTREAM ⊢ (2 1) ↑

(0 1) (0 2 0 1)
UPARROW ⊢ (1)⊸ (2 1) ↑

(0 1) (0 1)⊸ (0 2 0 1) (3 1) on (1 0 0 1) ≡ (1)
DOWNINV ⊢ (1)⊸ (2 1) ↓

(3 1) (0 1)⊸ (0 2 0 1)

(B)

(A)
⊢ (1 0 1)⊸ (2 0 1) ↓

(1 0 1) (1)⊸ (2 1)
(B)

⊢ (1)⊸ (2 1) ↓
(3 1) (0 1)⊸ (0 2 0 1)

DOWNON ⊢ (1 0 1)⊸ (2 0 1) ↓
(1 0 1) on (3 1) (0 1)⊸ (0 2 0 1)

(C)

Figure 3.15: Example 15 - gathering by (3 0 1)

Unfortunately, the relation (D) is incorrect. Take for example the identity function. One may
assign it the type (1)⊸ (1), but never (0 1)⊸ (1 0), since the latter classifies functions whose
first output never depends on the first input.

Remark 9. The fact that one cannot transform the type (1)⊸ (1) into (0 1)⊸ (1 0) is consis-
tent with Figure 3.12 and Remark 8: the latter is strictly more general than the former.

Example 15. The previous example suggests that one cannot scatter a function by a local time
scale containing integers larger than one. While there is no primitive rule to do so, this can
actually be achieved by combining several rules and using algebraic properties of clocks.

1. We know by Property 13 that any clock factors (uniquely) as wb on wp , with wb binary
and wp strictly positive. Thus, factoring the clock type and applying rule DOWNON cuts
the function scattering problem in two.

2. We already have a rule for scattering functions by binary clocks. For strictly positive
ones, Property 12 states that they have right-inverses. This means that we can apply
rule DOWNINV to replace scattering with gathering. Gathering functions is simple.

Figure 3.15 gives an example using the decomposition given above. The function type is
scattered by (3 0 1), which factors as (1 0 1) on (3 1). Derivation (A) first gathers the function
by (1 0 1). The resulting type is then gathered by (3 1) in derivation (B) using its inverse ((0 1))ω.
Derivation (C) combines (A) and (B) to finally gather by (3 0 1).

[31/10/16, 16:38]

74 CHAPTER 3. LANGUAGE

S
E

PE
M

P
T

Y
◻
⊢◻

⊗◻
S

E
PR

IG
H

T
x
∶
(1

)
⊢◻

⊗
x
∶
(1

)
O

P
⊢
+
∶
(1

)
⊗
(1

)
⊸

(1
)

...
x
∶
(1

)
⊢◻

⊗
x
∶
(1

)
C

O
N

S
T
⊢

1
∶
(1

)

V
A

LC
T

XE
M

P
T

Y
⊢◻

valu
e

V
A

R
x
∶
(1

)
⊢
x
∶
(1

)

⊢
(1,x

)
∶
(1

)
⊗
(1

)

A
P

P
x
∶
(1

)
⊢
+
(1,x

)
∶
(1

)

⊢
f
u
n
x

.
+
(1,x

)
∶
(1

)
⊸

(1
)

(a)
-

D
erivatio

n
fo

r
in

cr=
f
u
n
x.+(1,x)

S
E

PE
M

P
T

Y
◻
⊢◻

⊗◻
S

E
PR

IG
H

T
f
∶0

(1
)
⊸

0
(1

)
⊢◻

⊗
f
∶0

(1
)
⊸

0
(1

)

S
E

PR
IG

H
T

f
∶0

(1
)
⊸

0
(1

),x
∶0

(1
)
⊢◻

⊗
f
∶0

(1
)
⊸

0
(1

),x
∶0

(1
)

M
E

R
G

E
⊢
m
e
r
g
e

0
(1

)
∶1

(0
)
⊗

0
(1

)
⊸

(1
)

...
C

O
N

S
T
⊢

0
∶1

(0
)

...
P

A
IR

f
∶0

(1
)
⊸

0
(1

),x
∶0

(1
)
⊢
(0,f

x
)
∶1

(0
)
⊗

0
(1

)

A
P

P
f
∶0

(1
)
⊸

0
(1

),x
∶0

(1
)
⊢
m
e
r
g
e

1
(0

)
(0,f

x
)
∶
(1

)

L
A

M
B

D
A

f
∶0

(1
)
⊸

0
(1

)
⊢
f
u
n

x
.m
e
r
g
e

1
(0

)
(0,f

x
)
∶0

(1
)
⊸

(1
)

L
A

M
B

D
A
⊢
f
u
n
f

.f
u
n
x

.m
e
r
g
e

1
(0

)
(0,f

x
)
∶
(0

(1
)
⊸

0
(1

)
)
⊸

0
(1

)
⊸

(1
)

(b
)

-
D

erivatio
n

fo
r

con
s=

f
u
n
f.f

u
n
x.m

e
r
g
e

1(0)(0,f
x)

S
E

PE
M

P
T

Y
◻
⊢◻

⊗◻
(b

)

⊢
con

s
∶
(0

(1
)
⊸

0
(1

)
)
⊸

0
(1

)
⊸

(1
)

D
O

W
N

C
T

XE
M

P
T

Y
⊢◻
↓

0
(1
) ◻

(a)

⊢
in

cr
∶
(1

)
⊸

(1
)

...
⊢
(1

)
⊸

(1
)
↑

0
(1
)

0
(1

)
⊸

0
(1

)

R
E

S
C

A
L

E
⊢

in
cr
∶0

(1
)
⊸

0
(1

)

A
P

P
⊢

con
s

in
cr
∶0

(1
)
⊸

(1
)

(c)
-

D
erivatio

n
fo

r
con

sin
cr=

con
s

in
cr

(c)

⊢
con

sin
cr
∶0

(1
)
⊸

(1
)

A
D

A
P

TS
T

R
E

A
M

⊢
(1

)
<
∶1

0
(1

)
V

A
LS

T
R

E
A

M
⊢
(1

)
valu

e

⊢
f
i
x

con
sin

cr
∶
(1

)

(d
)

-
D

erivatio
n

fo
r

n
at=

f
i
x

con
sin

cr

F
igu

re
3.16:E

xam
p

le
16

-
typ

in
g

d
erivatio

n
s

[31/10/16, 16:38]

3.2. TYPE SYSTEM 75

Example 16 (Natural numbers). In this example we implement the classic synchronous pro-
gram nat, which denotes the stream of natural numbers. We do it in an incremental way in
order to illustrate some features of the type system. The relevant typing derivations are given
in Figure 3.16—this time, the elided data types are all equal to int. Additionally, we do not
repeat identical or equivalent sub-derivations.

1. Consider the expression incr below.

incr
def= fun x.+(1,x)

This expression denotes a stream function which increments all the elements of its input
stream by one. A possible type for this function is (1)⊸ (1), as shown by the derivation
given in Figure 3.16 (a). This derivations shows a simple program with constants and the
application of an operator, here +.

2. The expression cons defined below denotes a higher-order function.

cons
def= fun f.fun x.merge 1(0) (0,f x)

This function receives a function f and a stream x. It applies f to x and adds a zero in front
of the resulting stream. One may give this function the type (0(1)⊸ 0(1))⊸ 0(1)⊸ (1)
with the corresponding derivation given in Figure 3.16 (b).

3. The expression consincr is the application of cons to incr.

consincr
def= cons incr

The function incr is of type (1)⊸ (1), but should be of type 0(1)⊸ 0(1) to match the
type of cons. This mismatch is solved through the use of a binary local time scale which
skips the first time step. This gives cons the proper type, as shown in Figure 3.16 (c).

4. Finally, the stream nat can be obtained as the fixpoint of consincr.

consincr
def= fix consincr

Since the output of this function does not depend instantaneously on its input, this is
safe. The derivation Figure 3.16 (d) shows the corresponding adaptability premise.

Example 17 (Composition). Suppose we are given derivations for two closed expressions that
denote functions. Furthermore, suppose that the first function, f , has type (2)⊸ (2), while
the second function, g , has type (3)⊸ (3). We discuss two ways in which f and g can be
composed using local time scales and, if needed, buffering. In this example, we elide rule
names and separation judgments in order to keep the size of derivations managable.

1. Figure 3.17 describes an approach where we use local time steps to assign to both f and g
the type (6)⊸ (6). To reach this type, f and g have to perform respectively three and
two local steps per global step. No buffering is needed, but in a circuit implementation
we have to replicate the bodies of f and g respectively three and two times.

[31/10/16, 16:38]

76 CHAPTER 3. LANGUAGE

⊢ ◻ ↓(2) ◻
. . .

⊢ g ∶ (3)⊸ (3)
⊢ (6) ↓(2) (3) ⊢ (3) ↑(2) (6)
⊢ (3)⊸ (3) ↑(2) (6)⊸ (6)

⊢ g ∶ (6)⊸ (6)

(A) - gathering g by (2)ω

⊢ ◻ ↓(2) ◻
. . .

⊢ f ∶ (2)⊸ (2)
⊢ (6) ↓(3) (2) ⊢ (2) ↑(3) (6)
⊢ (2)⊸ (2) ↑(3) (6)⊸ (6)

⊢ f ∶ (6)⊸ (6)

(B) - gathering f by (3)ω

. . .
(A)

⊢ g ∶ (6)⊸ (6)
. . .

(B)
⊢ f ∶ (6)⊸ (6)

⊢ ◻ value
x ∶ (6)⊢ x ∶ (6)

x ∶ (6)⊢ f x ∶ (6)
x ∶ (6)⊢ g (f x) ∶ (6)

⊢ fun x. g (f x) ∶ (6)⊸ (6)

(C) - composing f and g

Figure 3.17: Example 17 - first derivation

2. Now, if our functions contain expensive operators, such as multipliers, this may be too
costly. The derivation in Figure 3.18 shows a way to work around this problem. We
use local time scales again, but this time to slow down the functions. The function f
becomes twice as slow, now inhabiting (2 0)⊸ (2 0), and g becomes three times as slow,
now inhabiting (0 0 3)⊸ (0 0 3). The gain is that the output of f is now adaptable to
the input of g via a buffer of size two, since ⊢ (2 0) <∶0 (0 0 3). This buffer is periodically
empty: at every sixth step out of six all the stored data has been consumed.

Remark 10. We may take the derivation Figure 3.18 (C) and wrap it into a local time scale driven
by (6)ω. The gathering judgment below shows the type that is obtained through the RESCALE

rule.

⊢ (2 0)⊸ (0 0 3) ↑(6) (6)⊸ (6)

This is the same type as in Figure 3.17 (C). The underlying derivation still contains the adapt-
ability judgment introduced in Figure 3.18 (C), and the compiled code would thus contain a
buffer. But this buffer is now virtually useless, as it is always empty after each step.

[31/10/16, 16:38]

3.3. TYPED SEMANTICS 77

⊢◻ ↓(0 0 1) ◻
. . .

⊢ g ∶ (3)⊸ (3)
⊢ (0 0 3) ↓(0 0 1) (3) ⊢ (3) ↑(0 0 1) (0 0 3)

⊢ (3)⊸ (3) ↑(0 0 1) (0 0 3)⊸ (0 0 3)
⊢ g ∶ (0 0 3)⊸ (0 0 3)

(A) - gathering g by (0 0 1)ω

⊢◻ ↓(2) ◻
. . .

⊢ f ∶ (2)⊸ (2)
⊢ (2 0) ↓(1 0) (2) ⊢ (2) ↑(1 0) (2 0)

⊢ (2)⊸ (2) ↑(1 0) (2 0)⊸ (2 0)
⊢ f ∶ (2 0)⊸ (2 0)

(B) - gathering f by (1 0)ω

. . .

(A)

⊢ g ∶ (0 0 3)⊸ (0 0 3)

. . .

(B)

⊢ f ∶ (2 0)⊸ (2 0)
⊢◻ value

x ∶ (2 0)⊢ x ∶ (2 0)
x ∶ (2 0)⊢ f x ∶ (2 0) ⊢ (2 0) <∶0 (0 0 3)

x ∶ (2 0)⊢ f x ∶ (0 0 3)
x ∶ (2 0)⊢ g (f x)) ∶ (0 0 3)

⊢ fun x. g (f x) ∶ (2 0)⊸ (0 0 3)

(C) - composing f and g

Figure 3.18: Example 17 - second derivation

3.3 Typed Semantics

The semantics defined in Section 3.1 applies to all programs, typed or not. This semantics
gives meaning to programs of dubious behavior. We now define a typed semantics based on
the domain of clocked streams introduced in Chapter 2. This typed semantics can be seen as a
variant of the untyped semantics annotated with additional information; it models the fact
that every Kahn network corresponding to a well-typed term can be synchronized by putting
buffers on its inputs and outputs. We will then show that in such well-typed programs, all
clocked streams are total.

From a technical point of view, we achieve this by defining a type directed interpretation
function mapping typing derivations to their meanings. The untyped semantics relied on
a universal domain K in which all expressions are interpreted, regardless of their types. In
contrast, in the typed expression, a closed expression of type t is interpreted as an element of
the domain SJtK. This domain is defined by induction for t .

The typed semantics relies on four families of interpretation functions, all written SJ_K.
First, we map clock types to clocks. Then, we define the interpretation of types and contexts;
this mainly consists in mapping stream types to the domain of clocked streams. Once this
is done, we can express the semantics of typing derivation Γ ⊢ e ∶ t as a dependently-typed

[31/10/16, 16:38]

78 CHAPTER 3. LANGUAGE

map from the interpretation of Γ to the one of t . This function relies on an interpretation of
the adaptability, scattering and gathering judgments as coercions between their source and
destination types.

3.3.1 Types and Synchronization

Let us begin with the interpretation of types, and its relation with the universal domain K.
For any t , the domain SJtK is a retract of K. In other words, SJtK is “smaller” than K in the
sense that there exists an injection This makes it possible to compare the typed and untyped
semantics, and move between the two.

Interpreting types and contexts Any clock type ct denotes exactly one clock SJctK.

SJctK ∈ Ck
SJu(v)K = u(v)ω
SJct on ct′K = SJctK on SJct′K

We can now define the interpretation of types. A stream type dt ∶∶ ct is interpreted as the
domain CStreamSJctK(JdtK) of clocked stream, following Definition 11. Other type constructors
are interpreted in a standard way.

SJdt ∶∶ ctK = CStreamSJctK(JdtK)
SJt1⊗ t2K = SJt1K×SJt2K
SJt1⊸ t2K = SJt1K⇒c SJt2K

The interpretation of contexts is straightforward: they are conceptually (nested) pairs of
types, and thus correspond to products.

SJ◻K = ∅�
SJΓ, x ∶ tK = SJΓK×SJtK

The interpretation of a typing Γ ⊢ t is a function from Γ to t .

SJΓ ⊢ tK = SJΓK⇒c SJtK

Remark 11. The domain ∅�, which serves as the interpretation for empty context, is the “small-
est” domain (up to isomorphism), in the sense that there is a unique continuous function
from this domain to any other one. Because of this, for any domain D we have the isomor-
phism (∅�⇒c D) ≅D , and thus the definition above gives SJ◻ ⊢ tK ≅ SJtK. Thus, we sometimes
identify the two domains and treat an element of ◻ ⊢ t as one of t .

Synchronizing types Before defining the semantics of typed programs, we need to establish
that the domain interpretation of any type t can be injected into the universal domainK. We
already have our main ingredient, given in Section 2.9 and in particular by Property 16: the
domain of clocked streams is a retract of the domain of streams, which itself is a retract ofK.

[31/10/16, 16:38]

3.3. TYPED SEMANTICS 79

Thus we only have to show that e-p pairs compose and can be lifted to products and functions.
The definitions below give these constructions.

(B ⊲C)○(A ⊲B) ∈ A ⊲C
(e2, p2)○(e1, p1) = (e2 ○e1, p1 ○p2)

(A ⊲ A′)×(B ⊲B ′) ∈ (A×B) ⊲ (A′×B ′)
(e1, p1)×(e2, p2) = (e1×e2, p1×p2)

(A ⊲ A′)⇒c (B ⊲B ′) ∈ (A⇒c B) ⊲ (A′⇒c B ′)
(e1, p1)⇒c (e2, p2) = (λ f .p2 ○ f ○e1,λ f ′.e2 ○ f ′ ○p1)

These combinators make it possible to see the interpretations of all the types of µAS as retracts
of the universal domain. We call the corresponding family of e-p pairs (desync t ,sync t), and
define it as follows.

(desync t ,sync t) ∈ SJtK ⊲K
(desync dt ∶∶ ct ,sync dt ∶∶ ct) = (unpack,packSJctK)○(unstream,stream)
(desync t1⊗t2

,sync t1⊗t2
) = ((desync t1

,sync t1
)×(desync t2

,sync t2
))○(unprod,prod)

(desync t1⊸t2
,sync t1⊸t2

) = ((desync t1
,sync t1

)⇒ (desync t2
,sync t2

))○(unfun, fun)

Synchronizing contexts Now, we would like to have a family (desyncΓ,syncΓ) to move back-
and-forth between the domains SJΓK and Env(K). The natural definition is given below, by
induction over Γ.

(desyncΓ,syncΓ) ∈ (SJΓK⇒c Env(K))×(Env(K)⇒c SJΓK)
(desync◻,sync◻) = (λ_.�,λσ.�)
(desyncΓ,x∶t ,syncΓ,x∶t) = (λ(γ, v).(desyncΓγ)[x↦ desync t v],λσ.(syncΓσ,sync t(σx)))

Technically, (desyncΓ,syncΓ) is not an e-p pair since desyncΓ is not injective. To see
why, take Γ = x ∶ int ∶∶ (1), x ∶ int ∶∶ (1), in which case SJΓK is isomorphic to the product do-
main CStream(1)ω(N�)×CStream(1)ω(N�), and consider the following γ and σ.

γ ∈ SJΓK
γ = ([0]ω,[1]ω)

σ ∈ Env(K)
σ = �[y ↦ stream(2ω)][x↦ stream(1ω)]

We have syncΓ(desyncΓγ) = ([1]ω,[1]ω) which is not even comparable to γ, and thus the func-
tions do not form an e-p pair. On the other hand, the expected inequality desyncΓ(syncΓσ) =
�[stream(x↦ (1)ω)] ⊑σ still holds. More generally, the following result shows that the func-
tions satisfy only the second property of an e-p pair desyncΓ ○ syncΓ is only a deflation.

Property 20. For any Γ, desyncΓ ○ syncΓ is a deflation.

[31/10/16, 16:38]

80 CHAPTER 3. LANGUAGE

Proof. Let us first prove that the function desyncΓ ○ syncΓ ⊑ id by induction on Γ. The case for
empty contexts is immediate because � is minimal; for Γ, x ∶ t , we have, for any σ,

desyncΓ,x∶t(syncΓ,x∶tσ) = desyncΓ(syncΓσ)[x↦ desync t(sync tσ(x))] (def.)
⊑ desyncΓ(syncΓσ)[x↦σ(x)] (desync t ○sync t ⊑ id)
⊑ σ[x↦σ(x)] (ind. hyp.)
= σ

which concludes the proof that the function is smaller than id.
Now, we prove the stronger result that syncΓ ○desyncΓ ○ syncΓ = syncΓ by induction on Γ.

The case for empty contexts is once again immediate. The induction case is, for any σ,

syncΓ,x∶t(desyncΓ,x∶t(syncΓ,x∶tσ))
= (syncΓ(desyncΓ(syncΓσ)),sync t(desync t(sync tσ(x))) (def.)
= (syncΓσ,sync t(desync t(sync tσ(x))) (ind. hyp.)
= (syncΓσ,sync tσ(x)) (desync t ○ sync t = id)
= syncΓ,x∶tσ (def.)

and thus desyncΓ○syncΓ○desyncΓ○syncΓ = desyncΓ○syncΓ which concludes the proof that the
function is idempotent.

We will come back to this discrepancy between Env(K) and SJΓK once we have defined the
typed semantics. Let us mention that it is related to the fact that the untyped semantics follows
lexical scope by construction, as the definition of KJfun x.eK(σ) =λk.KJeKσ[x↦ k] overrides
any previous value for x present in σ, while for the typed semantics this is a result that needs
to be established.

Synchronizing typings The synchonization of typings establishes an e-p pair between the
domain of interpretation of typed programs, SJΓ ⊢ tK, and the domain of interpretation of
untyped programs, Env(K)⇒c K. This is built using the function space e-p pair.

(desyncΓ⊢t ,syncΓ⊢t) ∈ (SJΓ ⊢ tK⇒c (Env(K)⇒c K))×((Env(K)⇒c K)⇒c SJΓ ⊢ tK)
(desyncΓ⊢t ,syncΓ⊢t) = (desyncΓ,syncΓ)⇒c (desync t ,sync t)

As in the case of contexts, this family of functions gives rise to a deflation.

Property 21. For any Γ, desyncΓ⊢t ○ syncΓ⊢t is a deflation.

Proof. The proof is similar to the above case and general considerations on idempotents and
deflations. For instance, one has

desyncΓ⊢t ○ syncΓ⊢t = λ f .desyncΓ ○ sync t ○ f ○desyncΓ ○ syncΓ (def.)
⊑ λ f .desyncΓ ○ sync t ○ f (Property 20)
⊑ λ f . f (desync t ○sync t ⊑ id)

which shows that desyncΓ⊢t ○ syncΓ⊢t ⊑ id.

[31/10/16, 16:38]

3.3. TYPED SEMANTICS 81

SJΓ⊢ e ∶ tK

SJΓ⊢ e ∶ tK ∈ SJΓ ⊢ tK

SJΓ, x ∶ t ⊢ x ∶ tK
= πr

SJΓ, x ∶ t ′ ⊢ e ∶ tK
= SJΓ⊢ e ∶ tK○πl

SJΓ⊢ fun x.e ∶ t ⊸ t ′K
= λγ.λv.(SJΓ, x ∶ t ⊢ e ∶ t ′K(γ, v))

SJΓ⊢ e e′ ∶ t ′K
= λγ.(SJΓ1 ⊢ e ∶ t ⊸ t ′Kγ1(SJΓ2 ⊢ e ∶ tK γ2) where (γ1,γ2) = SJΓ⊢ Γ1⊗Γ2Kγ)

SJΓ⊢ (e1,e2) ∶ t1⊗ t2K
= (SJΓ1 ⊢ e1 ∶ t1K×SJΓ2 ⊢ e2 ∶ t2K) ○ SJΓ⊢ Γ1⊗Γ2K

SJΓ⊢ let (x, y) = e in e′ ∶ tK
= λγ.(SJΓ2, x ∶ t1, y ∶ t2 ⊢ e′ ∶ tK((γ2, v1), v2) where (γ1,γ2) = SJΓ⊢ Γ1⊗Γ2Kγ

(v1, v2) = SJΓ1 ⊢ e ∶ t1⊗ t2Kγ1)

SJΓ⊢ fix e ∶ t ′K
= λγ.fix (SJΓ⊢ e ∶ t ⊸ t ′Kγ○SJ⊢ t ′ <∶1 tK)

SJ◻⊢ s ∶ dtof (s) ∶∶ ctK
= sync◻⊢dtof (s) ∶∶ ct KJsK

SJ◻⊢ op ∶ (int ∶∶ ct)⊗(int ∶∶ ct)⊸ (int ∶∶ ct)K
= sync◻⊢(int ∶∶ ct)⊗(int ∶∶ ct)⊸(int ∶∶ ct) KJopK

SJ◻⊢ merge p ∶ (dt ∶∶ ct on p)⊗(dt ∶∶ ct on p)⊸ (dt ∶∶ ct)K
= sync◻⊢(dt ∶∶ ct on p)⊗(dt ∶∶ ct on p)⊸(dt ∶∶ ct) KJmerge pK

SJ◻⊢ when p ∶ (dt ∶∶ ct)⊸ (dt ∶∶ ct on p)K
= sync◻⊢(dt ∶∶ ct)⊸(dt ∶∶ ct on p) KJwhen pK

SJΓ⊢ e ∶ t ′K
= SJ⊢ t <∶k t ′K○SJΓ⊢ e ∶ tK

SJΓ⊢ e ∶ tK
= SJ⊢ t ′ ↑ct tK○SJΓ′ ⊢ e ∶ t ′K○SJ⊢ Γ ↓ct Γ

′K

Figure 3.19: Typed semantics - main function

[31/10/16, 16:38]

82 CHAPTER 3. LANGUAGE

3.3.2 Interpreting Typing Judgments

Interpreting typed expressions The typed semantics of expressions can be found in Fig-
ure 3.19. As expected, a derivation of conclusion Γ ⊢ e ∶ t is interpreted as an inhabitant
of SJΓ ⊢ tK, defined by induction on the structure of typing derivations. Each case of the
definition corresponds to a typing rule present in Figure 3.5.

1. We interpret the VAR rule as the second projection. This picks the rightmost component
of the input context, in accordance with the definition of SJΓ, x ∶ tK.

2. In contrast, the WEAKEN rule uses the left projection to remove the rightmost binding
in (the interpretation of) Γ.

3. The interpretation of FUN is currying.

4. The rule APP should be interpreted as application in the metalanguage of domains. There
is, however, a slight difficulty: the premises of the rule involve contexts different from the
one in its conclusion. We thus need to interpret the context splitting judgment Γ⊢ Γ1⊗Γ2

as a function from SJΓK to SJΓ1K and SJΓ2K. We give its definition in the next paragraph.

5. The rules PAIR and LETPAIR are similar to the previous one, except that we use pair
construction and destruction rather than application.

6. The FIX rule handles recursive definition using the fixpoint functional from Kleene’s
theorem. However, we need a way to transform an inhabitant of t ′ into an inhabitant of t .
We do this by interpreting the adaptability judgment ⊢ t ′ <∶0 t as a continuous function
from SJt ′K into SJtK. Its definition is given later in this section.

7. Consider the interpretation of the four rules CONST, OP, MERGE and WHEN. These rules
are syntax-directed, and were interpreted in Section 3.1 using dedicated combinators. We
would like to reuse this untyped interpretation in the typed semantics, or in other words
to turn an inhabitant ofK inside an element of SJΓ ⊢ tK. This can be done through the
functions (desyncΓ⊢t ,syncΓ⊢t) defined in the previous section. Since all four rules have
a conclusion of the form ◻⊢ e ∶ t and no premises, we interpret them as sync◻⊢t KJeK.

8. For the interpretation of the SUB rule we compose the interpretation of Γ⊢ e ∶ t with that
of the adaptability judgment ⊢ t <∶k t ′.

9. The final rule, RESCALE, also involves interpreting auxiliary judgments, here of gath-
ering/scattering. As in the case of adaptability, a judgment ⊢ t ↑ct t ′ or ⊢ t ↓ct t ′ will
be interpreted as an element of SJtK⇒c SJt ′K. The same is true for context scattering.
We give these interpretations later. Thus, we can interpret the RESCALE rule in three
steps. First, scatter the input γ inhabiting Γ into γ′ which inhabits Γ′, using SJ⊢ Γ ↓ct Γ′K.
Then, apply the interpretation of Γ′ ⊢ e ∶ t ′ to γ′. Finally, gather the resulting inhabitant
of t ′ into one of t ′, using SJ⊢ t ′ ↑ct tK. Hence we obtain a function in SJΓ ⊢ tK from one
int SJΓ′ ⊢ t ′K.

[31/10/16, 16:38]

3.3. TYPED SEMANTICS 83

SJΓ⊢ Γ1⊗Γ2K

SJΓ⊢ Γ1⊗Γ2K ∈ SJΓK⇒c SJΓ1K×SJΓ2K
SJ◻⊢ ◻⊗◻K = λ_.(�,�)
SJΓ, x ∶ t ⊢ Γ1, x ∶ t ⊗Γ2, x ∶ tK = λ(γ, v).((γ1, v),(γ2, v)) where (γ1,γ2) = SJΓ⊢ Γ1⊗Γ2K γ
SJΓ, x ∶ t ⊢ Γ1, x ∶ t ⊗Γ2K = λ(γ, v).((γ1, v),γ2) where (γ1,γ2) = SJΓ⊢ Γ1⊗Γ2K γ
SJΓ, x ∶ t ⊢ Γ1⊗Γ2, x ∶ tK = λ(γ, v).(γ1,(γ2, v)) where (γ1,γ2) = SJΓ⊢ Γ1⊗Γ2K γ

Figure 3.20: Typed semantics - context splitting judgment

SJ⊢ t <∶k t ′K

SJ⊢ t <∶k t ′K ∈ SJtK⇒c SJt ′K
SJ⊢ dt ∶∶ ct <∶k dt ∶∶ ct′K = repackSJct′K
SJ⊢ t1 ∶∶ t2 <∶k t ′1 ∶∶ t ′2K = SJ⊢ t1 <∶k t ′1K×SJ⊢ t2 <∶k t ′2K
SJ⊢ t1⊸ t2 <∶0 t ′1⊸ t ′2K = λ f .(SJ⊢ t2 <∶k t ′2K○ f ○SJ⊢ t ′1 <∶k t1K)

Figure 3.21: Typed semantics - adaptability judgment

Remark 12. The case of rules VAR, WEAKEN and LAMBDA correspond to the standard interpre-
tation of the λ-calculus in a cartesian-closed category. They can be found for instance in the
book of Amadio and Curien [1998, Chapter 4].

Remark 13. At this point, the reader may feel that this use of projections looks a bit mysterious.
Indeed, what happens if we use the wrong projection, or equivalently if we chose the wrong
type t? We will show later in this chapter that the elements obtained in this way are total,
showing that the types chosen are in fact far from arbitrary.

Interpreting context splitting The intepretation of the context splitting judgment is given
in Figure 3.20. For rule SEPEMPTY, we return a pair of unit values. For SEPLEFT, we take the
rightmost component of the input context and send it to the left output. This is reversed in the
case of rule SEPRIGHT. For rule SEPCONTRACT, we duplicate the rightmost component of the
input context and sends it to both outputs.

Interpreting adaptability The interpretation is given in Figure 3.21. For rule ADAPTSTREAM,
we rely on the ideas outlined in Section 2.6. The function repackw acts a coercion from arbitrary
clocked streams to clocked streams of clock w . The interpretation of rule ADAPTPROD handles
product by putting buffers in parallel. For rule ADAPTFUN we put buffers on the input and
output of the function inhabiting SJt1⊸ t2K to turn it into an inhabitant of SJt ′1⊸ t ′2K.

Interpreting gathering/scattering The interpretations of the gathering and scattering judg-
ments for types are given in Figure 3.22. They follow the intuitions given in Section 3.2.

[31/10/16, 16:38]

84 CHAPTER 3. LANGUAGE

SJ⊢ t ↑ct t ′K and SJ⊢ t ↓ct t ′K and SJ⊢ Γ ↓ct Γ′K

SJ⊢ t ↑ct t ′K ∈ SJtK⇒c SJt ′K
SJ⊢ dt ∶∶ ct′ ↑ct dt ∶∶ ct′′K = repackSJct′′K
SJ⊢ t1⊗ t2 ↑ct t ′1⊗ t ′2K = SJ⊢ t1 ↑ct t ′1K×SJ⊢ t2 ↑ct t ′2K
SJ⊢ t1⊸ t2 ↑ct t ′1⊸ t ′2K = λ f .(SJ⊢ t2 ↑ct t ′2K○ f ○SJ⊢ t ′1 ↓ct t1K)
SJ⊢ t ↑ct on ct′ t ′K = SJ⊢ t ′′ ↑ct t ′K○SJ⊢ t ↑ct′ t ′′K
SJ⊢ t ↑ct t ′K = SJ⊢ t ↓ct′ t ′K

SJ⊢ t ↓ct t ′K ∈ SJtK⇒c SJt ′K
SJ⊢ dt ∶∶ ct′ ↓ct dt ∶∶ ct′′K = repackSJct′K
SJ⊢ t1⊗ t2 ↓ct t ′1⊗ t ′2K = SJ⊢ t1 ↓ct t ′1K×SJ⊢ t2 ↓ct t ′2K
SJ⊢ t1⊸ t2 ↓ct t ′1⊸ t ′2K = λ f .(SJ⊢ t2 ↓ct t ′2K○ f ○SJ⊢ t ′1 ↑ct t1K)
SJ⊢ t ↓ct on ct′ t ′K = SJ⊢ t ′′ ↓ct′ t ′K○SJ⊢ t ↓ct t ′′K
SJ⊢ t ↓ct t ′K = SJ⊢ t ↑ct′ t ′K

SJ⊢ Γ ↓ct Γ′K ∈ SJΓK⇒c SJΓ′K
SJ⊢ ◻ ↓ct ◻K = λ_.�
SJ⊢ Γ, x ∶ t ↓ct Γ′, x ∶ t ′K = SJ⊢ Γ ↓ct Γ′K×SJ⊢ t ↓ct t ′K

Figure 3.22: Typed semantics - gathering/scattering judgment

1. Rules UPSTREAM and DOWNSTREAM handling stream types rely on the repackw func-
tion, as explained in Section 2.7: this function models both ordinary buffers and the
communication between a local time scale and the external world.

2. The rules for products (UPPROD and DOWNPROD) correspond to pairings, as always.

3. The interpretations of UPON and DOWNON shows that the composition of clocks give
rise to the composition of time scales and hence gather/scattering, as discussed in the
previous section.

4. For interpreting rule UPARROW, one makes the input enter the local time scale through
scattering, traverse the function, and finally go back to external time through gathering.

5. The interpretation of DOWNARROW is symmetric to the one of UPARROW.

Remark 14. We feel that this section justifies the (arguably high) level of formalism involved
in the definition of our type system. Once the interpretation of types has been defined, there
is very little freedom in the interpretation of each rule: for most cases in Figure 3.19 and Fig-
ure 3.22, there is only one well-typed possibility. This structured approach to program se-
mantics will also be convenient for stating and proving properties of the system in the next
section.

[31/10/16, 16:38]

3.3. TYPED SEMANTICS 85

SJΓ⊢ e ∶ tK
∶ SJΓ ⊢ tK

SJVAR(_) ∶∶∶ (Γ, x ∶ t ⊢ x ∶ t)K
= πr

SJWEAKEN(d ,_) ∶∶∶ (Γ, x ∶ t ′ ⊢ e ∶ t)K
= SJd ∶∶∶ (Γ⊢ e ∶ t)K○πl

SJFUN(d) ∶∶∶ (Γ⊢ fun x.e ∶ t ⊸ t ′)K
= λγ.λv.(SJd ∶∶∶ (Γ, x ∶ t ⊢ e ∶ t ′)K(γ, v))

SJAPP(d1,d2,d3) ∶∶∶ (Γ⊢ e e′ ∶ t ′)K
= λγ.(SJd2 ∶∶∶ (Γ1 ⊢ e ∶ t ⊸ t ′)Kγ1(SJd3 ∶∶∶ (Γ2 ⊢ e ∶ t) γ2)K where (γ1,γ2) = SJd1 ∶∶∶ (Γ⊢ Γ1⊗Γ2)Kγ)

SJPAIR(d1,d2,d3) ∶∶∶ (Γ⊢ (e1,e2) ∶ t1⊗ t2)K
= (SJd2 ∶∶∶ (Γ1 ⊢ e1 ∶ t1)K×SJd3 ∶∶∶ (Γ2 ⊢ e2 ∶ t2)K)○SJd1 ∶∶∶ (Γ⊢ Γ1⊗Γ2)K

SJLETPAIR(d1,d2,d3) ∶∶∶ (Γ⊢ let (x, y) = e in e′ ∶ t)K
= λγ.(SJd3 ∶∶∶ (Γ2, x ∶ t1, y ∶ t2 ⊢ e′ ∶ t)K((γ2, v1), v2) where (γ1,γ2) = SJd1 ∶∶∶ (Γ⊢ Γ1⊗Γ2)Kγ

(v1, v2) = SJd2 ∶∶∶ (Γ1 ⊢ e ∶ t1⊗ t2)Kγ1)

SJFIX(d1,d2,_) ∶∶∶ (Γ⊢ fix e ∶ t ′)K
= λγ.fix (SJd1 ∶∶∶ (Γ⊢ e ∶ t ⊸ t ′)Kγ○SJd2 ∶∶∶ (⊢ t ′ <∶1 t)K)

SJCONST() ∶∶∶ (◻⊢ s ∶ dtof (s) ∶∶ ct)K
= sync◻⊢dtof (s) ∶∶ ct KJsK

SJOP() ∶∶∶ (◻⊢ op ∶ (int ∶∶ ct)⊗(int ∶∶ ct)⊸ (int ∶∶ ct))K
= sync◻⊢(int ∶∶ ct)⊗(int ∶∶ ct)⊸(int ∶∶ ct)KJopK

SJMERGE() ∶∶∶ (◻⊢ merge p ∶ (dt ∶∶ ct on p)⊗(dt ∶∶ ct on p)⊸ (dt ∶∶ ct))K
= sync◻⊢(dt ∶∶ ct on p)⊗(dt ∶∶ ct on p)⊸(dt ∶∶ ct)KJmerge pK

SJWHEN() ∶∶∶ (◻⊢ when p ∶ (dt ∶∶ ct)⊸ (dt ∶∶ ct on p))K
= sync◻⊢(dt ∶∶ ct)⊸(dt ∶∶ ct on p)KJwhen pK

SJSUB(d1,d2) ∶∶∶ (Γ⊢ e ∶ t ′)K
= SJd1 ∶∶∶ (⊢ t <∶k t ′)K○SJd2 ∶∶∶ (Γ⊢ e ∶ t)K

SJRESCALE(d1,d2,d3) ∶∶∶ (Γ⊢ e ∶ t)K
= SJd3 ∶∶∶ (⊢ t ′ ↑ct t)K○SJd2 ∶∶∶ (Γ′ ⊢ e ∶ t ′)K○SJd1 ∶∶∶ (⊢ Γ ↓ct Γ

′)K

Figure 3.23: Interpretation of the typing judgment with explicit Church-style derivations

[31/10/16, 16:38]

86 CHAPTER 3. LANGUAGE

Remark 15. The notation used in Figures 3.19, 3.21, and 3.22 is abusive since there we identify
derivation trees with their conclusions. A more rigorous, but harder to read, formulation of
these interpretations would manipulate derivations as trees whose nodes are labeled with rule
names and judgments and whose sub-trees are other derivations. For example, the deriva-
tion d = VAR(d ′) corresponds to a derivation whose conclusion is an application to the VAR rule.
We write d ∶∶∶ (Γ, x ∶ t ⊢ x ∶ t) to indicate that the conclusion of the derivation d is Γ, x ∶ t ⊢ x ∶ t .
Because the VAR rule has a premise ⊢ Γ value, the derivation d has a sub-derivation d ′, and
furthermore we have d ′ ∶∶∶ (⊢ Γ value). A typing rule reflecting this information could be given
as follows.

VAREXPLICIT

d ′ ∶∶∶ (⊢ Γ value)
VAR(d) ∶∶∶ (Γ, x ∶ t ⊢ x ∶ t)

The interpretation of typing derivations adapted to this syntax is given in Figure 3.23. We will
generally adopt the more lightweight style used in this section when no confusion arises.

3.4 Metatheoretical Properties

In this section we study two important properties of the typed semantics, and derive a number
of useful corollaries. The first property is totality: typed programs only denote total streams.
In other words, programs do not deadlock. The second one relates the typed and untyped
semantics. We have seen that the interpretation of the stream-processing operators were
the synchronized versions of their untyped interpretation. This is in fact the case for the
interpretation of all typing rules, as we will show.

3.4.1 Totality

The rule FIX for fixpoints forces the outputs of the function to be 1-adaptable to its inputs; in
other words, one may only compute fixpoints of functions whose outputs never instantaneously
depend on their inputs. If the type system is sound, this should ensure that all streams
computed in a well-typed program are total. In particular, we should have the following.

Theorem (Stream Totality). Any closed well-typed expression of stream type denotes a total
clocked stream. More formally, for any e, data type dt and clock type ct, one has

SJ◻⊢ e ∶ dt ∶∶ ctK ⇓∞

We will prove this theorem by induction over typing derivations. The induction hypothesis
has to be generalized to non-stream types and non-empty contexts.

First try Let us try to define the proper induction hypothesis. We have to decide what it
means to be a total pair or a total function, in addition to total streams. A total pair is simply a
pair of total elements. On the other hand, a function is total if it maps total elements to total

[31/10/16, 16:38]

3.4. METATHEORETICAL PROPERTIES 87

xs ⇓∞
xs ⇓dt ∶∶ ct∞

x1 ⇓t1∞ x2 ⇓t2∞
(x1, x2) ⇓t1⊗t2∞

∀x ∈ SJt1K, x ⇓t1∞⇒ f (x) ⇓t2∞
f ⇓t1⊸t2∞

� ⇓◻∞
γ ⇓Γ∞ x ⇓t∞
(γ, x) ⇓Γ,x∶t∞

∀γ ∈ SJΓK,γ ⇓Γ∞⇒ f (γ) ⇓t∞
f ⇓Γ⊢t∞

Figure 3.24: Tentative totality predicate

xs ⇓n

xs ⇓dt ∶∶ ct
n

x1 ⇓t1
n x2 ⇓t2

n

(x1, x2) ⇓t1⊗t2
n

∀m ≤n,∀x ∈ SJt1K, x ⇓t1
m⇒ f (x) ⇓t2

m

f ⇓t1⊸t2
n

� ⇓◻n
γ ⇓Γn x ⇓t

n

(γ, x) ⇓Γ,x∶t
n

∀γ ∈ SJΓK,γ ⇓Γn⇒ f (γ) ⇓t
n

f ⇓Γ⊢t
n

Figure 3.25: Step-indexed totality predicate

elements. Formally, we will write x ⇓t∞ to express that x ∈ SJtK is total, and define this predicate
by induction on t . This notion extends to contexts Γ and typings Γ ⊢ t , treating contexts as
nested pairs and typings as functions. The corresponding predicate is presented as inference
rules in Figure 3.24.

Now, to obtain the totality for streams we should prove the more general result, stated using
the definitions above to package induction hypotheses in a type- and context-directed fashion.

Lemma (Totality). The interpretation of a typing derivation proving that an expression e has
type t in the context Γ satisfies the totality predicate. In other words, one has

SJΓ⊢ e ∶ tK ⇓Γ⊢t∞

This lemma is equivalent to Theorem 3.4.1 when e is a closed expression of stream type. To
see why, unfold the definition of the totality predicate ⇓⊢dt ∶∶ ct∞ .

Step-indexing Unfortunately, the previous totality predicate is not strong enough for the
proof to go through. The problem arises when trying to prove the totality lemma of the FIX

[31/10/16, 16:38]

88 CHAPTER 3. LANGUAGE

rule. To understand why, let us go back to Example 16. Consider the expressions consincr, of
type 0(1)⊸ (1), and nat, which is the fixpoint of consincr. Since this program is accepted, the
fixpoint in nat defines a total stream. But why?

The untyped semantics of consincr could be written as follows, following the conventions
used in Chapter 2.

consincr xs = 0.(incr xs)
incr (x.xs) = (x +1).(incr xs)

This function is non-strict: it maps � to the partial stream 0.�, and more generally a stream xs
converging up to n to 0.(incr xs) which converges up to n + 1. Its clock type reflects this
fact, expressing that consincr maps an integer stream converging up to n whose clock is
a prefix of 0(1)ω to an integer stream converging up to n whose clock is a prefix of (1)ω.
Since (1)ω <∶1 0(1)ω, the amount of data in the output stream increases strictly with each
approximation of the fixpoint, which is therefore total.

This information is not reflected in the totality predicate in Figure 3.24, which only expresses
properties of functions whose arguments are total streams. To solve this problem, we have
to reason explicitly about partial objects in the predicate. For streams, we already have the
partial, “up to n” predicate _ ⇓n which approximates the total convergence predicate _ ⇓∞,
given in Chapter 2. We lift it to functions and arrows in Figure 3.25. A pair converges up to n
if both of its components do. The case of functions is more subtle than before, forcing the
function to preserve convergence for all m smaller than the current n. This makes sure that a
function which converges up to n+1 converges up to n. Contexts and typings also have their
predicates, which are similar to that of products and functions. Finally, imitating the case of
streams, we define the total convergence predicate in terms of the partial one.

Definition 16 (Total Convergence). An inhabitant f of SJΓ ⊢ tK converges totally for the typ-
ing Γ ⊢ t when it converges partially up to all n for Γ ⊢ t .

f ⇓Γ⊢t∞
def= ∀n ∈N, f ⇓Γ⊢t

n

The proof We first establish useful properties on the convergence predicate. They are all
used for the proof of the totality lemma, and in particular for the fixpoint case.

Property 22. All inhabitants of a type t converge up to zero.

∀t ,∀x ∈ SJtK, x ⇓t
0

Proof. We proceed by induction on t .

• Case t = dt ∶∶ ct: immediate from Definition 2.

• Case t = t1⊗ t2: by induction hypotheses on t1 and t2.

• Case t = t1⊸ t2: take f ∈ SJt1⊸ t2K and x ∈ SJt1K. We have f x ⇓t2
0 by induction hypothesis,

and thus f ⇓t1⊸t2
0 .

[31/10/16, 16:38]

3.4. METATHEORETICAL PROPERTIES 89

Property 23. Convergence up to n+1 implies convergence up to n, and that for both types and
contexts.

∀n ∈N, ∀x ∈ SJtK, x ⇓t
n+1 ⇒ x ⇓t

n
∀n ∈N, ∀γ ∈ SJΓK, γ ⇓Γn+1 ⇒ γ ⇓Γn

Thus, for any x, n and m such that n ≤m and x ⇓t
m , we have x ⇓t

n .

Proof. Let us prove this lemma for types, the case of contexts being similar to that of products.
We proceed by induction on t .

• Case t = dt ∶∶ ct: immediate from Definition 2.

• Case t = t1⊗ t2: by induction hypotheses on t1 and t2.

• Case t = t1 ⊸ t2: take f ∈ SJt1⊸ t2K such that f ⇓t1⊸t2
n+1 . Let x be such that x ⇓t1

n . Be-
cause n ≤n+1, the fact that f converges up to n+1 implies f x ⇓t2

n . Thus f ⇓t1⊸t2
n .

Once this has been established the last part of the property is readily proved by induction on
the natural m.

Property 24. The convergence predicate for a type t is compatible with the order of the do-
main SJtK in the following sense.

∀t , ∀n, ∀x, y ∈ SJtK, x ⊑ y ∧ x ⇓t
n ⇒ y ⇓t

n

Proof. By induction on t .

• Case t = dt ∶∶ ct: immediate.

• Case t = t1⊗ t2: by induction hypotheses on t1 and t2.

• Case t = t1 ⊸ t2: take f , g ∈ SJt1⊸ t2K such that f ⇓t1⊸t2
n and f ⊑ g . Let x be such

that x ⇓t1
n . We have f x ⇓t2

n and, since f ⊑ g , f x ⊑ g x. The induction hypothesis on t2

gives g x ⇓t2
n .

We also need a characterization of the convergence of map2, when and merge. It will be
used in the corresponding cases of the proof.

Property 25. Given a scalar s ≠ � ∈S, we have

const s ⇓∞
Given a total function op and two streams xs and ys such that xs ⇓n and y s ⇓n , we have

map2 op xs ys ⇓n

Given streams w ≤ (1)ω, xs and ys such that w ⇓n , xs ⇓Ow(n) and y s ⇓n−Ow(n), we have

merge w (xs,ys) ⇓n

Given streams w ≤ (1)ω and xs such that w ⇓n and xs ⇓n , we have

when w x ⇓Ow(n)

[31/10/16, 16:38]

90 CHAPTER 3. LANGUAGE

Proof. Each proof is done by induction on n. The base case is always immediate since any
stream converges up to zero. The induction case for map2 is immediate. For when and merge,
reason by case on the head of w which is either 0 or 1 since w ≤ (1)ω.

We have seen in the previous section that the separation, adaptability, gathering/scattering
judgments denote continuous functions. Such functions obey convergence principles that are
used for the totality lemma. We detail the adaptability and gathering/scattering cases.

Lemma 5 (Totality, Separation Judgment). Let Γ, Γ1 and Γ2 be contexts and let γ be in SJΓK.
Take (γ1,γ2) = SJΓ⊢ Γ1⊗Γ2Kγ. For any n ∈N such that γ ⇓Γn , one has γ1 ⇓Γ1

n and γ2 ⇓Γ2
n .

Proof. Immediate by induction over typing derivations.

An adaptability derivation proving ⊢ t <∶k t ′ acts as a coercion between t and t ′ in the sense
that it describes a way to transform an inhabitant of t into one of t ′. The delay k describes the
amount of slack available between the producer and the consumer. Thus, the interpretation
of a k-adaptability constraint sends an inhabitant of t converging up to some n into one of t ′
converging up to n+k.

Lemma 6 (Totality, Adaptability Judgment). Let t and t ′ be types and x an inhabitant of t . For
any n ∈N such that x ⇓t

n , one has

SJ⊢ t <∶k t ′Kx ⇓t ′

n+k

Proof. By induction on typing derivations proving ⊢ t <∶k t ′.

• Case ADAPTSTREAM: the premise nf (ct) <∶k nf (ct′) implies SJctK <∶k SJctK. This means
in particular that OSJctK(i) ≥OSJct′K(i +k) for any i . Now, let x be such that x ⇓t

n for

some n. Property 8 andOSJctK(n) ≥OSJct′K(n+k) give SJ⊢ dt ∶∶ ct <∶k dt ∶∶ ctKx ⇓t ′

n+k .

• Case ADAPTPROD: immediate use of the induction hypotheses on t1 and t2 given the
definition of ⇓t1⊗t2

n .

• Case ADAPTARROW: given f ⇓t1⊸t2
n , we want to show SJ⊢ t1⊸ t2 <∶k t ′1⊸ t ′2K f ⇓t ′1⊸t ′2

n+k . As-

sume x ⇓t ′1
m with m ≤n+k. We have

x ∈ ⇓t ′1
m

SJ⊢ t ′1 <∶0 t1K x ∈ ⇓t1
m (ind. hyp. on ⊢ t ′1 <∶0 t1)

SJ⊢ t ′1 <∶0 t1K x ∈ ⇓t1
min(m,n) (Property 23)

(f ○SJ⊢ t ′1 <∶k t1K)x ∈ ⇓t2
min(m,n) (f ⇓t1⊸t2

n)

(SJ⊢ t2 <∶k t ′2K○ f ○SJ⊢ t ′1 <∶k t1K)x ∈ ⇓t2
min(m,n)+k

(ind. hyp. on ⊢ t2 <∶k t2)

(SJ⊢ t2 <∶k t ′2K○ f ○SJ⊢ t ′1 <∶k t1K)x ∈ ⇓t2
m+k ∩ ⇓

t2
n+k

(SJ⊢ t2 <∶k t ′2K○ f ○SJ⊢ t ′1 <∶k t1K)x ∈ ⇓t2
m (m ≤m+k and m ≤n+k)

Hence f ⇓t ′1⊸t ′2
n+k .

[31/10/16, 16:38]

3.4. METATHEORETICAL PROPERTIES 91

We now have to state an invariant for the gathering and scattering judgments. Chapter 2
gives the intuition in the case of streams with Property 10: the relation between the convergence
of inputs and outputs can be described using the cumulative function of the clock driving the
local time scale. Consider a time scale driven by a clock w .

• An element converging inside the time scale forOw(n) local steps may leave the time
scale via gathering, and the result converges for n global steps outside.

• Conversely, an element converging outside the time scale for n global steps may enter
the time scale via scattering, and the result converges forOw(n) time steps inside.

This is what the lemma below expresses formally.

Lemma 7 (Totality, Gathering and Scattering Judgments). Let t and t ′ be types, ct a clock type,
and x an inhabitant of t . For any n ∈N, one has

x ⇓t
n ⇒ SJ⊢ t ↓ct t ′Kx ⇓t ′

OSJctK(n)
and x ⇓t

OSJctK(n) ⇒ SJ⊢ t ↑ct t ′Kx ⇓t ′
n

Proof. By mutual induction over derivations proving ⊢ t ↑ct t ′ and ⊢ t ↓ct t ′. We prove rules in
the order they have been explained in the previous sections.

• Case UPSTREAM: taking xs ⇓dt ∶∶ ct′

OSJctK(n), by definition we have clock xs =OSJctK(n) SJct′K. The

premise gives SJctK on SJct′K = SJct′′K. We conclude by the second half of Property 10
that repackSJct′′K xs ⇓dt ∶∶ ct′′

n .

• Case DOWNSTREAM: the reasoning is similar to the previous case, this time using the first
half of Property 10.

• Case UPPROD and DOWNPROD: immediate use of the induction hypotheses on t1 and t2

given the definition of ⇓t1⊗t2
n .

• Case UPARROW: take f ⇓t1⊸t2
OSJctK(n) and x ⇓t ′1

m with m ≤n. Then

x ∈ ⇓t ′1
m

SJ⊢ t ′1 ↓ct t1K x ∈ ⇓t1
OSJctK(m) (ind. hyp. on ⊢ t ′1 ↓ct t1)

(f ○SJ⊢ t ′1 ↓ct t1K)x ∈ ⇓t2
OSJctK(m) (f ⇓t1⊸t2

OSJctK(n) andOSJctK(m) ≤OSJctK(n))

(SJ⊢ t2 ↑ct t ′2K○ f ○SJ⊢ t ′1 ↓ct t1K)x ∈ ⇓t ′2
m (ind. hyp. on ⊢ t2 ↑ct t ′2)

Hence f ⇓t ′1⊸t ′2
n .

[31/10/16, 16:38]

92 CHAPTER 3. LANGUAGE

• Case DOWNARROW: first, the premise ct ≤ (1) implies SJctK ≤ (1)ω, and thus that we

have OSJctK(i) ≤ i for any i . Take f ⇓t1⊸t2
n and x ⇓t ′1

m with m ≤OSJctK(n). Since SJctK is
binary, there exists n′ ≤n such that m =OSJctK(n′). Then

x ∈ ⇓t ′1
m

x ∈ ⇓t ′1
OSJctK(n′) (m =OSJctK(n′))

SJ⊢ t ′1 ↑ct t1K x ∈ ⇓t1
n′ (ind. hyp. on ⊢ t ′1 ↑ct t1)

(f ○SJ⊢ t ′1 ↑ct t1K)x ∈ ⇓t2
n′ (f ⇓t1⊸t2

n and n′ ≤n)
(SJ⊢ t2 ↓ct t ′2K○ f ○SJ⊢ t ′1 ↑ct t1K)x ∈ ⇓t2

OSJctK(n′) (ind. hyp. on ⊢ t2 ↓ct t ′2)

(SJ⊢ t2 ↓ct t ′2K○ f ○SJ⊢ t ′1 ↑ct t1K)x ∈ ⇓t2
m (m =OSJctK(n′))

Hence f ⇓t ′1⊸t ′2
OSJctK(n).

• Case UPON: take x ⇓t
OSJct on ct′K(n). Then

x ∈ ⇓t
OSJct on ct′K(n)

x ∈ ⇓t
OSJct′K(OSJctK(n)) (Property 9)

SJ⊢ t ↑ct′ t ′′K x ∈ ⇓t
OSJctK(n) (ind. hyp. on ⊢ t ↑ct′ t ′′)

(SJ⊢ t ′′ ↑ct tK○SJ⊢ t ↑ct′ t ′′K)x ∈ ⇓t
n (ind. hyp. on ⊢ t ′′ ↑ct t ′)

• Case DOWNON: take x ⇓t
n . Then

x ∈ ⇓t
n

SJ⊢ t ↓ct t ′′K x ∈ ⇓t
OSJctK(n) (ind. hyp. on ⊢ t ↓ct t ′′)

(SJ⊢ t ′′ ↓ct′ t ′K○SJ⊢ t ↓ct t ′′K)x ∈ ⇓t
OSJct′K(OSJctK(n)) (ind. hyp. on ⊢ t ′′ ↓ct′ t ′)

(SJ⊢ t ′′ ↓ct′ t ′K○SJ⊢ t ↓ct t ′′K)x ∈ ⇓t
OSJct on ctK(n) (Property 9)

• Case UPINV: take x ⇓t
OSJctK(n). Then

x ∈ ⇓t
OSJctK(n)

SJ⊢ t ↓ct′ t ′Kx ∈ ⇓t ′

OSJct′K(OSJctK(n)) (ind. hyp. on ⊢ t ↓ct t ′)

SJ⊢ t ↓ct′ t ′Kx ∈ ⇓t ′

OSJct on ct′K(n) (Property 9)

SJ⊢ t ↓ct′ t ′Kx ∈ ⇓t ′
n (ct on ct′ ≡ (1))

• Case DOWNINV: take x ⇓t
n . Then

x ∈ ⇓t
n

x ∈ ⇓t
OSJct on ct′K(n) (ct on ct′ ≡ (1))

x ∈ ⇓t
OSJct′K(OSJctK(n)) (Property 9)

SJ⊢ t ↑ct′ t ′Kx ∈ ⇓t ′

OSJctK(n) (ind. hyp. on ⊢ t ↑ct′ t ′)

[31/10/16, 16:38]

3.4. METATHEORETICAL PROPERTIES 93

which concludes the proof.

We can finally prove the main result, which we had already stated.

Lemma 8 (Totality, Typing Judgment). Let Γ be a context, t a type and e an expression. Then,
one has

SJΓ⊢ e ∶ tK ⇓Γ⊢t∞

Proof. By induction over typing derivations. The VAR, WEAKEN, LAMBDA, APP, PAIR and LET-
PAIR rules are straightforward, applying induction hypotheses and Lemma 5. Let us detail the
remaining cases, beginning with rules involving auxiliary judgments.

• Case FIX: assume γ ⇓Γn . Let us abbreviate SJΓ⊢ e ∶ t ⊸ t ′Kγ as f . The induction hypothesis
gives f ⇓t⊸t ′

n . The following intermediate lemma is the key argument for convergence
up to n.

Lemma.

∀m ≤n,(f ○SJ⊢ t ′ <∶1 tK)m� ⇓t ′
m

We proceed by induction on m. The base case is trivial by Property 22. For the induction
case m =m′+1, we have

(f ○SJ⊢ t ′ <∶1 tK)m′ � ∈ ⇓t ′

m′ (ind. hyp.)

(SJ⊢ t ′ <∶1 tK○(f ○SJ⊢ t ′ <∶1 tK)m′)� ∈ ⇓t
m′+1 (Lemma 6)

(f ○SJ⊢ t ′ <∶1 tK○(f ○SJ⊢ t ′ <∶1 tK)m′)� ∈ ⇓t ′

m′+1 (f ⇓t⊸t ′
n and m′+1 ≤n)

(f ○SJ⊢ t ′ <∶1 tK○(f ○SJ⊢ t ′ <∶1 tK)m′)� ∈ ⇓t ′
n

(f ○SJ⊢ t ′ <∶1 tK)m′+1� ∈ ⇓t ′

m′+1
(f ○SJ⊢ t ′ <∶1 tK)m� ∈ ⇓t ′

m (m =m′+1)

We deduce from this lemma that (f ○SJ⊢ t ′ <∶1 tK)n� ⇓t ′
n . Now, remember that we have

SJΓ⊢ fix e ∶ t ′K =fix (f ○SJ⊢ t ′ <∶1 tK) = ⊔
m∈N

(f ○SJ⊢ t ′ <∶1 tK)m�

which is by definition greater than (f ○SJ⊢ t ′ <∶1 tK)n� for the order of the domain SJt ′K.
We obtain SJΓ⊢ fix e ∶ t ′K ⇓t ′

n by Property 24.

• Case SUB: take γ ⇓Γn . Then

γ ∈ ⇓Γn
SJΓ⊢ e ∶ tK γ ∈ ⇓t

n (ind. hyp. on Γ⊢ e ∶ t)

(SJ⊢ t <∶k t ′K○SJΓ⊢ e ∶ tK)γ ∈ ⇓t ′

n+k (Lemma 6)
(SJ⊢ t <∶k t ′K○SJΓ⊢ e ∶ tK)γ ∈ ⇓t ′

n (Property 24)

[31/10/16, 16:38]

94 CHAPTER 3. LANGUAGE

• Case RESCALE: take γ ⇓Γn . Then

γ ∈ ⇓Γn
SJ⊢ Γ ↓ct Γ′K γ ∈ ⇓γ

′

OSJctK(n) (Lemma 7)

(SJΓ′ ⊢ e ∶ t ′K○SJ⊢ Γ ↓ct Γ′K)γ ∈ ⇓t ′

OSJctK(n) (ind. hyp. on Γ′ ⊢ e ∶ t ′)
(SJ⊢ t ′ ↑ct tK○SJΓ′ ⊢ e ∶ t ′K○SJ⊢ Γ ↓ct Γ′K)γ ∈ ⇓t

n (Lemma 7)

The remaining four cases correspond to the stream processing operators whose interpreta-
tions were defined using the terms of the untyped semantics through the family syncΓ⊢t of
projections. Yet, remember that their untyped semantics was defined in terms of embeddings
into K. We will first show that projections from syncΓ⊢t annihilate these embeddings—they
compose to the identity. The resulting functions converge as described by Property 25, and
use Property 4 and Property 5 to move between streams and clocked streams. We now detail
each case.

• Case CONST: by unfolding the definitions in the typed interpretation of this rule, we find

SJ◻⊢ s ∶ dtof (s) ∶∶ ctK = sync◻⊢dtof (s) ∶∶ ctKJopK
= λ_.sync dtof (dt) ∶∶ ct(stream(const s))
= λ_.packSJctK (const s)

Now, for any i we know that const s ⇓i by Property 25. In particular, const s ⇓OSJctK(n) for

any n. Hence, packSJctK (const s) ⇓OSJctK(n) by Property 4, and thus

(λ_.packSJctK (const s)) ⇓◻⊢dtof (s) ∶∶ ct
n

which is equivalent to the totality of rule CONST.

• Case OP: unfolding the e-p pairs again, we obtain

SJ◻⊢ op ∶ (int ∶∶ ct)⊗(int ∶∶ ct)⊸ (int ∶∶ ct)K
= sync◻⊢(int ∶∶ ct)⊗(int ∶∶ ct)⊸(int ∶∶ ct)KJopK
= λ_.(sync(int ∶∶ ct)⊗(int ∶∶ ct)⊸(int ∶∶ ct) f

where f = fun(stream○map2 JopK○(unstream×unstream)○unpair)
= λ_.packSJctK ○map2 JopK○(unpack ×unpack)

Now, suppose that we are given (xs,ys) ⇓(int ∶∶ ct)⊗(int ∶∶ ct)
n . Then

(xs,ys) ∈ ⇓(int ∶∶ ct)⊗(int ∶∶ ct)
n

(unpack×unpack) (xs,ys) ∈ ⇓OSJctK(n) × ⇓OSJctK(n)
(map2 JopK○(unpack×unpack))(xs,ys) ∈ ⇓OSJctK(n)

(packSJctK ○map2 JopK○(unpack×unpack))(xs,ys) ∈ ⇓int ∶∶ ct
n

Thus packSJctK ○map2 JopK○(unpack ×unpack) ⇓(int ∶∶ ct)⊗(int ∶∶ ct)⊸(int ∶∶ ct)
n for any nat-

ural number n, and the totality lemma is verified for this rule.

[31/10/16, 16:38]

3.4. METATHEORETICAL PROPERTIES 95

• Case MERGE: as before, we unfold the definitions and find

SJ◻⊢ merge p ∶ (dt ∶∶ ct on p)⊗(dt ∶∶ ct on p)⊸ (dt ∶∶ ct)K
= sync◻⊢(dt ∶∶ ct on p)⊗(dt ∶∶ ct on p)⊸(dt ∶∶ ct)KJmerge pK
= λ_.packSJctK ○merge JpK○(unpack×unpack)

Now, suppose that we are given (xs,ys) ⇓(dt ∶∶ ct on p)⊗(dt ∶∶ ct on p)
n . The premise p ≤ (1)

implies JpK ≤ (1)ω, which we will use below. Then

(xs,ys) ∈ ⇓(dt ∶∶ ct on p)⊗(dt ∶∶ ct on p)
n

(unpack×unpack) (xs,ys) ∈ ⇓OSJct on pK(n) × ⇓OSJct on pK(n)
(unpack×unpack) (xs,ys) ∈ ⇓OSJct on pK(n) × ⇓n−OSJct on pK(n)

(merge JpK○(unpack×unpack))(xs,ys) ∈ ⇓OSJctK(n)
(packSJctK ○merge JpK○(unpack×unpack))(xs,ys) ∈ ⇓dt ∶∶ ct

n

which concludes the proof of the totality lemma for rule MERGE.

• Case WHEN: we have

SJ◻⊢ when p ∶ (dt ∶∶ ct)⊸ (dt ∶∶ ct on p)K = sync◻⊢(dt ∶∶ ct)⊸(dt ∶∶ ct on p)KJwhen pK
= λ_.packSJct on pK ○when JpK○unpack

Now, suppose that we are given xs ⇓dt ∶∶ ct
n . As above, we have JpK ≤ (1)ω. Then

xs ∈ ⇓dt ∶∶ ct
n

unpack xs ∈ ⇓OSJctK(n)
(when JpK○unpack)xs ∈ ⇓OSJctK on JpK(n)

(packSJct on pK ○when JpK○unpack)xs ∈ ⇓dt ∶∶ ct on p
n

which concludes the proof of the totality lemma for rule WHEN.

This lemma is a key result on the type system and has a host of immediate consequences.
In particular, it implies that all the streams in a program are total, since they converge up to n
for any n. Coupled with the definition of the typed semantics, this proves that prefixes of clocks
play no role in the semantics of closed programs.

Theorem 4 (Weak Causality). For any closed expression e, data type dt and clock type ct,

SJ◻⊢ e ∶ dt ∶∶ ctK ⇓∞

Proof. Immediate by Lemma 8 and the definition of totality.

Theorem 5 (Soundness). For any closed expression e, data type dt and clock type ct,

clock SJ◻⊢ e ∶ dt ∶∶ ctK = SJctK

[31/10/16, 16:38]

96 CHAPTER 3. LANGUAGE

⊢ ◻ value
x ∶ (0 2)⊢ x ∶ (0 2)

⊢ fun x.x ∶ (0 2)⊸ (0 2)
⊢ (1) <∶0 (0 2) ⊢ (0 2) <∶0 0(1)
⊢ (0 2)⊸ (0 2) <∶0 (1)⊸ 0(1)

⊢ fun x.x ∶ (1)⊸ 0(1)

(a)

⊢ ◻ value
x ∶ (0)⊸ (1)⊢ x ∶ (0)⊸ (1)

⊢ 1(0) <∶0 (0) ⊢ (1) <∶0 (1)
⊢ (0)⊸ (1) <∶0 1(0)⊸ (1)

x ∶ (0)⊸ (1)⊢ x ∶ 1(0)⊸ (1)

(b)

Figure 3.26: Typing derivations where SJΓ⊢ e ∶ tK○ syncΓ ⊏ sync t ○KJeK

Proof. The definition of the typed semantics ensures that clock SJ◻⊢ e ∶ dt ∶∶ ctK ⊑ SJctK while
weak causality implies clock SJ◻⊢ e ∶ dt ∶∶ ctK ⇓∞. Because the left hand side is maximal in the
domain Ck, we obtain the equation above.

These results prove that clock types, which are syntactic objects, provide a precise descrip-
tion of the runtime behavior of clocked streams. In the next section we go one step further
however, and relate the typed semantics to the untyped one.

3.4.2 Correspondence Between Typed and Untyped Semantics

We have seen that the typed semantics for the dedicated stream-processing operators was
defined in a systematic manner through the use of e-p pairs (desync t ,sync t). We will now
show that this is no accident, and is in fact the case for all expressions. More precisely, we prove
the following result, which we call the Lax Coherence Lemma.

Lemma (Lax Coherence). For any expression e, context Γ and type t , one has

SJΓ⊢ e ∶ tK○ syncΓ ⊑ sync t ○KJeK (3.1)

Imprecise types Let us discuss briefly cases where inequality 3.1 is strict. First, in the case of
a closed expression whose type is a value, Lemma 8 ensures that the left-hand side is maximal
in the domain SJdt ∶∶ ctK, and thus that the two sides are equal. The inequality can only be strict
when the expression contains free variables or has a non-value type. We give two examples
where this actually happens.

Example 18. The typing derivation for the first example is given in Figure 3.4.2 (a). It assigns
to the identity function the type (0 2)⊸ (0 2), and then adapts it to the type (1)⊸ 0(1).

[31/10/16, 16:38]

3.4. METATHEORETICAL PROPERTIES 97

Here, the left-hand side of the inequality gives rise to a function which, applied to the partial
stream [42].�, computes the stream [].�.

SJ⊢ fun x.x ∶ (1)⊸ 0(1)K(sync◻�)([42].�)
= (sync 0(1) ○desync(0 2) ○ sync(0 2) ○desync(1))[42].�
= (sync 0(1) ○desync(0 2) ○ sync(0 2))42.�
= (sync 0(1) ○desync(0 2))[].�
= [].�

In contrast, the right-hand side maps the same stream to the strictly larger result [].[42].�.

(sync(1)⊸0(1) ○KJfun x.xK) � ([42].�) = (sync 0(1) ○desync(1))[42].�
= sync 0(1)42.�
= [].[42].�

Thus the typed semantics, applied to synchronized inputs, produces less outputs than the
synchronization of the typed semantics.

Example 19. The typing derivation for the second example is given in Figure 3.4.2 (b). It uses
the fact that (0)⊸ (0) is adaptable to 1(0)⊸ 1(0). Now, consider the following function hd:

hd ∈ Stream(V)⇒c Stream(V)
hd (x.xs) = x.�

which maps a stream to a non-� value if and only if this stream converges for at least one step.
Consider the environment σ = �[x ↦ fun(stream○hd ○unstream)]. Then, the left hand side
denotes the function λxs.�, as we show below.

SJx ∶ (0)⊸ 1(0)⊢ x ∶ 1(0)⊸ 1(0)K (desyncx∶(0)⊸1(0) σ)
= (sync 1(0)⊸1(0) ○desync(0)⊸1(0)) hd
= λxs.(sync 1(0) ○desync 1(0) ○hd ○ sync(0) ○desync 1(0)) xs
= λxs.(hd ○ sync(0) ○desync 1(0)) xs
= λxs.hd []ω
= λxs.�

In contrast, the right-hand side denotes the function given below.

sync 1(0)⊸1(0)(KJxKσ) = sync 1(0)⊸1(0) hd
= λxs.sync 1(0) (hd (desync 1(0) xs))
= λ([x]._).([x].�)

This function differs from λxs.� since, for instance, it maps [42].� to [42].�.

Observe that, in both examples, inequality 3.1 is strict in derivations that assign imprecise
types to the expressions involved. For instance, assigning the type (1)⊸ 0(1) to the identity
function in the first example is clearly sub-optimal—this type makes the first element of the
output stream falsely depend on the second element of the input stream. The same is true in
the second derivation.

[31/10/16, 16:38]

98 CHAPTER 3. LANGUAGE

γ ≡Γ ;S γ′

CTXEQEMPTY

� ≡◻ ;S �

CTXEQSAME

γ ≡Γ ;S γ
′

(γ, v) ≡Γ,x∶t ;S∪{x} (γ′, v)

CTXEQDIFF

γ ≡Γ ;S γ
′

(γ, v) ≡Γ,x∶t ;S∖{x} (γ′, v ′)

Figure 3.27: Context equivalence

Remark 16. The fact that the equality does not always hold comes from a defect in our typed
semantics. For any types t and t ′ such that ⊢ t <∶0 t ′ holds, we would like the following to hold.

(sync t ′ ○desync t , sync t ○desync t ′) ∶ SJtK ⊲ SJt ′K

This would confirm the intuition that “small” types characterize untyped computations in a
more precise way than “large” ones. Unfortunately, this does not hold, as Example 18 gives the
counter-example ⊢ (0 2)⊸ (0 2) <∶0 (1)⊸ 0(1). This comes from the fact that our semantics
is not strict enough. We discuss this defect more precisely in Section 6.2.

Scoping issues We shall now prove the Lax Coherence Lemma. Part of the result expresses
that the notion of scoping between the two languages coincide. The untyped semantics uses
environments, which enforce lexical scoping by construction since σ[x↦ v][x↦ v ′] is equal
to σ[x ↦ v ′]. On the other hand, the typed semantics manage the values of free variables
as tuples, with a derivation of x ∶ t , x ∶ t ⊢ x ∶ t interpreted as a binary function. If the typed
semantics is to respect lexical scope, the result of its interpretation should not depend on its
left argument since it corresponds to a binding of x that has been shadowed. More generally,
we shall prove that the result of SJΓ⊢ e ∶ tK depends only on the rightmost binding of each
variable in Γ.

This scoping issue comes from the fact that (desyncΓ,syncΓ) is not an e-p pair. While syncΓ○
desyncΓ holds, we do not have syncΓ ○desyncΓ in general. However, we prove that SJΓ⊢ e ∶ tK =
SJΓ⊢ e ∶ tK○ syncΓ ○desyncΓ holds. This equation expresses formally that the typed semantics
respects lexical scope.

To establish this result, we define an equivalence relation expressing that two inhabitants
of a given context are lexically identical, and prove that the typed semantics respect this result.

Definition 17 (Lexical equivalence). Given a context Γ and a finite set of variables S, the rela-
tion γ ≡Γ ;S γ′ between γ,γ′ ∈ SJΓK expresses that, for each variable x ∈ S, the values corresponding
to the rightmost binding in γ and in γ′ are the same. It is defined as an inductive system of rules
in Figure 3.27.

We now prove a series of technical properties on the relation that will serve as building
blocks for subsequent proofs.

Property 26. Given context Γ and finite set S ⊆Var, the relation ≡Γ ;S is an equivalence relation.

[31/10/16, 16:38]

3.4. METATHEORETICAL PROPERTIES 99

Property 27. Given context Γ, finite set S ⊆Var and inhabitants γ,γ′ ∈ SJΓK, one has

1. (γ, v) ≡Γ,x∶t ;S (γ′, v ′) and x /∈ S implies γ ≡Γ ;S γ′ for any v, v ′ ∈ SJtK;

2. (γ, v) ≡Γ,x∶t ;S (γ′, v ′) and x ∈ S implies v = v ′ for any v, v ′ ∈ SJtK;

3. (γ, v) ≡Γ,x∶t ;S (γ′, v ′) and x ∈ S implies γ ≡Γ ;S∖{x} γ′;

4. γ ≡Γ ;S γ′ implies γ ≡Γ ;S′ γ
′ for any S′ ⊆ S.

Proof. Each statement can be proved by induction over Γ. The first three are immediate, but
we detail the fourth one.

• Case ◻: immediate.

• Case Γ, x ∶ t : this case consists in proving (γ, v) ≡Γ,x∶t ;S′ (γ′, v ′), assuming (γ, v) ≡Γ,x∶t ;S

(γ′, v ′). We reason by case on whether x belongs to S and S′.

– Case x /∈ S: then x /∈ S′ since S′ ⊆ S. In this case the first statement gives γ ≡Γ ;S γ′, and
thus by induction hypothesis we have γ ≡Γ ;S′ γ

′. Since S′∖{x} = S′, we conclude by
rule CTXEQDIFF.

– Case x ∈ S: the second statement gives v = v ′ and γ ≡Γ ;S′′ γ
′ for some finite set S′′

such that S = S′′ ∪ {x}. Now, if x ∈ S′, then there is S′′′ such that S′ = S′′′ ∪ {x}
and S′′′ ⊆ S′. Thus the induction hypothesis gives γ ≡Γ ;S′′′ γ

′ and by rule CTX-
EQSAME and the fact that v = v ′ we get (γ, v) ≡Γ ;S′′∪{x} (γ′, v ′) and thus finish
with (γ, v) ≡Γ ;S′ (γ′, v ′). If x /∈ S′, we have S′ ⊆ S′′ and thus γ ≡Γ ;S′ γ

′. Since S′∖{x} =
S′, we conclude by rule CTXEQDIFF.

Property 28. For any Γ, γ,γ′ ∈ SJΓK, S and x /∈ dom(Γ), if γ ≡Γ ;S γ′ then γ ≡Γ ;S∪{x} γ′.

Proof. By induction over Γ.

• Case ◻: immediate.

• Case Γ, y ∶ t : we have (γ, v) ≡Γ,y ∶t ;S (γ′, v ′) and x ≠ y . Reason by case on whether y ∈ S.

– Case y /∈ S: by Property 27 (1) we have γ ≡Γ ;S γ′ and thus by induction γ ≡Γ ;S∪{x} γ′
since dom(Γ) ⊆ dom(Γ, y ∶ t). Rule CTXEQDIFF gives (γ, v) ≡Γ,y ∶t ;S∪{x}∖{y} (γ′, v ′)
which concludes the proof since y /∈ S and x ≠ y implies S ∪{x}∖{y} = S ∪{x}.

– Case y ∈ S: by Property 27 (2) and (3) we have v = v ′ and γ ≡Γ ;S∖{y} γ′. By induction
we have γ ≡Γ ;S∖{y}∪{x} γ′ and thus we can conclude by rule CTXEQSAME.

One important point is that while (desyncΓ,syncΓ) is not an e-p pair because syncΓ○desyncΓ
is not the identity in general, it is up to lexical equivalence. We establish this result proving an
intermediate lemma first.

Property 29. For any Γ, γ ∈ SJΓK, σ ∈ Env(K), v ∈K, S and x /∈ S such that γ ≡Γ ;S syncΓσ, we
have γ ≡Γ ;S syncΓσ[x↦ v].

[31/10/16, 16:38]

100 CHAPTER 3. LANGUAGE

Proof. By induction over Γ.

• Case ◻: immediate since sync◻σ[x↦ v] = � ≡◻ ;S � for any S.

• Case Γ, y ∶ t : we shall prove (γ, v ′) ≡Γ,y ∶t ;S (syncΓσ[x ↦ v],sync tσ[x ↦ v](y)) assum-
ing (γ, v ′) ≡Γ,y ∶t ;S (syncΓσ,sync tσ(y)). We will reason by case on whether y belongs
to S; notice that when it does not we have x ≠ y since x ∈ S.

– Case y /∈ S: then y /∈ S and by Property 27 (1) we have γ ≡Γ ;S syncΓσ and thus by in-
duction γ ≡Γ ;S syncΓσ[x↦ v]. Applying rule CTXEQDIFF, we get (γ, v ′) ≡Γ,y ∶t ;S∖{y}
(syncΓσ[x↦ v],sync tσ[x↦ v](y)) which concludes this case since S ∖{x} = S.

– Case y ∈ S: by Property 27 (2) and x ≠ y we have v ′ = sync tσ(y) = sync tσ[x ↦
v](y). Define S′ as S ∖{y}; we have γ ≡Γ ;S′ sync tσ by Property 27 (3), and thus by
induction γ ≡Γ ;S′ sync tσ[y ↦ v]. We conclude this case using rule CTXEQSAME.

Property 30. For any Γ, γ ∈ SJΓK and S, we have γ ≡Γ ;S syncΓ(desyncΓγ).

Proof. By induction over Γ.

• Case ◻: immediate since sync◻σ[x↦ v] = � ≡◻ ;S � for any S.

• Case Γ, x ∶ t : we have syncΓ,x∶t(desyncΓ,x∶t(γ, v)) = (syncΓ(desyncΓγ)[x ↦ desync t v], v)
and hence we shall prove (γ, v) ≡Γ,x∶t ;S (syncΓ(desyncΓγ)[x ↦ desync t v], v). Now, de-
fine S′ as S ∖{x}; by induction, we have γ ≡Γ ;S′ syncΓ(desyncΓσ). Thus, and since by
definition x /∈ S′, from Property 3.4.2 we deduce γ ≡Γ ;S′ syncΓ(desyncΓ)[x↦ v]. Applying
rule CTXEQSAME we obtain (γ, v) ≡Γ ;S′∪{x} (syncΓ(desyncΓ)[x↦ v], v) which concludes
the proof since S′∪{x} = S.

The next lemma shows that the typed semantics respects lexical equivalence and will be
instrumental in proving the Lax Coherence Lemma. As usual, we need to prove a series of
properties on auxiliary judgments.

Property 31. The interpretation of a separation judgment preserves lexical-relatedness. In
other words, given contexts Γ, Γ1, Γ2 and inhabitants γ,γ′ ∈ SJΓK, for any d ∶∶∶ (Γ⊢ Γ1⊗Γ2),
taking (γ1,γ2) = SJd ∶∶∶ (Γ⊢ Γ1⊗Γ2)Kγ and (γ′1,γ′2) = SJd ∶∶∶ (Γ⊢ Γ1⊗Γ2)Kγ′, then for any finite
set S, γ ≡Γ ;S γ′ implies

γ1 ≡Γ1 ;S γ
′
1 and γ2 ≡Γ1 ;S γ

′
2

Proof. By induction over typing derivations.

• Case SEPEMPTY: immediate, inhabitants of empty contexts are always lexically related.

• Case SEPCONTRACT: we prove (γi , v) ≡Γi ,x∶t ;S (γ′i , v ′) assuming (γ, v) ≡Γ,x∶t ;S (γ′, v ′). We
reason by case on whether x ∈ S.

– Case x /∈ S: we apply the induction hypothesis to obtain γi ≡Γi ;S γ
′
i . Through

rule CTXEQDIFF we have (γi , v) ≡Γi ;S∖{x} (γ′i , v ′) which concludes since S∖{x} = S.

[31/10/16, 16:38]

3.4. METATHEORETICAL PROPERTIES 101

– Case x ∈ S: we apply the induction hypothesis to obtain γi ≡Γi ;S∖{x} γ′i . By Prop-
erty 27 (2) we have v = v ′, hence by CTXEQSAME we have (γi , v) ≡Γi ;S∖{x}∪{x} (γ′i , v)
concluding the proof.

• Case SEPLEFT: we shall prove (γ1, v) ≡Γ1,x∶t ;S (γ′1, v ′) and γ2 ≡Γ2 ;S γ
′
2 assuming as be-

fore (γ, v) ≡Γ,x∶t ;S (γ′, v ′) and knowing x /∈ dom(Γ2). We reason by case on whether x ∈ S.

– Case x /∈ S: we apply the induction hypothesis to obtain γi ≡Γi ;S γ
′
i . As in the proof

of case SEPCONTRACT, we conclude (γ1, v) ≡Γ1,x∶t ;S (γ′1, v ′) using rule CTXEQD-
IFF (since S = S ∖{x}).

– Case x ∈ S: we apply the induction hypothesis to obtain γi ≡Γi ;S∖{x} γ′i . As be-
fore, by Property 27 (2) and rule CTXEQSAME we prove (γ1, v) ≡Γ1,x∶t ;S (γ′1, v ′). We
obtain γ2 ≡Γ2 ;S γ

′
2 using x /∈ dom(Γ2) and Property 28.

• Case SEPRIGHT: symmetric to SEPLEFT.

Property 32. For any Γ, Γ′, ct, d ∶∶∶ (⊢ Γ ↓ct Γ′), γ,γ′ ∈ SJΓK and S such that γ ≡Γ ;S γ′, one has

SJd ∶∶∶ (⊢ Γ ↓ct Γ
′)Kγ ≡Γ′ ;S SJd ∶∶∶ (⊢ Γ ↓ct Γ

′)Kγ′

Proof. The proof is immediate by induction over Γ and follows the usual pattern of reasoning
by case on whether x ∈ S for the case Γ, x ∶ t .

Lemma 9. For any Γ, e, t , d ∶∶∶ (Γ⊢ e ∶ t) and γ,γ′ ∈ SJΓK such that γ ≡Γ ;FV(e) γ′, one has

SJd ∶∶∶ (Γ⊢ e ∶ t)Kγ = SJd ∶∶∶ (Γ⊢ e ∶ t)Kγ′

Proof. We proceed by induction on the typing derivation p.

• Case VAR: we have (γ, v) ≡Γ,x∶t ;FV(x) (γ, v ′) and thus, since x ∈ FV (x), v = v ′ by Prop-
erty 27 (2). This proves SJΓ, x ∶ t ⊢ x ∶ tK(γ, v) = SJΓ, x ∶ t ⊢ x ∶ tK(γ′, v ′).

• Case WEAKEN: we have (γ, v) ≡Γ,x∶t ;FV(e) (γ, v ′) and thus, since x /∈ FV (e), γ ≡Γ ;FV(e) γ′
by Property 27 (1). We conclude applying the induction hypothesis.

• Case LAMBDA: we shall prove that for any v , one has

SJΓ⊢ fun x.e ∶ t ⊸ t ′K γ v = SJΓ⊢ fun x.e ∶ t ⊸ t ′K γ′ v
⇔ SJΓ, x ∶ t ⊢ e ∶ t ′K (γ, v) = SJΓ, x ∶ t ⊢ e ∶ t ′K (γ′, v)

We have γ ≡Γ ;FV(e)∖{x} γ′, hence by EQCTXSAME we obtain (γ, v) ≡Γ,x∶t ;FV(e) (γ′, v)
which is enough to conclude using the induction hypothesis.

• Case APP, PAIR and LETPAIR: all three cases are similar, we first apply Property 31 and
then induction hypotheses.

• Case FIX and SUB: we directly apply the induction hypothesis since γ and γ′ are passed
to the rest of the derivation without change.

[31/10/16, 16:38]

102 CHAPTER 3. LANGUAGE

• Case CONST, OP, MERGE and WHEN: immediate since the context is empty.

• Case RESCALE: we first apply Property 32 and then the induction hypothesis.

We can now combine Property 30 and Lemma 9 to prove that (desyncΓ,syncΓ) acts as an
e-p pair from the point of view of the typed semantics.

Lemma 10. For any Γ, e and t and d ∶∶∶ (Γ⊢ e ∶ t), one has

SJd ∶∶∶ (Γ⊢ e ∶ t)K = SJd ∶∶∶ (Γ⊢ e ∶ t)K○ syncΓ ○desyncΓ

This shows that the typed semantics follows lexical scoping rules, a result we will now use
to prove the Lax Coherence Lemma.

Lax Coherence We proceed as usual in order to establish the inequation explained before,
showing intermediate results on auxiliary judgments.

Property 33. For any Γ, Γ1 and Γ2, one has

SJΓ⊢ Γ1⊗Γ2K○ syncΓ = ⟨syncΓ1
,syncΓ2

⟩

Proof. Routine induction over derivations. Unfolding definitions and applying induction
hypotheses is enough to prove all four cases. For instance, case of SEPCONTRACT goes as

SJΓ, x ∶ t ⊢ Γ1, x ∶ t ⊗Γ2, x ∶ tK○ syncΓ,x∶t
= λσ.((γ1,sync tσ(x)),(γ2,sync tσ(x))) where (γ1,γ2) = SJΓ⊢ Γ1⊗Γ2K (syncΓσ)
= λσ.((syncΓ1

σ,sync tσ(x)),(syncΓ2
σ,sync tσ(x)))

= ⟨syncΓ1,x∶t ,syncΓ2,x∶t ⟩

Property 34. For any t , t ′ and k, one has

SJ⊢ t <∶k t ′K○ sync t ⊑ sync t ′

desync t ′ ○SJ⊢ t <∶k t ′K ⊑ desync t

Proof. First, remark that the first inequation actually implies the second since

SJ⊢ t <∶k t ′K○ sync t ⊑ sync t ′

⇒ desync t ′ ○SJ⊢ t <∶k t ′K○ sync t ⊑ desync t ′ ○ sync t ′ (desync t ′ ○_ continuous)
⇒ desync t ′ ○SJ⊢ t <∶k t ′K○ sync t ⊑ id (desync t ′ ○ sync t ′ ⊑ id)
⇒ desync t ′ ○SJ⊢ t <∶k t ′K ⊑ desync t (sync t ○desync t = id)

Thus we only prove the first by induction over derivations of the adaptability judgment.

• Case ADAPTSTREAM: one has

desync dt ∶∶ ct ○ sync dt ∶∶ ct ⊑ id ((desync t ,sync t) e-p pair)
⇒ sync dt ∶∶ ct′ ○desync dt ∶∶ ct ○ sync dt ∶∶ ct ⊑ sync dt ∶∶ ct′ (sync dt ∶∶ ct′ ○_ continuous)
⇔ SJ⊢ dt ∶∶ ct <∶k dt ∶∶ ct′K○ sync dt ∶∶ ct ⊑ sync dt ∶∶ ct′ (def. SJ⊢ dt ∶∶ ct <∶k dt ∶∶ ct′K)

[31/10/16, 16:38]

3.4. METATHEORETICAL PROPERTIES 103

• Case ADAPTPAIR: one has

SJ⊢ t1⊗ t2 <∶k t ′1⊗ t ′2K○ sync t1⊗t2

= (SJ⊢ t1 <∶k t ′1K×SJ⊢ t2 <∶k t ′2K)○ sync t1⊗t2
(def. SJ⊢ t1⊗ t2 <∶k t ′1⊗ t ′2K)

= (SJ⊢ t1 <∶k t ′1K○ sync t1
)×(SJ⊢ t2 <∶k t ′2K○ sync t2

) (def. sync t ′1⊗t ′2
)

⊑ sync t ′1
× sync t ′2

(ind. hyp.)

= sync t ′1⊗t ′2
(def. sync t ′1⊗t ′2

)

• Case ADAPTFUN: for any f ∈ SJt1⊸ t2K, one has

(SJ⊢ t1⊸ t2 <∶k t ′1⊸ t ′2K○ sync t1⊸t2
) f

= SJ⊢ t1⊸ t2 <∶k t ′1⊸ t ′2K(sync t2
○ f ○desync t1

) (def. sync t1⊸t2
)

= SJ⊢ t2 <∶k t ′2K○ sync t2
○ f ○desync t1

○SJ⊢ t ′1 <∶k t1K (def. SJ⊢ t1⊸ t2 <∶k t ′1⊸ t ′2K)
⊑ sync t ′2

○ f ○desync t ′1
(ind. hyp.)

= sync t ′1⊸t ′2
f (def. sync t ′1⊸t ′2

)

which uses the statement desync t1
○SJ⊢ t ′1 <∶k t1K ⊑ desync t ′1

proved above.

Property 35. For any t , t ′ and ct, one has

SJ⊢ t ↑ct t ′K○ sync t ⊑ sync t ′

SJ⊢ t ↓ct t ′K○ sync t ⊑ sync t ′

SJ⊢ Γ ↓ct Γ′K○ syncΓ ⊑ syncΓ′

Proof. By mutual induction on derivations of ⊢ t ↑ct t ′ and ⊢ t ↓ct t ′. The proof is routine.
Cases handling type formers, including UPSTREAM and DOWNSTREAM, can be proved as in the
previous property. We only detail some of the other cases.

• Case UPON: one has

SJ⊢ t ↑ct on ct′ t ′K○ sync t = SJ⊢ t ′′ ↑ct t ′K○SJ⊢ t ↑ct′ t ′′K○ sync t (def. SJ⊢ t ↑ct on ct′ t ′K)
⊑ SJ⊢ t ′′ ↑ct t ′K○ sync t ′′ (ind. hyp.)
⊑ sync t ′ (ind. hyp.)

All remaining cases are similar to the ones discussed above.

Property 36. For any type t , function f ∶K⇒c K and n ≥ 0, one has

(sync t⊸t f)n� ⊑ sync t(f n�)

Finally, as a last step before proving the Lax Coherence Lemma itself, we need a dedicated
property used in the case of fixpoints.

Property 37. For any type t and function f ∶K⇒c K, one has

fix (sync t⊸t f) ⊑ sync t(fix f)

[31/10/16, 16:38]

104 CHAPTER 3. LANGUAGE

Proof. Consider the predicate P(x) defined by x ⊑ sync t(fix f). It is admissible, and thus we
can use Scott induction. Now, for any x ∈K, assuming P(x) one has

(sync t⊸t f)x = (sync t ○ f ○desync t)x (def. sync t⊸t)
⊑ (sync t ○ f ○desync t ○ sync t)(fix f) (P(x)⇔ x ⊑ sync t(fix f))
⊑ (sync t ○ f)(fix f) (desync t ○ sync t ⊑ id)
= sync t(fix f) (f (fix f) =fix f)

and thus P((sync t⊸t f)x).

We now reach the final lemma stated in the beginning of this subsection. The proof will use
all the properties stated up to now.

Lemma 11 (Lax Coherence). For any Γ, e, t , one has

SJΓ⊢ e ∶ tK○ syncΓ ⊑ sync t ○KJeK

Proof. By induction on typing derivations of Γ⊢ e ∶ t .

• Case VAR: one has

SJΓ, x ∶ t ⊢ x ∶ tK○ syncΓ,x∶t
= λσ.SJΓ, x ∶ t ⊢ x ∶ tK(syncΓσ,sync tσ(x)) (def. syncΓ,x∶t)
= λσ.sync tσ(x) (def. SJΓ, x ∶ t ⊢ x ∶ tK)
= sync t ○λσ.σ(x)
= sync t ○KJxK (def. KJxK)

• Case WEAKEN: one has

SJΓ, x ∶ t ⊢ e ∶ t ′K○ syncΓ,x∶t = SJΓ⊢ e ∶ t ′K○πl ○ syncΓ,x∶t (def. SJΓ, x ∶ t ⊢ x ∶ tK)
= SJΓ⊢ e ∶ t ′K○ syncΓ (def. syncΓ,x∶t)
⊑ sync t ○KJeK (ind. hyp.)

• Case LAMBDA: one has

SJΓ⊢ fun x.e ∶ t ⊸ t ′K○ syncΓ
= λσ.λv.SJΓ, x ∶ t ⊢ e ∶ t ′K(syncΓσ, v) (def.)
= λσ.λv.(SJΓ, x ∶ t ⊢ e ∶ t ′K○ syncΓ,x∶t ○desyncΓ,x∶t)(syncΓσ, v) (Lemma 10)
⊑ λσ.λv.(sync t ′ ○KJeK)(desyncΓ(syncΓσ))[x↦ desync t v] (ind. hyp., def.)
= (λσ.λv.(sync t ′ ○KJeK)σ[x↦ desync t v]))○desyncΓ ○ syncΓ
⊑ λσ.λv.(sync t ′ ○KJeK)σ[x↦ desync t v] (Property 20)
= sync t⊸t ′ ○λσ.λv.KJeKσ[x↦ v] (def.)
= sync t⊸t ′ ○KJfun x.eK (def.)

[31/10/16, 16:38]

3.4. METATHEORETICAL PROPERTIES 105

• Case APP: one has

SJΓ⊢ e e′ ∶ t ′K○ syncΓ
= λσ.SJΓ1 ⊢ e ∶ t ⊸ t ′Kγ1(SJΓ2 ⊢ e′ ∶ tKγ2)

where (γ1,γ2) = SJΓ⊢ Γ1⊗Γ2K(syncΓσ)
(def. SJΓ⊢ e e′ ∶ t ′K)

= λσ.SJΓ1 ⊢ e ∶ t ⊸ t ′K(syncΓ1
σ)(SJΓ2 ⊢ e′ ∶ tK(syncΓ2

σ)) (Property 35)
⊑ λσ.(sync t⊸t ′ ○KJeK)σ((sync t ○KJe′K)σ) (ind. hyp.)
= λσ.sync t ′(KJeKσ((desync t ○ sync t)(KJe′Kσ))) (def. sync t⊸t ′)
⊑ λσ.sync t ′(KJeKσ(KJe′Kσ)) (desync t ○ sync t ⊑ id)
= sync t ′ ○KJe e′K (def. KJe e′K)

• Case PAIR: one has

SJΓ⊢ (e1,e2) ∶ t1⊗ t2K○ syncΓ
= (SJΓ1 ⊢ e1 ∶ t1K×SJΓ2 ⊢ e2 ∶ t2K)○SJΓ⊢ Γ1⊗Γ2K○ syncΓ (def. SJΓ⊢ (e1,e2) ∶ t1⊗ t2K)
= (SJΓ1 ⊢ e1 ∶ t1K×SJΓ2 ⊢ e2 ∶ t2K)○ ⟨syncΓ1

,syncΓ2
⟩ (Property 33)

= ⟨SJΓ1 ⊢ e1 ∶ t1K○ syncΓ1
,SJΓ2 ⊢ e2 ∶ t2K○ syncΓ2

⟩
⊑ ⟨sync t1

○KJe1K,sync t2
○KJe2K⟩ (ind. hyp.)

= sync t1⊗t2
○ ⟨KJe1K,KJe2K⟩ (def. sync t1⊗t2

)
= sync t1⊗t2

○KJ(e1,e2)K (def. KJ(e1,e2)K)

• Case LETPAIR: the proof is a straightforward if tedious variation on the case of LAMBDA

and PAIR, combining Property 33 and Lemma 10 with the induction hypothesis. We leave
it to the brave reader.

• Case FIX: one has

SJΓ⊢ fix e ∶ tK○ syncΓ
= λσ.fix ((SJΓ⊢ e ∶ t ⊸ t ′K(syncΓσ))○SJ⊢ t ′ <∶1 tK) (def. SJΓ⊢ fix e ∶ tK)
⊑ λσ.fix ((sync t⊸t ′(KJeKσ))○SJ⊢ t ′ <∶1 tK) (ind. hyp.)
⊑ λσ.fix (sync t ′ ○(KJeKσ)○desync t ○SJ⊢ t ′ <∶1 tK) (def. sync t⊸t ′)
⊑ λσ.fix (sync t ′ ○(KJeKσ)○desync t ′) (Property 34)
= λσ.fix (sync t ′⊸t ′(KJeKσ)) (def. sync t ′ t

′)
⊑ λσ.fix (sync t ′⊸t ′(KJeKσ)) (def. sync t ′ t

′)
⊑ λσ.sync t(fix (KJeKσ)) (Property 37)
= sync t ○KJfix eK (def. KJfix eK)

• Case CONST, OP, MERGE and WHEN: theses cases are immediate because their interpre-
tation is of the form SJ◻⊢ e ∶ tK = sync◻⊢t KJeK by definition.

• Case SUB: one has

SJΓ⊢ e ∶ t ′K○ syncΓ = SJ⊢ t <∶k t ′K○SJΓ⊢ e ∶ tK○ syncΓ (def. SJΓ⊢ e ∶ t ′K)
⊑ SJ⊢ t <∶k t ′K○ sync t ○KJeK (ind. hyp.)
⊑ sync t ′ ○KJeK (Property 34)

[31/10/16, 16:38]

106 CHAPTER 3. LANGUAGE

• Case RESCALE: one has

SJΓ⊢ e ∶ tK○ syncΓ = SJ⊢ t ↑ct t ′K○SJΓ′ ⊢ e ∶ t ′K○SJ⊢ Γ ↓ct Γ′K○ syncΓ (def. SJΓ⊢ e ∶ t ′K)
⊑ SJ⊢ t ↑ct t ′K○SJΓ′ ⊢ e ∶ t ′K○ syncΓ′ (Property 35)
⊑ SJ⊢ t ↑ct t ′K○ sync t ′ ○KJeK (ind. hyp.)
⊑ sync t ○KJeK (Property 35)

which concludes the proof.

We conclude this section with some remarkable high-level corollaries of the Lax Coherence
and Totality lemmas.

Theorem 6 (Synchronization). For any closed expression e of stream type, one has

SJ◻⊢ e ∶ dt ∶∶ ctK� = sync dt ∶∶ ct(KJeK�)

Proof. From Lemma 11 we know that the left-hand side is smaller than the right-hand one,
and from Theorem 4 that it is total. Since in the domain SJdt ∶∶ ctK total elements are maximal,
the left-hand side is maximal and hence equal to the right-hand side.

Theorem 7 (Strong Causality). Take a closed expression e such that there exists a clock type ct
with rate(SJctK) > 0 and a derivation of ◻⊢ e ∶ dt ∶∶ ct. Then, stream (KJeK�) is total.

Proof. Let us write k for KJeK� and s for SJ◻⊢ e ∶ dt ∶∶ ctK�. From Theorem 6 and the fact that ct
has a strictly positive rate, we have k = desync dt ∶∶ ct s and thus

stream k = stream (desync dt ∶∶ ct s)
= (stream○unstream○unpack)s
= unpack s

which is total since s is and rate(SJctK) > 0.

3.5 Discussion

We finish the chapter with a discussion of alternative presentations of the semantics, and a
comparison with existing synchronous languages.

3.5.1 Improving the Typed Semantics

Domain theory provides a fixpoint operator for any function of a given domain into itself
and thus was a natural way to define the semantics of untyped programs, where we need to
make sense of arbitrary recursive definitions. In contrast, using domain theory for the typed
semantics is debatable. On the one hand, it makes it easy to state results such as Lemma 11
since the untyped and typed theorems refer to objects living inside the same category. On the
other hand, typed programs are better behaved than untyped one, yet the typed semantics

[31/10/16, 16:38]

3.5. DISCUSSION 107

does not reflect this fact natively. For instance, we have had to prove explicitly that well-typed
programs correspond to total elements of a domain (Lemma 8). We would like this fact to be
true by construction in a better semantic setting.

An alternative would be to have a typed semantics where partial streams do not exist. It
should be possible to provide such a semantics in complete ultrametric spaces (see, for exam-
ple, Krishnaswami and Benton [2011]), or in the topos of trees ω̂, using recent work of Birkedal
et al. [2012]. All streams would be infinite/total by definition and recursive definitions would
be explained using Banach’s fixed point theorem or the existence of fixpoints in ω̂ rather than
Kleene’s fixpoint theorem.

3.5.2 Causality

The synchronous setting involves two distinct time scales. The first one is the ambient global
time scale, which is the successive time steps between which buffering is needed. Then
there is the less apparent but nevertheless important internal time scale, in which the actual
computations occur, during a time step.

In traditional synchronous programming languages, each time scale is controlled by a
separate static analysis. The global time scale is governed by clock types, which check the
consistency of buffering between time steps. The internal time scale is governed by the causality
analysis, which checks that the computations performed during a time step terminate, and
thus that time actually passes. We argue that this separation, while simple to implement,
actually limits our understanding and hampers the design of better languages and compilers.

Consider the Lucy-n program given in Figure 3.28 (a). It defines two recursive binary stream
variables x and y. The first variable denotes the periodic stream (0 1)ω while the second one
denotes its negation (1 0)ω. What matters here is that the computation of the elements of odd
rank of x depends on the elements of odd rank of y , but that this dependence is reversed for
elements of even rank. The buffer operator marks an explicit application of the SUB rule.

The pair (x,y) admit several valid clock types in Lucy-n. A first possibility is (1)⊗(1), which
corresponds to the chronogram given in Figure 3.28 (b). Vertical bars correspond to separate
time steps and arrows to data dependencies. The chronogram shows that dependencies during
a time step alternate: at even time steps x depends on y and conversely at odd time steps.
Following the tradition set by Lucid Synchrone, Lucy-n uses a causality analysis based on
the absence of cycles in the syntactic instantaneous dependence graph, which does not take
clocks into account. Thus, here the graph is cyclic, and this program is rejected. Another valid
type is (1 0 0 1)⊗(0 1 1 0), which corresponds to the chronogram given in Figure 3.28 (c). In
contrast with the first one, it is accepted by the causality analysis of Lucy-n since dependencies
alternate but always cross a time step, making the syntactic instantaneous dependence graph
acyclic. Nevertheless, this type has a lower throughput than (1)⊗(1).

This example readily translates to µAS. It takes the form of a function twohalvesbody. Its
fixpoint corresponds to the output of twohalves. The corresponding code is given in Fig-
ure 3.28 (e). While the type

(1)⊗(1)⊸ (1)⊗(1)

[31/10/16, 16:38]

108 CHAPTER 3. LANGUAGE

let node twohalves () = (x, y) where
rec x = merge (10) false (not buffer (y when (01)))
and y = merge (10) (not buffer (x when (10))) false

(a) - Example code

x 0 1 0 1 0 1 0 1

y 1 0 1 0 1 0 1 0

(b) - Chronogram and dependencies for x ∶∶ (1) and y ∶∶ (1)

x 0 . . 1 0 . . 1

y . 1 0 . . 1 0 .

(c) - Chronogram and dependencies for x ∶∶ (1 0 0 1) and y ∶∶ (0 1 1 0)

x 0 . . 1 0 . . 1

y . 1 0 . . 1 0 .

(d) - Chronogram and dependencies for x ∶∶ (1) and y ∶∶ (1) rescaled by (2)ω

twohalvesbody = fun z.let (x,y) = z in (merge (1 0) 0 (not (when (0 1) y),
merge (1 0) (not (when (1 0) x) 0))

twohalves = fix twohalvesbody

(e) - Translation to µAS

Figure 3.28: Lucy-n program - clock-dependent causality

[31/10/16, 16:38]

3.6. BIBLIOGRAPHIC NOTES 109

is valid for twohalvesbody, it makes twohalves ill-typed because the adaptability constraint of
rule FIX cannot be satisfied. As for Lucy-n, assigning the type

0(1 0 0 1)⊗(0 0 1 1)⊸ (1 0 0 1)⊗(0 1 1 0)

to twohalvesbody makes it possible to accept twohalves with the type (1 0 0 1)⊗(0 1 1 0) since
the 1-adaptability relation

⊢ (1 0 0 1)⊗(0 1 1 0) <∶1 0(1 0 0 1)⊗(0 0 1 1)

then holds. As explained before, this type has sub-optimal throughput; yet, in µAS, we can add
a local time scale driven by the clock type (2) to recover the first type. This corresponds to the
chronogram of Figure 3.28 (d). Dashed boxes show how local time steps are now aggregated to
give the same observable behavior as in Figure 3.28 (b). We will see in the next chapter that
such a program does not necessitate any particular treatment during code generation.

This example shows that in Lucy-n clock types influence the causality analysis, which is
problematic when the two analyses are completely separate. Here the type inference engine
makes a choice that leads to rejection later in the compilation process. To accept the first type
requires enriching both the clock type inference engine and causality analysis of Lucy-n, as
well as intra-step scheduling and code generation. In contrast, using local time scales and
integer clocks one may, at least in theory, avoid complex intra-step causality conditions and
rely on clock typing instead.

3.6 Bibliographic notes

We now briefly discuss related work and models that were not touched upon in Section 2.11.

n-Synchrony The language presented in this chapter is an extension of Lucy-n, proposed
by Mandel, Plateau, and Pouzet [2010], which takes place in the n-synchronous framework
of Cohen et al. [2006].2 The most complete description of Lucy-n to date can be found in the
PhD dissertation of Plateau [2010]. Up to now this line of work has focused on solving difficult
type inference questions and comparatively little attention has been paid to the semantics
and properties of the type system. This thesis intends to remedy this gap. In particular, to
our knowledge this is the first time a result relating the typed and untyped semantics for an
n-synchronous language has been stated or proven.

Another salient feature of the language is the integration of several static analyses that have
traditionally been disjoint in synchronous functional languages: clock typing, initialization
analysis and causality analysis. We will discuss this point in detail in Chapter 6; let us briefly
mention that we consider the integration of causality analysis and clocking is feasible only
because local time scales make the distinction between global time steps and the unfolding of
dependencies inside a time step.

2Strictly speaking, the language is not a superset of Lucy-n since clock polymorphism and node reuse are
missing. These points will be discussed in Chapter 5.

[31/10/16, 16:38]

110 CHAPTER 3. LANGUAGE

Local time scales In the binary case, a restricted form of local time scales is already present in
other synchronous functional languages. Local time scales driven by binary clocks correspond
to wrapping a block of code inside a conditional statement. Such a construction has been used
as an optimization during the compilation process, as discussed in the PhD thesis of Raymond
[1991] and, later, in the paper of Biernacki et al. [2008]. They can also be seen as activation
conditions [Halbwachs, 2005] checked by the clock type system. The multiclock extension of
Esterel v7 [Esterel Technologies, 2005, Chapters 13 and 14] offers constructions roughly similar
to activation conditions, but integrated at the module level.

It is, to our knowledge, the first time a general local time scale construction has been
proposed for a functional synchronous language. There is, however, an existing concept which
is very close and in fact partly inspired our work: the notion of reactive domain proposed by
Pasteur [Pasteur, 2013; Mandel et al., 2010] in the setting of ReactiveML.

ReactiveML [Mandel and Pouzet, 2005] is a general-purpose functional language which
offers primitives originating from the synchronous model. It is more expressive than languages
à la Lustre, at the expense of relying on unbounded data-structures and dynamic memory
management. Reactive domains provided the inspiration for our local time scales: they fuse
several reactions of a block of code into one macro-reaction, making this macro-reaction
appear atomic to the outside world. Pasteur also introduces an abstract notion of clock, quite
different from ours: in his setting, a clock is an abstract name identifying a domain. Such clocks
serve dual roles: first, the programmer explicitly manipulates them to control the speed at
which a domain executes relatively to the external world; second, they provide the basis for a
custom clock type system preventing domain-local signals to escape their domain.

The differences between local time scales and reactive domains reflect the philosophical
differences between functional synchronous languages such as Lucid Synchrone or Lucy-n on
the one hand and ReactiveML on the other. Functional synchronous languages offer strong
guarantees, including static memory bounds; local time scales preserve this fact thanks to the
static information contained in clock types. The price to pay is the restricted expressiveness
of the language; for instance, none of these are Turing-complete. ReactiveML in general and
reactive domains in particular do not provide such guarantees, but are much less restrictive;
for instance, the amount of internal steps a domain performs is not fixed outright but depends
on a dynamic condition which is determined on the fly.

Semantics of programming languages Our approach to the semantics of the language can
be traced back to several sources. We used elementary domain theory as explained in Chap-
ter 2. The other main ingredient is the definition of the typed semantics as a dependently
typed map from typing derivations to some semantic setting. This idea comes from several
sources, including the already mentioned paper of Reynolds [2000] on subtyping, or the older
realizability literature; let us also mention more practically-minded work on the representation
of typed terms in dependent type theory [Benton et al., 2012].

The total and partial convergence predicates we used to prove the absence of deadlocks are
example of a unary logical relation, also called a realizability predicate. Logical relations and
realizability are classic tools in the metatheoretical study of programming language semantics

[31/10/16, 16:38]

3.6. BIBLIOGRAPHIC NOTES 111

and computational logic [Van Oosten, 2008; Girard, 1987]. In the unary case, a realizability
predicate defines the set of realizers for a type, which are in a sense good inhabitants of the type,
for whatever notion of goodness one is interested in—in our case, realizers are total elements
of the domain SJtK. One says that a program realizes a type t if it is a realizer of t . Then, one
typically proves a so-called adequacy lemma stating that well-typed programs realize their types.
Lemma 8 is the adequacy lemma for our logical relation.

[31/10/16, 16:38]

Chapter 4

Compilation

In this chapter, we explain how the typed programs of Chapter 3 can be implemented as digital
synchronous circuits. This takes the form of a new interpretation of typing derivations. An
important difference between this interpretation and the synchronous semantics is the finite
nature of the underlying objects: programs are no longer explained in terms of mathematical
functions acting upon infinite streams of data, but as finite state machines processing finite
chunks of input and outputs in an incremental fashion. Therefore, this interpretation can be
seen as a compilation scheme.

The type system provides two main ingredients in order to reduce finite-state description.
First, clock types makes it possible to statically bound the amount of data processed in each
reaction of a machine in a way that still guarantees that the global behavior of the program
is preserved. Second, linear higher-order functions can be implemented as first-order ones
in a modular way by reducing them to additional inputs and outputs. This latter part relies
crucially on the careful handling of scoping and linearity present in the type system.

We propose a first-order language to describe finite state machines. The language is more
structured and syntactic than the graph-based formalism of automata theory. This makes it
a convenient target for the compilation process. It is equipped with a simple type system for
ensuring that machines have finite state. The translation is thus structured as a type-preserving
interpretation.

The rest of this chapter is organized as follows. Section 4.1 presents an extended overview
of the translation. Section 4.2 defines and explains the target language for describing state
machines, including its type system, operational semantics, and graphical representation.
We also prove useful properties, such as a subject reduction result, and show how well-typed
machines describe finite-state transducers. Section 4.3 builds a higher-order layer on top of
the first-order language. This layer is used as the target of the type-preserving translation,
which is described in Section 4.4. Each typing judgment gives rise to a state machine for use in
the compilation of programs. In particular, linear aspects of the type system are translated to
machines handling data movement. We prove its correctness using a logical relation between
machines and the synchronous semantics. Finally, Section 4.5 discusses the implementation
of the machine language to actual digital circuits, including practical details about hardware
description languages.

113

114 CHAPTER 4. COMPILATION

Typing
derivations
(Chapter 3)

Higher-order
machines

(Section 4.3)

First-order
machines

(Section 4.2)
VHDL/Verilog

Section 4.4 Section 4.3.2 Section 4.5

Figure 4.1: Compilation - overview

4.1 Overview

The typing derivations of Chapter 3 are nothing more than terms belonging to a linear λ-
calculus enriched with special constants for stream processing. These special constants
include operators directly present in the source language—that is, stream sampling, merging,
pointwise operators, and ultimately periodic words—but also the operations needed by the
adaptability, gathering, and scattering judgments. In this chapter, we traduce this linear λ-
calculus, including its constants, to finite state digital circuits.

Figure 4.1 describes the flow of the translation from typing derivation to hardware de-
scription languages. However, this chapter is not organized in this top-down order but rather
proceed from the bottom up. Let us describe each intermediate step.

1. First, we define a combinator language for describing first-order state machines. The
combinators include sequential and parallel composition, as well as feedback loops.
Section 4.2 details the following points.

• The semantics of the language is operational. It is expressed by the predicate

m/x→m′/y

which states that the machine m evolves into m′ while consuming input x and
producing output y . This semantics is non-deterministic, as there may be sev-
eral (m′, y) pairs for a given (m, x) pair.

• We equip the language of machines with a simple type system. We show that
well-typed machines have finite state, and thus can be implemented as finite state
transducers.

• The language of machines includes the replication combinator mrepln(m). One
reaction of this machine performs at most n reactions of the wrapped machine m;
the precise amount of reactions performed is specified by an additional input.

• Nearly all constants present in typing derivations have matching primitive com-
binators in the language of machines. For those which do not, we build “macro”
machines by combining several machines of the base language.

2. In Section 4.3, we build a language of linear higher-order machines on top of the base
one described in the previous step. The goal is to obtain new machine and combinators
implementing currying, evaluation. This is done by reducing inputs of higher types

[31/10/16, 16:38]

4.1. OVERVIEW 115

L⊢ Γ ↓(2) Γ
′M

mrepl2(LΓ′ ⊢ e ∶ t ′M)

LΓ′ ⊢ e ∶ t ′M

LΓ′ ⊢ e ∶ t ′M

L⊢ t ′ ↑(2) tM
LΓM LΓ′M[2] Lt ′M[2] LtM

LΓ′M

LΓ′M

Lt ′M

Lt ′M

Figure 4.2: Compilation - informal compilation scheme for a local time scale driven by (2)

to additional, first-order inputs and outputs, as alluded to in Chapter 3. We lift all the
constants from the language of first-order machines to this higher-order setting, as well
as the replication combinator.

3. In Section 4.4 we finally interpret the typing derivations of Chapter 3 into the higher-
order machine language defined previously. The compiled machine LΓ⊢ e ∶ tM is defined
by induction on a derivation of Γ⊢ e ∶ t . The compilation is mostly transparent: rule APP

in typing derivations is interpreted as the application in linear higher-order machines,
pairing by pairing, and so on. The only interesting case is the one of local time scales.

According to rule RESCALE, a local time scale is made of four parts: the driving clock
type ct, a scattering judgment Γ⊢ ct ∶ Γ′, the code running inside the time scale Γ′ ⊢ e ∶ t ′,
and the gathering judgment ⊢ t ′ ↑ct t . Imagine the case of a time scale driven by (2).
Then, the compilation of Γ ⊢ e ∶ t proceeds as in the following informal and slightly
simplified explanation.

a) The inputs of e present in Γ are scattered by (2). Concretely, this is done by the
scattering machine L⊢ Γ ↓(2) Γ′M, whose inputs are in LΓM and whose outputs are
in LΓ′M[2]. Informally, the notation LΓ′M[2] describes lists of size at most two of
values in LΓ′M.

b) The machine LΓ′Met ′ has inputs in LΓ′M and outputs in LtM. By replicating it twice,
one obtains a machine whose input is in LΓ′M[2] and output is in Lt ′M2. This machine
is compatible with the scattering one obtained in step a).

c) Finally, the outputs obtained after step b) are gathered by (2). This is done by the
gathering machine L⊢ t ′ ↑(2) tM, which takes an input of type Lt ′M[2] and producess
a final output in LtM.

This code generation scheme is represented in a slightly stylized manner in Figure 4.2.
The machine LΓ⊢ e ∶ tM inside the local time scale is replicated twice. We have added the
thin vertical arrow between the copies to highlight the fact that they are ordered: the
state of the first copy is passed to the second one during a global reaction.

4. In Section 4.5 we explain informally how first-order machines can be implemented in
hardware description languages such as VHDL or Verilog. This explanation is informal

[31/10/16, 16:38]

116 CHAPTER 4. COMPILATION

v ∶∶= () Unit value
∣ n ∈N Natural number
∣ (v, v) Pair
∣ v∗ List

mt ∶∶= unit Unit type
∣ {n} Natural number bounded by n
∣ mt ×mt Product type
∣ mt[n] List type

mtm ∶∶= mt _ mt

Figure 4.3: Machine language - syntax of values and types

as we did not want to give a formal semantics for such languages. Finally, by composing
this implementation with all the previous steps, one may translate typing derivations to
finite-state digital synchronous circuits.

4.2 A Machine Construction Kit

This section presents a language dedicated to the description of state machines. It is a language
of name-free, first-order combinators endowed with an operational semantics explaining
how a machine, given input data, transitions from its current state to the next, producing
output data along the way. It is equipped with a simple type system that helps structure the
translation from the source language, and ensures that our machines are finite state. We first
explain the syntax, type system and operational semantics of the language in one go. Then,
we show that the type system captures the finiteness of machines. Finally, we define some
composite “macro-machines” which will prove convenient later on.

4.2.1 Syntax, Typing, and Reactions

Figure 4.3 gives the syntax of types for the target language. It comprises four syntactic cate-
gories: values v , value types mt, and machine types mtm.

Values and their types A value v is a finite piece of data computed by a machine during a
reaction. It can be either a simple scalar value, such as a natural n, boolean b or unit value (), or
a compound value. A compound value is either a pair of values (v1, v2), or a list of values vl . We
refer to the i -th element of vl , if it exists, as vl [i], write x;xl for list cons, and write [x1, . . . , xn]
for list literals.

A value type mt describes which values are allowed as inputs or outputs of a machine
during a reaction. Unit and product types are as expected. A sized type mt[n] describes lists
of values of type mt; the natural number n is the maximum size of the list. Finally, the value
type dt denotes a scalar with the same grammar as in Chapter 3.

[31/10/16, 16:38]

4.2. A MACHINE CONSTRUCTION KIT 117

⊢ v ∶mt and ⊢i v ∶mt

⊢ ∗ ∶ unit
n ≤m

⊢n ∶ {m}
⊢ v1 ∶mt1 ⊢ v2 ∶mt2

⊢ (v1, v2) ∶mt1×mt2

⊢n xl ∶mt

⊢ xl ∶mt[n]

⊢n ε ∶mt

⊢ x ∶mt ⊢n xl ∶mt

⊢1+n x.xl ∶mt

Figure 4.4: Machines - value typing judgment

Value typing The value typing judgment is given in Figure 4.4. The judgment ⊢ v ∶mt ex-
presses that the value v has type mt. Its rules are given in Figure 4.4. It relies on the mutually-
defined auxiliary judgment ⊢n xl ∶ mt expressing that the list xl is of size n and that each of
its element is of type mt; its rules are defined in the lower row of Figure 4.4. The first three
rules describe purely scalar values. Products are once again typed componentwise, at the same
index. A value vl of type mt[n] is a list whose size is at most n and whose elements inhabit mt,
as expressed by judgment ⊢n vl ∶mt.

Machine types While value types describe data, machine types mtm describe the inter-
face of a machine mt1 _ mt2 with inputs in mt1 and outputs in mt2. The grammar of ma-
chine types is not recursive since the language is first-order. Given a machine type mtm =
mt1 _ mt2, we write mtm− for its input type mt1, and mtm+ for its output type mt2. We also
write (mt1 _ mt2)[n] for the machine type mt1[n]_ mt2[n].

Machines We now turn to the description of machines m, which describe possibly stateful
circuits with inputs and outputs. Their grammar is given in Figure 4.5. Each machine comes
together with a typing rule and a description of its operational semantics.

• The typing judgment expresses that a machine m has (machine) type mtm, which is
written ⊢m ∶mtm. Since machines do not contain variables, the judgment involves no
context handling. Typing rules are given in Figure 4.6

• The operational semantics is built on a reaction judgment expressing that a machine m
reacts to some input value x by producing an output value y and becoming a new
machine m′, which is written m/x → m′/y . In this case we also say that m evolves
into m′. If m holds explicit type annotations, so will m′; annotations are preserved by
reactions. The reaction judgment will thus frequently involve the judgments governing
the evolution of types described in the previous paragraphs. Reaction rules are given
in Figure 4.7.

[31/10/16, 16:38]

118 CHAPTER 4. COMPILATION

m ∶∶= midmt Identity
∣ mswapmtm Exchange
∣ mdupmt Duplication
∣ mforgmt Erasure (forget)
∣ mneutrmt Neutralize (absorb)
∣ mneutrinvmt Inverted neutralize (generate)
∣ mconstv Constant
∣ mmuxmt Multiplexer
∣ mpwp(n) Ultimately periodic integer word
∣ msumn

n Summation
∣ mbuffmt

n,n,n(v) Bounded buffer
∣ mgathmt

n,n Scattering
∣ mscattmt

n,n Gathering
∣ mstuttn

mt Stuttering
∣ munwrapmt Unwrapping
∣ mzipn

mt,mt Zipping
∣ munzipn

mt,mt Unzipping
∣ mncoern,n Bounded integer coercion
∣ mlcoermt

n,n List size coercion
∣ m ●m Horizontal composition
∣ m ∥m Vertical composition
∣ mfbmt

mt,mt(m) Feedback loop
∣ mrepln(m) Replication

Figure 4.5: Machine language - syntax of machines

Since the language is relatively simple, we describe simultaneously machines, their typing
rules, and their operational semantics.

Machines fall into two broad groups: they are either atomic machines implementing fixed
functions, or machine combinators that build complex machines from simpler ones. Let us
describe each group in turn.

1. The first group of atomic machines provide low-level facilities for data movement. They
implement operations that would be implicit in a language with names, such as weaken-
ing and contraction. They are:

• the identity machine midmt , which transmit its input as is;

MID

⊢ midmt ∶mt _ mt midmt/x→ midmt/x

[31/10/16, 16:38]

4.2. A MACHINE CONSTRUCTION KIT 119

⊢m ∶mtm

MID

⊢ midmt ∶mt _ mt

MSWAP

⊢ mswapmtm ∶mtm+×mtm− _ mtm−×mtm+

MDUP

⊢ mdupmt ∶mt _ mt ×mt

MFORGET

⊢ mforgmt ∶mt _ unit

MNEUTRALIZE

⊢ mneutrmt ∶ unit×mt _ mt

MNEUTRALIZEINV

⊢ mneutrinvmt ∶mt _ unit×mt

MCONST

⊢ v ∶mt

⊢ mconstv ∶ unit_ mt

MMUX

⊢ mmuxmt ∶ {1}×mt ×mt _ mt

MPWORD

⊢ n ∶ {∣u∣+ ∣v ∣−1}
⊢ mpwu(v)(n) ∶ unit_ {⌈u(v)⌉}

MSUM

⊢ msumn2
n1
∶ {n1}[n2]_ {n1 ∗n2}

MBUFF

⊢ c ∶mt[n3]
⊢ mbuffmt

n1,n2,n3
(c) ∶ {n2}×mt[n1]_ mt[n2]

MGATHER

⊢ mgathmt
n1,n2

∶mt[n1][n2]_ mt[n1 ∗n2]

MSCATTER

⊢ mscattmt
n1,n2

∶ {n1}[n2]×mt[n1 ∗n2]_ mt[n1][n2]

MSTUTTER

⊢ mstuttn
mt ∶ {n}×mt _ mt[n]

MUNWRAP

⊢ munwrapmt ∶mt[1]_ mt

MZIP

⊢ mzipn
mt1,mt2

∶mt1[n]×mt2[n]_ (mt1×mt2)[n]

MUNZIP

⊢ munzipn
mt1,mt2

∶ (mt1×mt2)[n]_ mt1[n]×mt2[n]

MNCOER

⊢ mncoern1,n2 ∶ {n1}_ {n2}

MLCOER

⊢ mlcoermt
n1,n2

∶mt[n1]_ mt[n2]

MCOMP

⊢m1 ∶mt2 _ mt3 ⊢m2 ∶mt1 _ mt2

⊢m1 ●m2 ∶mt1 _ mt3

MPAR
⊢m1 ∶mt1 _ mt2 ⊢m2 ∶mt3 _ mt4

⊢m1 ∥m2 ∶mt1×mt3 _ mt2×mt4

MFEEDBACK

⊢m ∶mt1×mt3 _ mt2×mt3

⊢ mfbmt3
mt1,mt2

(m) ∶mt1 _ mt2

MREPL
⊢m ∶mt1 _ mt2

⊢ mrepln(m) ∶ {n}×mt1[n]_ mt2[n]

Figure 4.6: Machines - main typing judgment

[31/10/16, 16:38]

120 CHAPTER 4. COMPILATION

m/x→m′/y and m/xl→n m′/yl

midmt/x→ midmt/x mswapmtm/(x, y)→ mswapmtm/(y, x) mdupmt/x→ mdupmt/(x, x)

mforgmt/x→ mforgmt/() mneutrmt/((), x)→ mneutrmt/x

mneutrinvmt/x→ mneutrinvmt/((), x) mconsts/()→ mconsts/s

mmuxmt/(1, x, y)→ mmuxmt/x mmuxmt/(0, x, y)→ mmuxmt/y

i < ∣u∣
mpwu(v)(i)/()→ mpwu(v)(i +1)/∣u∣[i]

∣u∣ ≤ i < ∣u∣+ ∣v ∣−1

mpwu(v)(i)/()→ mpwu(v)(i +1)/v[i − ∣u∣]

mpwu(v)(∣u∣+ ∣v ∣−1)/()→ mpwu(v)(∣u∣)/v[∣v ∣−1] msumn2
n1
/xl→ msumn2

n1
/∑xl

c.xl = yl.c′ ∣yl∣ = a ∣c′∣ ≤ n3

mbuffmt
n1,n2,n3

(c)/(a,xl)→ mbuffmt
n1,n2,n3

(c′)/yl

gather(xl,yl)
mgathmt

n1,n2
/xs→ mgathmt

n1,n2
/ys

scatter(xl,yl,zl)
mscattmt

n1,n2
/(xl,yl)→ mscattmt

n1,n2
/zl mstuttn

mt/(a, x)→ mstuttn
mt/xa

munwrapmt/[x]→ munwrapmt/x

zip(xl,yl,zl)
mzipn

mt1,mt2
/(xl,yl)→ mzipn

mt1,mt2
/zl

zip(yl,zl,xl)
munzipn

mt1,mt2
/xl→ munzipn

mt1,mt2
/(yl,zl)

a ≤ n2

mncoern1,n2/a→ mncoern1,n2/a

xl = yl.zl ∣yl∣ =min(∣xl∣,n2)
mlcoermt

n1,n2
/xl→ mlcoermt

n1,n2
/yl

m1/x→m′

1/y m2/y →m′

2/z

m2 ●m1/x→m′

2 ●m′

1/z

m1/x1→m′

1/y1 m2/x2→m′

2/y2

m1 ∥m2/(x1, x2)→m′

1 ∥m′

2/(y1, y2)
⊢ z ∶mt3 m/(x, z)→m′/(y, z)

mfbmt3
mt1,mt2

(m)/x→ mfbmt3
mt1,mt2

(m′)/y

m/xl→a m/yl

mrepln(m)/(a,xl)→ mrepln(m)/yl m/ε→0 m/ε
m/x→m/y m/xl→n m/yl

m/x.xl→1+n m/y.yl

Figure 4.7: Machines - reaction judgment

[31/10/16, 16:38]

4.2. A MACHINE CONSTRUCTION KIT 121

• the exchange machine mswapmtm , which exchanges its inputs;

MSWAP

⊢ mswapmtm ∶mtm+×mtm− _ mtm−×mtm+ mswapmtm/(x, y)→ mswapmtm/(y, x)

• the duplication machine mdupmt , which duplicates its input;

MDUP

⊢ mdupmt ∶mt _ mt ×mt mdupmt/x→ mdupmt/(x, x)

• the erasure machine mforgmt , which reads its input but outputs nothing;

MFORGET

⊢ mforgmt ∶mt _ unit mforgmt/x→ mforgmt/()

• the neutralization machine mneutrmt , which forgets its useless left input;

MNEUTRALIZE

⊢ mneutrmt ∶ unit×mt _ mt mneutrmt/((), x)→ mneutrmt/x

• and the generation machine mneutrinvmt , which generates a useless left output.

MNEUTRALIZEINV

⊢ mneutrinvmt ∶mt _ unit×mt mneutrinvmt/x→ mneutrinvmt/((), x)

Their typing rules reflect their behavior. Their reaction rules show that they are stateless
machines: these machines always evolve into themselves.

2. The second group of atomic machines are lower-level versions of operators present in the
source language: constants, the mux variant of the split and merge operator, ultimately
periodic words, clock composition implemented as sums, and buffers.

a) The constant machine mconstv is parametrized by a value v of some type dt. It
has no input and one output of type dt on which at every reaction it produces the
value v .

MCONST
⊢ v ∶mt

⊢ mconstv ∶ unit_ mt mconsts/()→ mconsts/s

b) The multiplexing machine mmuxmt is the machine equivalent of an “if” statement.
It receives a boolean x and two inputs y and z of type mt. The output is either y
when x is equal to 1, or z when x is equal to 0.

MMUX

⊢ mmuxmt ∶ {1}×mt ×mt _ mt

mmuxmt/(1, x, y)→ mmuxmt/x mmuxmt/(0, x, y)→ mmuxmt/y

[31/10/16, 16:38]

122 CHAPTER 4. COMPILATION

c) Next is the first stateful machine, mpwp(n) . This machine implements an ulti-

mately periodic integer word p. The natural number n ≤ ∣u∣+ ∣v ∣−1 acts as an index
inside the list ∣u∣.∣v ∣ pointing to the next element to produce. Its typing rule ex-
presses that the outputs are bounded by ⌈p⌉, the maximum value of p. It is updated
in the expected way.

MPWORD
⊢ n ∶ {∣u∣+ ∣v ∣−1}

⊢ mpwu(v)(n) ∶ unit_ {⌈p⌉}
i < ∣u∣

mpwu(v)(i)/()→ mpwu(v)(i +1)/∣u∣[i]

∣u∣ ≤ i < ∣u∣+ ∣v ∣−1

mpwu(v)(i)/()→ mpwu(v)(i +1)/v[i − ∣u∣] mpwu(v)(∣u∣+ ∣v ∣−1)/()→ mpwu(v)(∣u∣)/v[∣v ∣−1]

The following reactions show the evolution of the internal counter when computing
the successive values of 0(4 1)ω.

mpw0(4 1)(0)/() → mpw0(4 1)(1)/0
mpw0(4 1)(1)/() → mpw0(4 1)(2)/4
mpw0(4 1)(2)/() → mpw0(4 1)(1)/1

d) The msumm
n machine receives a list of at most n integers, each of which is smaller

than n. It returns the sum of all these integers, whose value is at most n ∗m.

MSUM

⊢ msumn2
n1
∶ {n1}[n2]_ {n1 ∗n2} msumn2

n1
/xl→ msumn2

n1
/∑xl

e) The stateful machine mbuffmt
n1,n2,n3

(c) implements a bounded buffer holding at

most n3 elements. The list c is the current content of the buffer. The naturals n1
and n2 bound respectively the amount of data written and read per reaction.

MBUFF
⊢ c ∶mt[n3]

⊢ mbuffmt
n1,n2,n3

(c) ∶ {n2}×mt[n1]_ mt[n2]
c.xl = yl.c′ ∣yl∣ = a ∣c′∣ ≤ n3

mbuffmt
n1,n2,n3

(c)/(a,xl)→ mbuffmt
n1,n2,n3

(c′)/yl

We give some examples of reactions below. The last reaction cannot proceed since
the buffer overflows.

mbuff
{128}
1,2,2 ([])/(0,[0]) → mbuff

{128}
1,2,2 ([0])/[]

mbuff
{128}
1,2,2 ([0])/(0,[1]) → mbuff

{128}
1,2,2 ([0,1])/[]

mbuff
{128}
1,2,2 ([0,1])/(2,[2]) → mbuff

{128}
1,2,2 ([2])/[0,1]

mbuff
{128}
1,2,2 ([2])/(0,[4,5]) /→

3. The remaining group of atomic machines implement operations related to lists—we call
them the list processing machines. While all these machines are stateless, the scattering,
gathering, stuttering and zipping machines perform relatively complex tasks which
we describe by predicates. We define each predicate along with the description of the
machine.

[31/10/16, 16:38]

4.2. A MACHINE CONSTRUCTION KIT 123

a) The gathering machine mgathmt
n1,n2

concatenates a list of lists. Formally, it trans-

forms values of types mt[n1][n2] into values of type mt1[n1∗n2], making it the
operational counterpart to the unpack stream function. Its behavior is character-
ized by the following predicate, with∑ denoting list concatenation here.

gather(xl,yl) def= yl =∑0≤i<∣xl∣ xl[i]

MGATHER

⊢ mgathmt
n1,n2

∶mt[n1][n2]_ mt[n1 ∗n2]
gather(xl,yl)

mgathmt
n1,n2

/xs→ mgathmt
n1,n2

/ys

Here are some examples of reactions. Remember that in the type mt[n], the num-
ber n describes not the size but the maximal size of the list.

mgath
{1}
2,3 /[[0,1],[1,0],[0,0]] → mgath

{1}
2,3 /[0,1,1,0,0,0]

mgath
{1}
2,3 /[[1],[0],[]] → mgath

{1}
2,3 /[1,0]

mgath
{1}
2,3 /[[],[1,0]] → mgath

{1}
2,3 /[1,0]

mgath
{1}
2,3 /[[0],[]] → mgath

{1}
2,3 /[0]

b) Symmetrically, the scattering machine mscattmt
n1,n2

cuts a list into a list of smaller

lists, and is the operational version of pack. Similarly to pack, in addition to the
input list yl to be cut it also expects a list of naturals xl giving the size of each sub-list.
This is what the predicate scatter(xl,yl,zl) defined below expresses formally.

scatter(xl,yl,zl) def= gather(zl,yl) and ∀0 ≤ i < ∣xl∣, ∣zl[i]∣ = xl[i]

MSCATTER

⊢ mscattmt
n1,n2

∶ {n1}[n2]×mt[n1 ∗n2]_ mt[n1][n2]
scatter(xl,yl,zl)

mscattmt
n1,n2

/(xl,yl)→ mscattmt
n1,n2

/zl

Some examples of reactions are given below.

mscatt
{1}
2,3 /([0,1,1,0,0,0],[2,2,2]) → mscatt

{1}
2,3 /[[0,1],[1,0],[0,0]]

mscatt
{1}
2,3 /([1,0],[1,1,0]) → mscatt

{1}
2,3 /[[1],[0],[]]

mscatt
{1}
2,3 /([1,0],[0,2]) → mscatt

{1}
2,3 /[[],[1,0]]

mscatt
{1}
2,3 /([[0],[]],[1]) → mscatt

{1}
2,3 /[0]

c) The stuttering machine mstuttmt
n consumes a pair (x, a) with x a value having

type mt and a ≤n an integer and produces the list v a , an abbreviation for the list xl
that has length a and such that xl[i] = x for any 0 ≤ i < a. The output has type mt[n],
since a ≤n.

MSTUTTER

⊢ mstuttn
mt ∶ {n}×mt _ mt[n] mstuttn

mt/(a, x)→ mstuttn
mt/xa

[31/10/16, 16:38]

124 CHAPTER 4. COMPILATION

d) The unwrapping machine munwrapmt receives a value of type mt[1]. Here, this

input should always be a list of size one, and thus of the form [x]. The unwrapping
machine removes the indirection by returning x. This machine can invert the effect
of the stuttering one in the degenerate case of “stuttering” every value once.

MUNWRAP

⊢ munwrapmt ∶mt[1]_ mt munwrapmt/[x]→ munwrapmt/x

e) The zipping machine mzipn
mt1,mt2

transforms a pair of lists (xl,yl) into a list of

pairs zl. The two components of the pair should have the same size at each reaction.
The predicate zip(xl,yl,zl) below expresses the behavior of the function formally.

zip(xl,yl,zl) def= ∣xl∣ = ∣yl∣ = ∣zl∣ and ∀0 ≤ i < ∣xl∣,zl[i] = (xl[i],yl[i])

MZIP

⊢ mzipn
mt1,mt2

∶mt1[n]×mt2[n]_ (mt1×mt2)[n]
zip(xl,yl,zl)

mzipn
mt1,mt2

/(xl,yl)→ mzipn
mt1,mt2

/zl

f) The unzipping machine munzipn
mt1,mt2

inverts the effect of the previous one. Its

reaction rule uses the same predicate but applied symmetrically, the zipped list
now being the input rather than the output.

MUNZIP

⊢ munzipn
mt1,mt2

∶ (mt1×mt2)[n]_ mt1[n]×mt2[n]

zip(yl,zl,xl)
munzipn

mt1,mt2
/xl→ munzipn

mt1,mt2
/(yl,zl)

g) The bounded integer coercion machine mncoern1,n2 takes an integer in {n1} and

transforms it into an element of {n2}. It reacts only when the input is smaller
than n2.

MNCOER

⊢ mncoern1,n2 ∶ {n1}_ {n2}
a ≤ n2

mncoern1,n2/a→ mncoern1,n2/a

h) The list size coercion machine mlcoermt
n1,n2

takes a list in mt[n1] and transforms

it into an element of mt[n2]. Its operational behavior depends on whether n2
is (strictly) smaller than n1. If n1 ≤ n2 no work is performed, as by definition any
value in mt[n1] is also in mt[n2]. If n2 < n1, the n1−n2 last elements of the input
list are dropped.

MLCOER

⊢ mlcoermt
n1,n2

∶mt[n1]_ mt[n2]
xl = yl.zl ∣yl∣ =min(∣xl∣,n2)

mlcoermt
n1,n2

/xl→ mlcoermt
n1,n2

/yl

4. The machines of the last group are not atomic but combinators that correspond to various
forms of composition, including feedback and replication. They make it possible to build
complex machines from simple ones.

[31/10/16, 16:38]

4.2. A MACHINE CONSTRUCTION KIT 125

a) The (horizontal) composition machine m1 ●m2 consists in plugging the outputs
of m2 into the inputs of m1. We follow the usual mathematical notation, where
conceptually m2 is computed first.

MCOMP
⊢m1 ∶mt2 _ mt3 ⊢m2 ∶mt1 _ mt2

⊢m1 ●m2 ∶mt1 _ mt3

m1/x→m′
1/y m2/y →m′

2/z

m2 ●m1/x→m′
2 ●m′

1/z

b) The (vertical) composition machine m1 ∥m2 consists in putting m1 and m2 in
parallel, with no communication between the two components. We picture this
as m1 above m2, their inputs and outputs put side-by-side.

MPAR
⊢m1 ∶mt1 _ mt2 ⊢m2 ∶mt3 _ mt4

⊢m1 ∥m2 ∶mt1×mt3 _ mt2×mt4

m1/x1→m′
1/y1 m2/x2→m′

2/y2

m1 ∥m2/(x1, x2)→m′
1 ∥m′

2/(y1, y2)

c) The feedback machine mfbmt3
mt1,mt2

(m) adds a feedback loop around m. This ma-

chine should have type mt1×mt3 _ mt2×mt3. The feedback loop plugs the second
output back into the second input. One is left with the type mt1 _ mt2. The reac-
tion rule of this machine relies on non-determinism: one may perform a reaction
for any value z of type mt3 that is accepted by m.

MFEEDBACK
⊢m ∶mt1×mt3 _ mt2×mt3

⊢ mfbmt3
mt1,mt2

(m) ∶mt1 _ mt2

⊢ z ∶mt3 m/(x, z)→m′/(y, z)
mfbmt3

mt1,mt2
(m)/x→ mfbmt3

mt1,mt2
(m′)/y

d) The replication machine mrepln(m) executes a variable amount of steps of the

machine m. Suppose that m is a machine of type mt1 _ mt2. The replication
machine receives a natural a ≤ n a list xl which should be of size a. It then per-
forms n reactions of m, each fed with the next element of xl. The resulting list yl of
type mt2[n] is produced.

MREPL
⊢m ∶mt1 _ mt2

⊢ mrepln(m) ∶ {n}×mt1[n]_ mt2[n]
m/xl→a m/yl

mrepln(m)/(a,xl)→ mrepln(m)/yl

Remark 17. The operations provided by this machine language might appear very close to the
ones present in the synchronous semantics. There are, however, some small but important
differences due to the lower-level nature of the machine language.

• Some source-level operators do not have an immediate machine-level counterpart. For
instance, the split and merge operators have to be implemented using the multiplexing
machine.

• Consider the replication machine mrepln(m). In contrast with the local time scales of
the source language, neither scattering nor gathering is involved. Instead, it produces
lists of outputs and inputs of the wrapped machine m. When the inputs or outputs of m
itself are lists, mrepln(m) reads or writes lists of lists.

These differences and others of the same kind will be dealt with during the translation process.

[31/10/16, 16:38]

126 CHAPTER 4. COMPILATION

Graphical representation Figure 4.8 gives the graphical representation of base machines.
The framed top left cell shows how a generic machine m is represented as a box whose inputs
come from the left and outputs exit to the right. Product value types are represented as
independent, parallel wires; wires of unit type are not represented. The rest of the figure
displays seven base machines that have a particular graphical representations. We expect those
graphical versions to be self-explanatory at this point, as they closely match the explanations
of Section 4.2. Note that we do not represent the output of the erasure machine, since it is of
unit type. The representation of the exchange machine as a pair of crossing wires is generalized
to permutations in the obvious manner. Finally, we do not give dedicated representations to
the remaining machines. Instead, they are depicted as opaque boxes with the name of the
machine explicitly written.

4.2.2 Metatheoretical Properties

This subsection states and proves properties of the machine language and its type system. The
main results are subject reduction and finiteness. The finiteness result shows that our machine
language actually corresponds to finite state automata.

Decidability First, as a sanity check, it should be clear that typing is actually decidable. This
is not surprising since machines are heavily annotated with their types.

Property 38 (Decidability of Typing). There is an algorithm that decides for any value v and
value type mt whether ⊢ v ∶mt. The same is true for machines and machine types.

Proof. The algorithm can be deduced directly from the form of typing rules of Figure 4.4
and Figure 4.6, since they are syntax directed.

Remark 18. We could have stated a stronger result: annotations make it possible to find a
machine type mtm for a machine m such that ⊢m ∶mtm, if it exists. Note that it is not unique
because of the mconstv machine. The type of a value is not unique since any natural n belongs
to an infinite number of value types {n}, {n+1}, and so on. Thus, the MCONST rule does not
give a unique type to the mconstv machine. In practice, one will probably be interested in the
most precise type for a given v , which boils down to {n} when v is some natural n.

Reactions, Totality, Determinism With the operational semantics given in Figure 4.7, some
machines are neither reactive–they have no possible reaction for a given input–nor determinis-
tic–they have several possible reactions for the same input. A machine which is not reactive is
said to be partial. Let us give two examples.

Example 20. Consider the following four machines.

m1 = mdup{1} ● mmux{1} ● mswap{1}_{1}×{1} m′
1 = mfb

{1}
unit,{1}(m1)

● ((mconst0 ∥ mconst1) ● mdupunit) ∥ mid{1})
m2 = mswap{1}_{1} ● m1 m′

2 = mfb
{1}
unit,{1}(m2)

[31/10/16, 16:38]

4.2. A MACHINE CONSTRUCTION KIT 127

m

mt1

..
.

mtn

mt′1

..
.

mt′n′

⊢m ∶mt1× ⋅ ⋅ ⋅×mtn _ mt′1× ⋅ ⋅ ⋅×mt′n′

mt mt

⊢ midmt ∶mt _ mt

mtm+

mtm+mtm−

mtm−

⊢ mswapmtm ∶mtm+×mtm− _ mtm−×mtm+

mt

mt

mt

⊢ mdupmt ∶mt _ mt ×mt

mt

⊢ mforgmt ∶mt _ unit

m2 m1
mt1 mt2 mt3

⊢m1 ●m2 ∶mt1 _ mt3

m1

m2

mt1 mt2

mt3 mt4

⊢m1 ∥m2 ∶mt1×mt3 _ mt2×mt4

mmt1 mt2

mt3

⊢ mfbmt3
mt1,mt2

(m) ∶mt1 _ mt2

Figure 4.8: Machines - graphical representation

[31/10/16, 16:38]

128 CHAPTER 4. COMPILATION

Their types are respectively unit×{1} _ {1}×{1} for m1 and m2 and unit _ {1} for m′
1

and m′
2. The machines m1 and m2 are deterministic and reactive. By definition of the reaction

judgment, m′
1 may output a boolean x only if it satisfies the equation x = if x then 1 else 0 while

the output of m′
2 is any y such that y = if y then 0 else 1 holds. The first equation is satisfied

by any boolean and the second by none of them. Thus m′
1 is not deterministic and m′

2 is not
reactive. This shows that the feedback operator preserves neither property.

Example 21. Consider the reaction rule for buffers in Figure 4.7. It is perfectly possible that
an input xl is large enough to overflow the buffer, even if both inputs a and xl are well-typed.
In this case, the premise relating the buffer capacity n3 and its occupancy ∣c ′∣ will forbid the
reaction, making it partial. For example, in the reaction below, we try to add two values to a
half-full buffer whose maximum capacity is 2.

mbuff
{128}
2,2,2 ([0])/(0,[1,2]) /→

Conversely, the first input, which indicates the desired amount of data to be consumed, can be
too large with respect to the current content of the buffer. In this case, no reaction happen. For
example, in the reaction below, we try to consume two values from a buffer holding only one.

mbuff
{128}
2,2,2 ([0])/(2,[]) /→

This shows that the type system of machines is not precise enough to capture the absence of
buffer overflow or underflow. Similarly, several other machines are able to react only when
their inputs have consistent sizes or values, such as scattering and gathering.

While the type system does not rule out partiality or non-determinism, it still serves the
important role of enforcing the finiteness of machines. To express this fact we need to show
that types are preserved along reactions.

Property 39 (Subject Reduction). Let m be a machine, mtm a machine type and i ≥ 0 such
that ⊢m ∶mtm. Then, for any machine m′, we have both

• for any x, y such that ⊢ x ∶mtm− and m/x→m′/y, then ⊢ y ∶mtm+ and ⊢m′ ∶mtm;

• for any xl,yl and n ≥ 0 such that ⊢n xl ∶ mtm− and m/xl →n m′/yl, then ⊢n yl ∶ mtm+
and ⊢m′ ∶mtm. Moreover, ∣xl∣ = ∣yl∣ =n.

Proof. The proof is a routine induction on derivation trees of the reaction and bulk reaction
judgments. The two properties really have to be proved together since the judgments are
mutually recursive. Let us discuss some cases.

• The buffer case is immediate because of the explicit premises in its reaction rule. From
typing we know that a ≤ n2 and hence ∣yl∣ ≤ n2, and since ∣c ′∣ ≤ n3 we have ⊢n3 c ′ ∶ mt
which proves that m′ = mbuffmt

n1,n2,n3
(c ′) is well-typed.

• The feedback case relies on the premise ⊢ z ∶mt3 to deduce ⊢ (x, z) ∶mt1×mt3 and apply
the induction hypothesis.

[31/10/16, 16:38]

4.2. A MACHINE CONSTRUCTION KIT 129

• Assume the replication machine processes inputs (a,xl) and produces yl for the current
reaction, evolving into machine m′. We have a ≤ n and furthermore ∣xl∣ = ∣yl∣ = a by
definition of m/xl→a m′/yl, and thus ∣yl∣ ≤n which means that yl is well-typed.

Finiteness The operational semantics models state change by rewriting machines. A con-
sequence is that when m/x→m′/y , the machine m and m′ are closely related: we would like
to express formally that they differ only by their state. Such machines are said to have the
same skeleton, written m ≡m′. We define this relation to be the smallest congruence relating
buffers and ultimately periodic words that differ only by their state, as these are the only
primitive stateful machines. Formally, let ≡ be the smallest relation such that

mbuffmt
n1,n2,n3

(c) ≡ mbuffmt
n1,n2,n3

(c ′) mpwp(i) ≡ mpwp(i ′)

and, abusing notation, write ≡ again for the smallest congruence containing it. We say that
the ≡-equivalence class of a machine m is its skeleton.

Property 40. Let m,m′ be machines and x, y be values such that m/x→m′/y. Then m and m′
have the same skeleton.

Proof. Immediate by induction on the reaction judgment.

Property 41. For any type mtm, the skeleton of machines of type mtm is a finite set.

Proof. By induction on machines. The proof is immediate in all cases but the buffer and
periodic word ones. Equivalent buffer machines mbuffmt

n1,n2,n3
(c) differ in their content c but

share the same annotations, in particular mt and n3. Because c is of type mt[n3] in well-
typed machines, and there is only a finite number of values inhabiting any value type, the
number of buffer machines is bounded. The reasoning is similar for equivalent periodic word
machines mpwu(v)(i), which differ only in their counter i which is of type {∣u∣+ ∣v ∣−1}.

We say that a machine m′ is reachable from a machine ⊢m ∶mtm if there exists a natural
number n, a list ⊢n xl ∶mtm− and a list yl such that m/xl→n m′/yl.

Corollary 1. The set of machines reachable from any well-typed machine is finite.

Proof. Combine Property 40 and Property 41.

This result suggests a very crude manner to translate a machine⊢m ∶mtm into a transducer.
Its skeleton becomes the set of states of the transducer. To build the transition relation, check
for any m′ in the skeleton of m and values ⊢ x ∶mtm− and ⊢ y ∶mtm+ whether m/x →m′/y ,
and add the transition if necessary. We know that checking for well-typed outputs is enough,
thanks to Property 39. The resulting transducer is finite-state by construction, and can in
theory be implemented as a digital synchronous circuit.

This construction is of dubious practical interest since it explicitly builds an automaton
whose size is exponential in the size of the corresponding machine. We discuss a more realistic
and enlightening way of implementing machines in traditional hardware description languages
in Section 4.5. But let us first explain the last ingredient required by the translation.

[31/10/16, 16:38]

130 CHAPTER 4. COMPILATION

4.2.3 Macro-Machines

Let us present some macro-machines that bridge the gap between source-level operators and
our basic machines.

The simplest macro-machines bridge the gap between low-level machines and source-level
constructions. Figure 4.9 gives the definition of each macro-machine as well as its typing rule,
even if the latter can always be reconstructed from the definition of the machine and the rules
of Figure 4.6.

• The first macro-machine implements a permutation of an arbitrary number of inputs.

We write ⟨mt1, . . . ,mtn ↦ i1, . . . , in ⟩ for the machine with n inputs and outputs, and
whose j -th output is equal to its i j -th input. To model an actual permutation, all the in

should be distinct and between 0 and n−1. Its typing rule follows.

⊢ ⟨mt1, . . . ,mtn ↦ i1, . . . , in ⟩ ∶mt1× . . . ×mtn _ mti1 × . . . ×mtin

Any such permutation can be implemented by combining mswapmtm machines in the
appropriate way by decomposing the permutation into a product of transpositions. In
practice we only use small permutations and thus neglect the performance issues that
may arise from the precise choice of decomposition.

• The left-plugging macro-machine mapplymt
mtm(m1, m2) provides a composition pattern

that frequently occurs when defining other macro-machines. The machine m1 has
no input and one output, which is plugged by this macro-machine into the the first
input m2.

⊢m1 ∶ unit_ mt ⊢m2 ∶mt ×mtm− _ mtm+

⊢ mapplymt
mtm(m1, m2) ∶mtm

Its definition involves a certain amount of plumbing.

mapplymt
mtm(m1, m2) = m2 ● (m1 ∥ midmtm−) ● mneutrinvmtm−

• Several base machines receive a first input which controls their behavior. This is the case
for the replication, gathering, and scattering machines for instance. It is convenient to
define macro counterparts in which this input is provided by a fixed machine.

– The first input of the basic replication machine determines how many steps of

the replicated machine must be performed. In mdrivectn
mtm(m1,m2) , this in-

formation is directly provided by the output of the machine m1, which has no
inputs.

⊢m1 ∶ unit_ {n} ⊢m2 ∶mtm

⊢ mdrivectn
mtm(m1,m2) ∶mtm[n]

Its definition uses the left-plugging machine.

mdrivenictn
mt(m1,m2) = mapply

{n}
mtm(m1, mrepln(m2))

[31/10/16, 16:38]

4.2. A MACHINE CONSTRUCTION KIT 131

⊢ ⟨mt1, . . . ,mtn ↦ i1, . . . , in ⟩ ∶mt1× . . . ×mtn _ mti1 × . . . ×mtin

⊢m1 ∶ unit_ mt ⊢m2 ∶mt ×mtm− _ mtm+

⊢ mapplymt
mtm(m1, m2) ∶mtm

⊢m1 ∶ unit_ {n} ⊢m2 ∶mtm

⊢ mdrivectn
mtm(m1,m2) ∶mtm[n]

⊢m1 ∶ unit_ {n} ⊢m2 ∶ unit_ mt

⊢ mdrivenictn
mt(m1,m2) ∶ unit_ mt[n]

⊢m1 ∶ unit_ {n1} ⊢m2 ∶ unit_ {n2}
⊢ mscattctmt

n1,n2
(m1,m2) ∶mt[n1 ∗n2]_ mt[n1][n2]

⊢m1 ∶ unit_ {n}
⊢ mstutterctn

mt(m) ∶mt _ mt[n]

⊢m ∶ unit_ {n2}
⊢ mbuffctmt

n1,n2,n3
(m) ∶mt[n1]_ mt[n2] ⊢ mwrapmt ∶mt _ mt[1]

⊢m ∶ unit_ {1}
⊢ msrcmergemt(m) ∶mt[1]×mt[1]_ mt[1]

⊢m ∶ unit_ {1}
⊢ msrcwhenmt(m) ∶mt[1]_ mt[1]

(a) Typing rules - can be deduced from the expansions

mapplymt
mtm(m1, m2) = m2 ● (m1 ∥ midmtm−) ● mneutrinvmtm−

mdrivectn
mtm(m1,m2) = mapply

{n}
mtm(m1, mrepln(m2))

mdrivenictn
mt(m1,m2) = mdrivectn

{n}_mt[n](m1,m2)
● mapply{n}

unit_unit[n](m1, mstuttn1
unit)

mstutterctn
mt(m) = mapply

{n}
mt_mt[n](m, mstuttn

mt)
mscattctmt

n1,n2
(m1,m2) = mapply

{n1}[n2]
mt[n1∗n2]_mt[n1][n2](m, mscattmt

n1,n2
)

where m = mdrivenictn1
{n2}(m1,m2)

mbuffctmt
n1,n2,n3

(m) = mapply
{n}
mt[n1]_mt[n2](m, mbuffmt

n1,n2,n3
(ε))

mwrapmt = mstutterct1
mt(mconst1)

msrcmergemt(m) = mapply
{1}
mt[1]_mt[1]×mt[1](m, m′)

where m′ = mmuxmt[1]×mt[1]
● ⟨mt[1],mt[1],{1},mt[1],mt[1] ↦ 2,3,0,4,1⟩
● ((mdupmt[1] ● mconst[]) ∥ mid{1} ∥ mdupmt[1])
● mneutrinvmt

msrcwhenmt(m) = mapply
{1}
mt[1]_mt[1](m, m′)

where m′ = mmuxmt[1] ● (mid{1} ∥ midmt ∥ mconst[])
● ⟨unit,{1},mt ↦ 1,2,0⟩ ● mneutrinvmt

(b) Expansions

Figure 4.9: First-order macro-machines - typing and expansions

[31/10/16, 16:38]

132 CHAPTER 4. COMPILATION

– The no-input replication macro-machine mdrivenictn
mt(m1,m2) is a variant of

the previous machine useful when m2 has no inputs. In this case, the previous
macro-machine gives has type unit[n]_ mt2[n], which is not very convenient;
we generally prefer unit_ mt2[n]. The stuttering machine bridges the gap.

mdrivenictn
mt(m1,m2) = mdrivectn

{n}_mt[n](m1,m2)
● mapply{n}

unit_unit[n](m1, mstuttn
unit)

– The first input of the basic scattering machine determines the shape of the output
list. This input is a list of integers of type {n1}[n2]. Its size determines the size
of the output list of lists, bounded by n2, and its elements determine the size of

each sub-list, bounded by n1. In the macro-machine mscattctmt
n1,n2

(m1,m2) , the

machine m1 provides the size of the list of lists, bounded by n1, and the machine m2

provides the size of each sub-list.

⊢m1 ∶ unit_ {n1} ⊢m2 ∶ unit_ {n2}
⊢ mscattctmt

n1,n2
(m1,m2) ∶mt[n1∗n2]_ mt[n1][n2]

This relies again on the left-plugging machine. We use the no-input replication
macro-machine to combine m1 and m2 in order to obtain the list of sizes, which
has type {n1}[n2].

mscattctmt
n1,n2

(m1,m2) = mapply
{n1}[n2]
mt[n1∗n2]_mt[n1][n2](m, mscattmt

n1,n2
)

where m = mdrivenictn2
{n1}(m2,m1)

– The first input of the basic stuttering machine determines how many copies of its

second input have to be produced. In the macro-machine mstutterctn
mt(m) this

input is provided by the machine m.

⊢m1 ∶ unit_ {n}
⊢ mstutterctn

mt(m) ∶mt _ mt[n]
As before, we use the left-plugging macro machine.

mstutterctn
mt(m) = mapply

{n}
mt_mt[n](m, mstuttn

mt)

– The first input of the basic buffer machine determines the amount of data that

has to be produced for the current reaction. In mbuffctmt
n1,n2,n3

(m) this input is

provided by the machine m.

⊢m ∶ unit_ {n2}
⊢ mbuffctmt

n1,n2,n3
(m) ∶mt[n1]_ mt[n2]

Again, we use the left-plugging macro machine.

mbuffctmt
n1,n2,n3

(m) = mapply
{n}
mt[n1]_mt[n2](m, mbuffmt

n1,n2,n3
([]))

[31/10/16, 16:38]

4.3. LINEAR HIGHER-ORDER MACHINES 133

• Our language includes the list unwrapping machine that transforms a list of size one [x]
into an element x. We sometimes need the symmetric macro-machine mwrapmt that

wraps a value x into a list of size one, returning [x].

⊢ mwrapmt ∶mt _ mt[1]

This machine is a special case of stuttering.

mwrapmt = mstutterct1
mt(mconst1)

• The last two macro-machines, msrcmergemt(m) and msrcwhenmt(m) , implement

low-level variants of the stream merging and sampling operators present in the source
language. In both cases the machine m provides the condition controling which elements
should be merged or sampled.

⊢m ∶ unit_ {1}
⊢ msrcmergemt(m) ∶mt[1]×mt[1]_ mt[1]

⊢m ∶ unit_ {1}
⊢ msrcwhenmt(m) ∶mt[1]_ mt[1]

The merging machine, given an input [x], selects ([x],[]) when the current output of m
is 1 and ([],[x]) when the current output of m is 0.

msrcmergemt(m) = mapply
{1}
mt[1]_mt[1]×mt[1](m, m′)

where m′ = mmuxmt[1]×mt[1]
● ⟨mt[1],mt[1],{1},mt[1],mt[1] ↦ 2,3,0,4,1⟩
● ((mdupmt[1] ● mconst[]) ∥ mid{1} ∥ mdupmt[1])
● mneutrinvmt

The sampling machine, given an input [x], selects [x] when the current output of m is 1
and [] when the current output of m is 0.

msrcwhenmt(m) = mapply
{1}
mt[1]_mt[1](m, m′)

where m′ = mmuxmt[1] ● (mid{1} ∥ midmt ∥ mconst[])
● ⟨unit,{1},mt ↦ 1,2,0⟩ ● mneutrinvmt

4.3 Linear Higher-Order Machines

Circuits, and thus machines, are intrinsically first-order. We have already explained informally
in Section 3.2 how linearity provides a partial solution to the problem of implementing higher-
order functions on top of first-order machines. In the rest of this section we implement this
intuition by building higher-order “macro” types on top of machine types. We then build a
series of macro-machines inhabiting the higher-order macro types. They provide the usual
tools of functional programming, such as application, currying, and so on. We also wrap the
ad-hoc operators of the base language—buffers, scattering, and wrapping for instance—into
simple conversion code to make them compatible with the higher-order combinators.

[31/10/16, 16:38]

134 CHAPTER 4. COMPILATION

mtm += munit Unit machine type
∣ mint{n} Bounded machine type
∣ mtm ⊠ mtm Product machine type
∣ mtm[n] List machine type
∣ mtm∗ Reversed machine type
∣ mtm ⊟ mtm Arrow machine type

Figure 4.10: Higher-order macro-machines - syntax of types

4.3.1 Types

Programming with linear higher-order machines involves a relatively high number of new
types of machines. Even if all of these are macros that ultimately are to be defined in terms
of the base language, we find it easier to present them as a language extension. In addition, a
large number of new machines actually lift the base ones to work in the higher-order setting,
and it is convenient to express them as syntax. Figure 4.12 extends the grammars of Figure 4.3
with the new types. Let us explain the two syntactic categories in turn.

The base machine type presented in Figure 4.5 is very simple: a machine is simply a pair
of value types, one for inputs and one for outputs. Figure 4.10 enriches it with the missing
type formers found in traditional functional languages such as the simply-typed lambda-
calculus. First, we have the product of machine types mtm1 ⊠ mtm2. It is to be thought as
the “vertical juxtaposition” of the inputs of mtm1 and mtm2. This new product justifies the
addition of its neutral element, the unit machine type munit which is the type of machine
with no input nor input. It is also be useful to lift the list constructors from values to machines
as mtm[n]. This corresponds to a machine consuming lists of type mtm−[n] and produc-
ing lists of type mtm+[n]. The type mtm∗ may feel unfamiliar; intuitively, if a machine of
type mtm can be seen as producing an inhabitant of mtm, a machine of type mtm∗ can be seen
as consuming an inhabitant of mtm. We say that mtm and mtm∗ are complementary types. In
more concrete terms, mtm∗ is the type mtm with its inputs and outputs reversed. Finally, the
type mtm1 ⊟mtm2 is the type of machines that conceptually “receive” a machine of type mtm1,
use it only once, and “return” a machine of type mtm2. We assume that products bind tighter
than arrows and thus mtm1 ⊟ mtm1 ⊠ mtm2 is short for mtm1 ⊟ (mtm1 ⊠ mtm2). Finally, the
type mint{n} is the type for machines without inputs and returning an integer bounded by n.

Type expansion Figure 4.11 defines the expansion of the new type formers from the previous
paragraph in terms of the base machine and value type. The first four cases closely match
the preceding informal explanations, including for the reversed machine type mtm∗. To
explain the expansion of the machine arrow type mtm1 ⊟mtm2, remember the intuitions given
in Section 3.2. In the simplest case, the machine is actually a first-order one: then mtm1 is
empty, or more precisely is equal to unit _ unit. Then, mtm1 ⊟ mtm2 should be morally
the same as mtm2, and thus include as inputs the inputs of mtm2 and as outputs the outputs

[31/10/16, 16:38]

4.3. LINEAR HIGHER-ORDER MACHINES 135

munit
def= unit_ unit

mint{n} def= unit_ {n}
mtm1 ⊠ mtm2

def= mtm−
1 ×mtm−

2 _ mtm+
1 ×mtm+

2

mtm[n] def= mtm−[n]_ mtm+[n]
mtm∗ def= mtm+ _ mtm−

mtm1 ⊟ mtm2
def= mtm∗

1 ⊠ mtm2

Figure 4.11: Higher-order macro-machines - expansions of types

of mtm2. Now, suppose that mtm1 has no input: the only thing m can do is access its output,
which should thus be added as inputs to mtm1 ⊟ mtm2. Now, if mtm1 actually has inputs,
these should be provided by m, and thus appear as additional outputs of m. This leads us
to the idea that mtm1 ⊟ mtm2 is the juxtaposition of mtm1, with inputs and outputs reversed,
and mtm2. This is exactly the definition given in Figure 4.11. Completely expanding the
definition gives mtm1 ⊟ mtm2 =mtm+

1 ×mtm−
2 _ mtm−

1 ×mtm+
2 .

4.3.2 Machines and their expansions

Figure 4.12 gives the syntax of the new macro machines, and Figure 4.13 their derived typing
rules. As before, rules can always be deduced from definitions, but are recalled for the sake of
clarity. They are of three kinds.

1. There are macro-machines which provide new operations related to higher-order func-
tions, such as currying or application. They are implemented using permutations and
the feedback operator.

2. There are macro-machines which wrap machines from the base language to give them
higher-order types. For instance, a machine m of type {n1}×{n2} _ {n3} would be
lifted to mint{n1} ⊠ mint{n2} ⊟ mint{n3} using permutations.

3. There are machines that correspond to frequently occurring patterns in the translation,
like the low-level machines described at the beginning of this section.

We describe each one of them, its type, and its expansion in terms of base machines. Since the
expansions are not very readable, we draw some of them as formal circuits in Figure 4.14.

• The mhoidmtm machine is the higher-order identity machine. It should simply pass its
argument along. Unfolding the macro-type mtm ⊟ mtm, we obtain mtm+×mtm− _
mtm−×mtm+, which is exactly that of the first-order exchange machine. This leads to
the expansion

mhoidmtm
def= mswapmtm

[31/10/16, 16:38]

136 CHAPTER 4. COMPILATION

m += mhoidmtm Higher-order identity
∣ mhoneutrmtm Higher-order neutralization
∣ mhoneutrinvmtm Higher-order generation
∣ mhoconstn

n Lifted constant
∣ mhosumn2

n1 Lifted sum
∣ mhomergemt(m) Lifted merging
∣ mhowhenmt(m) Lifted sampling
∣ mhoevmtm,mtm Evaluation machine
∣ mplug(m,m) Application combinator
∣ mhogathmtm

n,n (m,m) Lifted scattering
∣ mhoscattmtm

n,n (m,m) Lifted gathering
∣ mhowrapmtm Lifted wrapping
∣ mhounwrapmtm Lifted unwrapping
∣ mhozipn

mtm,mtm Lifted zip
∣ mhounzipn

mtm,mtm Lifted unzip
∣ mhoncoern,n Lifted bounded integer coercion
∣ mholcoermtm

n,n Lifted list size coercion
∣ m ⧈ m Higher-order horizontal composition
∣ m ⊠ m Higher-order vertical composition
∣ mhofbmtm

mtm,mtm(m) Higher-order feedback loop
∣ mhorepln

mtm,mtm(m) Higher-order replication
∣ mcurrymtm

mtm,mtm Currying
∣ muncurrymtm

mtm,mtm Decurrying
∣ minterpose(m,m) Interposition

Figure 4.12: Higher-order macro-machines - syntax

whose graphical representation was already depicted in Figure 4.8. This figure shows
that the exchange machine performs no work of its own, simply acting as some kind of
relay between the inputs/outputs on the upper row, which correspond to mtm∗, and
the inputs/outputs of the lower row, which correspond to mtm. Requests of type mtm−
transmitted to mhoidmtm are passed to its argument, while the outputs received from its
argument are passed back as answers.

• The higher-order neutralization machine mhoneutrmtm is the higher-order counter-
part to the neutralization machine. It has the same type has the neutralization ma-
chine, except that unit has been replaced with munit, × with ⊠ and _ with ⊟. This
gives (munit ⊠ mtm) ⊟ mtm, which is in fact equal to munit ⊠ (mtm ⊟ mtm). This
justifies the expansion below.

mhoneutrmtm
def= midunit ∥ mhoidmtm

[31/10/16, 16:38]

4.3. LINEAR HIGHER-ORDER MACHINES 137

⊢ mhoidmtm ∶mtm ⊟ mtm ⊢ mhoneutrmtm ∶ munit ⊠ mtm ⊟ mtm

⊢ mhoneutrinvmtm ∶mtm ⊟ munit ⊠ mtm

⊢ n ∶ {m}
⊢ mhoconstn

m ∶ unit × unit_ unit × {m}[1]

⊢ mhosumn2
n1
∶ mint{n1}[n2] ⊟ {n1×n2}

⊢m ∶ unit_ {1}
⊢ mhomergemt(m) ∶ unit × mt[1] × mt[1] × unit_ unit × unit × unit × mt[1]

⊢m ∶ unit_ {1}
⊢ mhowhenmt(m) ∶ unit × mt[1] × unit_ unit × unit × mt[1]

⊢ mhoevmtm1,mtm2 ∶ ((mtm1 ⊟ mtm2) ⊠ mtm1) ⊟ mtm2

⊢m1 ∶mtm1 ⊟ mtm2 ⊢m2 ∶mtm1

⊢ mplug(m1,m2) ∶mtm2

⊢m1 ∶ mint{n1} ⊢m2 ∶ mint{n2}
⊢ mhogathmtm

n1,n2
(m1,m2) ∶mtm[n1][n2] ⊟ mtm[n1 ∗n2]

⊢m1 ∶ mint{n1} ⊢m2 ∶ mint{n2}
⊢ mhoscattmtm

n1,n2
(m1,m2) ∶mtm[n1 ∗n2] ⊟ mtm[n1][n2] ⊢ mhowrapmtm ∶mtm ⊟ mtm[1]

⊢ mhounwrapmtm ∶mtm[1] ⊟ mtm ⊢ mhozipn
mtm1,mtm2

∶ (mtm1[n] ⊠ mtm2[n]) ⊟ (mtm1 ⊠ mtm2)[n]

⊢ mhounzipn
mtm1,mtm2

∶ (mtm1 ⊠ mtm2)[n] ⊟ (mtm1[n] ⊠ mtm2[n]) ⊢ mhoncoern1,n2 ∶ {n1} ⊟ {n2}

⊢ mholcoermtm
n1,n2

∶mtm[n1] ⊟ mtm[n2]
⊢m2 ∶mtm2 ⊟ mtm3 ⊢m1 ∶mtm1 ⊟ mtm2

⊢m2 ⧈ m1 ∶mtm1 ⊟ mtm3

⊢m1 ∶mtm1 ⊟ mtm′
1 ⊢m2 ∶mtm2 ⊟ mtm′

2

⊢m1 ⊠ m2 ∶ (mtm1 ⊠ mtm2) ⊟ (mtm′
1 ⊠ mtm′

2)
⊢m ∶ (mtm1 ⊠ mtm3) ⊟ (mtm2 ⊠ mtm3)
⊢ mhofbmtm3

mtm1,mtm2
(m) ∶mtm1 ⊟ mtm2

⊢m ∶mtm1 ⊟ mtm2

⊢ mhorepln
mtm1,mtm2

(m) ∶ mint{n} ⊟ mtm1[n] ⊟ mtm2[n]

⊢ mcurrymtm3
mtm1,mtm2

∶ ((mtm1 ⊠ mtm2) ⊟ mtm3) ⊟ (mtm1 ⊟ (mtm2 ⊟ mtm3))

⊢ muncurrymtm3
mtm1,mtm2

∶ (mtm1 ⊟ (mtm2 ⊟ mtm3)) ⊟ ((mtm1 ⊠ mtm2) ⊟ mtm3)

⊢m1 ∶mtm′
1 ⊟ mtm1 ⊢m2 ∶mtm2 ⊟ mtm′

2

⊢ minterpose(m1,m2) ∶ (mtm1 ⊟ mtm2) ⊟ (mtm′
1 ⊟ mtm′

2)

Figure 4.13: Higher-order macro-machines - typing

[31/10/16, 16:38]

138 CHAPTER 4. COMPILATION

mtm−
1

mtm−
1

mtm+
2

mtm+
2

mtm+
1

mtm+
1

mtm−
2

mtm−
2

(a) mhoevmtm1,mtm2

∶ ((mtm1 ⊟ mtm2) ⊠ mtm1) ⊟ mtm2

m1

m2

mtm−
2 mtm+

2

mtm+
1

mtm−
1

(b) mplug(m1,m2)
∶ mtm2

m1

m2

mtm+
1

mtm−
3

mtm−
1

mtm+
3

mtm−
2

mtm+
2

(c) m2 ⧈ m1

∶ mtm1 ⊟ mtm3

m1

m2

mtm+
1

mtm+
2

mtm′−
1

mtm′−
2

mtm−
1

mtm−
2

mtm′+
1

mtm′+
2

(d) m1 ⊠ m2

∶ (mtm1 ⊠ mtm2) ⊟ (mtm′
1 ⊠ mtm′

2)

m

mtm+
1

mtm−
2

mtm−
1

mtm+
2

mtm+
3

mtm−
3

(e) mhofbmtm3
mtm1,mtm2

(m)
∶ mtm1 ⊟ mtm2

m1

m2

mtm−
1

mtm+
2

mtm′+
1

mtm′−
2

mtm+
1

mtm−
2

mtm′−
1

mtm′+
2

(f) minterpose(m1,m2)
∶ (mtm1 ⊟ mtm2) ⊟ (mtm′

1 ⊟ mtm′
2)

Figure 4.14: Higher-order macro-machines - selected graphical representations

[31/10/16, 16:38]

4.3. LINEAR HIGHER-ORDER MACHINES 139

Its dual, the mhoneutrinvmtm machine, is built in a similar manner.

mhoneutrinvmtm
def= (midunit ∥ mhoidmtm) ● ⟨mtm+,unit,mtm− ↦ 1,0,2⟩

• The lifted constant machine mhoconstn
m is a variant of the constant machine restricted

to bounded natural numbers. Its type may seem strange at first, but we will later see that
its shape makes it easy to combine with other higher-order machines.

mhoconstn
m

def= mneutrinv{m} ● mwrap{m} ● mconstn ● mneutrunit

• The lifted sum machine mhosumn2
n1 is a variant of the summation machine adapted to

higher-order types. It can be obtained by adding wires of unit types as dictated by its
type.

mhosumn2
n1

def= (midunit ∥ msumn2
n1) ● mswapunit_{n1}[n2]

• The lifted stream merging machine mhomergemt(m) lifts the merging macro-machine

defined in the previous section to the higher-order setting. As before, we add wires of
unit types where needed.

mhomergemt(m) def= midunit ∥ ((msrcmergemt y(m)∥ midunit)
● mneutrmt[1]×unit ● mswapunit_mt[1]×unit)

• The lifted stream sampling machine mhowhenmt(m) is similar to the previous one,
except that it lifts sampling rather than merging.

mhowhendt(m) def= midunit ∥ ((midunit ∥ msrcwhenLdtM(m)) ● mswapunit_LdtM[1])

• The mhoevmtm1,mtm2 machine is the evaluation machine. It is internal in the sense that
it makes it possible to express the application of higher-order machines as a machine
itself, and thus is the machine equivalent of λ f .λx. f (x). Combined with a machine of
type mtm1 ⊟ mtm2 and a machine of type mtm1, it produces a machine of type mtm2.
This leads to the permutation

mhoevmtm1,mtm2

def= ⟨mtm−
1 ,mtm+

2 ,mtm+
1 ,mtm−

2 ↦ 2,3,0,1⟩

represented in Figure 4.14 (a). Like the higher-order identity machine, the internal
application machine just passes values along, orchestrating the communication between
production and consumption of data.

• The application combinator mplug(m1,m2) , sometimes called the plugging machine,
is related to the previous one. Its typing rule shows that the machine m1 should be of
type mtm1 ⊟ mtm2 and m2 of type mtm1. In contrast with the application machine, the

[31/10/16, 16:38]

140 CHAPTER 4. COMPILATION

m

mtm− mtm+

≡ m

mtm− mtm+

Figure 4.15: The machine mplug(mhoidmtm,m) is equivalent to m

plugging machine completely hides the type mtm1 and only exposes mtm2. However,
actually applying m1 to m2 necessitates to connect a wire of type mtm+

1 from the output
of m2 to the second input of m1, and symmetrically for a wire of type mtm−

1 . These two
wires should be invisible from the outside, which suggests using the only machine able
to hide a value: the feedback machine. This leads to the following definition

mplug(m1,m2) def= mfb
mtm−

1 ×mtm+
1

mtm−
2 ,mtm+

2
(m)

where m = ⟨mtm−
1 ,mtm+

2 ,mtm+
1 ↦ 1,0,2⟩ ● (m1 ∥m2)

● ⟨mtm−
2 ,mtm−

1 ,mtm+
1 ↦ 1,2,0⟩

depicted in Figure 4.14 (b). This definition shows how the feedback is applied to the
wires used for communication between m1 and m2. The only wires still pending are
those of type mtm−

2 and mtm+
2 of m1, which are exported for further use.

Example 22. This definition is consistent with the higher-order identity machine ex-
posed before. Consider the right side of Figure 4.15, where one has applied the higher-
order identity machine to an arbitrary machine ⊢m ∶ mtm. By straightening the tan-
gled wires, one obtains the left side, which is nothing else than m itself. Thus, infor-
mally, mhoevmhoidmtm,m and m are equivalent.

• The mhogathmtm
n1,n2

(m1,m2) and mhoscattmtm
n1,n2

(m1,m2) machines lift the base scat-

tering and gathering machines to the higher-order macro-type system. We explain
gathering, since scattering is perfectly symmetric.

The definition of higher-order gathering obviously involves the first-order gathering
machine. The fact that it also needs the (first-order) scattering machine may appear
surprising at first. Completely expanding the type mtm[n1][n2] ⊟ mtm[n1∗n2] gives

mtm+[n1][n2]×mtm−[n1∗n2]_ mtm−[n1][n2]×mtm+[n1∗n2]

[31/10/16, 16:38]

4.3. LINEAR HIGHER-ORDER MACHINES 141

which shows why scattering must be involved: we need to pass from type mtm−[n1∗n2]
to type mtm−[n1][n2]. This leads to the definition

mhogathmtm
n1,n2

(m1,m2) def= (mscattctmtm−

n1,n2
(m1,m2)∥ mgathmtm+

n1,n2
)

● mswapmtm[n1][n2]_mtm[n1∗n2]

which also shows that m1 and m2 are the machines producing the scattering factors.
The reasoning is similar for scattering, for which the situation is simply reversed, with
gathering in contravariant position.

mhoscattmtm
n1,n2

(m1,m2) def= (mgathmtm−

n1,n2
∥ mscattctmtm+

n1,n2
(m1,m2))

● mswapmtm[n1∗n2]_mtm[n1][n2]

• In the beginning of this section we introduced the wrapping macro-machine mwrapmt , a
simply variant of stuttering where the input is repeated exactly once. This machine has
an inverse in the form of munwrapmt which removes the layer of indirection. The lifted
wrapping machine mhowrapmtm is the higher-order analogue. Its definition is

mhowrapmtm
def= (munwrapmtm− ∥ mwrapmtm+) ● mswapmtm+_mtm−[1]

and, as in the case of gathering/scattering, we must perform both wrapping of mtm+
and unwrapping of mtm−.

As an aside, observe that this definition shows that in contrast with wrapping, stuttering
cannot be lifted to higher-order machines in a natural way. Indeed, this would require
a machine able to undo the action of the stuttering machine in the general case, trans-
forming values of type mt[n] into values of type mt, which is only possible when the
lists are always of size one. This limitation highlights the linear nature of the machine
language: one cannot create a replication machine that is both generic and internal, in
the sense that it does not access the body of the machine to be replicated. The best we
can have is the lifted unwrapping machine mhounwrapmtm .

mhounwrapmtm
def= (mwrapmtm− ∥ munwrapmtm+) ● mswapmtm−_mtm+[1]

• The machines mhozipn
mtm1,mtm2

and mhounzipn
mtm1,mtm2

are respectively the lifted zip-

ping and lifted unzipping machines. Their definition is similar to the case of gathering/s-
cattering, with higher-order zipping involving higher-order unzipping and conversely.
Both machines are perfectly symmetric.

mhozipn
mtm1,mtm2

def= (munzipn
mtm−

1 ,mtm−
2
∥ mzipn

mtm+
1 ,mtm+

2
)

● mswap(mtm−
1 ×mtm−

2)[n]_mtm+
1 [n]×mtm+

2 [n]
mhounzipn

mtm1,mtm2

def= (mzipn
mtm−

1 ,mtm−
2
∥ munzipn

mtm+
1 ,mtm+

2
)

● mswapmtm−
1 [n]×mtm−

2 [n]_(mtm+
1 ×mtm+

2)[n]

[31/10/16, 16:38]

142 CHAPTER 4. COMPILATION

mtm+

mtm−
mtm−

mtm+

≡

mtm+

mtm+mtm−
mtm−

Figure 4.16: The machine (mhoidmtm ⧈ mhoidmtm) is equivalent to mhoidmtm ∶mtm ⊟ mtm

• The lifted bounded integer coercion machine mhoncoern1,n2 mimics the first-order one.

mhoncoern1,n2

def= (midunit ∥ mncoern1,n2) ● mswap{n2}−_{n1}+

• Similarly for the lifted list coercion machine mholcoermtm
n1,n2

.

mholcoermtm
n1,n2

def= (mlcoermtm−

n2,n1
∥ mlcoermtm+

n1,n2
) ● mswapmtm−[n2]_mtm+[n1]

Remark that contravariance forces us to coerce not only from n1 to n2 but also from n2

to n1 as well. Thus, this machines always drops suffixes of exactly one of its inputs, except
in the trivial case when n1 and n2 are equal.

• The higher-order composition machine m1 ⧈ m2 has a straightforward typing rule, and
makes it possible to compose higher-order machine types in a convenient fashion. It
is actually the more general case of the plugging machine mplug(m1,m2), in the case
where some wires of m2 have to be exposed to the external world.

m2 ⧈ m1
def= mfb

mtm−
2 ×mtm+

2
mtm+

1 ×mtm−
3 ,mtm−

1 ×mtm+
3
(m)

where m = ⟨mtm−
1 ,mtm+

2 ,mtm−
2 ,mtm+

3 ↦ 0,3,2,1⟩ ● (m1 ∥m2)
● ⟨mtm+

1 ,mtm−
3 ,mtm−

2 ,mtm+
2 ↦ 0,2,1,3⟩

Figure 4.14 (c) gives a graphical representation of this machine, showing how it is ac-
tually a symmetrized version of Figure 4.14 (b). The feedback loop on mtm−

2 ×mtm+
2 is

represented as two feedback loops, one on each component of the pair.

Example 23. The right side of Figure 4.16 shows the diagram obtained by composing two
higher-order identity machines. By straightening the wires one gets the diagram on the
left, which is nothing else than the identity machine itself: id ○ id = id.

[31/10/16, 16:38]

4.3. LINEAR HIGHER-ORDER MACHINES 143

• The higher-order pairing (or parallel composition) operator m1 ⊠ m2 composes hor-
izontally m1 and m2. The resulting machine transforms pairs of machines into pairs
of machines, as shown by its typing rule. It should not be confused to the first-order
product m1 ∥m2, which as a distinct type shown on the right below.

(mtm1 ⊠ mtm2) ⊟ (mtm′
1 ⊠ mtm′

2) ≠ (mtm1 ⊟ mtm′
1) ⊠ (mtm1 ⊟ mtm′

2)

Actually, the definition of m1 ⊠ m2 combines the first-order product with the proper
permutations in order to transform the (incorrect) type into the expected one.

m1 ⊠ m2
def= ⟨mtm−

1 ,mtm′+
1 ,mtm−

2 ,mtm′+
2 ↦ 0,2,1,3⟩ ● (m1 ∥m2)

● ⟨mtm+
1 ,mtm+

2 ,mtm′−
1 ,mtm′−

2 ↦ 0,2,1,3⟩
The graphical representation is given in Figure 4.14 (d).

• The higher-order feedback combinator mhofbmtm3
mtm1,mtm2

(m) is built from its first-order

counterpart and permutations. The definition below is depicted in Figure 4.14 (e).

mhofbmtm3
mtm1,mtm2

(m) def= mfb
mtm−

3 ×mtm+
3

mtm+
1 ×mtm−

2 ,mtm−
1 ×mtm+

2
(m′)

where m′ = ⟨mtm−
1 ,mtm−

3 ,mtm+
2 ,mtm+

3 ↦ 0,2,1,3⟩ ⧈ m
⧈ ⟨mtm+

1 ,mtm−
2 ,mtm−

3 ,mtm+
3 ↦ 0,3,1,2⟩

• The higher-order replication combinator mhorepln
mtm1,mtm2

(m) replicates m, a ma-

chine of type mtm1 ⊟mtm2, according to the replication factors received on its first input.
This factor is bounded by n. The resulting machine inhabits type mtm1[n] ⊟ mtm2[n],
which is different from mtm1 ⊟ mtm2[n].

mhorepln
mtm1,mtm2

(m)def= munzipn
mtm−

1 ,mtm+
2
● mrepln(m) ● (mid{n} ∥ mzipn

mtm+
1 ,mtm−

2
)

where m = mdrivectn
mtm1⊟mtm2

(m1,m2)
The definition uses the unzipping machine to obtain the expected type.

• The next two machines implement currying and uncurrying. Note that the macro-
types (mtm1 ⊠ mtm2) ⊟ mtm3 and mtm1 ⊟ (mtm2 ⊟ mtm3) appearing in the rules of

the machines mcurrymtm3
mtm1,mtm2

and muncurrymtm3
mtm1,mtm2

both unfold to

mtm+
1 ×mtm+

2 ×mtm−
3 _ mtm−

1 ×mtm−
2 ×mtm+

3

and thus are actually equal. This suggests that we already known how to implement
these two machines: both must transform the type (mtm1 ⊠ mtm2) ⊟ mtm3 =mtm1 ⊟
(mtm2 ⊟ mtm3) into itself, and are thus simply the (higher-order) identity machine.

mcurrymtm3
mtm1,mtm2

def= muncurrymtm3
mtm1,mtm2

def= mhoid(mtm1 ⊠mtm2)⊟mtm3

The triviality of their definitions implies that we could forgo the above machines and
directly use the identity machine in their place. We still prefer dedicated (un)currying
machines since they make things more readable.

[31/10/16, 16:38]

144 CHAPTER 4. COMPILATION

• The interposition machine minterpose(m1,m2) will prove to be convenient during
the translation. It receives a machine of type mtm1 ⊟ mtm2 and transforms it into a
machine of type mtm′

1 ⊟ mtm′
2, assuming m1 is of type mtm′

1 ⊟ mtm1 and m2 is of
type mtm2 ⊟ mtm′

2. Acute readers may already guess that it can help with the imple-
mentation of subtyping-like rules for arrows, m1 and m2 respectively implementing the
transformations in contravariant and covariant position. Its definition follows.

minterpose(m1,m2) = ⟨mtm′−
1 ,mtm+

1 ,mtm−
2 ,mtm′+

2 ↦ 1,2,0,3⟩ ● (m1 ∥m2)
● ⟨mtm−

1 ,mtm+
2 ,mtm′+

1 ,mtm′−
2 ↦ 2,0,1,3⟩

This definition is represented in Figure 4.14 (f).

• The higher-order permutation macro-machine ⟨mtm1, . . . ,mtmn ↦ i1, . . . , in ⟩ho has n
inputs and outputs. Its j -th output is equal to its i j -th input.

⊢ ⟨mtm1, . . . ,mtmn ↦ i1, . . . , in ⟩ho ∶mtm1⊠ . . . ⊠mtmn ⊟ mtmi1 ⊠ . . . ⊠mtmin

Higher-order permutations reduce to first-order ones.

⟨mtm1, . . . ,mtmn ↦ i1, . . . , in ⟩ho

= ⟨mtm+
1 , . . . ,mtm+

n ,mtm−
1 , . . . ,mtm−

n ↦ i1+n, . . . , in +n, i1, . . . , in ⟩

4.4 The Translation

The translation from the source to the target language combines all the elements from Chapter 3
and Chapter 4. It transforms the typing derivations of Chapter 3 into well-typed machines. Its
goal is two-fold. First, it reduces all source-level concepts which involve conceptually infinite
objects, such as streams, to finite objects such as lists and bounded integers. In particular, clock
types are translated to actual machines generating the successive values of the corresponding
clock. Second, it translates away linear higher-order functions to first-order ones composed
using well-behaved feedback loops.

The translation is organized as a family of type-directed functions. Each source-level
type is translated to a target-level machine type, and the translation of programs respects
the translation of types. In other words, writingMmtm for the set of machines m such that ⊢
m ∶ mtm and L_M for the translation function, we have L◻⊢ e ∶ tM ∈MLtM. We begin with the
translation of types. The translation of adaptability, gathering and scattering derivations is then
described; they involve the less obvious combinations of machines. Finally, the compilation of
typing derivations mostly consists in plugging together all the pieces described in this chapter
in a straightforward manner.

4.4.1 Translating Types

The goal of the translation process is to produce state machines using a statically-bounded
amount of memory. We have seen that these bounds appear in the types of the target language,

[31/10/16, 16:38]

4.4. THE TRANSLATION 145

either as upper bounds on the possible value of numbers, or as maximum list lengths. Thus,
of the main role of the translation of types is to exhibit these bounds. Where do they come
from? First, we have seen that by definition the integer scalars of the source language are
actually 64 bit unsigned integers. Second, each clock type actually denotes a clock with a
statically-computable bound. Let us discuss this point first.

Clock bounds In order to describe the translation from clocked streams to machines com-
puting finite amount of data per reaction, we need to define a function ⌈ct⌉ computing an
upper bound of the value of integers in the clock denoted by ct. One possibility would be
to compute its normal form nf (ct), which is an ultimately periodic word, and then traverse
the word to find its largest number, ⌈nf (ct)⌉. This approach gives an exact upper bound, but
does not extend to languages with more expressive clock types. We adopt the more flexible
definition given below.

⌈p⌉ = ⌈p⌉
⌈ct1 on ct2⌉ = ⌈ct⌉∗ ⌈ct ′⌉

This function is defined by structural recursion, and as such one does not need to reduce ct to
its normal form. This will turn out to be important since it extends gracefully to more complex
clock type languages given in Chapter 5, where nf (ct) does not exist.

Remark 19. The price to pay for this additional flexibility is imprecision: we have ⌈nf (ct)⌉ ≤ ⌈ct⌉
in general, and the bound is not tight. The example below shows one of the simplest example
where the loss of precision occurs.

⌈nf ((2) on (1 0))⌉ = ⌈(1)⌉ = 1 < ⌈(2) on (1 0)⌉ = ⌈(2)⌉∗ ⌈(1 0)⌉ = 2

This imprecision actually impacts the translation process by forcing us to insert additional
coercions in some places. We discuss this issue after having explained the translation of types.

Data types and types The type system proposed in Chapter 3 assumes very little of the
precise grammar of data types dt. In this chapter, we require that data types are only inhabited
by finite set of scalars. Recall that this is actually the case for both bool and int, the latter being
the type of unsigned 64 bits integers. We can thus write a translation function from a data
type dt to a value type mt, given by the following clauses.

LboolM = {1}
LintM = {264−1}

The next step is to map each source type t to a machine type mtm. We have all the
ingredients in hands: products correspond to higher machine products, arrows to higher
machine arrows, and streams dt ∶∶ ct correspond to machine with no inputs and one output
which is a list of values in LdtM. The maximum size of this list is given by the maximum integer
present in the clocked denoted by ct, which we abbreviate as ⌈ct⌉, with ⌈ct1 on ct2⌉ = ⌈ct1⌉∗⌈ct2⌉.

Ldt ∶∶ ctM = unit_ LdtM[⌈ct⌉]
Lt1⊗ t2M = Lt1M ⊠ Lt2M
Lt1⊸ t2M = Lt1M ⊟ Lt2M

[31/10/16, 16:38]

146 CHAPTER 4. COMPILATION

In order to deal with open terms, the translation has to be extended to contexts. As usual,
they are interpreted as potentially large products.

L◻M = munit

LΓ, x ∶ tM = LΓM ⊠ LtM

Clock types Clock types are not only annotations: they cannot be erased as they drive the
execution of some language constructs, as we have seen in the synchronous semantics. Thus,
we need to translate each clock type ct to a machine producing the successive values of the
clock it denotes. This machine has no input and produces a number bounded by ⌈ct⌉ at each
reaction.

LctM ∈ Mmint{⌈ct⌉}
LpM = mpwp(0)
Lct1 on ct2M = msum

⌈ct2⌉
⌈ct1⌉ ●mdrivenict

⌈ct1⌉
⌈ct2⌉(Lct1M,Lct2M)

Ultimately periodic words are translated using the dedicated machines, and clock composition
uses the summation operator. Note that, once again, this process is syntax-directed: one does
not need to reduce the whole clock type to an ultimately periodic word nf (ct) in order to
implement it.

On coercions We can now explain concretely why the imprecision of the ⌈_⌉ function some-
times forces us to insert coercions. This comes from the fact that while the source type system
handles clock types up to equivalence, equivalent clock types may get translated to distinct
target types. For instance, we know that (2) on (1 0) ≡ (1), yet we have

Lbool ∶∶ (2) on (1 0)M = unit_ {1}[⌈(2)⌉× ⌈(1 0)⌉] = unit_ {1}[2]
≠ Lbool ∶∶ (1)M = unit_ {1}[1]

from the previous definitions. The point is that even if the machines obtained from well-
typed programs of clock type (2) on (1 0) compute lists of length one at each reaction, this is
not apparent in the translated type. The actual problem arises when one needs to move be-
tween mtm[⌈(2) on (1 0)⌉] and mtm[⌈(1)⌉]. The solution is to use a higher-order list coercion
machine mholcoermtm

⌈(2) on (1 0)⌉,⌈(1)⌉.

4.4.2 Translating Auxiliary Judgments

Value The role of the value judgments is to classify whether the inhabitants of a type or a
context is duplicable and erasable. In the synchronous semantics this was not important, as
elements of a domain are mathematical objects that can always be erased or duplicated at
will. In the physical world of machines, this is no longer the case: one cannot duplicate or
erase higher-order machines. We thus need to interpret a typing derivation of ⊢ t value either
as a machine L⊢ t valueMD able to duplicate LtM, or as a machine L⊢ t valueME able to erase it.
Figure 4.17 gives the corresponding compilation functions.

[31/10/16, 16:38]

4.4. THE TRANSLATION 147

L⊢ t valueMD ∈ MLtMD ⊟LtMD ⊠ LtMD

L⊢ dt ∶∶ ct valueMD = (mdupLdt ∶∶ ctM ∥ midunit) ● (midLdt ∶∶ ctM ∥ mneutrunit)
L⊢ t1⊗ t2 valueMD = ⟨Lt1M,Lt1M,Lt2M,Lt2M ↦ 0,2,1,3⟩ho ⧈ (L⊢ t1 valueMD ⊠ L⊢ t2 valueMD)

L⊢ t valueME ∈ MLtM∗

L⊢ dt ∶∶ ct valueME = mforgLdt ∶∶ ctM
L⊢ t1⊗ t2 valueME = L⊢ t1 valueME ∥ L⊢ t2 valueME

L⊢ Γ valueME ∈ MLΓM∗

L⊢ ◻ valueME = midL◻M
L⊢ Γ, x ∶ t valueME = LΓME ∥ LtME

Figure 4.17: Compilation - value judgment

LΓ⊢ Γ1⊗Γ2M ∈ MLΓM⊟LΓ1M⊠ LΓ2M
L◻⊢ ◻⊗◻M = mid

(L◻M⊟L◻M⊠ L◻M)−

LΓ, x ∶ t ⊢ Γ1, x ∶ t ⊗Γ2, x ∶ tM = ⟨LΓ1M,LΓ2M,LtM,LtM ↦ 0,2,1,3⟩ho ⧈ (LΓ⊢ Γ1⊗Γ2M ⊠ L⊢ t valueMD)
LΓ, x ∶ t ⊢ Γ1, x ∶ t ⊗Γ2M = ⟨LΓ1M,LΓ2M,LtM,↦ 0,2,1⟩ho ⧈ (LΓ⊢ Γ1⊗Γ2M ⊠ mhoidLtM)
LΓ, x ∶ t ⊢ Γ1⊗Γ2, x ∶ tM = LΓ⊢ Γ1⊗Γ2M ⊠ mhoidLtM

Figure 4.18: Compilation - context splitting judgment

The duplication machine L⊢ t valueMD has type LtM ⊟ (LtM ⊠ LtM). Since stream types are
implemented by scalar values, the first case simply consists in using the primitive value dupli-
cation machine. The second case uses the duplicating machines obtained recursively from
premises ⊢ t1 value and ⊢ t2 value, rearranging their outputs to have the expected type. Note
that the definition is relatively concise thanks to higher composition machines and the higher
permutation.

The type of the erasure machine L⊢ t valueME is ⊢ t value∗. Its type is LtM∗, expressing that
it is able to completely consume a machine of type LtM. It is also found in Figure 4.17. The base
case of streams is handled using the primitive value erasure machine. The case of products is
handled by juxtaposing the sub-machines L⊢ t1 valueME and L⊢ t2 valueME . This is well-typed
since mtm∗

1 ⊠ mtm∗
2 = (mtm1 ⊠ mtm2)∗.

The context erasure machine LΓME is built using vertical composition.

Separation The separation judgment Γ⊢ Γ1⊗Γ2 translates into a higher-order machine trans-
forming inputs in LΓM into outputs in LΓ1M ⊠ LΓ2M. The interpretation is given in Figure 4.18.
It is close to the one given in the synchronous semantics, with the pairing and composition

[31/10/16, 16:38]

148 CHAPTER 4. COMPILATION

L⊢ t <∶k t ′M ∈ MLtM⊟Lt ′M

L⊢ dt ∶∶ ct1 <∶k dt ∶∶ ct2M = (mbuffctLdtM
⌈ct1⌉,⌈ct2⌉,size(ct1,ct2)

(Lct2M) ∥ midunit) ● mswapLdtM[⌈ct1⌉]⊟unit

L⊢ t1⊗ t2 <∶k t ′1⊗ t ′2M = L⊢ t1 <∶k t ′1M ⊠ L⊢ t2 <∶k t ′2M
L⊢ t1⊸ t2 <∶k t ′1⊸ t ′2M = minterpose(L⊢ t ′1 <∶0 t1M,L⊢ t2 <∶k t ′2M)

Figure 4.19: Compilation - adaptability judgment

operators from domain theory replaced with those of machines. The compilation of rule SEP-
CONTRACT relies on the duplication machine L⊢ t valueMD . Most cases simply shuffle machine
types around using permutations in order to obtain the expected output type.

Remark 20. Note that in several cases, especially the last one, the generated machines are
well-typed only up to associativity of ⊠. We feel that this small sacrifice in rigor gives a large
pay-off in terms of readability.

Adaptability The adaptability judgment ⊢ t <∶k t ′ is translated to a machine transforming LtM
into Lt ′M. The interpretation is given in Figure 4.19. As expected, it relies on first-order buffers
to implement stream buffering. The function size(ct1,ct2) computes the capacity needed for a
buffer whose input clock is denoted by ct1 and output clock by ct2. This is the maximum of the
cumulative functions of nf (ct1) and nf (ct2), as described by the formulas below.

size(w1, w2) = maxi≥0(Ow1(i)−Ow2(i))
size(ct1,ct2) = size(nf (w1),nf (w2))

Notice how the minterpose(L⊢ t ′1 <∶0 t1M,L⊢ t2 <∶k t ′2M) machine is used to compile the function
adaptability rule, as we announced in the previous section.

Gathering Remember that the judgment ⊢ t ↑ct t ′ expresses that one can transform a inhabi-
tants of t , computed at the rate described by ct, into inhabitants of t ′. Thus, the corresponding
machine should consume several inhabitants of LtM and produce one inhabitant of Lt ′M. The
exact amount of inhabitants of LtM needed at a given reaction is determined by the correspond-
ing integer in the clock denoted by ct; thus it is at most ⌈ct⌉. Hence, a gathering judgment
should be translated to a machine of type LtM[⌈ct⌉] ⊟ Lt ′M. The definition is given in the middle
part of Figure 4.20.

• For rule UPSTREAM, we use the higher-order gathering machine. A coercion is needed
on the output to pass from lists of size ⌈ct on ct1⌉ to lists of size ⌈ct2⌉. We know that this
coercion is benign since typing ensures that ct2 ≡ ct on ct1 holds.

• For rule UPPROD, we pair the compilation of the two premises. The unziping machine
is needed to convert the input from (mtm1 ⊠ mtm2)[⌈ct⌉] to mtm1[⌈ct⌉] ⊠ mtm2[⌈ct⌉],
which is the type expected by the pair of machines.

[31/10/16, 16:38]

4.4. THE TRANSLATION 149

L⊢ t ↑ct t ′M ∈ MLtM[⌈ct⌉]⊟Lt ′M

L⊢ dt ∶∶ ct1 ↑ct dt ∶∶ ct2M = mholcoer
unit_LdtM
⌈ct on ct2⌉,⌈ct1⌉ ⧈ mhogath

unit_LdtM
⌈ct⌉,⌈ct2⌉ (LctM,Lct2M)

L⊢ t1⊗ t2 ↑ct t ′1⊗ t ′2M = (L⊢ t1 ↑ct t ′1M ⊠ L⊢ t2 ↑ct t ′2M) ⧈ mhounzip
⌈ct⌉
Lt1M,Lt2M

L⊢ t1⊸ t2 ↑ct t ′1⊸ t ′2M = (minterpose(L⊢ t ′1 ↓ct t1M,L⊢ t2 ↑ct t ′2M))
⧈ mhounzip

⌈ct⌉
Lt1M∗,Lt2M

L⊢ t ↑ct on ct′ t ′M = L⊢ t ′′ ↑ct t ′M ⧈ mplug(mhorepl⌈ct⌉
LtM[⌈ct′⌉],Lt ′′M(L⊢ t ↑ct′ t ′′M),LctM)

⧈ mhoscatt
LtM
⌈ct⌉,⌈ct′⌉(LctM,Lct′M)

L⊢ t ↑ct t ′M = mhounwrapLt ′M ⧈ mholcoer
Lt ′M
⌈ct′ on ct⌉,1

⧈ mhogath
Lt ′M
⌈ct′⌉,⌈ct⌉(Lct′M,LctM)

⧈ mplug(mhorepl⌈ct⌉
LtM,Lt ′M[⌈ct′⌉](L⊢ t ↓ct′ t ′M),LctM)

L⊢ t ↓ct t ′M ∈ MLtM⊟Lt ′M[⌈ct⌉]
L⊢ dt ∶∶ ct1 ↓ct dt ∶∶ ct2M = mhoscatt

unit_LdtM
⌈ct1⌉,⌈ct⌉ (LctM,Lct1M) ⧈ mholcoer

unit_LdtM
⌈ct on ct1⌉,⌈ct2⌉

L⊢ t1⊗ t2 ↓ct t ′1⊗ t ′2M = mhozip
⌈ct⌉
Lt1M,Lt2M

⧈ (L⊢ t1 ↓⌈ct⌉ t ′1M ⊠ L⊢ t2 ↓⌈ct⌉ t ′2M)
L⊢ t1⊸ t2 ↓ct t ′1⊸ t ′2M = mhozip

⌈ct⌉
Lt ′1M∗,Lt ′2M

⧈ (minterpose(L⊢ t ′1 ↓ct t1M,L⊢ t2 ↓ct t ′2M))
L⊢ t ↓ct on ct′ t ′M = mhogath

LtM
⌈ct⌉,⌈ct′⌉(LctM,Lct′M) ⧈ m ⧈ L⊢ t ↓ct t ′′M

where m = mplug(mhorepl⌈ct⌉
Lt ′′M,Lt ′M[⌈ct′⌉](L⊢ t ′′ ↓ct′ t ′M),LctM)

L⊢ t ↓ct t ′M = mplug(mhorepl⌈ct⌉
LtM[⌈ct′⌉],Lt ′M(L⊢ t ↑ct′ t ′M),LctM)

⧈ mhoscatt
LtM
⌈ct′⌉,⌈ct⌉(Lct′M,LctM)

⧈ mholcoer
LtM
1,⌈ct′ on ct⌉ ⧈ mhowrapLtM

L⊢ Γ ↓ct Γ′M ∈ MLΓM⊟LΓ′M[⌈ct⌉]
L⊢ ◻ ↓ct ◻M = mstutterct

⌈ct⌉
L◻M+(LctM)

L⊢ Γ, x ∶ t ↓ct Γ′, x ∶ t ′M = L⊢ Γ ↓ct Γ′M ⊠ L⊢ t ↓ct t ′M

Figure 4.20: Compilation - gathering and scattering judgments

[31/10/16, 16:38]

150 CHAPTER 4. COMPILATION

• Similarly, for rule UPARROW, we pass the unzipped input to the interposition of the
machines obtained by composed the premises.

• For rule UPON, we need to compose the machine ⊢ t ↑ct′ t ′′ and ⊢ t ′′ ↑ct t ′ in order
to transform inhabitants of the input type LtM[⌈ct⌉∗ ⌈ct′⌉] into inhabitants of Lt ′M. The
solution is to replicate the machine L⊢ t ↑ct′ t ′′M by LctM, which makes it composable
with L⊢ t ′′ ↑ct t ′M. We must also scatter the input to obtain data compatible with the input
type of the replicated machine, which is LtM[⌈ct′⌉][⌈ct⌉] .

• For rule UPINV, we must build an output of type Lt ′M from an input of type LtM[⌈ct⌉], and
we have a machine of type LtM⊟ Lt ′M[⌈ct′⌉] at our disposal. The solution is to replicate this
machine by LctM. We are left with an output of type Lt ′M[⌈ct′⌉][⌈ct⌉] , which we convert
into one of type Lt ′M[⌈ct on ct′⌉] via the gathering machine. Since ct on ct′ ≡ (1), we
coerce this type to Lt ′M[1], which can finaly be unwrapped to obtain a value in Lt ′M.

Scattering The scattering judgment ⊢ t ↓ct t ′ is completely symmetric to the gathering one.
Its definition is also given in Figure 4.20. Unzipping, gathering, and wrapping machines are
replaced with zipping, scattering, and wrapping machines. They are composed in the reverse
order. Contexts are scattered component-wise.

4.4.3 Translating Typed Programs

We are almost ready to describe the compilation of typed programs to machines. Let us address
the last remaining technical issue.

Clock-polymorphic operators The source language includes a family of pointwise opera-
tors op left abstract. We assume given a machine LopM ∶ L◻ ⊢ int ∶∶ (1)⊗ int ∶∶ (1)⊸ int ∶∶ (1)M for
each operator op corresponding to its finite-state implementation.

This leads to the last important difference between the synchronous semantics of the
source language and our kit of (macro-)machines. Notice that the typing rules OP, MERGE,
and WHEN from Figure 3.5 accept any base clock ct: these rules are clock-polymorphic. In
contrast, the machines mhoconstn

m , LopM, mhomergemt(m) and mhowhenmt(m) handle only
lists whose size is at most one. They would thus correspond to the monomorphic and binary
typing rules below.

MONOCONST

◻⊢ s ∶ dtof (s) ∶∶ (1)

MONOOP

◻⊢ op ∶ (int ∶∶ (1))⊗(int ∶∶ (1))⊸ (int ∶∶ (1))

MONOMERGE

p ≤ (1)
◻⊢ merge p ∶ dt ∶∶ p⊗dt ∶∶ p⊸ dt ∶∶ (1)

MONOWHEN

p ≤ (1)
◻⊢ when p ∶ dt ∶∶ (1)⊸ dt ∶∶ p

Fortunately, our language already includes a solution to the problem of adapting a machine
to work on wider data types through the use of the driving machine: use replication. One should

[31/10/16, 16:38]

4.4. THE TRANSLATION 151

perform conversions at the interface between the replicated machine and the external world.
Those conversions can actually be described as derivations of the gathering and scattering
judgments, which are then to be compiled to obtain the required machine. The conclusions of
the relevant derivations are given below; p denotes periodic binary words.

empty ↓ct ∶∶∶ ⊢ ◻ ↓ct ◻
const ↑dt

ct ∶∶∶ ⊢ dt ∶∶ (1) ↑ct dt ∶∶ ct

merge ↑p,dt
ct ∶∶∶ ⊢ (dt ∶∶ p)⊗(dt ∶∶ p)⊸ (dt ∶∶ (1)) ↑ct (dt ∶∶ ct on p)⊗(dt ∶∶ ct on p)⊸ (dt ∶∶ ct)

when ↑p,dt
ct ∶∶∶ ⊢ (dt ∶∶ (1))⊸ (dt ∶∶ p) ↑ct (dt ∶∶ ct)⊸ (dt ∶∶ ct on p)

op ↑ct ∶∶∶ ⊢ (int ∶∶ (1))⊗(int ∶∶ (1))⊸ (int ∶∶ (1)) ↑ct (int ∶∶ ct)⊗(int ∶∶ ct)⊸ (int ∶∶ ct)

Each name above has to be understood as an abbreviation for the derivation having the
expected conclusion. They are readily constructed using the rules of Figure 3.9.

The translation The translation of the typing derivation for the typed program Γ ⊢ e ∶ t
produces a machine of type LΓM ⊟ LtM. Let us define and explain each rule, case-by-case.

• Rule VAR: the machine erases the context but for its last component, which is returned
via the higher-order identity machine.

LΓ, x ∶ t ⊢ x ∶ tM = L⊢ Γ valueME ∥ mhoidLtM

• Rule WEAKEN: the machine erases a single component from the context, which should
be a value.

LΓ, x ∶ t ′ ⊢ e ∶ tM = mhoneutrLtM ⧈ ⟨LtM,unit ↦ 1,0⟩ho

⧈ (LΓ⊢ e ∶ tM ⊠ L⊢ t ′ valueME)
Note that we need to apply conversions on the output to obtain the expected type.

• Rule FUN: the translation is similar to the interpretation of the rule in the synchronous
semantics, with domain operators replaced with machine constructors. It curryfies the
premise in order to obtain the expected type.

LΓ⊢ fun x.e ∶ t ⊸ t ′M = mplug(mcurryLt ′M
LΓM,LtM,LΓ, x ∶ t ⊢ e ∶ t ′M)

• Rule APP: the machine simply uses the internal application machine. Context splitting
is compiled to a machine that provides the inputs required by the other premises.

LΓ⊢ e e′ ∶ t ′M = mhoevLtM,Lt ′M ⧈ (LΓ1 ⊢ e ∶ t ⊸ t ′M ⊠ LΓ2 ⊢ e′ ∶ tM)
⧈ LΓ⊢ Γ1⊗Γ2M

• Rule PROD: the translation is again similar to the synchronous semantics, with the
parallel product of machine replacing the pairing of continuous functions.

LΓ⊢ (e1,e2) ∶ t1⊗ t2M = (LΓ1 ⊢ e1 ∶ t1M ⊠ LΓ2 ⊢ e2 ∶ t2M) ⧈ LΓ⊢ Γ1⊗Γ2M

[31/10/16, 16:38]

152 CHAPTER 4. COMPILATION

LΓ⊢ e ∶ tM
∈ LΓM ⊟ LtM

LΓ, x ∶ t ⊢ x ∶ tM
= L⊢ Γ valueME ∥ mhoidLtM

LΓ, x ∶ t ′ ⊢ e ∶ tM
= mhoneutrLtM ⧈ ⟨LtM,unit ↦ 1,0⟩ho ⧈ (LΓ⊢ e ∶ tM ⊠ L⊢ t ′ valueME)

LΓ⊢ fun x.e ∶ t ⊸ t ′M
= mplug(mcurryLt ′M

LΓM,LtM,LΓ, x ∶ t ⊢ e ∶ t ′M)

LΓ⊢ e e′ ∶ t ′M
= mhoevLtM,Lt ′M ⧈ (LΓ1 ⊢ e ∶ t ⊸ t ′M ⊠ LΓ2 ⊢ e′ ∶ tM) ⧈ LΓ⊢ Γ1⊗Γ2M

LΓ⊢ (e1,e2) ∶ t1⊗ t2M
= (LΓ1 ⊢ e1 ∶ t1M ⊠ LΓ2 ⊢ e2 ∶ t2M) ⧈ LΓ⊢ Γ1⊗Γ2M

LΓ⊢ let (x, y) = e in e′ ∶ tM
= mhoevLt1⊗t2M,LtM ⧈ (mplug(mcurryLtM

LΓM,Lt1M⊠ Lt2M
,LΓ2, x ∶ t1, y ∶ t2 ⊢ e′ ∶ tM) ⊠ LΓ1 ⊢ e ∶ t1⊗ t2M) ⧈ LΓ⊢ Γ1⊗Γ2M

LΓ⊢ fix e ∶ t ′M
= mhofbLt ′M

LΓM,Lt ′M(L⊢ t ′ valueMD ⧈ (mplug(muncurryLt ′M
LΓM,LtM,LΓ⊢ e ∶ t ⊸ t ′M)) ⧈ (mhoidLΓM ⊠ L⊢ t ′ <∶1 tM))

L◻⊢ s ∶ dtof (s) ∶∶ ctM
= Lconst ↑dtof (s)

ct M ⧈ mplug(mhorepl⌈ct⌉
L◻M,Lint ∶∶ (1)M(mhowrapLdtof (s)M ⧈ mhoconsts

dtof (s)),LctM) ⧈ Lempty ↓ctM

L◻⊢ op ∶ (int ∶∶ ct)⊗(int ∶∶ ct)⊸ (int ∶∶ ct)M
= Lop ↑ctM ⧈ mplug(mhorepl⌈ct⌉

L◻M,L(int ∶∶ (1))⊗(int ∶∶ (1))⊸(int ∶∶ (1))M(LopM),LctM) ⧈ Lempty ↓ctM

L◻⊢ merge p ∶ (dt ∶∶ ct on p)⊗(dt ∶∶ ct on p)⊸ (dt ∶∶ ct)M
= Lmerge ↑p,dt

ct M ⧈ mplug(mhorepl⌈ct⌉
L◻M,L(dt ∶∶ p)⊗(dt ∶∶ p)⊸(dt ∶∶ (1))M(mhomergeLdtM(mpwp(0))),LctM) ⧈ Lempty ↓ctM

L◻⊢ when p ∶ (dt ∶∶ ct)⊸ (dt ∶∶ ct on p)M
= Lwhen ↑p,dt

ct M ⧈ mplug(mhorepl⌈ct⌉
L◻M,L(dt ∶∶ (1))⊸(dt ∶∶ p)M(mhowhenLdtM(mpwp(0))),LctM) ⧈ Lempty ↓ctM

LΓ⊢ e ∶ t ′M
= L⊢ t <∶k t ′M ⧈ LΓ⊢ e ∶ tM

LΓ⊢ e ∶ tM
= L⊢ t ′ ↑ct tM ⧈ mplug(mhorepl⌈ct⌉

LΓ′M,Lt ′M(LΓ
′ ⊢ e ∶ t ′M),LctM) ⧈ L⊢ Γ ↓ct Γ

′M

Figure 4.21: Compilation - main typing judgment

[31/10/16, 16:38]

4.4. THE TRANSLATION 153

• Rule LET: this case is similar to that of application, except that some currying has
to be performed in order to obtain a machine expecting inputs in Lt1⊗ t2M from the
compilation of the judgment Γ, x ∶ t1, y ∶ t2 ⊢ e ∶ t .

LΓ⊢ let (x, y) = e in e′ ∶ tM
= mhoevLt1⊗t2M,LtM ⧈ (m ⊠ LΓ1 ⊢ e ∶ t1⊗ t2M) ⧈ LΓ⊢ Γ1⊗Γ2M

where m = mplug(mcurryLtM
LΓM,Lt1M⊠ Lt2M

,LΓ2, x ∶ t1, y ∶ t2 ⊢ e′ ∶ tM)

• Rule FIX: we use the higher-order feedback loop to compile fix e. The premises are
used to build a machine of the type expected by the feedback operator. The compiled
adaptability judgment L⊢ t ′ <∶1 tM is placed in front of the compiled machine of e while
the duplication machine L⊢ t ′ valueM is placed behind it.

LΓ⊢ fix e ∶ t ′M = mhofb
Lt ′M
LΓM,Lt ′M(L⊢ t ′ valueMD ⧈ m ⧈ (mhoidLΓM ⊠ L⊢ t ′ <∶1 tM))

where m = mplug(muncurryLt ′M
LΓM,LtM,LΓ⊢ e ∶ t ⊸ t ′M)

• Rule CONST: constants are handled using the strategy at the beginning of this section.
They are replicated and enclosed in conversion code obtained from the compilation of
the relevant gathering and scattering judgments.

L◻⊢ s ∶ dtof (s) ∶∶ ctM
= Lconst ↑dtof (s)

ct M ⧈ mplug(mhorepl⌈ct⌉
L◻M,Lint ∶∶ (1)M(m),LctM) ⧈ Lempty ↓ctM

where m = mhowrapLdtof (s)M ⧈ mhoconsts
dtof (s)

• Rule OP: similar to constants.

L◻⊢ op ∶ (int ∶∶ ct)⊗(int ∶∶ ct)⊸ (int ∶∶ ct)M
= Lop ↑ctM ⧈ mplug(mhorepl⌈ct⌉

L◻M,L(int ∶∶ (1))⊗(int ∶∶ (1))⊸(int ∶∶ (1))M(m),LctM) ⧈ Lempty ↓ctM
where m = LopM

• Rule MERGE: again, similar to constants.

L◻⊢ merge p ∶ (dt ∶∶ ct on p)⊗(dt ∶∶ ct on p)⊸ dt ∶∶ ctM
= Lmerge ↑p,dt

ct M ⧈ mplug(mhorepl⌈ct⌉
L◻M,L(dt ∶∶ p)⊗(dt ∶∶ p)⊸(dt ∶∶ (1))M(m),LctM) ⧈ Lempty ↓ctM

where m = mhomergeLdtM(mpwp(0))

• Rule WHEN: again, similar to constants.

L◻⊢ when p ∶ (dt ∶∶ ct)⊸ (dt ∶∶ ct on p)M
= Lwhen ↑p,dt

ct M ⧈ m ⧈ Lempty ↓ctM
where m = mplug(mhorepl⌈ct⌉

L◻M,L(dt ∶∶ (1))⊸(dt ∶∶ p)M(mhowhenLdtM(mpwp(0))),LctM)

[31/10/16, 16:38]

154 CHAPTER 4. COMPILATION

• Rule ADAPT: as usual with subtyping-like rules, we compose the machine obtained from
the adaptability judgment.

LΓ⊢ e ∶ t ′M = L⊢ t <∶k t ′M ⧈ LΓ⊢ e ∶ tM

• Rule RESCALE: the strategy is the same as in the case of constants, operators, sampling
and merging, except that in this case we scatter an arbitrary program rather than a fixed
operator.

LΓ⊢ e ∶ tM = L⊢ t ′ ↑ct tM ⧈ mplug(mhorepl⌈ct⌉
LΓ′M,Lt ′M(LΓ′ ⊢ e ∶ t ′M),LctM) ⧈ L⊢ Γ ↓ct Γ′M

Figure 4.21 recapitulates all the cases of the translation in one place. The next section
discusses what it means for a machine to correctly implement a source-level program and then
builds on top of this to prove that the translation is actually correct.

4.4.4 Soundness

This section studies the correctness of the translation using a binary logical relation. The
relation defines what it means for a machine to implement a domain element, for example
a stream or a function. The soundness theorem expresses that the compilation of a typing
derivation implements its typed semantics.

Operational equivalence We construct the logical relation using a biorthogonality tech-
nique [Girard, 1987; Pitts, 2000]. Biorthogonality techniques rely on a notion of well-behaved
interaction between a program and its surrounding context. In our case, orthogonality is a
kind of bisimulation defined as follows.

Definition 18 (Orthogonality). Orthogonality is a coinductive relation between machines of
complementary types. Two machines m1 and m2 are orthogonal, written m1�m2, when the
following conditions hold for all values x and y:

• if m1/x→m′
1/y then there exists m′

2 such that m2/y →m′
2/x and m′

1�m′
2;

• if m2/y →m′
2/x then there exists m′

1 such that m1/x→m′
1/y and m′

1�m′
2.

Remark 21. Readers familiar with synchronous programming may notice an analogy with the
notion of synchronous observer [Halbwachs et al., 1994]. However here the machine m2 does
not simply observe the output of m1, but also affects its input—orthogonality is symmetric.

Definition 19 (Orthogonal set). The orthogonal of a typed set of machines X ⊆Mmtm is the
typed set of machines written X � ⊆Mmtm∗ defined by m∗ ∈ X �⇔∀m ∈ X ,m�m∗ .

Property 42 (Classic properties of orthogonal sets). For any set of machines X we have X ⊆ X ��
and X ��� = X �. Given another set of machines Y such that X ⊆ Y , we have Y � ⊆ X �. For any sets
of machines X ,Y we have X �∩Y � = (X ∪Y)�

[31/10/16, 16:38]

4.4. THE TRANSLATION 155

Proof. Each property is immediately proved by unfolding the definition of X �. They do not
depend on the definition of the orthogonality relation.

The machines in X � are precisely those that combine well with all machines in X : their
interaction with elements of X never blocks. The machines of X � can be thought of as tests
for X , and vice-versa. The interest of this construction is that we can now define sets of
machines negaitvely, by taking the orthogonal of the set of tests they must pass. Moreover, the
orthogonal builds closed sets, which intuitively describe sets of machine that behave in the
same way. The importance of closed sets motivate the following definition.

Definition 20 (Behaviors). A set of machines X is a behavior if X �� = X holds, or, equivalently,
if X is of the form Y � for some Y .

Property 43 (Intersection of behaviors). The intersection of two behaviors is a behavior.

Proof. Let H1 and H2 be behaviors. By Definition 20 and Property 43, we have

H1∩H2 = H��
1 ∩H��

2 = (H�
1 ∪H�

2)� = (H1∩H2)��

which proves that H1∩H2 is a behavior.

Notations We lift all the machine combinators to sets of machines. For instance, given sets
of machines X ,Y , we write X ●Y for the set of machines {m1 ●m2 ∣ m1 ∈ X ,m2 ∈ Y }. This also
applies to macro-machines or higher-order machine combinators, for instance X ⧈ Y stands
for the set of machines {m1 ⧈ m2 ∣ m1 ∈ X ,m2 ∈ Y }. As an exception to the above rule, we
write X ⊠ Y for {m1 ∥ m2 ∣ m1 ∈ X ,m2 ∈ Y }. Finally, using these notations, we write X ⊟ Y
for X � ⊠ Y = {m1 ∥m2 ∣ m1 ∈ X �,m2 ∈ Y }.

Compatibility Next, we need properties that express that all our machine constructors be-
have well with respect to orthogonality. For example, given two machines m1 and m2 respec-
tively orthogonal to m3 and m4, the horizontal composition m1 ●m2 must be orthogononal
to m3 ●m4. As before, we write X1 ●X2 for {m1 ●m2 ∣ m1 ∈ X1,m2 ∈ X2}, and similarly for other
machine combinators.

Lemma 12 (Compatibility). Orthogonality is compatible with the machine combinators of the
basic language. More precisely, for any sets of machines X ,Y , we have

• X � ●Y � ⊆ (X ●Y)�;

• X � ⊠ Y � ⊆ (X ⊠ Y)�;

• mfbmt3
mt1,mt2

(X �) ⊆ (mfbmt3
mt1,mt2

(X))�;

• mrepln(X �) ⊆ (mrepln(X))�.

[31/10/16, 16:38]

156 CHAPTER 4. COMPILATION

⊢n xl ∶mt

⊢ mtestmt(xl) ∶mt _ unit

mtestmt(x;xl)/x→ mtestmt(xl)/() mtestmt([])/_→ mtestmt([])/()

Figure 4.22: Typing and reaction rules for the testing machine

Proof. The proofs are done by coinduction. Let us detail the vertical composition case. We
are given two machines m1 ∈ X �

1 and m2 ∈ X �
2 . We must prove that for any m ∈ X1 ⊠ X2, we

have (m1 ∥m2)�m. Since m ∈ X1 ⊠ X2, m is by definition of the form m3 ∥ m4, with m3 ∈
X1 and m4 ∈ X2. Moreover, our hypotheses give m1�m3 and m2�m4. By coinduction, we
show (m1 ∥m2)�(m3 ∥m4).

• Assume (m1 ∥m2)/(x1, x2)→ (m′
1 ∥m′

2)/(y1, y2) holds. By definition of the reaction
judgment, this means that m1/x1→m′

1/y1 and m2/x2→m′
2/y2. Since m1�m3, there ex-

ists m′
3 such that m3/y1→m′

3/x1 and m′
1�m′

3. Similarly, since m2�m4, there exists m′
4

such that m4/y2→m′
4/x2 and m′

2�m′
4. Thus (m3 ∥m4)/(y1, y2)→ (m′

3 ∥m′
4)/(x1, x2)

holds by definition of the reaction judgment. We apply the coinduction hypothesis to
obtain (m′

1 ∥m′
2)�(m′

3 ∥m′
4) and conclude (m1 ∥m2)�(m3 ∥m4) .

• The other direction, when m3 ∥m4 makes a step, is completely symmetric.

The Compatiblity Lemma must be lifted to the higher-order machine types defined in Sec-
tion 4.3 in a similar way. This makes it possible to prove that, for instance, the higher-order
application and composition combinators built using feedback loops are sound. Let us state
some important cases.

Property 44. For any set X ⊆Mmtm, the machine mhoidmtm belongs to (X ⊠ X �)�.

Property 45. Let H1 and H2 be two behaviors. Let m1 be a machine in (H1 ⊠ H�
2)� and m2 be a

machine in H1. Then mplug(m1,m2) belongs to H2.

Proof sketch. We must show that mplug(m1,m2) is orthogonal to any machine my ∈ H�
2 . The

definition of the application combinator applies the feedback machine to a machine m built
by applying permutations to m1 ∥m2. Using the compatibility lemma we can show that m
belongs to (H1 ⊠ H�

1 ⊠ H�
2)�. From this we deduce that m�(mhoidmtm1 ∥my), with mtm1 the

type of the behavior H1. This hypothesis is sufficient to show that mplug(m1,m2)�my holds
by a direct coinductive argument.

Testing To capture the correctness of compilation using orthogonal sets, we need a suffi-
ciently expressive set of tests. It turns out that the machine language presented in the previous
section is not expressive enough. We thus enrich it with a testing machine, mtestmt(xl). This

[31/10/16, 16:38]

4.4. THE TRANSLATION 157

Implt(_ ∈ SJtK) ⊆MLtM

Impldt ∶∶ ct(xs) = (⋃
xl ⊑fin xs

{mtestLdtM[⌈ct⌉](LxlM)})�

Implt1⊗t2
(x1, x2) = (Implt1

(x1) ⊠ Implt2
(x2))��

Implt1⊸t2
(f) = ⋂

x∈SJt1K
(Implt1

(x) ⊠ Implt2
(f (x))�)�

ImplΓ(_ ∈ SJΓK) ⊆MLΓM

Impl◻(_) = {mforgunit}��

ImplΓ,x∶t(γ, v) = (ImplΓ(γ) ⊠ Implt(v))��

ImplΓ⊢t(f ∈ SJΓ ⊢ tK) ⊆MLΓM⊟LtM

ImplΓ⊢t(f) = ⋂
γ∈SJΓK

(ImplΓ(γ) ⊠ Implt(f (γ))�)�

Figure 4.23: Soundness proof - implementations of types, contexts, and typings

machine has one input of type mt and no outputs. Its state is a finite list xl of type mt. When xl
is empty, the machine reacts without looking at its input. When it is non-empty, the machine
reacts only if its argument is the current head of xl, which is then removed from its state. Thus,
if xl is a list of length n, this machine checks whether its first n inputs are the elements of xl.

The typing and reaction rules of the testing machine are given in Figure 4.22. They respect
all the properties given in Section 4.2.2. In particular, the size of its state strictly decreases at
each reaction, and thus the machine is finite state.

The logical relation Given a source-type t and element x belonging to the domain SJtK, the
behavior Implt(x) is the set of machines of type LtM which are valid implementations of x. We
call Implt(x) the set of implementations of x. It is defined by induction over t .

• A machine implements a stream xs if it combines safely with all the machines testing its
finite prefixes. More precisely, to implement a stream xs living in SJdt ∶∶ ctK, one should
pass the test mtestLdt ∶∶ ctM(xl), for any list xl that corresponds to a finite prefix of xs.

Impldt ∶∶ ct(xs) def= (⋃
xl ⊑fin xs

{mtestLdt ∶∶ ctM(LxlM)})�

The notation xs′ ⊑fin means that xs′ ⊑ xs and xs′ converges only up to some n, and Lxs′M is
the translation of such a finitely-converging xs′ into a list of values of size n.

[31/10/16, 16:38]

158 CHAPTER 4. COMPILATION

• A machine implements a pair (x1, x2) when it cannot be distinguished from a parallel
pair of an implementation of x1 and one of x2.

Implt1⊗t2
(x1, x2) def= (Implt1

(x1) ⊠ Implt2
(x2))��

The notation X ⊠ Y denotes the set {m1 ∥m2 ∣ m1 ∈ X ,m2 ∈ Y }.

• A machine implements a function f when, for any argument x, it passes all the tests that
provide an implementation of x and a test of an implementation of f (x).

Implt1⊸t2
(f) def= ⋂

x∈SJt1K
(Implt1

(x) ⊠ Implt2
(f (x))�)�

The complete definition is recalled in Figure 4.23, together with the administrative definition of
implementations of a context Γ and of a typing Γ ⊢ t . Observe that any set of implementations
is a behavior, since they are all defined using orthogonals and intersections.

Theorem 8 (Soundness). The machine resulting from the compilation of a well-typed program
implements its typed semantics. In other words, given a derivation of Γ⊢ e ∶ t , we have

LΓ⊢ e ∶ tM ∈ ImplΓ⊢t(SJΓ⊢ e ∶ tK)
Proof. The proof is done by induction on typing derivations. The theorem must be generalized
to auxiliary judgments in the expected way to obtain proper induction hypotheses. Each step
of the proof falls into one of the two following cases.

• Stream-specific language constructs—such as gathering, scattering, and buffering—are
handled by induction on the length of stream prefixes. Such cases make direct use of the
definition of the reaction judgment and are routine.

• Language constructs that are not specific to streams but the traditional features of a
linear lambda-calculus with pairs—such as function application, pairing, and so on—are
proved using compatiblity properties such as Property 45.

This shows that the compiled machines implement the typed semantics.

Note that Theorem 8 does not implies that the machines are deadlock-free in isolation. This
comes from the definition of our orthogonality reaction, which does not ensure that making a
step is possible. However, using the results obtained in Chapter 3, we may prove the following
result.

Corollary 2 (Reactivity). For any e,dt,ct, the machine L◻⊢ e ∶ dt ∶∶ ctM is able to react forever.

Proof. By Theorem 4, the stream SJ◻⊢ e ∶ dt ∶∶ ctK is total. Hence, it has prefixes of all lengthes.
By Theorem 8 and definition of the testing machine, this implies that L◻⊢ e ∶ dt ∶∶ ctM is able to
react for n steps, with n arbitrary.

Remark 22. The characterization of a stream via the set of tests of all its finite prefixes is directly
inspired from Melliès and Vouillon [2005]. We are grateful to Paul-André Melliès for having
drawn our attention to this technique and explained the underlying intuitions.

[31/10/16, 16:38]

4.5. FROM MACHINES TO CIRCUITS 159

4.5 From Machines to Circuits

The discussion at the end of Section 4.2 outlined a naive way of compiling our state machines
to circuits, seen as explicit finite automata. This technique is unrealistic since it manipulates
an explicit automaton which may have a size exponential in that of the source program. Also,
industrial circuit synthesis toolchains process hierarchical descriptions, written in Hardware
Description Languages (HDLs) such as VHDL or Verilog, rather than flat ones. This section
briefly discusses the few steps that remain to be performed to implement machines on top of
an HDL. We begin with an informal discussion of some potential optimizations that could be
performed during the translation.

4.5.1 Optimizations

The translation process described in this chapter has the typical strengths and drawbacks of
type-directed interpretations. Once both the translation of types and the type of the translation
have been defined, the rest follows in a mechanical fashion. The other side of the coin is that
the generated code includes a lot of conversion machines that often perform no useful work.
Let us discuss some optimizations that can be performed at the target-level to simplify the
generated machines.

Removing boilerplate Because the translation is type-preserving, all source programs of
the same type are compiled to the same target type. In particular, all clocked streams are
translated to machines computing lists. It might be more efficient to replace those types to
more specialized ones in some cases, such as translating a program of type dt ∶∶ (1) to a machine
with outputs in LdtM rather than LdtM[1]. Similarly, the clock type (2) could be translated to
pairs rather than bounded lists, and so on.

A related point is the removal or fusion of “administrative” machines a compiled pro-
gram has been sprinkled with. For instance, the translation introduces a lot of permutations,
sometimes applied consecutively. It might be a good idea to fuse them by composing the
permutations. Also, the generated code may exhibit composition of conversion machines that
compose to the identity function when applied to programs coming from well-typed programs,
such as unzipping followed by zipping. It should be possible to prove that those are equivalent
using the logical relation from the previous section.

Clock types and periodic words Another performance question is the efficient compilation
of ultimately periodic words that arise from clock types. This issue has less to do with language-
level concerns than with optimization questions, potentially of a combinatorial nature. A given
closed typing derivation might feature a variety of ultimately periodic words. In particular,
some of them might not have been present in source code but rather inserted by some type in-
ference process. Translating these words to machines involve a variety of interacting questions
and trade-offs.

[31/10/16, 16:38]

160 CHAPTER 4. COMPILATION

• Specialized representations: the direct and most general implementation mpwu(v)(i) uses
an ultimately periodic counter for i and an array of length ∣u∣+ ∣v ∣ storing the integers
in u(v). Clearly, some words have more space-efficient representations, such as constant
ones. Others words might have special characteristics that lead to circuits with better
critical paths, and so on.

• Sharing: in general one is interested in the efficient implementation of several words
rather than a single one. Equivalent words can be implemented by a unique machine
and shared between all their consumers.

• Factorization: sharing makes it beneficial to express redundancy between distinct clock
types. For instance one can share LctM when computing Lct on ct1M and Lct on ct2M in the
same expression. Note that the converse is not true for Lct1 on ctM and Lct2 on ctM as ct is
driven by a distinct clock in each case. Thus, one might want to try to factor equivalent
prefixes out of the set of clock types.

The answer to these questions probably depend on the underlying platform. In particular,
software implementations might have performance needs very different from hardware ones.
We hope however that the relationship between 2-adic numbers and digital circuits uncovered
by Vuillemin [1994] might help organize the design space.

Remark 23. The optimizations discussed above have to be performed during the translation.
This is unsatisfying, since it increases its complexity; we would rather like to explain them as
source-to-source passes on one intermediate language. Unfortunately, this is possible neither
at the source nor target level. On the one hand, the source language misses the operators and
types for expressing the above operations. On the other, useful clocking information is lost
during the translation, and moreover equivalent programs may not be compiled to equivalent
machines. There are at least two solutions.

• We could design a new intermediate language that enriches the source with additional
operators, so that the translation to machines would factor through this new language.
Optimizations would then be performed at the relevant level.

• A potentially less ambitious approach would be to make the machine type system more
precise. In particular, a low-hanging fruit is to have lower bounds in addition to upper
ones in type constructors. This would make more optimizations feasible at the machine
level, at the cost of a slightly more complex translation and correctness proof.

We have not investigated either one since only concrete experiments on non-toy programs
would reveal significant differences.

4.5.2 Desconstruction Replication

Readers versed in digital hardware circuits might have found the replicating machine suspi-
cious. We know that in theory this machine can be implemented as a circuit since it is finite
state. However, and in contrast with all other machines, a direct translation to an HDL does not

[31/10/16, 16:38]

4.5. FROM MACHINES TO CIRCUITS 161

⊢m ∶mt1 _ mt2

⊢ mgate(m) ∶ {1}×mt1[1]_ mt2[1]
⊢m ∶mtm

⊢ mturbon(m) ∶mtm[n]

⊢ mselectn ∶ {n}_ {1}[n]

(a) Typing rules

mgate(m)/(0,[])→ mgate(m)/[]
m/x→m′/y

mgate(m)/(1,[x])→ mgate(m′)/[y]

m/xl→n m′/yl

mturbon(m)/xl→ mturbon(m′)/yl

select(n, a,xl)
mselectn/a→ mselectn/xl

(b) Reaction rules

Figure 4.24: Machines - special cases of replication

mselectn

mscattmt1
1,n

mturbon(mgate(m)) mgathmt2
1,n

a

{n}

xl

mt1[n]

{1}[n]

mt1[1][n]

mt2[1][n]
yl

mt2[n]

Figure 4.25: Replication - implementing mrepln(m) using machines from Figure 4.24

seem trivial as it performs a varying number of reactions of the replicated machine for each of
its own reactions.

Figure 4.24 introduces new primitive machines that can be used to implement replication.
The first two machines are specialized cases of replication. The machine mgate(m) corre-
sponds to binary replication: the machine m performs at most one reaction. We call this ma-
chine the gating machine, in analogy to the clock gating of circuits. The machine mturbon(m)
corresponds to constant replication: the machine m always performs exactly n reactions. We
call this machine the turbo machine, in a loose analogy with the clock scaling features of recent
processors. The stateless selection machine mselectn computes a unary representation xl of
its input a ≤n on n bits. This is expressed formally by the predicate select(n, a,xl) given below.

select(n, a,xl) = ∣xl∣ =n and ∀0 ≤ i <n,xl[i] = if a ≤ i then 1 else 0

We will soon explain a straightforward implementation of these machines, assuming that
any circuit implementing a machine has a uniform interface. What we would like to do for now

[31/10/16, 16:38]

162 CHAPTER 4. COMPILATION

is to reduce any replication machine to a composition of the new machines. Remember that at
each reaction the machine mrepln(m) receives an input a ≤n expressing how many reactions
of n should be performed at once. The idea is to use a turbo machine to perform exactly n
reaction of a gating machine which itself may or may not react according to the current value
of a This gating machine processes a list of n booleans that controls whether the machine m
should react at each of the local n steps induced by the turbo machine. This list of booleans is
computed by the mselectn machine from the input a. The construction requires the use of
conversion machines in some places in order to be well-typed. The precise definition can be
found below, assuming the machine m has type mt1 _ mt2.

mrepln(m) = mgathmt2
1,n ● mturbon(mgate(m)) ● mzipn

{1},mt1
● (mid{1}[n] ∥ mscattmt1

1,n)
● ((mdup{1}[n] ●mselectn)∥ midmt1[n])

Figure 4.25 gives a graphical version of the above definition which is easier to read. The label
below each wire gives its type and the label above, if any, gives the name of the corresponding
values in the reaction rule of the replication machine (Figure 4.7). The zipping conversion in
front of the central machine has been omitted.

Remark 24. Note that the reaction rule of the selection machine is somewhat arbitrary, as the
above scheme works for any boolean list of length n as long as it contains exactly a ones. This
can be understood by considering the analogous phenomenon at the source level. Semantically,
the construction above corresponds to the decomposition of a local time scale driven by
some clock w ≤ (n)ω into two new time scales applied successively, the outer one driven
by (n)ω and the inner one by any binary clock type wb such that w = (n)ω on wb . There are in
general multiple choices for wb , with distinct choices reflected as a distinct control lists being
transmitted to mgate(m) at runtime. The reaction rule for mselect⌈ct⌉ given in Figure 4.24
actually corresponds to the earliest such wb , that is the clock in which ones are inserted as
soon as possible

4.5.3 Towards Circuits

We finish this section by discussing how machines can be implemented in real hardware
description languages.

HDLs Hardware Description Languages such as VHDL [IEEE, 2009] and Verilog [IEEE, 2006]
were born as high-level languages designed for programming and driving discrete event circuit
simulations, they slowly became standard input formats for synthesis tools. The current
practice is to single out a synthesizable subset of the language that corresponds to actual
circuits. The rest of the language contains useful facilities for driving simulation and testing
that do not generally make sense as circuits, such as unbounded loops.

In theory, the synthesizable subsets should be clearly defined and common to all tools.
Indeed, the synthesizable part of VHDL has even been standardized [IEEE, 2000]. In practice,
the precise subset allowed depends on the synthesis tools. Fortunately, this problem occurs
mostly for circuits at a lower abstraction level than ours, such as circuits using tri-state logic.

[31/10/16, 16:38]

4.5. FROM MACHINES TO CIRCUITS 163

The circuits generated from machines follow what we ought to call the computer scientist
abstraction: wires hold zeroes and ones and the final value computed does not depend on
physical issues, including timing. This is realistic since our machines are well-behaved, and in
particular have no combinatorial feedback loops.

Let us now explain the semantics of VHDL and Verilog in very broad strokes. We use the
VHDL terminology since it is the HDL we are the most familiar with. The core of synthesizable
VHDL and Verilog consists in sets of processes executing concurrently. A process specifies a list
of inputs called its sensitivity list. Its body is re-executed whenever a variable in its sensitivity
list changes. Execution proceeds until a fixpoint is reached. For synthesis purpose, one should
distinguish combinatorial and sequential processes. Combinatorial processes are stateless,
only assigning combinations of their inputs to their outputs, while sequential processes contain
sequential logic, such as latches and flip-flops. Best practices guides typically recommend that
combinatorial processes be sensitive to all their inputs, while sequential processes are only
sensitive to a distinguished input, the clock. The statements inside a typical sequential process
are guarded and execute only on a rising edge of the clock. Processes can be regrouped into
modules which can be instantiated any number of times.

From machines to HDLs We can now sketch an implementation of machines in terms of
processes. The description below is informal since no commonly-agreed formal syntax nor
semantics of VHDL or Verilog exists as far as we know. We should also stress that it has not
been implemented yet.

The type systems of VHDL and Verilog are well-adapted to the description of finite-state
values. They include integers of arbitrary (finite) precision, including booleans. Bounded lists
can be represented as bounded arrays, which are natively supported, together with an integer
describing the number of valid elements in the array. Products are not supported since HDLs
are n-ary rather than unary, but the translation from a unary language with product to an n-ary
one is routine, if tedious.

The general implementation scheme is to translate any machine of type to a combinatorial
process and a type definition describing its state. In addition to the original inputs of the
machine, this process receives its current state, and in addition to the original outputs, the
process also produces the next state. Each machine should also define an initial state of the
proper type. Let us stress that the state type may be abstract, as it is never manipulated by any
other machine.

Looking back at Figure 4.5, it is clear that most primitive combinatorial machines have
nothing special: they are readily programmed in any HDL, respecting the above mentioned
type scheme. Since they feature variables rather than raw, “point-free” combinators, VHDL
and Verilog are actually higher-level than our machine language. They have the exchange and
weakening rules built-in. This makes the translation of data movement machines trivial. In
particular, permutations do not have to be reduced to swap machines. Feedback machines
are also programmed naturally using recursive equations. The only case remaining is that of
replication machines.

We assume that the replication machines have been simplified. The question is thus to

[31/10/16, 16:38]

164 CHAPTER 4. COMPILATION

implement the gating and turbo machines. The implementation of mturbon(m) is imme-
diate: generate n copies of the process implementing m and plug the “next state” output of
the i -th copy into the “current state” input of the i +1-th copy, if any. The implementation
of mgate(m) is hardly more complex. When no reaction of m has to be performed, sim-
ply copy the current state to the next state, ignoring the outputs of m. This concludes the
implementation of machines.

Finally, the generated combinatorial process has to be turned into a sequential process at
some point. This does not formally take part of the compilation process but happens when the
programmer wants to actually process inputs, like the generation of a simulation function in
existing Lustre-like languages. The only thing to do is simply to relate the current and next state
signal. Concretely, one simply needs a sequential process connecting the next state output
to the current state input through a register initialized with the initial state defined by the
machine.

4.6 Bibliographic Notes

We conclude this chapter by a brief discussion of inspirations and related work.

Compiling synchronous functional languages The compilation of synchronous languages
has received a lot of attention. We restrict ourselves to synchronous functional languages in
the vein of Lustre for now. Let us remark that the circuit translation of other synchronous
languages, such as Esterel, often factors through a Lustre-like intermediate representation.

The general strategy looks much like the one exposed in the previous section: one generates
a transition function that computes the outputs and next state from the inputs and current
state. When this function is implemented in a sequential language such as C, the code has to
be scheduled. This is explained in the first part of the PhD thesis of Raymond [1991].

Historically, Lustre programs involve numerous if statements and boolean expressions, and
it was perceived that the optimization of the control structure was of crucial importance. In
practice, various heuristics were used, including powerful techniques based on binary decision
diagrams. The second part of the PhD thesis of Raymond and the paper from Halbwachs et al.
[1991] are good entry points.

Even if most compilation work in the Lustre community has dealt with software, some
researchers have studied the generation of digital circuits. Rocheteau and Halbwachs [1992]
describe a simple translation process from a dialect of Lustre with booleans and arrays to an
FPGA. The thesis of Rocheteau [1992] gives additional details and a complete description of the
circuit synthesis system Pollux, built on top of the fourth version of Lustre. The translation was
a simple, syntactic translation mapping logical operators to boolean gates and pre operators
to registers. The focus of the work is rather on language and toolchain design aspects, which
are blatantly absent from this thesis you are reading.

The work of Caspi and Pouzet [1996] enriched Lustre with a (binary) clock type system
which is the ancestor of the one found in this thesis. The code generation aspects for a small
first-order fragment were later revisited [Biernacki et al., 2008]. The paper explains in a lucid

[31/10/16, 16:38]

4.6. BIBLIOGRAPHIC NOTES 165

manner how clock types can be used to generate if statements, a technique that was already
present in the thesis of Raymond. This optimization can be understood as the special case of
the compilation of local time scales where the driving clock is binary. In particular, it should be
possible to describe this optimization as a source-to-source transformation in a system such
as our, easing its correctness proof.

All the works evoked above handle only first-order languages, with the exception of Lucid
Synchrone. However, as far as we know all published work on the compilation of Lucid
Synchrone assumes the presence of higher-order features in the target language, including
the co-iterative characterization of Caspi and Pouzet [1998]. The third version of the Lucid
Synchrone offers the command-line switch -realtime which rejects programs that do not
work within bounded memory, while still accepting some higher-order programs. However,
this works by exporting the type of the internal state in the generated OCaml code, which is
not modular. Also, we do not know whether the information could be exploited to produce
finite-state code, be it hardware or software.

Monoidal categories We have explained how the compilation of linear higher-order func-
tions works by building a linear higher-order strata on top of our first-order machine language,
using the feedback machine in a crucial way for higher-order machine composition.

This construction is in fact a very specific instance of a general category-theoretical re-
sult discovered by Joyal, Street, and Verity [1996]. This result, the Int() construction, builds
a compact-closed category1 out of a traced monoidal one. Let us explains what this means very
briefly. A monoidal category is a category in which there is a notion of monoidal product of
objects. Like the tensor product of linear algebra, monoidal products do not necessarily admit
projections. A symmetric monoidal category is a monoidal category in which, roughly speaking,
one can swap the components of a monoidal product. A traced monoidal category is a sym-
metric monoidal category endowed with a feedback-like operator, the trace. A compact-closed
category is a monoidal category with additional properties, the most relevant to our purposes
being that it is closed. This means that it admits internal hom objects, that is, the space of
morphisms from an object A to an object B is reflected as an object A⊸B of the category.

In our case, the traced monoidal category would correspond to the machine language, with
the feedback machine providing the trace and the exchange machine providing the symmetry.
The compact-closed category would be the linear higher-order macro-machines. Note that
this is only an informal intuition and guide, since machines are syntactic objects that do not
directly form a category. We will discuss the links with category theory further in Chapter 6.

Remark 25. The idea of considering a traced category of synchronous machines and applying
the Int() construction comes from joint work with M. Bagnol. The curious reader will find a
precise description of this category in the report [Bagnol and Guatto, 2012], which has in many
ways inspired the first sections of the present chapter.

Geometry of Synthesis The use of monoidal closed categories in hardware compilation is
not new. In fact, the higher-order aspects of our work were partly inspired by the seminal

1Or, more generally, a tortile category.

[31/10/16, 16:38]

166 CHAPTER 4. COMPILATION

Geometry of Synthesis (GoS) of Ghica and collaborators [Ghica, 2007; Ghica and Smith, 2010,
2011; Ghica et al., 2011].

This line of works starts from the realization that game models for a certain fragment
of Algol are finite-state. Thus, it is actually possible to compute and manipulate the denotations,
for instance to implement them in hardware, or to model-check them. Later works explore
language and type system extensions aimed at improving the expressiveness of the language
as well as the performance of the generated circuits.

Like ours, one of the defining features of the Geometry of Synthesis work is its insistence on
compositionality and separate compilation. This is usually one of the main characteristics of
techniques based on denotational or categorical models compared to other approaches. Apart
from this general fact and that both interpreted in a specific closed monoidal categories, the
languages are quite different. The input language is a variant of concurrent Algol, a general-
purpose imperative language with concurrency. Concurrency is deterministic since the type
system enforces the absence of data races. Our language is functional and entirely dedicated
to stream processing, with its dedicated clock type system. The compilation technology is
also quite different: as the game model the GoS compiler is based on is asynchronous, the
computed denotations have either to be implemented as asynchronous circuits, or trans-
formed into synchronous ones. Since asynchronous circuits are incompatible with current
synthesis toolchains, the GoS compiler has to apply a synchronizing transformation, the round
abstraction of Alur and Henzinger [1999]. The compositionality of this transformation is a
difficult question [Ghica and Menaa, 2010], and it is probably expensive in practice.

[31/10/16, 16:38]

Chapter 5

Extensions

The language considered up to now, µAS, is deliberately simplistic. This makes concepts,
constructions and proofs easier to explain and describe in full formal details. Yet, from a pro-
gramming point of view this is unsatisfactory. Indeed, some programs that were simple to write
in previous synchronous functional languages become very convoluted or even impossible
to express. This is mostly due to the low expressiveness of the clock type language on the one
hand, and to the linearity restrictions of the type system on the other.

This chapter discusses language extensions that remedy these issues, starting from simple
features and moving progressively to more invasive ones. We do not repeat the whole develop-
ment from the previous chapter in each case, but describe how each feature can be typed, its
typed semantics, and its compilation to machines in a semi-formal manner. The interpretation
of new types or judgments is in general sufficient to understand how the extension integrates
with the rest of the language. The general theme is to show how integer clocks and linear types
do not clash with features from existing synchronous languages, but rather integrate with them
smoothly

This chapter consists in four section, each describing a distinct extension. Section 5.1
introduces a modality qualifying types that can be used more than once, inspired from Bounded
Linear Logic [Girard et al., 1992]. This makes it possible to apply functions of any order more
than once, as long as this number is statically known. Section 5.2 discusses the addition of
functions which can be applied an arbitrary number of times. This correspond to the notion
of node in Lustre and its offspring. The price to pay is that nodes have to be closed and cannot
be abstracted over. Section 5.3 extends the clock type language with clock polymorphism à
la Lucid Synchrone [Caspi and Pouzet, 1996]. This has a drastic impact on the type system
since clock types may now contain free variables. Section 5.4 considers a more prospective
change: the addition of data-dependent clocks, which contain program variables as in Lucid
Synchrone. This extension has an even more disruptive effect on the type system than clock
polymorphism since it introduces a form of type dependency. We describe its impact and
discuss possible points in the design space.

167

168 CHAPTER 5. EXTENSIONS

5.1 Bounded Linear Types

We have seen in Chapter 4 how enforcing that every function received or passed is used exactly
once leads to a simple, type-directed compilation scheme to first-order code. Remember that
the idea is to turn higher-order functions into first-order ones with additional arguments used
for orchestrating the exchanges of arguments and results with their functional parameters. For
example a second-order function with exactly one argument is compiled to code with one
input, corresponding to the result of its functional argument, and two outputs, corresponding
to the value passed to its functional argument and to its own result. This explains in retrospect
why functional values have to be used exactly once: using a function twice would require
having not one but two additional inputs and outputs, and so on for higher usage counts.

In this section, we introduce a new type constructor, the bounded exponential modality !n t ,
which characterizes a type t that can be duplicated n times. For example, !2 (t1⊸ t2) describes
a function from t1 to t2 that has to be called twice. The general idea is that a program inhabiting
type !n t is like a product of n inhabitants of t , with the caveat that all the components of this
product behave in the same way. One can also think of it as n identical copies of the same
program of type t . We first revisit the development of Chapters 3 and 4, explaining how to
adapt them to the new type constructor. A later part discusses its expressiveness, limitations,
and relationship to Bounded Linear Logic.

In all the sections of this chapter, we follow the convention that rules or premises added
to an existing judgment are typeset in grey. So are new or modified judgments. We do not
pretend that these changes are modular: in general, properties of the original system do
not transfer to the modified one.

5.1.1 Type System and Semantics

This extension affects the type grammar and system of the source language, and has to be ac-
commodated for in the compilation to machines. The untyped semantics remains unchanged.
We study its impact on the type system and typed semantics first.

Type system The grammar of types from Chapter 3 is extended with our new type constructor,
and the type system with three new judgments. The updated grammar of types is given below
and the modification to the typing rules in Figure 5.1.

t += !n t Bounded exponential type, to be used n times

The type system changes are built on top of a new subtyping judgment ⊢ t ≤○ t ′ which
expresses whether one can transform an inhabitant of t into an inhabitant of t ′ by folding or
unfolding exponential modalities. We call this judgment linear subtyping since it concerns
linear aspects of the type system. Its first rules express that it is both a preorder and a con-
gruence. The LINARROW rule displays the contravariance characteristic of arrow subtyping.

[31/10/16, 16:38]

5.1. BOUNDED LINEAR TYPES 169

⊢ t ≤○ t ′

LINREFL

⊢ t ≤○ t

LINTRANS
⊢ t ≤○ t ′ ⊢ t ′ ≤○ t ′′

⊢ t ≤○ t ′

LINPROD
⊢ t1 ≤○ t ′1 ⊢ t2 ≤○ t ′2
⊢ t1⊗ t2 ≤○ t ′1⊗ t ′2

LINARROW
⊢ t ′1 ≤○ t1 ⊢ t2 ≤○ t ′2
⊢ t1⊸ t2 ≤○ t ′1⊸ t ′2

LINUNITA

⊢ t ≤○ !1 t

LINUNITB

⊢ !1 t ≤○ t

LINEXPA

⊢ !n !m t ≤○ !nm t

LINEXPB

⊢ !nm t ≤○ !n !m t

LINVAL
⊢ t value

⊢ t ≤○ !n t

⊢ Γ ≤○ Γ′

⊢◻ ≤○ ◻
⊢ Γ ≤○ Γ′ ⊢ t ≤○ t ′

⊢ Γ, x ∶ t ≤○ Γ′, x ∶ t ′

t ⊢ t1⊗ t2

SEPCOPY
⊢ t ≤○ !2 t ′

t ⊢ t ′⊗ t ′

SEPPROD
t1 ⊢ t ′1⊗ t ′′1 t2 ⊢ t ′2⊗ t ′′2

t1⊗ t2 ⊢ (t ′1⊗ t ′2)⊗(t ′′1 ⊗ t ′′2)

SEPEXP

!n+m t ⊢ !n t ⊗ !m t

Γ⊢ Γ1⊗Γ2

SEPEMPTY

◻⊢◻⊗◻

SEPCONTRACT
Γ⊢ Γ1⊗Γ2 t ⊢ t1⊗ t2

Γ, x ∶ t ⊢ Γ1, x ∶ t1⊗Γ2, x ∶ t2

SEPLEFT
Γ⊢ Γ1⊗Γ2 x /∈ dom(Γ2)

Γ, x ∶ t ⊢ Γ1, x ∶ t ⊗Γ2

SEPRIGHT
Γ⊢ Γ1⊗Γ2 x /∈ dom(Γ1)

Γ, x ∶ t ⊢ Γ1⊗Γ2, x ∶ t

⊢ t value

VALSTREAM

⊢ dt ∶∶ ct value

VALPROD
⊢ t1 value ⊢ t2 value

⊢ t1⊗ t2 value

VALZERO

⊢ !0 t value

Γ⊢ e ∶ t

. . .

SUBLIN
Γ⊢ e ∶ t ⊢ t ≤○ t ′

Γ⊢ e ∶ t ′

STORAGE
⊢ Γ ≤○ !n Γ

′ Γ′ ⊢ e ∶ t

Γ⊢ e ∶ !n t
. . .

Figure 5.1: Bounded exponential modality - additions and modifications to the type system

[31/10/16, 16:38]

170 CHAPTER 5. EXTENSIONS

The LINUNITA and LINUNITB rules express that t and !1 t are isomorphic, since the set of
inhabitants of t and the set of a one component products of inhabitants of t are morally equal.
The LINEXPA and LINEXPB rules express that !n !m t and !nm t are isomorphic, recalling the
identity xnm = xnm of high-school algebra. Finally, rule LINVAL is the most interesting one. It
expresses that since any type t which is a value can be duplicated at will, it can be used an
arbitrary number of times. The judgment ⊢ Γ ≤○ Γ′ lifts the linear subtyping rule to contexts in
the expected way.

Our intuitions suggest that should be able to split any inhabitant of !n+m t into one inhabi-
tant of !n t and one of !m t , as in the identity xn+m = xn ×xm . This idea enters the type system
through the new type splitting judgment t ⊢ t1⊗ t2. The splitting judgment expresses that an
inhabitant of t can be split into an inhabitant of t1 and one of t2. We say that such a type t
is splittable. This inhabitants behave in the same way but impose different usage constraints
and hence have different types. Rule SEPCOPY splits inhabitants of !2 t into two inhabitants of t .
Together with LINVAL this rule also ensures that all value types are splittable. Rule SEPPROD

is the congruence-closure of this judgment for products. We do not have a similar rule for
arrows since the shape of this judgment makes it impossible to express contravariance. Finally,
rule SEPEXP implements the expected identity. This concludes the description of the new
judgments.

The original type system presented in Chapter 3 relies on the value judgment ⊢ t value to
distinguish which types can be erased or duplicated. The classification of types was brutal
then: a value type can be duplicated at will while other types simply could not be duplicated
at all. With bounded exponentials, things get slightly better. Indeed, one can view the judg-
ment t ⊢ t1⊗ t2 as expressing that t can be duplicated once, obtaining copies with types t1

and t2 which may or may not be splittable themselves. To take advantage of this fact we
should alter the context splitting judgment to allow contraction not only on values but also
on splittable types. This modification affects rule SEPCONTRACT, with the value judgment
replaced with the type splitting one. The new version of the rule is able to express how the uses
of a variable x of type !n t are to be shared between the two contexts. In extreme cases, Γ1 may
obtain all the n uses and Γ2 none of them. Still, the form of the rule guarantees that Γ2 contains
a binding for x of type !0 t , which describes a unusable inhabitant of t . This type can be freely
erased, and should thus be a value. We modify the value judgment to include rule VALZERO.

The main typing judgment is where our efforts pay off. We add two new typing rules. The
first one, SUBLIN, is the usual subsumption rule applied to the linear subtyping judgment ⊢
t ≤○ t ′. The second one, STORAGE, is the only rule capable of introducing new non-trivial
exponentials. It relies on the !n Γ notation, which abbreviates a context where all the types in Γ
have been annotated with !n _.

!n ◻ = ◻
!n Γ, x ∶ t = !n Γ, x ∶ !n t

The STORAGE rule expresses how a computation e can be made reusable. If one sees types
and contexts as resources, the rule can read as follows: if the program e can produce the
resource t consuming the resources in Γ′, and that the resource Γ can be consumed to obtain n
resources Γ′, then from Γ′ one can obtain n resources t by running e on each of the n resources.

[31/10/16, 16:38]

5.1. BOUNDED LINEAR TYPES 171

Remark that this rule implies that a closed expression, where Γ is empty, can be replicated an
arbitrary number of times.

Typed semantics The linear aspects of the type system played in minimal rôle in the typed
semantics of Chapter 3. This comes from the fact that the linear arrow and tensor product
type constructors are interpreted as ordinary cartesian products and continuous functions.
Bounded exponentials are similarly transparent at this level: t and !n t denote the same domain.
Thus, we formally add SJ!n tK = SJtK to the interpretation of types.

The typed semantics needs to interpret all the rules in the typing judgment Γ⊢ e ∶ t , as well
as the context splitting judgment Γ⊢ Γ1 ∶ Γ2. Since the rule CONTRACT in the latter judgment
has been modified, we need to change its old interpretation, recalled below.

SJΓ, x ∶ t ⊢ Γ1, x ∶ t ⊗Γ2, x ∶ tK ∈ SJΓK×SJtK⇒c SJΓ1K×SJtK×SJΓ2K×SJtK
SJΓ, x ∶ t ⊢ Γ1, x ∶ t ⊗Γ2, x ∶ tK = λ(γ, v).((γ1, v),(γ2, v)) where (γ1,γ2) = SJΓ⊢ Γ1⊗Γ2K γ

In the new CONTRACT the conclusion is different: the type t on the right of the turnstile has
become two distinct types t1 and t2. For the new interpretation to be well-defined, it should
belong to the following domain.

SJΓ, x ∶ t ⊢ Γ1, x ∶ t1⊗Γ2, x ∶ t2K ∈ SJΓK×SJtK⇒c SJΓ1K×SJt1K×SJΓ2K×SJt2K

Now, given the trivial interpretation of exponentials and the rules of the type splitting judgment,
we see that here the domains SJt1K and SJt2K are actually the same. It would thus be tempting
to keep the interpretation of the contraction judgment unchanged. We prefer making it
well-formed by defining trivial interpretations for the linear subtyping and type splitting
judgment. In addition, to insist on the fact that these interpretation only perform trivial
work, we interpret them not as continuous functions but as continuous isomorphisms. The
judgment t ⊢ t1⊗ t2 actually has two interpretations, each corresponding to the isomorphism
between SJtK and SJt1K or SJt2K, respectively.

SJ⊢ t ≤○ t ′K ∈ SJtK ≅ SJt ′K SJt ⊢ t1⊗ t2KL ∈ SJtK ≅ SJt1K SJt ⊢ t1⊗ t2KR ∈ SJtK ≅ SJt2K

We omit the uninteresting definitions of these interpretations. They mostly consist in straight-
forward compositions of isomorphisms, with the axioms interpreted as identities. The case of
rule CONTRACT can now be handled cleanly.

SJΓ, x ∶ t ⊢ Γ1, x ∶ t1⊗Γ2, x ∶ t2K = λ(γ, v).((γ1, v1),(γ2, v2)) where (γ1,γ2) = SJΓ⊢ Γ1⊗Γ2K γ
v1 = SJt ⊢ t1⊗ t2KL v
v2 = SJt ⊢ t1⊗ t2KR v

Finally, the new typing rules also have simple interpretations using the semantics of the
linear subtyping judgment. We lift the interpretation of linear subtyping to contexts as usual.

SJΓ⊢ e ∶ tK ∈ SJΓK⇒c SJtK
. . .

SJΓ⊢ e ∶ t ′K = SJ⊢ t ≤○ t ′K○SJΓ⊢ e ∶ tK
SJΓ⊢ e ∶ !n t ′K = SJΓ′ ⊢ e ∶ tK○SJ⊢ Γ ≤○ Γ′K

[31/10/16, 16:38]

172 CHAPTER 5. EXTENSIONS

5.1.2 The Translation

More interesting things happen during the compilation process, since in contrast with the syn-
chronous semantics this process relies essentially on linearity. The list type constructor mt[n]
of the machine language is a good match for interpreting bounded exponentials !n t . Programs
of type !n t will be translated to machines computing elements of type LtM[n]. Note that the
latter type describes lists containing at most n elements, but that the lists arising from the
compilation of programs in !n t will always contain exactly n elements. We recap the translation
of types below.

Ldt ∶∶ ctM = unit_ LdtM[⌈ct⌉]
Lt1⊗ t2M = Lt1M ⊠ Lt2M

Lt1⊸ t2M = Lt1M ⊟ Lt2M
L!n tM = LtM[n]

New machines In order to compile bounded exponentials, we need to translate the linear
subtyping and type splitting judgments of Figure 5.1. In particular, we need machines to
implement the two isomorphisms !nm t ≅ !n !m t and !n+m t ≅ !n t ⊗ !m t derivable from the
system. We already have such machines for the first isomorphism, in the guise of gathering
and scattering. For the second isomorphism, we enrich the target language with the new
primitive machines concatenation and decatenation machines mconcatmt

n1,n2
and mdecatmt

n1,n2
,

and define the corresponding higher-order macros. We also need mhoturbon
mtm1,mtm2

(m), the
higher-order analogue to the turbo machine mturbon(m), as well as mhodupln

mtm(m1,m2)
which duplicates its higher-order input n-times. All these machines have straightforward HDL
implementations.

The new machines are handled in Figure 5.2. Figure 5.2 (a) gives their typing rules; the
named rules are for primitive machines and the anonymous rules can be derived from the
definition of the macro-machines. The latter are given in Figure 5.2 (c). Figure 5.2 (b) gives
the reaction rules for the concatenation and decatenation. The reaction rules rely on the
predicate concat(xl,yl,zl) which is true whenever zl is the concatenation of xl and yl.

concat(xl,yl,zl)
= ∀0 ≤ i < ∣xl∣,zl[i] = xl[i] and ∀∣xl∣ ≤ i < ∣yl∣,zl[∣xl∣+ i] = yl[i] and ∣xl∣+ ∣yl∣ = ∣zl∣

Note that in contrast with scattering, the decatenation machine does not receive and additional
argument expressing how the input is split. This is sufficient for our purpose since the size of
all its input and output lists will reach their bounds.

Translation Figure 5.3 describes the additions and modifications to the translation of Chap-
ter 4 required to accommodate for bounded exponentials.

Figure 5.3 (a) gives the translation of linear subtyping. The first four cases are straight-
forward analogue to similar rules in Chapter 4. The next four rules, LINUNITA/LINUNITB
and LINEXPA/LINEXPB, express the type isomorphisms t ≅ !1 t and !n !m t ≅ !nm t . These
isomorphisms are implemented at the machine level by the higher-order versions of the wrap-
ping/unwrapping and scattering/gathering couples. The LINVAL rule expresses that one can

[31/10/16, 16:38]

5.1. BOUNDED LINEAR TYPES 173

MCONCAT

⊢ mconcatmt
n1,n2

∶mt[n1]×mt[n2]_ mt[n1+n2]

MDECAT

⊢ mdecatmt
n1,n2

∶mt[n1+n2]_ mt[n1]×mt[n2]

⊢ mhoconcatmtm
n1,n2

∶mtm[n1] ⊠ mtm[n2] ⊟ mtm[n1+n2]

⊢ mhodecatmtm
n1,n2

∶mtm[n1+n2] ⊟ mtm[n1] ⊠ mtm[n2]

⊢m ∶mtm1 ⊟ mtm2

⊢ mhoturbon
mtm1,mtm2

(m) ∶mtm1[n] ⊟ mtm2[n]
⊢m1 ∶mtm∗ ⊢m2 ∶mtm ⊟ mtm ⊠ mtm

⊢ mhodupln
mtm(m1,m2) ∶mtm ⊟ mtm[n]

(a) - Typing rules, primitive and derived

concat(xl,yl,zl)
mconcatmt

n1,n2
/(xl,yl)→ mconcatmt

n1,n2
/zl

concat(yl,zl,xl)
mdecatmt

n1,n2
/xl→ mdecatmt

n1,n2
/(yl,zl)

(b) - Reaction rules for new primitive macro-machines

mhoconcatmtm
n1,n2

def= mdecatmtm+

n1,n2
∥ mconcatmtm−

n1,n2

mhodecatmtm
n1,n2

def= mconcatmtm+

n1,n2
∥ mdecatmtm−

n1,n2

mhoturbon
mtm1,mtm2

(m) def= munzipn
mtm−

1 ,mtm+

2
● mturbon(m) ● mzipn

mtm+

1 ,mtm−

2

mhodupl0
mtm(m1,m2)

def= m1 ∥ (mconst
[]
●mforgmtm+[0])

mhodupl1+n
mtm(m1,m2)

def= mhoconcatmtm
n,1 ⧈ (mhodupln

mtm(m1,m2) ⊠ mhowrapmtm) ⧈ m2

(c) - Expansions of the new macro-machines

Figure 5.2: Bounded exponential modality - machines and macro-machines

[31/10/16, 16:38]

174 CHAPTER 5. EXTENSIONS

L⊢ t ≤○ t ′M ∈ MLtM⊟Lt ′M
L⊢ t ≤○ tM = mhoidLtM
L⊢ t ≤○ t ′M = L⊢ t ′′ ≤○ t ′M ⧈ L⊢ t ≤○ t ′′M
L⊢ t1⊗ t2 ≤○ t ′1⊗ t ′2M = L⊢ t1 ≤○ t ′1M ⊠ L⊢ t2 ≤○ t ′2M
L⊢ t1⊸ t2 ≤○ t ′1⊸ t ′2M = minterpose(L⊢ t ′1 ≤○ t1M,L⊢ t2 ≤○ t ′2M)
L⊢ t ≤○ !1 tM = mhowrapLtM
L⊢ !1 t ≤○ tM = mhounwrapLtM

L⊢ !nm t ≤○ !n !m tM = mhoscatt
LtM
n,m(mconstn ,mconstm)

L⊢ !n !m t ≤○ !nm tM = mhogath
LtM
n,m(mconstn ,mconstm)

L⊢ t ≤○ !n tM = mhodupln
LtM(LtME ,LtMD)

(a) - Interpretation of the subtyping judgment

Lt ⊢ t1⊗ t2M ∈ MLtM⊟Lt1M⊠ Lt2M

Lt ⊢ t ′⊗ t ′M = (mhounwrapLt ′M ⊠ mhounwrapLt ′M) ⧈ mhodecat
Lt ′M
1,1

⧈ L⊢ t ≤○ !2 t ′M
Lt1⊗ t2 ⊢ t ′1⊗ t ′2⊗ t ′′1 ⊗ t ′′2 M = ⟨Lt ′1M,Lt ′′1 M,Lt ′2M,Lt ′′2 M ↦ 0,2,1,3⟩ho

⧈ (Lt1 ⊢ t ′1⊗ t ′′1 M ⊠ Lt2 ⊢ t ′2⊗ t ′′2 M)
L!n+m t ⊢ !n t ⊗ !m tM = mhodecat

LtM
n,m

(b) - Interpretation of the type splitting judgment

LΓ⊢ Γ1⊗Γ2M ∈ MLΓM⊟LΓ1M⊠ LΓ2M
. . .

LΓ, x ∶ t ⊢ Γ1, x ∶ t1⊗Γ2, x ∶ t2M = ⟨LΓ1M,LΓ2M,Lt1M,Lt2M ↦ 0,2,1,3⟩ho

⧈ (LΓ⊢ Γ1⊗Γ2M ⊠ Lt ⊢ t1⊗ t2M)

(c) - Modified interpretation of the context splitting judgment

LΓ⊢ e ∶ tM ∈ MLΓM⊟LtM
. . .

LΓ⊢ e ∶ t ′M = L⊢ t ≤○ t ′M ⧈ LΓ⊢ e ∶ tM
LΓ⊢ e ∶ !n tM = mhoturbon

LΓ′M,LtM(LΓ
′ ⊢ e ∶ tM) ⧈ zipΓ ⧈ L⊢ Γ ≤○ !n Γ

′M
where zipΓ ∈ML!n ΓM⊟LΓ′M[n]

zip◻ = midunit ∥ (mconst
[]
●mforgL◻M−[0])

zipΓ,x∶t = mhozipn
LΓM,LtM ⧈ (zipΓ ⊠ mhoidLtM[n]

)

(d) - Enriched interpretation of the main typing judgment

Figure 5.3: Bounded exponential modality - compilation

[31/10/16, 16:38]

5.2. NODES 175

turn an inhabitant of LtM into n inhabitants, as long as t is a value. This is done by instantiating
the duplication machine L⊢ t valueMD n times.

Figure 5.3 (b) gives the translation of the type splitting judgment. For rule SEPCOPY, the
translation of the premise L⊢ t ≤○ !2 t ′M is a list of size two whose elements are in Lt ′M. We
decatenate this list and then unwrap each component to obtain a machine in Lt ′M ⊠ Lt ′M, the
expected type. The SEPPROD case is straightforward. Rule SEPEXP expresses the forward part of
the type isomorphism !n+m t ≅ !n t⊗ !m t , which is implemented by the concatenation machine.

Figure 5.3 (c) gives the modifications to the translation of the context splitting judgment.
As expected, disruption is minimal: one simply replaces the duplication machine L⊢ t valueMD

with the one obtained from Lt ⊢ t1⊗ t2M. Only this machine and the corresponding type struc-
ture change; the surrounding code stays untouched.

Figure 5.3 (d) gives the two new cases for the translation of the main typing judgment.
The translation of the SUBLIN rule follows the usual pattern of subtyping rules: we compose
the compiled premise with the compiled subtyping judgment. Implementing the remaining
rule STORAGE is slightly more complex: the judgment ⊢ Γ ≤○ !n Γ′ gives us n copies of LΓ′M
which can be transmitted to the machine LΓ′ ⊢ e ∶ tM, replicated n times. This replication is
performed using the higher-order turbo machine defined before. However, strictly speaking,
this is ill-typed: L!n ΓM is not equal to LΓM[n] but isomorphic to it. The former is a product of lists
while the latter is a list of products. The machine zipΓ, defined by induction over Γ, implements
the forward part of this isomorphism by lifting the higher-order zip machine to contexts !n Γ.

5.1.3 Discussion

The addition of such as simple form of bounded exponential types is easy in theory. Indeed,
most of the development above reuses ingredients that are needed in the base language. In
a sense this is unsurprising since from an operational point of view a linear exponential !n t
is not very different from the n-component product t ⊗⋅⋅ ⋅⊗ t definable in the base language.
Still, following Felleisen [1990], we argue that it makes the language more expressive, since the
untyped source-to-source translation expressing exponentials is a whole-program one.

The practical impact of bounded exponentials remains to be investigated. First, there is
the issue of type inference, as it may be unreasonable to expect programmers to annotate
programs with usage counts everywhere. In a language without recursion, it should not be
difficult. Second, it is unclear whether exponentials should be presented in their raw form,
rather than packaged around other type constructors. We could for instance imagine providing
a reusable function type t1⊸n t2 as syntactic sugar for !n (t1⊸ t2). The higher-level surface
language would then be translated to the uniform low-level syntax presented in this section.

5.2 Nodes

Even with the introduction of bounded exponential types as presented in the previous section,
our language is still less modular than the very first version of Lustre. Indeed, a Lustre program
is a list of top-level declarations of closed (first-order) functions called nodes. Once it has

[31/10/16, 16:38]

176 CHAPTER 5. EXTENSIONS

been defined a node can be applied any number of times—including zero—in the rest of the
program. It is important to note that since Lustre does not have dynamic recursion, the number
of applications of a given node in a complete program is always finite. However, in a modular
compilation setting, this number is not known statically at definition time. Thus, nodes are
strictly more expressive than bounded exponentials from a reusability point of view. The price
to pay for this is the restriction to closed first-order functions, a limitation we managed to
avoid up to now while still modularly enforcing the bounded memory discipline.

In this section we show how µAS can be extended with nodes à la Lustre. This extensions
closely follows the original Lustre design. Nodes are global and declared at the top of the
program. They suffer from the same expressiveness and suffer from the same limitations. In
particular, nodes cannot be abstracted over and thus are not first-class entities. A node can still
be of any type, including higher-order ones.

The section is organized as follows. First, we revisit the development of the source-level
language with the node constructs. In particular, the language acquires a new syntactic cate-
gory, the one of complete programs. Typing judgments have to be modified to accommodate
for the new notion, and a new type modality !∞ t is added to the type system. In a second
part we explain the compilation of nodes. The machine language must now be able to refer
to previously defined named machines. We describe this extension and the corresponding
target-level typing changes. The translation from source to this extended language is modular
and compile programs to sets of machines. Finally, we discuss the implementation of the
extended machine language in an HDL, and its proximity with circuits.

5.2.1 Syntax, Type System, and Semantics

Syntax and type system Nodes are global entities, and in particular cannot be nested into
one another. This implies the appearance of a new syntactic category p of complete programs.
Figure 5.4 (a) gives its grammar and Figure 5.4 (b) its untyped semantics. The function KJpK
computes the denotation of a complete program, which is an environment mapping (node)
names to elements of the domain K. The denotation of a new node is computed in the
environment holding the denotation of its predecessor in program order.

Let us turn to the type system. We need a way to express the fact that nodes can be
freely reused (contracted) or erased (weakened). For this, we introduce a new exponential
modality !∞ t , denoting a program of linear type t which can be reused as often as one wishes.
However, remember that nodes are second-class entities that a function cannot receive or
return. This means that this new modality must only qualify a variable. Thus, we add a new
binding form x ∶ !∞ t to contexts Γ. We also need to express that a program p defines a list
of well-typed nodes. Formally such a list is new kind of context Θ that only contains node
bindings. From now we say that a context Γ is an expression context and that a context Θ is
a node context. The changes to the grammar are summed up in Figure 5.4 (c).

Figure 5.5 presents the modifications applied to the type system. We rely on two new
judgment Θ↪ Γ and ⊢ p ∶Θ. The former judgment injects the node context Θ into the more
general syntactic category of expression contexts Γ. The latter judgment expresses that the
nodes of the program p have the type described inΘ. All the nodes in a program should have

[31/10/16, 16:38]

5.2. NODES 177

p ∶∶= nil Empty program
∣ p in x = e Node definition

(a) Enriched syntax of expressions (Figure 3.1) and programs

KJpK ∈ Env(K)
KJnilK = �
KJp in x = eK = σ[x↦KJeK σ] where σ = KJpK

(b) Enriched untyped semantics (Figure 3.3)

Γ += Γ, x ∶ !∞ t Node binding
Θ ∶∶= ◻ Empty node context

∣ Θ, x ∶ !∞ t Node declaration

(c) Enriched syntax of typing contexts

Figure 5.4: Nodes - syntax and untyped semantics

distinct names, as enforced by the x /∈ dom(Θ) premise of the NODE rule. The new binding
form Γ, x ∶ !∞ t needs to be handled in the separation and typing judgments. Conceptually a
variable x ∶ !∞ t is value-like in that it admits weakening and contraction, as reflected by the
rules SEPCONTRACTNODE and WEAKENNODE. Rule INST expresses that a program can instan-
tiate a node x of type !∞ t , obtaining a value of type t in the context Γ. As in the VAR rule this
context should be erasable. The judgment ⊢ Γ value is extended to express that any node is
implicitly erasable or duplicable.

Typed semantics The modifications to the typed semantics are minimal in we only describe
them briefly. The exponential modality !∞ t is transparent in the sense that SJ!∞ tK = SJtK, as
was already the case for the bounded exponential modality. Formally, we have

SJ◻K = ∅�
SJΓ, x ∶ tK = SJΓK×SJtK
SJΓ, x ∶ !∞ tK = SJΓK×SJtK

and a similar interpretation for node contextsΘ.
The interpretations for the rules added to existing judgments are exactly the same as

the ones for their pre-existing counterparts; for instance, node weakening works exactly like
ordinary weakening. The INST rule is interpreted like the VAR one.

The judgmentΘ↪ Γ is interpreted as a function from SJΘK to SJΓK. Furthermore, and while
this is not strictly necessary for the development to work, we interpret it not as any function
but as an embedding-projection pair SJΘK ⊲ SJΓK to insist in the fact that it models an injection

[31/10/16, 16:38]

178 CHAPTER 5. EXTENSIONS

Θ↪ Γ

INFEMPTY

◻↪ ◻

INFCONS

Θ↪ Γ
Θ, x ∶ !∞ t ↪ Γ, x ∶ !∞ t

⊢ Γ value

VALCTXEMPTY

⊢ Γ value

VALCTXCONS

⊢ Γ value ⊢ t value

⊢ Γ, x ∶ t value

VALCTXNODE

⊢ Γ value

⊢ Γ, x ∶ !∞ t value

Γ⊢ Γ1⊗Γ2

. . .

SEPCONTRACTNODE

Γ⊢ Γ1⊗Γ2

Γ, x ∶ !∞ t ⊢ Γ1, x ∶ !∞ t ∶ Γ2, x ∶ !∞ t
. . .

⊢ Γ ↓ct Γ′

DOWNCTXEMPTY

⊢ ◻ ↓ct ◻

DOWNCTXCONS

⊢ Γ ↓ct Γ
′ ⊢ t ↓ct t ′

⊢ Γ, x ∶ t ↓ct Γ
′, x ∶ t ′

DOWNCTXNODE

⊢ Γ ↓ct Γ
′

⊢ Γ, x ∶ !∞ t ↓ct Γ, x ∶ !∞ t

Γ⊢ e ∶ t

. . .

WEAKENNODE

Γ⊢ e ∶ t ′ x /∈ FV (e)
Γ, x ∶ !∞ t ⊢ e ∶ t ′

INST

⊢ Γ value

Γ, x ∶ !∞ t ⊢ x ∶ t

⊢ p ∶Θ

EMPTY

⊢ nil ∶ ◻

NODE

⊢ p ∶Θ x /∈ dom(Θ) Θ↪ Γ Γ⊢ e ∶ t
⊢ p in x = e ∶Θ, x ∶ !∞ t

Figure 5.5: Nodes - additions and modifications to the type system

[31/10/16, 16:38]

5.2. NODES 179

ofΘ inside Γ.
SJΘ↪ ΓK ∈ SJΘK ⊲ SJΓK
SJ◻↪ ◻K = (id, id)
SJΘ, x ∶ !∞ t ↪ Γ, x ∶ !∞ tK = SJΘ↪ ΓK×(id, id)

The cartesian product used in the second case above denotes the pairing of embedding-
projection pairs defined in Section 3.3.

Finally, the program typing judgment ⊢ p ∶Θ is interpreted as an element of SJΘK.

SJ⊢ p ∶ΘK ∈ SJΘK
SJ⊢ nil ∶ ◻K = �
SJ⊢ p in x = e ∶Θ, x ∶ !∞ tK = (θ,SJΓ⊢ e ∶ tK (SJΘ↪ ΓK θ)) where θ = SJpK

Metatheory We have to say a word about the proof of totality given in Chapter 3, and in
particular Lemma 7. Indeed, rule DOWNCTXNODE might look a bit surprising at first: how can
we not change the type of x when entering a local time scale? Remember that the context Γ
in Γ⊢ e ∶ t describes the view that e has of the surrounding context. But since a binding x ∶ !∞ t
describes a node to be instantiated inside e, x is not really defined outside of e and thus does
not belong to the external world. A more formal version of this fact is that, while t and !∞ t
are interpreted by the same domains, their realizers are totally different. The idea is that
since elements of L!∞ tM are closed and have, in a sense, already been completely defined, they
realize t for all n instead of just for the current one. This leads to the following definition which
can be used to reprove Lemma 7.

⇓Γn ⊆ SJΓK
� ⇓◻n

(γ, v) ⇓Γ,x∶t
n ⇔ γ ⇓Γn ∧ v ⇓t

n

(γ, v) ⇓Γ,x∶!∞ t
n ⇔ γ ⇓Γn ∧ ∀n′ ∈N, v ⇓t

n′

The same idea leads to the following set of realizers for whole-programs. Notice that, in contrast
with the ones used in contexts and (non-node) types, they are not step-indexed.

⇓Θ∞ ⊆ SJΘK
� ⇓◻∞

(θ, v) ⇓Γ,x∶!∞ t∞ ⇔ γ ⇓Γ∞ ∧ ∀n ∈N, v ⇓t
n

5.2.2 The Translation

The synchronous semantics gives the same interpretation to the VAR and INST rules. Their
compilation, however, is very different. Let us discuss the design of our translation and the
rationale for our extensions to the language of machines.

In Lustre nodes are instantiated at each call point, meaning that in hardware each distinct
call generates a distinct copy of callee node in the caller node. In software the code for the
transition function of the callee node does not have to be copied, but each call still reserves the
space for a copy for the internal state of the callee node inside the caller node’s own state.

[31/10/16, 16:38]

180 CHAPTER 5. EXTENSIONS

To rephrase this mechanism in our parlance, each call to the node x should ultimately give
rise to a new copy of the machine LeM generated from the body e of x. Thus, the most direct
solution for compiling nodes seems to be a form of inlining: the compilation of expressions
takes as input the body of all previously defined nodes and each INST rule for a node x looks for
the compiled body of x in this environment. In this scheme the compilation function would
have the type

LΓ⊢ e ∶ tM ∶ MLΓMN
→MLΓM⊟LtM

with LΓMN a description of the nodes appearing in Γ and LΓM extended to ignore node bindings.
The trouble with the above scheme is that it breaks separate compilation. To obtain the

final object we are interested in, a machine in LΓM ⊟ LtM, the interpretation LΓ⊢ e ∶ tM must
be applied to an environment containing the body of the nodes in Γ. In other words, the
compiled code does not simply depend on the types of the nodes present in Γ, but also on their
definitions. In particular, an expression must be recompiled when the definitions of the node
it calls change, even if their types do not.

On the one hand, one may argue that this phenomenon is, in a sense, unavoidable. Circuits
are physical objects and a stateful node that is instantiated n-times must exist as n distinct
sub-circuits in the final physical piece of matter, barring the use of external memory. Thus,
some sort of inlining process has to happen at some point. This phenomenon is avoided in
software only through the use of dynamic memory allocation and pointer indirections, which
are mandatory to compile Lustre in a modular way.

On the other hand, from a practical point of view the obstacles to separate compilation are
less formidable than what we just described. Remember that the compilation process described
in Chapter 4 translates a well-typed program to machines, which are then implemented by a
direct translation to an HDL, which is finally processed by a specific synthesis tool. This last
step is not modular in the slightest since the synthesis frontend unfolds the hierarchical HDL
description into a flat representation adequate for the technology mapping, place-and-route
and other low-level optimization processes.

This suggests an alternative plan. Instead of inlining node bodies during the translation,
we enrich the machine language with a simple form of modularity similar to the one in the
source language. This is readily translated to any HDL such as Verilog or VHDL. The synthesis
tool is responsible for the inlining process, and the extended translation is exactly as modular
as the base one. To sum up, the compilation from µAS to the HDL is modular in the sense that
it enjoys separate compilation, while the compilation of HDL code to a circuit has never been.

New machines The addition of named machines impacts all the technical development of
machines, since they were previously devoid of any form of binding. Machine names belong to
the same set V of variables as source names. However, we denote machine names as l , l ′, . . . to
avoid confusion in the reaction rules of Figure 4.7 where we have used x, y, . . . to denote values.

The machines and syntactic categories added to the grammar of machine are given in Fig-
ure 5.6. A machine environment M is a list of machine declarations of the form l =m. The in-
stance machine minstmtm(mi) holds an instance mi. Such an instance is either an indirection
to a previously defined machine named l , or a concrete machine m. We say that the latter

[31/10/16, 16:38]

5.2. NODES 181

m += minstmtm(mi) Named machine
mi ∶∶= l ∈V Indirection

∣ m Embedded machine
M ∶∶= ∅ Empty machine environment

∣ M , l =m Machine definition
I ∶∶= ◻ Empty machine typing context

∣ I , l ∶mtm Named machine binding

Figure 5.6: Nodes - additions and modifications to the machine syntax

machine is embedded in the instance. This mechanism is used so that each instance actually
gives rise to a copy of the machine named l during execution. A machine context I is a list of
bindings of machine names to machine types.

Figure 5.7 gives the extended machine type system. Typing judgments now depend on a
machine context I for typing the free variables appearing in machine instances. This context is
handled in an intuitionistic rather than linear fashion: machine names can be freely weakened
and contracted. Moreover, since we are interested in the mere fact that a machine is well-typed
rather than in its typing derivations, we manipulate contexts less formally than in the source
language. For instance, we write I(l) = mtm to express that the rightmost binding for l in I
exists and binds l to mtm. In practice, the fact that this bindings is the rightmost does not
matter since machine names will be unique.

Figure 5.7 (a) gives the modified typing rules for machines. The new machine context I is
added to all previous typing rules in a transparent fashion: it is unused by atomic machines
and simply passed along in machine combinators. The weakening rule is unsurprising; free
variables are defined as usual. The last two rules type the new instance machines. The named
machine l referred to by a machine minstmtm(l) should be present in the context and have
type mtm. The machine m embedded into the machine minstmtm(m) should have type mtm.

Figure 5.7 (b) gives the typing judgment ⊢M ∶ I expressing that a machine environment M
has the type I . This closely follows the rules for source programs given in Figure 5.5. A machine
binding M , x = m types m in the context I obtained by typing M . The resulting type mtm is
then added to I . As in the source language, this rule enforces that machine names are actually
unique in a program.

The reaction rules are now parametrized by a machine environment M , as shown in Fig-
ure 5.7 (c). As for contexts, we write M(l) for the rightmost machine m bound to l in the
environment M . This environment is added transparently in preexisting rules, as was the case
for typing. Reaction rules for machine instances are the only interesting one. The reaction of a
named machine minstmtm(l) looks for l in M and executes it with the current input value x.
The resulting machine m′ replaces l in the state of the instance machine. This makes sure that
each instance correctly remembers the state of the machine it refers to. When the instance
machine minstmtm(m) already wraps a machine m, this machine is executed.

Remark 26. The addition of machine contexts and environment alters the statements of the

[31/10/16, 16:38]

182 CHAPTER 5. EXTENSIONS

I ⊢m ∶mtm

MID

I ⊢ midmt ∶mt _ mt
. . .

MCOMP

I ⊢m1 ∶mt2 _ mt3 I ⊢m2 ∶mt1 _ mt2

I ⊢m1 ●m2 ∶mt1mt3
. . .

MWEAKEN

I ⊢m ∶mtm l /∈ FV (m)
I , l ∶mtm⊢m ∶mtm

MINSTVAR

I(l) =mtm

I ⊢ minstmtm(l) ∶mtm

MINSTEMBED

I ⊢m ∶mtm

I ⊢ minstmtm(m) ∶mtm

(a) - Extension and modification of the machine typing judgment (Figure 4.6)

⊢M ∶ I

NEMPTY

⊢∅ ∶ ◻

NCONS

⊢M ∶ I l /∈ dom(I) I ⊢m ∶mtm

⊢M , l =m ∶ I , l ∶mtm

(b) - Machine environment typing judgment

M ⊢m/x→m′/y and M ⊢m/x→n m′/y

M ⊢ midmt/x→ midmt/x
. . .

M ⊢m1/x→m′
1/y M ⊢m2/y →m′

2/z

M ⊢m2 ●m1/x→m′
2 ●m′

1/z
. . .

M(l) =m M ⊢m/x→m′/y

M ⊢ minstmtm(l)/x→ minstmtm(m′)/y

M ⊢m/x→m′/y

M ⊢ minstmtm(m)/x→ minstmtm(m′)/y

(c) - Extension and modification of the reaction judgment (Figure 4.7)

Figure 5.7: Nodes - additions and modifications to the machine type system

[31/10/16, 16:38]

5.2. NODES 183

metatheoretical results of Section 4.4. The subject reduction result now depends on the fact
that the machine m of type I ⊢m ∶ mtm executes within an environment M that is itself of
type I . Similarly, the skeletal equivalence is now parametrized by an environment M , forming
a relation M ⊢m ≡m′. Thus, the finiteness result now states that the set of machines reachable
from any given well-typed machine in a fixed well-typed environment is finite.

The translation We can now give the translation of the extended source language to the
extended machine language. Unsurprisingly, source programs are translated to machine envi-
ronments, node instances to machine instances, and program contexts to machine contexts.

Arguably, the only difficulty is in the expression of the type of the translation: what should
be the type of LΓ⊢ e ∶ tM? The result must now express that the resulting machine is well-typed
in some machine context I which describes the types of the translated nodes which e refers
to. These nodes appear in Γ as bindings x ∶ !∞ t . This suggests having two translations for
the same typing context Γ. The first one is the usual one, which gives the higher-order type
of the generated machine; it simply ignores the node bindings in Γ. On the contrary, the
second translation only remembers the node bindings in Γ, translating them to a machine
context LΓMN . Program contexts Θ are also translated to machine contexts LΘM. The three
translations are given in Figure 5.8 (a), (b) and (c).

This definition explains why the SEPCONTRACTNODE and VALCTXNODE rules work. The
role of this judgment is to characterize how the elements in LΓM can be duplicated or erased.
However, since the node bindings x ∶ !∞ t in Γ do not appear in LΓM, these rules have virtually no
work to do: no duplication nor erasure machine needs to be generated for !∞ t . This is shown
in Figure 5.8 (d) and (e).

We can now give the type of the translation of expressions. WritingMI ⊢mtm for the set
machines inhabiting type mtm in the machine context I , the machine generated from a well-
typed expression Γ⊢ e ∶ t has type

LΓ⊢ e ∶ tM ∈ MLΓMN ⊢LΓM⊟LtM

as expressed in Figure 5.8 (f). The compilation of preexisting rules does not change. Node
weakening is a no-op since LΓ, x ∶ !∞ tM = LΓM. A node instantiation for x ∶ !∞ t is translated to the
machine instance minstLtM(x). Complete programs are translated to machine environments in
the expected structural manner, given in Figure 5.8 (g). We writeM⊢I for the set of well-typed
program environments of type I .

Is the interpretation well-defined? The translation of nodes to machines is much simpler
than the translation of bounded exponentials given in Section 5.1. There is, however, a technical
point to consider. When we define the result of the interpretation function as belonging
toMLΓMN ⊢LΓM⊟LtM (for example), we implicitly assume that the right-hand sides of the equations
in Figure 5.8 (f) actually belongs to this set, that is that the corresponding machines are well-
typed. This fact is not always completely immediate, as the following example shows.

Consider the compilation of node declarations in Figure 5.8 (g). Here the compilation
of Γ⊢ e ∶ t has typeMLΓMN ⊢LΓM⊟LtM while rule NCONS from the target language expects it to have

[31/10/16, 16:38]

184 CHAPTER 5. EXTENSIONS

L◻M = ◻
LΘ, x ∶ !∞ tM = LΘM, x ∶ LtM

(a) - Translation of program contexts to machine contexts

L◻MN = ◻
LΓ, x ∶ tMN = LΓMN

LΓ, x ∶ !∞ tMN = LΓMN , x ∶ LtM

(b) - Translation of typing contexts to machine contexts

. . .
LΓ, x ∶ !∞ tM = LΓM

(c) - Extended translation of typing contexts to higher-order machine types

LΓ⊢ Γ1⊗Γ2M ∈ M◻⊢LΓM⊟LΓ1M⊠ LΓ2M
. . .

LΓ, x ∶ !∞ t ⊢ Γ1, x ∶ !∞ t ⊗Γ2, x ∶ !∞ tM = LΓ⊢ Γ1⊗Γ2M

(d) - Extended translation of the separation judgment

L⊢ Γ valueME ∈ M◻⊢LΓM∗
. . .

L⊢ Γ, x ∶ !∞ t valueME = L⊢ Γ valueME

(e) - Extended erasure translation of the context value judgment

LΓ⊢ e ∶ tM ∈ MLΓMN ⊢LΓM⊟LtM
. . .

LΓ, x ∶ !∞ t ⊢ e ∶ t ′M = LΓ⊢ e ∶ t ′M
LΓ, x ∶ !∞ t ⊢ x ∶ tM = L⊢ Γ valueME ∥ minstLtM(x)

(f) - Modified and enriched translation of well-typed expressions

L⊢ p ∶ΘM ∈ MLΘM
L⊢ nil ∶ ◻M = ∅
L⊢ p in x = e ∶Θ, x ∶ !∞ tM = L⊢ p ∶ΘM, x = LΓ⊢ e ∶ tM

(g) - Translation of programs to machine sets

Figure 5.8: Nodes - compilation

[31/10/16, 16:38]

5.2. NODES 185

close(_,_) ∈ M⊢I ×MI ⊢mtm→M◻⊢mtm

close(M ,m1 ●m2) = close(M ,m1)●close(M ,m2)
close(M ,m1 ∥m2) = close(M ,m1)∥ close(M ,m2)
close(M ,mfbmt3

mt1,mt2
(m)) = mfbmt3

mt1,mt2
(close(M ,m))

close(M ,mrepln(m)) = mrepln(close(M ,m))
close(M ,mgate(m)) = mgate(close(M ,m))
close(M ,mturbon(m)) = mturbon(close(M ,m))
close(M ,minstmtm(l)) = close(M , M(l))
close(M ,m) = m (remaining cases)

Figure 5.9: Nodes - closure

the type of LpM, that is LΘM. Is the resulting machine ill-typed and thus the whole interpretation
function ill-defined? No, because of the following property, whose proof is immediate.

Property 46. For any two contextsΘ and Γ, ifΘ↪ Γ then LΘM = LΓMN .

The same is true for several other cases. The compilation of the NODEWEAKEN source-level
rule is well-typed because of the MWEAKEN target rule. Similarly, even if the existing cases
where not modified, the reasons for which some of them are now well-typed may have changed.
We let the reader checks that all cases actually type-check.

5.2.3 Discussion

HDLs We have already discussed whether it is realistic to add name binding to a language
supposed to model finite-state circuits. We argue that in a pragmatic way it is, since the
translation to HDLs is not difficult. VHDL and Verilog both offer facilities for reuse in the
guise of named entities (for VHDL) or modules (for Verilog). These modularity units closely
correspond to our named machines, as they are closed pieces of code with globally unique
names. HDL tools recursively inline all such abstractions before synthesis, leaving a flat netlist.

For the sake of completeness we can describe the inlining process as a source-to-source
transformation at the target level. This takes the form of a function close(M ,m) that replaces
the free variables of the machine I ⊢m ∶mtm with their bodies taken from ⊢M ∶ I , resulting
in the machine ◻ ⊢ close(M ,m) ∶ mtm. The function is defined in Figure 5.9. It traverses
the body of m, calling itself recursively when replacing an indirection minstmtm(l) with the
machine M(l). The function terminates on well-typed programs because machine names are
unique and definitions non-recursive. As expected, this process requires the bodies of all the
nodes instantiated directly or indirectly in m, and is thus a whole-program transformation.

Expressiveness From the expressiveness point of view, the presence of nodes enables new
forms of code reuse compared to plain linear types or bounded exponentials. In particular,

[31/10/16, 16:38]

186 CHAPTER 5. EXTENSIONS

. . .
⊢ f ∶ !∞ (2)⊸ (2) ↓

(2) f ∶ !∞ (2)⊸ (2)

. . .
f ∶ !∞ (2)⊸ (2), x ∶ (2)⊢ f x ∶ (2)

f ∶ !∞ (2)⊸ (2)⊢ fun x.(f x) ∶ (4)⊸ (4)
. . .

⊢ (2)⊸ (2) ↑
(2) (4)⊸ (4)

f ∶ !∞ (2)⊸ (2)⊢ fun x.(f x) ∶ (4)⊸ (4)

Figure 5.10: Example - Gathering and nodes

nodes ease the use of local time scales. The two examples below illustrate this point. We elide
data types, assuming that they are all equal to, say, bool.

Example 24. Imagine that we want to write a program that applies a function of type (2)⊸ (2)
to some stream of clock type (4 0). In other words, we want to build a derivation of conclusion

(a) ◻⊢ fun f .fun x.(f x) ∶ ((2)⊸ (2))⊸ ((4 0)⊸ ?)

where ? is some unknown clock type. This can be done either through adaptability, since one
has ⊢ (4 0) <∶0 (2), or through a local time scale driven by (2)ω. In both cases the best output
clock, in the sense of latency, is (2)ω. The resulting code is reusable in the sense that, once it
has been put inside a node, one may call it from anywhere with a distinct argument f .

Example 25. Now, consider the following conclusion.

(b) f ∶ !∞ (2)⊸ (2)⊢ fun x.(f x) ∶ (4 0)⊸ (2)

It is derivable for the same reason the previous one was. However, it is quite distinct: here f
refers to a fixed node that was previously defined in the program. Since nodes are not first
class entities, we cannot abstract over f to make this program generic. This version is thus less
desirable than the previous one.

Example 26. For our final example, we tweak the desired clock types a little bit. Our goal is to
write a typing derivation for the following conclusion.

(c) ◻⊢ fun f .fun x.(f x) ∶ ((2)⊸ (2))⊸ ((4)⊸ ?)

where ? is once again some unknown clock type. Unfortunately, there is no such derivation. To
see why, notice that a natural type of fun f .fun x.(f x), which is an η-expanded version of the
identity function, is ((1)⊸ (1))⊸ ((1)⊸ (1)). Observe how all clock types appearing in this
type have the same rate. Unfortunately, the only operations that we have at our disposal to
transform this type into the expected one are buffering and local time scales. Both preserve the
relative rates of all the clock types appearing in the type being adapted or gathered. Thus it is
not possible to find a derivation having the proper conclusion.

Example 27. In contrast with the previous one, the following conclusion is derivable.

(d) f ∶ !∞ (2)⊸ (2)⊢ fun x.(f x) ∶ (4)⊸ (4)

A derivation is given in Figure 5.10. It relies crucially on rule DOWNCTXNODE, which makes
it possible not to link the type of the node, which appears in the context, with the clock type

[31/10/16, 16:38]

5.3. CLOCK POLYMORPHISM 187

driving the local time scale. We see that in fact this works for an arbitrary local time scale,
obtaining arbitrary high throughput! In this case the version using a node, while still not
generic over f , is well-typed while its higher-order analogue plainly does not exist.

Those examples show one way in which nodes and linear higher-order functions are very
different. The problem with (c), stated in a down-to-earth fashion, is that to obtain the desired
type we need to replicate f twice, but that the function has been defined elsewhere and thus
its body is unavailable. This is not the case when f is a node, as by definition node bodies are
always available to play with. The large difference between the code generated for (a) and (b)
or (d) reflects this fact. In (b) and (d) the call to f is actually a node instantiation, resulting in a
copy of the node body at the instantiation point. Since this body is inside a machine which
it itself replicated twice because of the local time scale, at the end of the day three distinct
copies of the node body are present in the generated circuit. In contrast, the code generated
for (a) does not include any copy of the body of f and is thus completely modular. The price
to pay for this modularity is the simplicity of the corresponding time transform, which only
corresponds to buffering.

In a sense, none of the constructions above feel satisfactory. Local time scales are expres-
sive when used in conjunction with nodes and more generally closed expressions, but using
nodes impede reuse and genericity. Linear higher-order functions on the other hand are very
modular but can only implement relatively trivial time transforms. The next section introduces
polymorphic clocks types, which can be used to describe generic code in a modular fashion.

5.3 Clock Polymorphism

It is clear that for some programs the types assigned by the system described in Chapter 3
are too specific. Consider the identity function fun x. x. It may be assigned any type of the
form dt ∶∶ ct ⊸ dt ∶∶ ct, with dt and ct fixed data and clock types, respectively. A traditional
solution for expressing this genericity over dt is the introduction of data type polymorphism,
as featured in the polymorphic lambda-calculus of Girard and Reynolds. In this section, we
are rather interested in genericity over ct and thus in what we call clock type polymorphism.
The immediate idea for providing this form of polymorphism is to introduce universal clock
quantification, written ∀α.t . The identity function then receives the type ∀α.dt ∶∶α⊸ dt ∶∶α
for any fixed dt. With this extension, a clock type no longer denotes a single clock but rather a
set of clocks, or more precisely a function from (the interpretation of) its free variables to the
domain of clocks.

Unfortunately, clock quantification as presented above, while appealing, does not work
directly in our setting. The problem is that since we have no information on the bound
variable α, we are no longer able to bound the integers appearing in the clocks denoted by
a universally quantified type. Having a bound on the integers appearing in each clock is
needed for two reasons. First, as seen in Chapter 4, bounds describe the maximum size of
lists in the generated code. Second, it is also important in the type system. Remember that to
check the productivity of fixpoints, we need to check whether two clock types are 1-adaptable.
In the existing clock type language, this is simple, since one can compute the exact unique

[31/10/16, 16:38]

188 CHAPTER 5. EXTENSIONS

clock denoted by a clock. In the richer polymorphic language one has to settle for syntactic
approximations, as shown in the example below.

Example 28. Imagine that we want to find a general rule for checking whether ⊢α on p1 <∶k
α on p2, with p1 and p2 arbitrary ultimately binary clock. This rule should ensure that for any
clock w giving the value of α at runtime, one has w on p1 <∶k w on p2. In Chapter 2, we have
seen that if p1 <∶k p2, then w on p1 <∶0 w on p2. However, we have (1) <∶1 0(1) yet

(2)ω on (1)ω <∶1 (2)ω on 0(1)ω
⇔ (2)ω <∶1 1(2)ω

does not hold. Similar examples can be devised for arbitrary values of w , p1, p2 and k ≥ 1. This
implies that, without a bound on the maximum value appearing in the clocks w being denoted
by α, it is impossible to find a sound rule for ⊢α on p1 <∶k α on p2 with k ≥ 1.

To avoid these problems, we adopt a restricted form of clock type polymorphism that we
call bounded clock polymorphism, in analogy with the bounded polymorphism found in type
systems that exhibit both parametric polymorphism and subtyping [Pierce, 2002]. Here the
bounds are simply natural numbers. The type ∀(α ≤n).t , with α possibly free in t , has as
inhabitants programs that work for any clock type ct instantiating α, such that the clocks w
denoted by ct feature integers no larger than n.

Remark 27. Polymorphic clock types were introduced by Caspi and Pouzet [1996] in Lucid
Synchrone. They were later adopted in the SCADE6 [Esterel Technologies, 2015] and Hep-
tagon [Delaval et al., 2012] dialects of Lustre, as well as in Lucy-n [Mandel et al., 2010; Plateau,
2010]. Clock polymorphism works essentially in the same way in all these languages, a small
difference being that Heptagon and SCADE6 types can only be polymorphic in a single variable.
It is important to note that since these languages feature binary clocks only, quantification is
implicitly bounded by 1.

This section is structured as follows. First, we describe the new grammar of clock types
and the related typing judgments. Even if the general design stays the same, the addition of
polymorphic clock types adds formal complexity to the type system given in Chapter 3. The
typed semantics has to be modified accordingly, and the construction of the interpretation of
polymorphic clock types requires the use of more complex domain constructions. We then
explain the compilation to machines, which is relatively simple. The last part of this section
discusses the limitations of this approach to clock polymorphism, and details the interaction
with local time scales and nodes.

5.3.1 Type System

Syntax The addition of bounded polymorphism only affects the syntax of types, but alters it
in a drastic way. Figure 5.11 gives the modified syntax of types and clock types, as well as the
new notion of clock type context, often abbreviated clock context. We add the aforementioned
type constructor ∀(α ≤n).t to types. In order to accommodate for clock type variables, we
change the grammar of clock types completely. A clock type ct can now be either atomic or

[31/10/16, 16:38]

5.3. CLOCK POLYMORPHISM 189

t += ∀(α ≤n).t Bounded quantification
ct ∶∶= base Base clock (1)ω

∣ α Polymorphic clock type
∣ ct on p Compound clock type

∆ ∶∶= ◻ Empty clock type context
∣ ∆,α ≤n Clock type binding

Figure 5.11: Clock polymorphism - extended type syntax

FTV (base) = ∅
FTV (α) = {α}
FTV (ct on p) = FTV (ct)
FTV (◻) = ∅
FTV (Γ, x ∶ t) = FTV (Γ)∪FTV (t)

FTV (dt ∶∶ ct) = FTV (ct)
FTV (t1⊗ t2) = FTV (ct1)∪FTV (ct2)
FTV (t1⊸ t2) = FTV (ct1)∪FTV (ct2)
FTV (∀(α ≤n).t) = FTV (t)∖{α}

Figure 5.12: Clock polymorphism - extended type system - free type variables

ct1 ≡ ct2

ct ≡ ct

ct1 ≡ ct2 ct2 ≡ ct3

ct1 ≡ ct3

ct2 ≡ ct1

ct1 ≡ ct2

ct1 ≡ ct2

ct1 on p ≡ ct2 on p

ct1 ≡ ct2

ct1 on p1 on p2 ≡ ct2 on (p1 on p2)
ct1 ≡ ct2

ct1 ≡ ct2 on (1)

Figure 5.13: Clock polymorphism - extended type system - equivalence judgment

compound. Atomic clock types are either the base clock base, which denotes the (1)ω stream,
or some clock type variable α. A compound clock is always of the form ct on p, with p an
ultimately periodic integer word. Note that all the clock types of Chapter 3 can be expressed in
the new grammar by prefixing them with base and shifting the periodic words to the right. A
clock context ∆ is a list of bounded clock type variables. Figure 5.12 gives the precise definition
of the set FV (_) of free clock type variables appearing in a clock type, type or typing context.

Clock type equivalence A first question we need to address is clock equivalence. In Chap-
ter 3, the equivalence of two clock types ct1 and ct2 was easy since we could simply test the
equivalence of the exact representation of ct1 and ct2 as ultimately periodic words nf (ct1)
and nf (ct2). In the richer clock type language of this section, having an explicit judgment
expressing that two clock types are equivalent will prove more convenient. Figure 5.13 gives
the (untyped) equivalence judgment ct1 ≡ ct2. The rules are simple. They express that clock
type equivalence is an equivalence relation and is thus reflexive, symmetric and transitive, that

[31/10/16, 16:38]

190 CHAPTER 5. EXTENSIONS

nf (base) = (base,(1))
nf (α) = (α,(1))
nf (ct on p) = (r, p′ on p) where (r, p′) =nf (ct)

r (ct) = r where (r, p) =nf (ct)
p(ct) = p where (r, p) =nf (ct)

Figure 5.14: Clock polymorphism - clock type normalization

it is a congruence, that compositions of ultimately periodic clock types can be simplified and
that (1)ω is neutral for clock composition.

Remark 28. The equivalence judgment can be decided using the function nf (ct) given in Fig-
ure 5.14. This function computes the root r (ct) and periodic part p(ct) of a clock type ct, the
root being either base or a variable α. Two clock types are equivalent if they have the same root
and their periodic parts are equivalent in the sense of Chapter 2.

Well-formedness Now that the (clock) type language involves variables for which quantifiers
act as binders, their manipulation becomes more complicated and scoping issues appear. In
particular, we must be able to statically express that a clock type ct is well-formed in a given
clock context, which means that its free variables (of which there is at most one) appear in the
context. Since the clock context provides bounds for each variable, any well-formed clock type
denotes a set of bounded clocks. This notion of well-formedness must be extended to types in
the obvious manner: if all clock types appearing in a type are well-formed then so is the type.

Figure 5.15 presents the judgments that express well-formedness of clock types, types and
contexts. The judgment ∆⊢ ct ≤ n expresses that ct is bounded by n in the context ∆. Let us
explain its rules.

• The clock type base is well-formed in any context, and is binary (rule CTBASE).

• Rules CTVAR and CTWEAKEN are the usual variable and weakening rules expressed at
the clock type level.

• The bound of ct on p is, in the worst case, the bound of ct multiplied by the maximum
integer in p, that is ⌈p⌉. This is what CTON expresses.

• Rule CTCONG express that boundedness is compatible with equivalence. This makes it
possible to refine the bound of a clock type by simplifying some of its ultimately periodic
words, for example.

The judgment ∆⊢ t type, whose rules are given in the lower part of Figure 5.15, expresses
that the type t is well-formed in clock context∆. Basically, a type is well-formed if all its internal
clock types are well-formed; the bounded quantifier ∀(α ≤n).t adds α ≤ n to ∆. A program
context is well-formed if all the types that appear in it are well-formed.

Auxiliary judgments Since the clock type language has changed we must update the defi-
nition of the adaptability, gathering and scattering judgments. The changes mostly consist
in changing the ADAPTSTREAM, UPSTREAM and DOWNSTREAM rules, which are the only one

[31/10/16, 16:38]

5.3. CLOCK POLYMORPHISM 191

∆⊢ ct ≤ n

CTBASE

◻⊢ base ≤ 1

CTVAR

∆,α ≤ n ⊢α ≤ n

CTWEAKEN

∆⊢ ct ≤ n′ α /∈ FTV (ct)
∆,α ≤ n ⊢ ct ≤ n′

CTON

∆⊢ ct ≤ n

∆⊢ ct on p ≤ n× ⌈p⌉

CTCONG

∆⊢ ct′ ≤ n ct ≡ ct′

∆⊢ ct1 ≤ n

∆⊢ t type

TYSTREAM

∆⊢ ct ≤ n

∆⊢ dt ∶∶ ct type

TYPROD

∆⊢ t1 type ∆⊢ t2 type

∆⊢ t1⊗ t2 type

TYARROW

∆⊢ t1 type ∆⊢ t2 type

∆⊢ t1⊸ t2 type

TYFORALL

∆,α ≤ n ⊢ t type

∆⊢∀(α ≤ n).t type

∆⊢ Γ ctx

CTXEMPTY

∆⊢ ◻ ctx

CTXCONS

∆⊢ Γ ctx ∆⊢ t type

∆⊢ Γ, x ∶ t ctx

Figure 5.15: Clock polymorphism - extended type system - well-formedness judgments

that manipulate clock types. Their updated versions rely on the new clock adaptatability
judgment ∆ ⊢ ct1 <∶k ct2, clock gathering judgment ∆ ⊢ ct1 ↑ct ct2, and clock scattering judg-
ment ∆ ⊢ ct1 ↓ct ct2. The updated and new judgments are given in Figure 5.16.

The clock adaptability judgment consists in two rules. The first rule, ADAPTON, is the most
interesting one. It expresses a sufficient condition on the delay between ct on p1 and ct on p2.
If the largest integer in the clocks denoted by ct is bounded by n, in the worst case the delay k
between p1 and p2 should be decremented by n−1. The second rule, ADAPTCONG, enables
the use of clock equivalence in adaptability judgments.

The clock gathering and scattering judgment have a dual structure. The most important
rules are the simplest ones, UPCKBASE and DOWNCKBASE. Rule UPCKBASE shows how the
base clock, gathering by ct, is mapped to ct itself. Dually, in DOWNCKBASE ct, scattered by itself,
is mapped to the base clock. Rules UPCKON and DOWNCKON express that clock composition
is compatible with gathering and scattering. The last rules, UPCKCONG and DOWNCKCONG,
makes it possible to use clock equivalence in gathering and scattering judgments; note that
the gathered input clock and scattered output clock are tested for equivalence in the empty
context. The reason for this will become clear once we explain the updated RESCALE expression

[31/10/16, 16:38]

192 CHAPTER 5. EXTENSIONS

∆ ⊢ t <∶k t ′

ADAPTSTREAM
ct1 ≡ ct on p1 ct2 ≡ ct on p2 ∆⊢ ct ≤ n p1 <∶k p2

∆ ⊢ dt ∶∶ ct1 <∶k+1−n dt ∶∶ ct2

ADAPTPROD
∆ ⊢ t1 <∶k t ′1 ∆ ⊢ t2 <∶k t ′2

∆ ⊢ t1⊗ t2 <∶k t ′1⊗ t ′2

ADAPTARROW
∆ ⊢ t ′1 <∶0 t1 ∆ ⊢ t2 <∶n t ′2
∆ ⊢ t1⊸ t2 <∶n t ′1⊸ t ′2

∆ ⊢ ct1 ↑ct ct2

◻⊢ ct1 ≤ n1 ct2 ≡ ct1[base/ct] ∆⊢ ct2 ≤ n2

∆ ⊢ ct1 ↑ct ct2

∆ ⊢ t ↑ct t ′ and ∆ ⊢ t ↓ct t ′

UPSTREAM
∆ ⊢ ct1 ↑ct ct2

∆ ⊢ dt ∶∶ ct1 ↑ct dt ∶∶ ct2

DOWNSTREAM
∆ ⊢ ct2 ↑ct ct1

∆ ⊢ dt ∶∶ ct1 ↓ct dt ∶∶ ct2

UPPROD
∆ ⊢ t1 ↑ct t ′1 ∆ ⊢ t2 ↑ct t ′2

∆ ⊢ t1⊗ t2 ↑ct t ′1⊗ t ′2

DOWNPROD
∆ ⊢ t1 ↓ct t ′1 ∆ ⊢ t2 ↓ct t ′2

∆ ⊢ t1⊗ t2 ↓ct t ′1⊗ t ′2

UPARROW
∆ ⊢ t ′1 ↓ct t1 ∆ ⊢ t2 ↑ct t ′2
∆ ⊢ t1⊸ t2 ↑ct t ′1⊸ t ′2

DOWNARROW
∆ ⊢ t ′1 ↓ct t1 ∆ ⊢ t2 ↓ct t ′2 ∆⊢ ct ≤ 1

∆ ⊢ t1⊸ t2 ↓ct t ′1⊸ t ′2

UPON
∆ ⊢ t ↑ct2 t ′′ ∆ ⊢ t ′′ ↑ct1 t ′ ∆ ⊢ ct ↑ct1 ct2

∆ ⊢ t ↑ct t ′

DOWNON
∆ ⊢ t ↓ct1 t ′′ ∆ ⊢ t ′′ ↓ct2 t ′ ∆ ⊢ ct ↑ct1 ct2

∆ ⊢ t ↓ct t ′

UPINV
∆ ⊢ t ↓ct′ t ′ ∆ ⊢ ct′ ↑ct base

∆ ⊢ t ↑ct t ′

DOWNINV
∆ ⊢ t ↑ct′ t ′ ∆ ⊢ ct′ ↑ct base

∆ ⊢ t ↓ct t ′

UPCONG
∆ ⊢ t1 ↑ct′ t2 ct ≡ ct′

∆ ⊢ t1 ↑ct t2

DOWNCONG
∆ ⊢ t1 ↓ct′ t2 ct ≡ ct′

∆ ⊢ t1 ↓ct t2

∆ ⊢ Γ ↓ct Γ
′

DOWNCTXEMPTY

∆ ⊢◻ ↓ct ◻

DOWNCTXCONS
∆ ⊢ Γ ↓ct Γ

′ ∆ ⊢ t ↓ct t ′

∆ ⊢ Γ, x ∶ t ↓ct Γ
′, x ∶ t ′

DOWNCTXWEAKEN
∆ ⊢ Γ ↓ct Γ

′ ⊢ t value x /∈ dom(Γ′)
∆ ⊢ Γ, x ∶ t ↓ct Γ

′

Figure 5.16: Clock polymorphism - extended type system - auxiliary judgments

[31/10/16, 16:38]

5.3. CLOCK POLYMORPHISM 193

∆ ; Γ⊢ e ∶ t

VAR
⊢ Γ value

∆ ; Γ, x ∶ t ⊢ x ∶ t
. . .

LAMBDA
∆⊢ t type ∆ ; Γ, x ∶ t ⊢ e ∶ t ′

∆ ; Γ⊢ fun x.e ∶ t ⊸ t ′

APP
Γ⊢ Γ1⊗Γ2 ∆ ; Γ1 ⊢ e ∶ t ⊸ t ′ ∆ ; Γ2 ⊢ e′ ∶ t

∆ ; Γ⊢ e e′ ∶ t ′
. . .

CONST

∆⊢ ct ≤ n

∆ ; ◻⊢ s ∶ dtof (s) ∶∶ ct
. . .

SUB

∆ ; Γ⊢ e ∶ t ∆ ⊢ t <∶k t ′

∆ ; Γ⊢ e ∶ t ′

RESCALE

∆⊢ ct ≤ n ∆ ⊢ Γ ↓ct Γ
′ ◻ ; Γ′ ⊢ e ∶ t ′ ∆ ⊢ t ′ ↑ct t

∆ ; Γ⊢ e ∶ t

CKGEN

∆,α ≤ n ; Γ⊢ e ∶ t α /∈ FTV (Γ)
∆ ; Γ⊢ e ∶ ∀(α ≤ n).t

CKINST

∆ ; Γ⊢ e ∶ ∀(α ≤ n).t ∆⊢ ct ≤ n

∆ ; Γ⊢ e ct ∶ t[α/ct]

Figure 5.17: Clock polymorphism - extended type system - main judgment

typing rule.

The type adaptability, gathering and scattering judgments are modified to use on the corre-
sponding notions on clocks. Existing rules are updated to pass the clock context along. Also,
for the gathering and scattering judgments rules UPCONG and DOWNCONG makes it possible
to reason up to equivalence on the clock type ct driving the local time scale. Furthermore, we
add the DOWNCTXWEAKEN rule which removes a binding when entering a local time scale. Its
presence makes it possible to remove bindings that cannot be scattered according to ct.

Main judgment The last part of the type system that has to be modified is the main expression
typing judgment. The judgment is modified to include a clock context ∆, leading to the
formulation ∆ ; Γ⊢ e ∶ t . The new rules are in Figure 5.17. There are three main changes. First,
the clock context is passed along in every existing rule. It is handled in an intuitionistic fashion,
as seen for example in rule APP where ∆ is duplicated. Second, rules which make clock types
appear from nowhere, such as CONST, must ensure that they are well-formed in the current
clock context. Also, the RESCALE rule types its body in the empty clock context: polymorphic
clock variables defined outside are not available inside the local time scale. Third, we add the
traditional rules for polymorphic generalization and instantiation, CKGEN and CKINST. For
generalization, the generalized variable α should not appear free in the types of the program
context Γ, as in ordinary generalization. For instantiation, the clock type ct being substituted
in the type must be well-formed in ∆. The operation t[α/ct] is the usual capture-avoiding
substitution, applied to types and clock types.

[31/10/16, 16:38]

194 CHAPTER 5. EXTENSIONS

Syntactic properties To develop the typed semantics of polymorphic clock types in a rigor-
ous manner, we need to state some formal results relating the typing and well-formedness
judgments. This is necessary since the synchronous semantics no longer interprets arbitrary
types as domains, but limit this interpretation to well-formed types, or more precisely to
well-formedness derivations. The results needed are the following.

Property 47. Given derivations d1 ∶∶∶ (∆,α ≤n ⊢ t type) and d2 ∶∶∶ (∆⊢ ct ≤n), one may build a
derivation subst(d1,d2) ∶∶∶ (∆,α ≤n ⊢ t type).

Property 48. If ∆⊢ Γ ctx and Γ⊢ Γ1⊗Γ2 hold, one may derive ∆⊢ Γ1 ctx and ∆⊢ Γ2 type.

Property 49. If ∆ ⊢ t <∶k t holds, one may derive ∆⊢ t type and ∆⊢ t ′ type.

Property 50. If∆ ⊢ t ↑ct t ′ holds, one may derive ◻⊢ t type,∆⊢ ct typen and∆⊢ t ′ type. Dually,
if∆ ⊢ t ↓ct t holds, one may derive∆⊢ t type,∆⊢ ct typen and ◻⊢ t ′ type. Similarly for contexts.

These properties are used to prove that the main typing judgment only produces well-
formed terms. More precisely, for a typing derivation ∆ ; Γ ⊢ e ∶ t , we need to express that Γ
and t are well-formed in ∆. In practice, it is inconvenient to manipulate two judgments, one
for contexts and one for type. This motivates the introduction of a compound judgment ∆⊢
Γ⊸ t wf whose only rule is given below.

∆⊢ Γ ctx ∆⊢ t type

∆⊢ Γ⊸ t wf

The main syntactic result on well-typed expressions can now be stated as follows.

Property 51. Any derivation d of the judgment ∆ ; Γ⊢ e ∶ t can be examined to build a deriva-
tion wf (d ∶∶∶ (∆ ; Γ⊢ e ∶ t)) of ∆⊢ Γ⊸ t wf.

Proof. Straightforward induction on d . The proof relies on a similar property on the separation
judgment: given derivations of∆⊢ Γ ctx andΓ⊢ Γ1⊗Γ2, one may build derivations of∆⊢ Γ1 ctx
and ∆⊢ Γ2 ctx. The case of the CKINST rule uses Property 47.

We now have all the tools needed to discuss the impact of clock polymorphism on the typed
semantics. This is the subject of the next subsection.

5.3.2 Typed Semantics

The typed semantics we have adopted for the basic language described in Chapter 3 follows
a simple scheme. In this chapter, the expressions that could be proved to inhabit type t with
free variables in Γwere naturally interpreted as continuous functions from the domain SJΓK to
the domain SJtK. The introduction of clock polymorphism complicates this matter a lot. Now
that clock types and thus types contain free variables, a type no longer denotes a domain but
rather a family of domains indexed by the interpretation of its free variables. For instance, the

[31/10/16, 16:38]

5.3. CLOCK POLYMORPHISM 195

type bool ∶∶α does not represent a domain but rather some kind of function that associates to
any clock w corresponding to α the domain CStream w(SJboolK).

The remaining problem is the interpretation of the type∀(α ≤n).t , which should somehow
turn a function from clocks to domains into a domain. It happens that this is a traditional ques-
tion arising in the semantic analysis of dependent and polymorphic type theories in domains;
indeed, our polymorphic type constructor can be seen as a dependent function from Ck to
something. The rest of this subsection explains how the general solution of this problem can
be adapted to suit our need, without delving too much on details. Its understanding is not
required for the rest of the thesis. We start with the required dose of category theory.

Category-theoretic background Given two categories C1 and C2, we write C1 ×C2 for the
product category whose objects (resp. morphisms) are pairs of objects (resp. morphisms)
from C1 and C2, and composition is performed componentwise. We write Fst, Snd for the first
and second projection functors from C1×C2 to C1 and C2, respectively.

Any partial order P can be seen as a category with at most one morphism between two
objects. More precisely, its objects are the elements of ∣P ∣ and there is one morphism be-
tween x, x′ ∈ ∣P ∣ if and only if x ≤ x′. Abusing notation, we write x ≤ x′ for the corresponding
morphism in P , seen as a category. From this point of view, a predomain (CPO) is a cate-
gory with (small) directed colimits, and a domain (pointed CPO) has an initial object. View-
ing (pre)domains as categories makes it possible to speak of functors coming from or going
to a (pre)domain. The definition of a functor, specialized to the case where both source and
target categories are partial orders, boils down to that of a monotonic function.

The category CPO has complete partial orders as objects and continuous functions as
morphisms. We know that it is cartesian-closed. The subcategory CPOEP of CPO has the same
objects but embedding-projection pairs A ⊲B as morphisms between two cpos A and B .

Given a domain D , a functor F ∶D→CPOEP associates to any element x of D a CPO F(x),
and to any x ≤ x′ an embedding-projection pair F(x ≤ x′) ∶ F(x) ⊲ F(x′). Such a functor can
be seen as a family of domains indexed by D in a natural way. Our main goal is to transform
this functor into a domain, using a construction originally due to Grothendieck and special-
ized for the semantics of dependent types by a variety of authors, including Ehrhard [1988]
and Coquand, Gunter, and Winskel [1989]. We base most of our description on the latter
account.

Given a functor F , we construct a domain ΣF as follows. Its carrier is the set of pairs (x, y)
where x ∈D and y ∈ F(x). Its ordering relation is given by (x, y) ≤ΣF (x′, y ′) whenever x ≤D x′
and F(x ≤D x′)(y) ≤F(x′) y ′. Its least element �ΣF is (�D ,�F(�D)). This domain should be
thought of as a kind of disjoint union of all the domains F(x). There is a natural continuous
function p fromΣF to D that maps (x, y) to x. We sometimes call p together withΣF a fibration,
with D its base. The inverse image p−1(x) of x ∈D is called the fiber of x. Now, the domainΠF
is the sub-domain of D⇒c ΣF restricted to functions s such that p ○ s = idD . Such functions
are called sections. A section is thus a function that maps to each element x of D an element of
the form (x, y) of ΣF in a continuous manner. Thus a section selects for each element of D an
element in its fiber.

[31/10/16, 16:38]

196 CHAPTER 5. EXTENSIONS

SJ∆K ∶ CPO
SJ◻K = {�}
SJ∆, x ≤nK = SJ∆K×Ck

(a) - Interpretation of clock contexts

SJ∆⊢ ct ≤nK ∈ SJ∆K⇒c Ck
SJ◻⊢ base ≤ 1K = λδ.(1)ω
SJ∆,α ≤n ⊢α ≤nK = πr

SJ∆,α ≤n ⊢ ct ≤n′K = SJ∆⊢ ct ≤n′K○πl

SJ∆⊢ ct on u(v) ≤n× ⌈u(v)⌉K = (λw.w on u(v)ω)○SJ∆⊢ ct ≤nK
SJ∆⊢ ct ≤nK = SJ∆⊢ ct′ ≤nK

(b) - Interpretation of clock well-formedness

Figure 5.18: Clock polymorphism - typed semantics - interpretation of clock types

Following Coquand et al. [Coquand et al., 1989, 3.4], we extend the above construction
to handle functors with additional parameters. Given two domains D1,D2 and a functor
in D1×D2 → CPOEP, we define the functor ΠD1 F in D1 → CPOEP as follows. Its action on
objects is given by

(ΠD1 F)(x1) =Π(λx2.F(x1, x2))
the λ-abstraction being understood here as simply notation. Its action on morphisms is

(ΠD1 F)(x1 ≤D1 x′1) ∈ (ΠD1 F)(x1) ⊲ (ΠD1 F)(x′1)
(ΠD1 F)(x1 ≤D1 x′1)L(s)(x2) = F(x1 ≤D1 x′1, x2 ≤D2 x2)L(s(x2))
(ΠD1 F)(x1 ≤D1 x′1)R(t)(x2) = F(x1 ≤D1 x′1, x2 ≤D2 x2)R(t(x2))

with (e, p)L = e and (e, p)R = p.
It is convenient for describing the semantics of types to define the pairing and expo-

nential constructions on functors representing families of domains indexed by a domain.
For F and G functors from the same domain to CPOEP, we define the two functors F ×G
and F ⇒c G . Their action on objects given “pointwise” by (F ×G)(x) = F(x)×G(x) and (F ⇒c

G)(x) = F(x)⇒c G(x). Their action on morphisms is given by (F ×G)(x) = F(x)×G(x)
and (F ⇒c G)(x) = F(x)⇒c G(x). The pairing and exponentiation of embedding-projection
pairs has been defined in Section 3.3.1. Finally, given any domains D1 and D2, the constant
functor ConstD2 ∶D1→CPOEP maps any element of D1 to D2 and any morphism x ≤D1 x′ to
the trivial embedding-projection pair (idD2 , idD2).

Interpreting clock types In Chapter 3 we did interpret clock types as elements of Ck, since
each clock type denoted a unique clock. Now that clock types contain free variables, we
interpret them as functions from (the interpretation of) their free variables to the domain Ck.
More precisely, we use once again the traditional solution of interpreting derivations rather

[31/10/16, 16:38]

5.3. CLOCK POLYMORPHISM 197

SJ∆⊢ t typeK ∶ SJ∆K→CPOEP

SJ∆⊢ dt ∶∶ ct typeK = CStream
SJdtK
SJ∆K (SJ∆⊢ ct ≤nK)

SJ∆⊢ t1⊗ t2 typeK = SJ∆⊢ t1 typeK×SJ∆⊢ t2 typeK
SJ∆⊢ t1⊸ t2 typeK = SJ∆⊢ t1 typeK⇒c SJ∆⊢ t2 typeK
SJ∆⊢∀(α ≤n).t typeK = ΠSJ∆KSJ∆,α ≤n ⊢ t typeK

(a) - Interpretation of well-formed types

SJ∆⊢ Γ ctxK ∶ SJ∆K→CPOEP

SJ∆⊢ ◻ ctxK = Const{�}
SJ∆⊢ Γ, x ∶ t ctxK = SJ∆⊢ Γ ctxK×SJ∆⊢ t typeK

(b) - Interpretation of well-formed program contexts

SJ∆⊢ Γ⊸ t wfK ∶ SJ∆K→CPOEP

SJ∆⊢ Γ⊸ t wfK = SJ∆⊢ Γ ctxK⇒c SJ∆⊢ t typeK

(c) - Interpretation of the well-formedness judgment

Figure 5.19: Clock polymorphism - typed semantics - interpretation of types and contexts

than raw clock types. A clock context∆ is interpreted as a big tuple of clocks, and a well-formed
clock ∆⊢ ct ≤ n is interpreted as a continuous function form SJ∆K to Ck. The corresponding
definitions are given in Figure 5.18.

Interpreting types The interpretation of types is where the new typed semantics departs
radically from the previous one. We interpret a derivation of the judgment ∆ ⊢ t type as a
functor from SJ∆K to CPOEP using the previously introduced category-theoretical arsenal.
The only remaining ingredient we need is the most specific to our case: it is the functor
needed to interpret a type dt ∶∶ ct. Given any pair of clocks w, w ′, we know how to build
the domains CStream w(D) and CStream w ′(D). Let us observe that we can move between
these two domains using the repackw ′ and repackw functions. A crucial observation is that
when w ⊑ w ′, then these two functions form an embedding-projection pair. We can thus define
the following functor.

CStreamD2
D1

(f ∈D1⇒c Ck) ∶ D1→CPOEP

(CStreamD2
D1

f)(x) = CStream f (x)(D2)
(CStreamD2

D1
f)(x ≤ x′) = (repack f (x′),repack f (x))

This is a functor from the domain D1 to the category of embedding-projection pairs. It is
parametrized by a function f mapping an element of D1 to a clock. In practice the domain D1

will be the interpretation of a clock context ∆ and the function f the interpretation of a
judgment ∆⊢ ct ≤n.

[31/10/16, 16:38]

198 CHAPTER 5. EXTENSIONS

Figure 5.19 (a) gives the interpretation of types as functors. The functor defined above is
used for the case of stream types. Pairing and exponentiation of functors handle the product
and arrow cases. Polymorphic clock types are interpreted as sections using the parametrized
domain of sections described earlier. Figure 5.19 (b) and (c) gives the simpler interpretation
of the remaining well-formedness judgments. As usual contexts correspond to products and
complete derivations ∆⊢ Γ⊸ t wf to functions.

Interpreting programs The interpretation of programs is a variation of that given in Chap-
ter 3. The main idea is to interpret derivations of ∆ ; Γ ⊢ e ∶ t as sections of SJ∆⊢ Γ⊸ t wfK.
Remember that the latter judgment can be derived from the former using Property 51. Note
that programs are still interpret as elements of a domain. This leads to the type signature below.

SJ∆ ; Γ⊢ e ∶ tK ∈ ΠSJwf (∆ ; Γ⊢ e ∶ t)K

We do not give the precise definition of this interpretation but rather explain the general
principles at work. From the semantics point of view, typing rules can be grouped into two
distinct families.

The first group consists in typing rules where the clock context ∆ does not change and
is simply passed along. This covers all the preexisting rules from Chapter 3. To give the
semantics of this group one builds the usual cartesian-closed combinators handling products
and exponentials fibrewise. This means, informally, that they live in the fiber above a fixed δ ∈
SJ∆K. Let us briefly describe some operators found in our section construction kit. All the
functors below are assumed to go from the same domain D to CPOEP.

• Pairing: given functors F1,F2,G1,G2 and sections s1 ∈ Π(F1⇒c G1), s2 ∈ Π(F2⇒c G2),
the pairing combinator (s1× s2) is a section inΠ((F1×F2)⇒c (G1×G2)). It is used for
instance in the interpretation of rule PAIR.

• Composition: given functors F,G , H and sections s1 ∈Π(G⇒c H) and s2 ∈ Π(F ⇒c G),
one may build s1 ○ s2 ∈Π(F ⇒c H). A basic building block, this combinator is used as
plumbing in the interpretation of most rules.

• Duplication: given a functor F , one may build the duplicating section DuplF belonging
toΠ((F ×F)⇒c F).1 This combinator is used to duplicate values.

The definition of all the combinators above and others in the same group is simple since the
index δ stays invariant. Thus, their action is given pointwise.

The second group is formed of the new rules CKGEN and CKINST which are related to
the clock context or polymorphic clock types. The interpretation of these rules rely on two
constructions. The first construction is a form of currying. Given two functors F ∶ D1 →
CPOEP and G ∶ D1×D2 → CPOEP, the operation turns a section s ∈ Π((F ○Fst)⇒c G) into

1This construction is often written ∆F or simply ∆ in category theory texts, but we wish to avoid confusion
with clock contexts.

[31/10/16, 16:38]

5.3. CLOCK POLYMORPHISM 199

a section Curry(s) ∈ Π(F ⇒c ΠD1G). The second construction is, dually, a form of appli-
cation. Given two functors F ∶ D1 → CPOEP and G ∶ D1×D2 → CPOEP as well as a func-
tion f ∈ D1⇒c D2, the operation turns a section s ∈Π(F ⇒c ΠD1G), into a section App(s, f)
belonging toΠ(F ⇒c ⟨idD1 ,ConstCk⟩).

This concludes the description of the typed semantics of the polymorphic clock language.
There is nothing new here since the universal clock quantifier is basically a dependent product
with its domain restricted to clocks. Interested readers looking for a complete description
of the interpretation of dependent types in domains can find relevant details in Amadio and
Curien [1998, Chapter 11]. More information on fibrations and their use in categorical logic
can be found in the book of Jacobs [1999].

Remark 29. We have glossed over a lot of important details in the overview above. In particular,
we have not explained how the substitution operation appearing in rule CKINST is to be
handled. A formal handling of this question would probably benefit to the addition of explicit
clock type substitutions in the language. An explicit substitution σ would be assigned a
type ⊢ σ ∶ ∆1 ⇒ ∆2 and be interpreted as a function SJσK ∈ SJ∆1K⇒c SJ∆2K. Following an
important idea of categorical logic, such a function induces a base change transporting data
above SJ∆1K into data above SJ∆2K. This operation can then be used to build the interpretation
of ∆2 ; Γ[σ]⊢ e ∶ t[σ] from the one of ∆1 ; Γ⊢ e ∶ t .

5.3.3 Compilation

In contrast with the typed semantics, the compilation of polymorphic clock types does not
involve large changes. The idea is that the free clock type variables of an expression, described
by a clock context, give rise to new inputs in its translation. Well-formed clock types are
compiled to machines computing the successive value of the clock. Clock instantiation and
generalization have natural implementations as machines.

Translating types In Chapter 4, a bound for any clock type could be computed by the ⌈_⌉
function. Uses of this function permeate the translation since it is used in a very basic way to
give the translation of the type dt ∶∶ ct. With polymorphic clock types, this function no longer
exists: it is replaced with the explicit presence of well-formedness judgments ∆⊢ ct ≤n. Thus,
the compilation now acts on well-formed types and contexts, which ensures that we have
access to the proper boundedness judgments.

Figure 5.20 gives the translation of clock contexts, well-formed types and well-formed
contexts. A clock context is interpreted as a tuple of bounded integers. The interpretation of
types is the same as in Chapter 4, with two exceptions. First, as explained above the bound for
stream types dt ∶∶ ct is given by the judgment expressing the well-formedness of ct in∆. Second,
polymorphic clock types have to be translated. Such a type of the form ∀(α ≤n).t is translated
into a higher-order machine processing an input in mint{n} and returning an output in (the
translation of) t . A program context Γ is as always a product. Finally, a well-typed context/type
pair ∆⊢ Γ⊸ t wf is interpreted as a higher-order machine receiving (in curryfied form) two
inputs corresponding to ∆ and Γ and returning an output in t .

[31/10/16, 16:38]

200 CHAPTER 5. EXTENSIONS

L∆M

L◻M = munit

L∆,α ≤nM = L∆M ⊠ mint{n}

(a) Translation of clock contexts

∆⊢ t type

L∆⊢ dt ∶∶ ct typeM = unit_ LdtM[n]
L∆⊢ t1⊗ t2 typeM = L∆⊢ t1 typeM ⊠ L∆⊢ t2 typeM
L∆⊢ t1⊸ t2 typeM = L∆⊢ t1 typeM ⊟ L∆⊢ t2 typeM
L∆⊢∀(α ≤n).t typeM = mint{n} ⊟ L∆,α ≤n ⊢ t1 typeM

(b) Translation of types

∆⊢ Γ type

L∆⊢ ◻ ctxM = munit

L∆⊢ Γ, x ∶ t ctxM = L∆⊢ Γ ctxM ⊠ L∆⊢ t typeM

(c) Translation of program contexts

L∆⊢ Γ⊸ t wfM = L∆M ⊠ L∆⊢ Γ ctxM ⊟ L∆⊢ t typeM

Figure 5.20: Clock polymorphism - compilation - types

Translating clock types The fact that clock contexts are handled in an intuitionistic fashion
in the type system comes from the fact that, morally, they only hold values and thus have no
inputs. This means that clock contexts can be duplicated and erased. Figure 5.21 (a) and (b)
give the corresponding machines.

The translation of a (well-formed) clock type ∆⊢ ct ≤n is a machine with inputs in ∆ and
an output in mint{n}. The translation of each rule is given in Figure 5.21 (c). Most cases are
handled using machines in ways that we have already explained. The base machine base
denotes a constant one. Weakening and variables are handled in the usual way, relying on the
intuitionistic nature of the context ∆. Clock composition is, as before, implemented by the
summation machine.

Translating auxiliary judgments Since we have changed the way we define the translation
of types, by definition the interpretation of all judgments have to be modified. For auxiliary
judgments the modifications are minimal. The only slightly significant changes happen in the
places where LctM is replaced with L∆⊢ ct ≤nM. The design of the type system, together with the

[31/10/16, 16:38]

5.3. CLOCK POLYMORPHISM 201

L∆ME ∈ ML∆M∗

L◻ME = midunit
L∆,α ≤ nME = L∆ME ∥ mforgmint{n}

(a) Clock context duplication

L∆⊢ ct ≤ nM ∈ ML∆M⊟L∆M⊠ L∆M
L◻MD = midunit×unit×unit
L∆,α ≤ nMD = ⟨L∆M,L∆M,mint{n},mint{n} ↦ 0,2,1,3⟩ho

⧈ (L∆MD ⊠ mdupmint{n}
)

(b) Clock context erasure

L∆⊢ ct ≤ nM ∈ ML∆M⊟mint{n}

L◻⊢ base ≤ 1M = midunit ∥ mconst1

L∆,α ≤ n ⊢α ≤ nM = L∆ME ∥ mhoidmint{n}

L∆,α ≤ n ⊢ ct ≤ n′M = L∆⊢ ct ≤ n′M ⧈ ml

where ml ∈ML∆,α≤nM⊟L∆M
ml = mhoneutrL∆M ⧈ (mforg

{n}
⊠ mhoidL∆M)

⧈ ⟨L∆M∗,mint{n}∗,L∆M ↦ 1,0,2⟩ho

L∆⊢ ct on p ≤ n× ⌈p⌉M = mhosumn
⌈p⌉ ⧈ m ⧈ L∆⊢ ct ≤ nM

where m ∈Mmint{n}⊟mint{⌈p⌉}[n]

m = mneutrinvmint{⌈p⌉}[n]
+

● mrepln(mpwp(0))
L∆⊢ ct ≤ nM = L∆⊢ ct′ ≤ nM

(c) Translation of clock type well-formedness

Figure 5.21: Clock polymorphism - compilation - clock types

LΓ⊢ Γ1⊗Γ2M ∈ ML∆⊢Γ ctxM⊟L∆⊢Γ1 ctxM⊠ L∆⊢Γ2 ctxM assuming ∆⊢ Γ ctx
L∆ ⊢ t <∶k t ′M ∈ ML∆M⊠ L∆⊢t typeM⊟L∆⊢t ′ typeM
L∆ ⊢ t ↑ct t ′M ∈ ML∆M⊠ L◻⊢t typeM[n]⊟L∆⊢t ′ typeM where ∆⊢ ct ≤ n

L∆ ⊢ t ↓ct t ′M ∈ ML∆M⊠ L∆⊢t typeM⊟L◻⊢t ′ typeM[n]
where ∆⊢ ct ≤ n

Figure 5.22: Clock polymorphism - compilation - auxiliary judgments

[31/10/16, 16:38]

202 CHAPTER 5. EXTENSIONS

L∆ ; Γ⊢ e ∶ tM ∈ MLwf (∆ ;Γ⊢e∶t)M
L∆ ; Γ, x ∶ t ⊢ x ∶ tM = L∆ME ∥ L⊢ Γ valueME ∥ mhoidLtM

. . .
L∆ ; Γ⊢ e e′ ∶ t ′M = mhoevLtM,Lt ′M ⧈ (L∆ ; Γ1 ⊢ e ∶ t ⊸ t ′M ⊠ L∆ ; Γ2 ⊢ e′ ∶ tM)

⧈ ⟨L∆M,L∆M,LΓ1M,LΓ2M ↦ 0,2,1,3⟩ho

⧈ (L∆MD ⊠ LΓ⊢ Γ1⊗Γ2M)
. . .

L∆ ; ◻⊢ s ∶ dtof (s) ∶∶ ctM = m2 ⧈ (L∆⊢ ct ≤ nM⊠m1)⧈ L∆MD

where m1 ∈ML∆M⊟Ldtof (s)M
m1 = L∆ME ∥ mconsts

m2 ∈Mmint{n}⊠ Ldtof (s)M⊟Ldtof (s)M[n]

m2 = (mforgLdtof (s)[n]M− ∥ mstuttn
Ldtof (s)M+)

● ⟨mint{n}+,Ldtof (s)M+,Ldtof (s)[n]M− ↦ 2,0,1⟩
. . .

L∆ ; Γ⊢ e ∶ t ′M = L∆ ⊢ t <∶k t ′M ⧈ (mhoidL∆M ⊠ L∆ ; Γ⊢ e ∶ tM)
⧈ (L∆MD ⊠ mhoidLΓM)

L∆ ; Γ⊢ e ∶ tM = L∆ ⊢ t ′ ↑ct tM ⧈ (mhoidL∆M ⊠ (m ⧈ (L∆⊢ ct ≤ nM ⊠ mhoidLΓ′M)))
⧈ (L∆MD ⊠ L∆ ⊢ Γ ↓ct Γ

′M) ⧈ (L∆MD ⊠ mhoidLΓM)
where m ∈Mmint{n}⊠ LΓ′M[n]⊟Lt ′M[n]

m = mhorepln
LΓ′M,Lt ′M(L◻ ; Γ′ ⊢ e ∶ t ′M ⧈ mhoneutrLΓ′M)

L∆ ; Γ⊢ e ∶ ∀(α ≤ n).tM = L∆,α ≤ n ; Γ⊢ e ∶ tM ⧈ ⟨L∆M,mint{n},LΓM ↦ 0,2,1⟩ho

L∆ ; Γ⊢ e ∶ t[α/ct]M = L∆ ; Γ⊢ e ∶ ∀(α ≤ n).tM ⧈ ⟨mint{n},LΓM,L∆M ↦ 1,2,0⟩ho

⧈ (L∆⊢ ct ≤ nM ⊠ mhoidL∆M⊠ LΓM) ⧈ (L∆MD ⊠ mhoidLΓM)

Figure 5.23: Clock polymorphism - compilation - expressions

syntactic properties given at the end of Section 5.3.1, ensure that such a derivation is always
available. Figure 5.22 gives the type of the new translation functions.

Translating expressions Figure 5.23 gives the translation of the judgment ∆ ; Γ ⊢ e ∶ t . The
generated higher-order machine has L∆M and L∆⊢ Γ ctxM as inputs and L∆⊢ t ctxM as output.
This is actually well-defined because of Property 51. The modifications are straightforward
as they mostly consist in routing the values of free clock variables into premises and auxiliary
judgments, duplicating or erasing them as needed. The only new rules, clock generalization
and instantiation, are respectively compiled to a form of currying and a form of application.
More precisely, the CKGEN rule is a form of currying akin to the FUN rule, but this time acting
on the program context, while CKINST is a form of application akin to APP.

[31/10/16, 16:38]

5.3. CLOCK POLYMORPHISM 203

5.3.4 Discussion

Unit delays A core operator of Lustre and Lucid Synchrone is the initialized delay opera-
tor fbys, s being the initial content of the delay. The untyped semantics of this operator simply
adds s in front of its input stream, and is thus just a stream constructor. This is reminiscent of
the registers present in synchronous circuits. Using polymorphic clock types we can express
its usual typing rule as found in Lustre or Lucid Synchrone. In these languages the clock of its
input is the same as the clock of its output.

fbyn ∶ ∀(α ≤ 1).int ∶∶α⊸ int ∶∶α
fbyn = fun x.merge 1(0) n x

The typing derivation of this program with the type above requires the application of the
subsumption rule on x. In other words, there is a buffer that transforms the clock type α of x
into α on 0(1). Thus, when endowed with their usual clock type, delay operators correspond
to one-place buffers. Note that this type is not as good as one could hope, since

fbyn ∶ ∀(α ≤ 1).int ∶∶α on 0(1)⊸ int ∶∶α

is also valid but strictly more general. The traditional typing rule of delays is particularly
problematic when one wishes to handle causality through clock types since it adds artificial
dependencies to what was originally the only buffering operator of synchronous language. We
will discuss this matter and related ones in Section 6.2.

Local time scales As explained before, clock polymorphism offers a new, distinct dimension
of reuse compared to local time scales. Local time scales are restrictive because they affect the
free variables of an expression—in other words, because they only apply to closed programs.
The CKINST rule suffers from no such restriction. Clock polymorphism makes it possible to
give a piece of code a generic clock type which can then be specialized later, in a part of the
program that is not known yet. Thus, clock polymorphism is more modular.

Remark 30. A related point is the fact that in the updated RESCALE rule the premise typing the
expression inside a local time scale require that the clock context be empty. This is because
free clock variables are conceptually inputs to the expression but cannot be scattered.

On the other hand, local time scales are sometimes less limiting than polymorphism.
We illustrate this point through the example of the program p defined below. This program
computes the classic stream 0.1.2. . . of natural numbers as the fixpoint of function f .

p ∶ ct
def= fix f (A) ct1 <∶0 ct2 on 0(1)

f ∶ ct1⊸ ct2
def= fun x.merge 1(0) 0 (1+x) (B) ct2 <∶1 ct1

The clock types appearing in the type of f must obey the constraints given above. Constraint (A)
comes from the typing rule of merge, combined with the possible use of adaptability/subtyping,
while constraint (B) comes from the typing rule of fixpoints.

[31/10/16, 16:38]

204 CHAPTER 5. EXTENSIONS

. . .
ct ≡ ct on (1) ct on 0(1) ≡ ct on 0(1)

. . .
ct ≡ ct (1) <∶1 0(1)

◻ ⊢ ct on (1) <∶1+1−1 ct on 0(1)
◻ ⊢ ct <∶1 ct on 0(1)

(a)

. . .
α ≡α on (1) α on 0(1) ≡α on 0(1)

α ≡α (1) <∶1 0(1)
α ≤ 1 ⊢α on (1) <∶1+1−1 α on 0(1)

α ≤ 1 ⊢α <∶1 α on 0(1)

(b)

. . .
◻ ⊢ ◻ ↓α ◻

. . .
◻ ; ◻⊢ p ∶ base

. . .
◻ ⊢ base ↑ct ct

. . .
◻⊢ ct ≤ nc

◻ ; ◻⊢ p ∶ ct

(c)

. . .
α ≤ nd ⊢ ◻ ↓α ◻

. . .
◻ ; ◻⊢ p ∶ base

. . .
α ≤ nd ⊢ base ↑α α α ≤ nd ⊢α ≤ nd

α ≤ nd ; ◻⊢ p ∶α
◻ ; ◻⊢ p ∶ ∀(α ≤ nd).α

(d)

Figure 5.24: Clock polymorphism - example derivations

Let us first discuss the clock type assignments for p and f that do not involve the use of
the RESCALE rule. In this case ct = ct2 and the problem boils down to the search for clock types
satisfying constraints (A) and (B).

The immediate, boring solution is to take ct = ct2 = base and ct1 = base on 0(1). In the world
of binary clocks this is by definition the “best” solution since it has the highest throughput and
no latency. More generally, fix any binary closed clock type ct = ct2 and take ct1 = ct on 0(1).
This gives a solution to the system above since we have ◻ ⊢ ct <∶1 ct on 0(1) by the derivation (a)
of Figure 5.24. The fact that ct is binary and thus bounded by 1 matters in the application of
rule ADAPTON, where this bound is highlighted in red.

To go one step further we can use polymorphic clock types to generalize the previous rea-
soning, replacing the arbitrary binary clock ct with a variable α bounded by 1. This would give
to p the polymorphic clock type ∀(α ≤ 1).α. The corresponding derivation of α <∶1 α on 0(1),
assuming α ≤ 1, is given in Figure 5.24 (b).

Unfortunately, as soon as a clock w features an integer larger than one, w <∶1 w on 0(1)ω
cannot hold. This implies that the program p cannot be assigned a clock type bounded by 2 or
more by solving the constraint system above. Yet, local time scales can be used to circumvent
this limitation. Using the RESCALE rule, one may assign any closed integer clock type ct

[31/10/16, 16:38]

5.4. DEPENDENT CLOCK TYPES 205

to p: first solve the constraint system with ct2 = base as before, and then introduce a local time
scale driven by ct. This is shown in Figure 5.24 (c).

This solution can be further enriched by combining local time scales with bounded quantifi-
cation, giving p a polymorphic type ∀(α ≤nd).α, for a fixed nd . The corresponding derivation
is shown in Figure 5.24 (d). Such a type may later be instantiated modularly. This shows that
local time scales and clock polymorphism can be combined to achieve new type assignments.

Unbounded polymorphism The latest example may look a bit unsatisfying. While in the
derivation of Figure 5.24 (b) the clock type variable α must be bounded to ensure that the
fixpoint is productive, this is not the case in derivation Figure 5.24 (d): the bound n appearing
in the later is arbitrary.

To express this problem in a more formal way, let us remark that derivations (a), (c) and (d)
are in fact meta-derivations, since they feature a meta-variables ct and n. Thus these really
represent sets of concrete derivations. The crucial property is that derivation (b) internalizes
the meta-derivation (a) in the sense that any concrete instance of (a) can be expressed inside
the type system by instantiating α with ct. In contrast, there are concrete instances of (c) that
cannot be expressed by instantiating αwith ct, namely those where nc >nd . In other words, (d)
does not internalize (c).

It is clear that our type language is too weak to be able to internalize (c) completely, as
the bound nc on ct may be an arbitrary integer, and is thus itself unbounded. The concrete
effect of this limitation is that the program p has received a type which forbids legitimate uses.
More precisely, this is a case where inlining p in its caller may turn an ill-typed program into a
well-typed one.

The solution to this problem should be clear: introduce unbounded quantification. In fact,
a simple way to do so is to see the unbounded case as a special form of the bounded one, by
allowing “infinite” integers ∞ to appear as bounds. Looking back at the type system, the only
place where boundedness really matters is rule ADAPTON in Figure 5.16, where the bound n
refines the delay k between p1 and p2 as k +1−n. Taking n =∞ gives k +1−∞ = 0, which is
indeed sound. With such “infinite” bounds, one may modify the derivation (d) to give p the
type ∀(α ≤∞).α which now internalizes all the concrete instances of (c).

This shows that unbounded polymorphism is a sound addition to the type system that
actually increases its expressiveness. The trouble is that it breaks the finite-state nature of our
compilation scheme as one no longer has a static bound on the lists appearing in the machine
implementing p, or on the number of steps p performs. The requirement for type-driven
modular code generation here conflicts with the expressiveness of the type system. We will
discuss this point in Chapter 6.

5.4 Dependent Clock Types

The last extension is the most invasive one. Up to now we have focused on languages in
which (closed) clocks types denote ultimately periodic clocks. A concrete manifestation of this
fact is that programs in µAS cannot exhibit data-dependent control: the convergence of the

[31/10/16, 16:38]

206 CHAPTER 5. EXTENSIONS

output streams of a program only depends on the convergence of its input streams, never on
their values. One may think of such programs as exhibiting a form of uniform continuity.

In this section we lift this restriction by considering arbitrary dependent clock types, as
found for instance in Lucid Synchrone, in addition to the usual ultimately periodic words. This
leads to a more complex system where expressions may appear in clock types. Informally, such
a system makes it possible to pass, compute, or return clock types from one part of a program
to another. Streams can now be computed on clocks that depend on arbitrary conditions,
including inputs. As usual, the price to pay for this expressiveness is the relatively obtuse nature
of the type system, which has very limited knowledge of clock types involving expressions. In
particular, clock type equivalence boils down to syntactic equality of expressions in general.

The rest of this section presents this system as an extension of the polymorphic one given
in the previous section. This is done in order to keep the amount of modifications as low as
possible. We avoid describing its typed semantics or compilation to state machines since it is a
variation on the ideas outlined in the previous section. Instead, we spend some time proving
syntactic properties of the type system showing that types are well-formedness and that typing
derivations respect lexical scope. We finish with a discussion of the design of the system and
features that would be required in a more practical language.

5.4.1 Syntax and Untyped Semantics

The syntax of clock types in Section 5.3 had compound clock types of the form ct on p. De-
pendent clock types generalize this to ct on e, where e is an arbitrary expression denoting a
stream of integers. As expected, this modification has a deep impact on the syntax of types and
typing judgments. It also leads to changes in the syntax of expressions. They are summed up
in Figure 5.25. The free variables and free type variables of clock types, types, and contexts are
defined in the usual manner.

Expressions A first, minimal change is the displacement of ultimately periodic words from
clock types to expressions. This makes the new clock types strictly more expressive than the
old ones. Since constant streams are a special case of periodic words, we remove them for the
grammar. Their new typing rule will be a strict generalization of the CONST one given in the
previous section. Another related modification is the removal of the fixed periodic word p from
the syntax of the stream merging and sampling operators. Using dependent types and local
time scales the typing rules for these operators can be internalized. However, to be able to
do so for stream fusion we need a binary negation operator not on streams. It is assumed to
belong to the set of operators op.

The last change to the syntax of expressions is a purely technical one. We add explicit
abstraction and application of clock type variables. These constructs explicitly mark where
generalization and instantiation of polymorphic clock types occur. Their presence in the syntax
makes sure that the free variables of an expression include the free variables of clock types it
contains. This is necessary for the type system to be sound.

[31/10/16, 16:38]

5.4. DEPENDENT CLOCK TYPES 207

e ∶∶= v Variable
∣ fun (v ∶ t).e Function (type parameter added)
∣ e e Application
∣ (e,e) Pair constructor
∣ let (v, v) = e in e Pair destructor
∣ fix e Recursive definition
∣ p Ultimately periodic stream (added)
∣ op Lifted stream operator
∣ not Negation operator (added)
∣ merge Stream merging (word parameter removed)
∣ when Stream sampling (word parameter removed)
∣ ↑ct e Explicit local time scale (added)
∣ Funα.e Explicit polymorphic abstraction (added)
∣ e ct Explicit polymorphic application (added)

ct ∶∶= base Base clock type
∣ α Clock type variable
∣ ct on e Compound clock type

t ∶∶= {n} ∶∶ ct Bounded clocked stream type
∣ t1⊗ t2 Product
∣ t1⊸ t2 Function
∣ ∀(α ≤n).t Polymorphic clock type
∣ Π(x ∶ {n} ∶∶ ct).t Dependent product
∣ Σ(x ∶ {n} ∶∶ ct).t Dependent sum

Figure 5.25: Dependent clock types - modified syntax

Types We replace dt ∶∶ ct with {n} ∶∶ ct, the type of streams of numbers belonging to [0,n]. It
is necessary to have such bounds now that expressions of stream type appear in clock types,
which are necessarily bounded. As expected, we also add dependent products (functions) and
sums (pairs) to types. They make it possible to abstract over stream expressions appearing in
types and thus offer new forms of modularity.

Untyped semantics The semantics of the new and modified constructs is unremarkable and
can be deduced from the previous chapters. Abstraction and application of polymorphic clock
types are interpreted as the identity function since they are transparent in the untyped world.

[31/10/16, 16:38]

208 CHAPTER 5. EXTENSIONS

ct1 ≡ ct2

ct ≡ ct

ct1 ≡ ct2 ct2 ≡ ct3

ct1 ≡ ct3

ct2 ≡ ct1

ct1 ≡ ct2

ct1 ≡ ct2

ct1 on e ≡ ct2 on e

ct1 ≡ ct2

ct1 on p1 on p2 ≡ ct2 on (p1 on p2)
ct1 ≡ ct2

ct1 ≡ ct2 on (1)
ct1 ≡ ct2 ⌈p⌉ ≤ 1

ct1 on (not p) ≡ ct2 on p

Figure 5.26: Dependent clock types - type system - modified clock-type equivalence judgment

Γ⊢ Γ1⊗Γ2

SEPEMPTY

◻⊢◻⊗◻

SEPCONTRACT
Γ⊢ Γ1⊗Γ2 ⊢ t value

Γ, x ∶ t ⊢ Γ1, x ∶ t ⊗Γ2, x ∶ t

SEPLEFT
Γ⊢ Γ1⊗Γ2 x /∈ dom(Γ2) FV(t) ⊆ dom(Γ1)

Γ, x ∶ t ⊢ Γ1, x ∶ t ⊗Γ2

SEPRIGHT
Γ⊢ Γ1⊗Γ2 x /∈ dom(Γ1) FV(t) ⊆ dom(Γ2)

Γ, x ∶ t ⊢ Γ1⊗Γ2, x ∶ t

Figure 5.27: Dependent clock types - type system - modified value and splitting judgments

5.4.2 Type System

The extended type system is based on the polymorphic one presented in the previous section.
This latter system was in fact designed so that the modifications necessary to handle dependent
clocks are actually minimal. One of the main difference is that nearly all judgments are
now mutually recursive; for instance, the clock-type well-formedness judgment depends
on the expression typing judgment, and vice versa. We must also pay special attention to
scoping restrictions as well as complications arising from the conjoint presence of linearity and
dependent types. In particular, we force expressions appearing in clock types to be evaluated
in intuitionistic contexts.

Clock type equivalence Figure 5.26 gives the new rules for the clock type equivalence judg-
ment. These are mostly similar to the ones given in Figure 5.13, the only change being that
words have been replaced with expressions in the congruence rule. Note that we still allow “al-
gebraic” reasoning on ultimately periodic words. Without this rule, clock type equivalence
would boil down to plain syntactic equality. The last rule is also new, and assumes that the
operator not can be simplified when it applies to a binary word.

Remark 31. As usual in dependent type systems, syntactic equality of expressions should be
tested modulo α-conversion. We do not reach this level of details here.

Intuitionistic contexts, values, splitting As explained above, to simplify the system we will
actually restrict the expressions appearing in clocks to be valid in intuitionistic contexts. What

[31/10/16, 16:38]

5.4. DEPENDENT CLOCK TYPES 209

∆ ; Γ⊢ ct ≤ n

CTBASE
⊢ Γ value

◻ ; Γ⊢ base ≤ 1

CTVAR
⊢ Γ value

∆,α ≤ n ; Γ⊢α ≤ n

CTWEAKEN
∆ ; Γ⊢ ct ≤ n′ α /∈ FTV (ct)

∆,α ≤ n ; Γ⊢ ct ≤ n′

CTON
⊢ Γ value ∆ ; Γ⊢ ct ≤ n1 ∆ ; Γ⊢ e ∶ {n2} ∶∶ ct

∆ ; Γ⊢ ct on e ≤ n1×n2

CTCONG
∆ ; Γ⊢ ct′ ≤ n ct ≡ ct′

∆ ; Γ⊢ ct1 ≤ n

∆ ; Γ⊢ t type

TYSTREAM
∆ ; Γ⊢ ct ≤ n′

∆ ; Γ⊢ {n} ∶∶ ct type

TYPROD
∆ ; Γ⊢ t1 type ∆ ; Γ⊢ t2 type

∆ ; Γ⊢ t1⊗ t2 type

TYARROW
∆ ; Γ⊢ t1 type ∆ ; Γ⊢ t2 type

∆ ; Γ⊢ t1⊸ t2 type

TYDPROD
∆ ; Γ⊢ ct ≤ n′ ∆ ; Γ, x ∶ {n} ∶∶ ct ⊢ t type

∆ ; Γ⊢Π(x ∶ {n} ∶∶ ct).t type

TYDSUM
∆ ; Γ⊢ ct ≤ n′ ∆ ; Γ, x ∶ {n} ∶∶ ct ⊢ t type

∆ ; Γ⊢Σ(x ∶ {n} ∶∶ ct).t type

∆⊢ Γ ctx

CTXEMPTY

∆⊢◻ ctx

CTXCONS
∆⊢ Γ ctx ∆ ; Γ! ⊢ t type x /∈ FV(t)

∆⊢ Γ, x ∶ t ctx

Figure 5.28: Dependent clock types - type system - modified well-formedness judgments

is an intuitionistic context? It is a context which can freely be duplicated, or in other words
that is a value. The type value judgment itself is not modified; dependent products and sums
are not values. This leads to the formal definition below.

Definition 21 (Largest intuitionistic subcontext). We say that Γ′ is an intuitionistic subcontext
of Γwhen Γ⊢ Γ⊗Γ′. The largest intuitionistic subcontext Γ! of Γ is such that any other intuition-
istic subcontext of Γ is also an intuitionistic subcontext of Γ!. This subcontext Γ! always exists
and is unique.

It is not difficult to actually compute Γ! from Γ since the value judgment is decidable: simply
remove all the bindings to types which are not values, or that are out of scope. To make our
formulas easier to read, we often write Γ1! for (Γ1)!, and so on.

The context splitting judgment has to be adapted to handle the presence of free program
variables in types. More precisely, we add a new premise to the SEPLEFT and SEPRIGHT rules
in order to check that we do not create ill-formed contexts and respect lexical scope. This is
shown in Figure 5.27.

[31/10/16, 16:38]

210 CHAPTER 5. EXTENSIONS

Well-formedness Figure 5.28 gives the extended well-formedness judgments for clock types,
types and contexts. Since clock types now incorporate expressions, the first two judgments
depend on the program context Γ.

In the clock type boundedness judgment, the program context is passed along in all rules
but CTON. The leaf rules CTBASE and CTVAR enforce that Γ is a value. Rule CTON is the only
one that changes in an interesting way. It is now a generalization of the previous version where
the expression e replaces the word p. Thus, one should be able to type e in Γ and obtain the
type that was previously expected of p.

The type well-formedness judgments evolves in a similar fashion. Existing rules transmit
the program context to their premises. A dependent productΠ(x ∶ {n} ∶∶ ct).t is well-formed
just if t is well-formed in the context enriched with x ∶ {n} ∶∶ ct, and if ct itself is well-formed.
The same is true of dependent sums.

Finally, as before a context is well-formed if all the types it contains are. The only remarkable
point is that we check the well-formedness of each type in an intuitionistic context derived
from Γ, rather than Γ itself.

Auxiliary judgments Figure 5.29 gives the modified auxiliary judgments. As before, the
changes mostly consist in transmitting to premises the previously absent context Γ. This
implicitly forces Γ to be a value context, since it must be duplicable. Note that the formula-
tion of clock type equivalence as an untyped judgment makes it possible to keep the ADAPT-
STREAM, UPSTREAM and DOWNSTREAM rules as it. In the latter two rules the clocks appearing
inside the local time scale have to be well-formed in the empty program context, as expected.

Main judgment Figure 5.30 gives the judgment for well-typed expressions. We have given all
the rules rather than just the modified ones, which are the majority anyway. The modifications
add support for dependent types; this requires the reinforcement and addition of several
premises related to scoping. We also need to pass intuitionistic parts of program contexts to
the auxiliary judgments. Lastly, we showcase the power of dependent types by giving nicer,
more uniform types to operators when and merge. Let us describe each rule.

• Rules VAR, PAIR and VAR are the same as in Figure 5.17.

• The rules LAMBDA and LETPAIR have additional scope restrictions which prevent the
variables x and y added to the context to escape through the return type of the rule.

• The rules that rely on well-formedness judgments pass them an intuitionistic part of
their program contexts. This is the case for SUB, RESCALE and CKINST for instance.

• Now that type abstraction and application operators have been added the rules CKGEN

and CKINST become syntax-directed.

• The rules for ultimately periodic words p, operators op, not, merge, and when are ex-
pressed using polymorphic and dependent types. Note that this was not possible for
stream merging and sampling before as one needed to abstract on an actual piece of

[31/10/16, 16:38]

5.4. DEPENDENT CLOCK TYPES 211

∆ ; Γ ⊢ t1 <∶k t2

ADAPTSTREAM
ct1 ≡ ct on p1 ct2 ≡ ct on p2 ∆ ; Γ⊢ ct ≤ n p1 <∶k p2

∆ ; Γ ⊢ {n} ∶∶ ct1 <∶n+1−k {n} ∶∶ ct2

ADAPTPROD
⊢ Γ value ∆ ; Γ ⊢ t1 <∶k t ′1 ∆ ⊢ Γ <∶t2 kt ′2

∆ ; Γ ⊢ t1⊗ t2 <∶k t ′1⊗ t ′2

ADAPTARROW
⊢ Γ value ∆ ; Γ ⊢ t1 <∶k t ′1 ∆ ; Γ ⊢ t2 <∶k t ′2

∆ ; Γ ⊢ t1⊸ t2 <∶n t ′1⊸ t ′2

∆ ; Γ ; Γ′ ⊢ ct1 ↑ct ct2

◻ ; Γ′ ⊢ ct1 ≤ n1 ct2 ≡ ct1[base/ct] ∆ ; Γ⊢ ct2 ≤ n2

∆ ; Γ ; Γ′ ⊢ ct1 ↑ct ct2

∆ ; Γ ; Γ′ ⊢ t1 ↑ct t2 and ∆ ; Γ ; Γ′ ⊢ t1 ↓ct t2

UPSTREAM
∆ ; Γ ; Γ′ ⊢ ct1 ↑ct ct2

∆ ; Γ ; Γ′ ⊢ {n} ∶∶ ct1 ↑ct {n} ∶∶ ct2

DOWNSTREAM
∆ ; Γ ; Γ′ ⊢ ct2 ↑ct ct1

∆ ; Γ ; Γ′ ⊢ dt ∶∶ ct1 ↓ct dt ∶∶ ct2

UPPROD
⊢ Γ value ⊢ Γ′ value ∆ ; Γ ; Γ′ ⊢ t1 ↑ct t ′1 ∆ ; Γ ; Γ′ ⊢ t2 ↑ct t ′2

∆ ; Γ ; Γ′ ⊢ t1⊗ t2 ↑ct t ′1⊗ t ′2
. . .

UPDPROD
⊢ Γ value ⊢ Γ′ value ∆ ; Γ ; Γ′ ⊢ {n} ∶∶ ct1 ↑ct {n} ∶∶ ct2 ∆ ; Γ, x ∶ {n} ∶∶ ct1 ; Γ′, x ∶ {n} ∶∶ ct2 ⊢ t1 ↑ct t2

⊢ Γ value ⊢ Γ′ value ∆ ; Γ ; Γ′ ⊢Π(x ∶ {n} ∶∶ ct1).t1 ↑ct Π(x ∶ {n} ∶∶ ct2).t2

UPDSUM
∆ ; Γ ; Γ′ ⊢ {n} ∶∶ ct1 ↑ct {n} ∶∶ ct2 ∆ ; Γ, x ∶ {n} ∶∶ ct1 ; Γ′, x ∶ {n} ∶∶ ct2 ⊢ t1 ↑ct t2

∆ ; Γ ; Γ′ ⊢Σ(x ∶ {n} ∶∶ ct1).t1 ↑ct Σ(x ∶ {n} ∶∶ ct2).t2

∆ ⊢ Γ ↓ct Γ
′

DOWNCTXEMPTY

∆ ⊢◻ ↓ct ◻

DOWNCTXCONS
∆ ⊢ Γ ↓ct Γ

′
∆ ; Γ ; Γ′ ⊢ t ↓ct t ′

∆ ⊢ Γ, x ∶ t ↓ct Γ
′, x ∶ t ′

DOWNCTXWEAKEN
∆ ⊢ Γ ↓ct Γ

′ ⊢ t value x /∈ dom(Γ′)
∆ ⊢ Γ, x ∶ t ↓ct Γ

′

Figure 5.29: Dependent clock types - type system - modified auxiliary judgments

[31/10/16, 16:38]

212 CHAPTER 5. EXTENSIONS

∆ ; Γ⊢ e ∶ t

VAR
⊢ Γ value

∆ ; Γ, x ∶ t ⊢ x ∶ t

WEAKEN
∆ ; Γ⊢ e ∶ t ′ ⊢ t value x /∈ FV(e)∪FV(t ′)

∆ ; Γ, x ∶ t ⊢ e ∶ t ′

FUN
∆ ; Γ! ⊢ t type ∆ ; Γ, x ∶ t ⊢ e ∶ t ′ x /∈ FV(t)∪FV(t ′)

∆ ; Γ⊢ fun (x ∶ t).e ∶ t ⊸ t ′

APP
Γ⊢ Γ1⊗Γ2 ∆ ; Γ1 ⊢ e ∶ t ⊸ t ′ ∆ ; Γ2 ⊢ e′ ∶ t

∆ ; Γ⊢ e e′ ∶ t ′

PAIR
Γ⊢ Γ1⊗Γ2 ∆ ; Γ1 ⊢ e1 ∶ t1 ∆ ; Γ2 ⊢ e2 ∶ t2

∆ ; Γ⊢ (e1,e2) ∶ t1⊗ t2

LETPAIR
Γ⊢ Γ1⊗Γ2 ∆ ; Γ1 ⊢ e ∶ t1⊗ t2 ∆⊢ Γ2, x ∶ t1, y ∶ t2 ctx ∆ ; Γ2, x ∶ t1, y ∶ t2 ⊢ e′ ∶ t x, y /∈ FV(t)

∆ ; Γ⊢ let (x, y) = e in e′ ∶ t

FIX
∆ ; Γ⊢ e ∶ t ⊸ t ′ ∆ ; Γ! ⊢ t ′ <∶1 t ⊢ t ′ value

∆ ; Γ⊢ fix e ∶ t ′

PWORD

◻ ; ◻⊢ p ∶ ∀(α ≤ n).{⌈p⌉} ∶∶α

NOT

◻ ; ◻⊢ not ∶ ∀(α ≤ n).{1} ∶∶α⊸ {1} ∶∶α

OP

◻ ; ◻⊢ op ∶ ∀(α ≤ n).{dtof (op)} ∶∶α⊗{dtof (op)} ∶∶α⊸ {dtof (op)} ∶∶α
MERGE

◻ ; ◻⊢ merge ∶ ∀(α ≤ n).Π(c ∶ {1} ∶∶α).{n′} ∶∶α on c⊗{n′} ∶∶α on (not c)⊸ {n′} ∶∶α

WHEN

◻ ; ◻⊢ when ∶ ∀(α ≤ n).Π(c ∶ {1} ∶∶α).{n′} ∶∶α⊸ {n′} ∶∶α on c

SUB
∆ ; Γ⊢ e ∶ t ∆ ; Γ! ⊢ t <∶k t ′

∆ ; Γ⊢ e ∶ t ′

RESCALE
∆ ; Γ! ⊢ ct ≤ n ∆ ⊢ Γ ↓ct Γ

′ ◻ ; Γ′ ⊢ e ∶ t ′ ◻ ; Γ ; Γ′ ⊢ t ′ ↑ct t

∆ ; Γ⊢ ↑ct e ∶ t

CKGEN
∆,α ≤ n ; Γ⊢ e ∶ t α /∈ FTV (Γ)
∆ ; Γ⊢ Funα.e ∶ ∀(α ≤ n).t

CKINST
∆ ; Γ⊢ e ∶ ∀(α ≤ n).t ∆ ; Γ! ⊢ ct ≤ n

∆ ; Γ⊢ e ct ∶ t[α/ct]

DFUN
∆ ; Γ! ⊢ ct ≤ n x /∈ FV(ct) ∆ ; Γ, x ∶ {n} ∶∶ ct ⊢ e ∶ t

∆ ; Γ⊢ fun (x ∶ {n} ∶∶ ct).e ∶Π(x ∶ {n} ∶∶ ct).t

DAPP
∆ ; Γ! ⊢ e′ ∶ {n} ∶∶ ct ∆ ; Γ⊢ e ∶Π(x ∶ {n} ∶∶ ct).t

∆ ; Γ⊢ e e′ ∶ t[x/e′]

DPAIR
∆ ; Γ! ⊢ e1 ∶ {n} ∶∶ ct ∆ ; Γ⊢ e2 ∶ t[x/e1]

∆ ; Γ⊢ (e1,e2) ∶Σ(x ∶ {n} ∶∶ ct).t

LETDPAIR
Γ⊢ Γ1⊗Γ2

∆ ; Γ1 ⊢ e ∶Σ(z ∶ {n} ∶∶ ct).t ∆⊢ Γ2, x ∶ {n} ∶∶ ct, y ∶ t[z/x] ctx ∆ ; Γ2, x ∶ {n} ∶∶ ct, y ∶ t[z/x]⊢ e′ ∶ t x, y /∈ FV(t)
∆ ; Γ⊢ let (x, y) = e in e′ ∶ t

Figure 5.30: Dependent clock types - type system - modified main judgment

[31/10/16, 16:38]

5.4. DEPENDENT CLOCK TYPES 213

FV (x) = {x}
FV (fun (x ∶ t).e) = (FV (e)∖{x})∪FV (t)

FV (e1 e2) = FV (e1,e2) = FV (e1)∪FV (e2)
FV (let (x, y) = e in e′) = FV (e)∪(FV (e′)∖{x, y})

FV (fix e) = FV (Funα.e) = FV (e)
FV (p) = FV (op) = FV (merge) = FV (when) = ∅

FV (↑ct e) = FV (e ct) = FV (ct)∪FV (e)

FV (base) = FV (α) = ∅
FV (ct on e) = FV (ct)∪FV (e)

FV ({n} ∶∶ ct) = FV (ct)
FV (t1⊗ t2) = FV (t1⊸ t2) = FV (t1)∪FV (t2)

FV (Π(x ∶ {n} ∶∶ ct).t) = FV (Σ(x ∶ {n} ∶∶ ct).t) = FV (ct)∪(FV (t)∖{x})

Figure 5.31: Dependent clock types - free variables in expressions, clock types, and types

program, unlike in polymorphic clocks. We will go back to this point at the end of the
section. The OP rule assumes that the function dtof (op) gives the type of the arguments
for the operator op.

• Finally, we have actual dependent products and sums. They are endowed with two rules
each, and each of these rule is an adaptation of the corresponding non-dependent rule;
their name reflects this fact, with DFUN corresponding to FUN, and so on. The rules
themselves are the usual ones found in dependent type theories, except that they express
how dependence is restricted to intuitionistic expressions. This shows in the premise
handling the argument in DAPP or the first component of the pair in DPAIR.

This concludes the description of the type system, which is the most complex part of this
extension. We do not discuss its typed semantics, which can be constructed using the same
techniques as in Section 5.3, at the price of much sweat. The compilation to machines is
also straightforward: dependent products and sums are translated to ordinary higher-order
machine types, which makes their compilation basically the same as their non-dependent
counterparts. We will rather spend some time on some meta-theoretical results to prove that
the typing rules enjoy good properties. This is not completely obvious given the amount of
details in the handling of contexts and binders.

5.4.3 Syntactic results

Our main goal in the rest of this section is to prove two modest theorems that will increase
our confidence in the fact that the type system is actually well-behaved. The first theorem
expresses that the type system only assigns well-formed types. The second theorem expresses

[31/10/16, 16:38]

214 CHAPTER 5. EXTENSIONS

that it respects lexical scope. Proving the latter result is actually difficult, since we have defined
neither the typed nor untyped semantics precisely. We content ourselves with a partial result
showing that, informally, two contexts equivalent up to lexical scope are basically equivalent
from the point of view of typing derivations. Most intermediate proofs are straightforward
inductions and thus we omit them.

Free variables We begin with some technical properties relating the free variables of clock
types, types, and expressions with typing contexts appearing in the derivations of the well-
formedness or typing judgments.

Property 52. Two equivalent clock types have the same free variables.

ct ≡ ct′ ⇒ FV (ct) = FV (ct′)

Property 53. Two adaptable types have the same free variables.

∆ ; Γ ⊢ t <∶k t ′ ⇒ FV (t) = FV (t ′)

Property 54. If t ′ is the image of the type t in a local time scale driven by ct—that is t ′ gathers
to t or t scatters to t ′—then the free variables of t are exactly those of t ′ and ct combined.

∆ ; Γ ; Γ′ ⊢ t ↑ct t ′ ⇒ FV (t ′) = FV (t)∪FV (ct)
∆ ; Γ ; Γ′ ⊢ t ↓ct t ′ ⇒ FV (t) = FV (t ′)∪FV (ct)

Property 55. The free variables of a well-formed clock type are included into the domain of its
typing context, and similarly for types.

∆ ; Γ⊢ ct ≤n ⇒ FV (ct) ⊆ dom(Γ)
∆ ; Γ⊢ t type ⇒ FV (t) ⊆ dom(Γ)

Property 56. The free variables of both a well-typed expression and its type are included in the
domain of its typing context.

∆ ; Γ⊢ e ∶ t ⇒ FV (e)∪FV (t) ⊆ dom(Γ)

Note that since the well-formedness and typing judgments are mutually inductive, Prop-
erties 55 and 56 have to be proved together by mutual induction. We have stated the results
separately only for clarity and easier reference.

Weakening The next properties deal with weakening. The first property shows that weaken-
ing is admissible in the well-formedness judgments for clock types and types.

Property 57. Let t an arbitrary value type. Then the following properties hold.

{ ∆ ; Γ⊢ ct ≤n
x /∈ FV (ct) ⇒ ∆ ; Γ, x ∶ t ⊢ ct ≤n { ∆ ; Γ⊢ t ′ type

x /∈ FV (t ′) ⇒ ∆ ; Γ, x ∶ t ⊢ t ′ type

[31/10/16, 16:38]

5.4. DEPENDENT CLOCK TYPES 215

The second property shows that from any derivation done in a context Γ, x ∶ t with x not
free in the underlying clock type, type, or expression, one can extract a derivation in Γ. This is
in some sense the converse of weakening.

Property 58. Let t be a type. Then the following properties hold.

{ ∆ ; Γ, x ∶ t ⊢ ct ≤n
x /∈ FV (ct)

⇒ ∆ ; Γ⊢ ct ≤n

{ ∆ ; Γ, x ∶ t ⊢ t ′ type
x /∈ FV (t ′)

⇒ ∆ ; Γ⊢ t ′ type

{ ∆ ; Γ, x ∶ t ⊢ e ∶ t ′
x /∈ FV (e)

⇒ ∆ ; Γ⊢ e ∶ t ′

Well-formedness We are nearly ready to state and prove the first theorem, showing that the
typing judgment builds well-formed types out of well-formed contexts. Before that we need to
show a last series of technical properties handling auxiliary judgments.

Property 59. Sub-contexts of a well-formed context are well-formed.

{ ∆⊢ Γ ctx
Γ⊢ Γ1⊗Γ2

⇒ ∆⊢ Γi ctx for all i ∈ {1,2}

Conversely, a type well-formed in a sub-context is well-formed in the original context.

{ ∆ ; Γi ⊢ t type for any i ∈ {1,2}
Γ⊢ Γ1⊗Γ2

⇒ ∆ ; Γ⊢ t type

Property 60. Adaptable types are well-formed.

{ ∆ ; Γ ⊢ t <∶k t ′
∆ ; Γ⊢ t type

⇒ ∆ ; Γ⊢ t ′ type

Property 61. Gathered and scattered types are well-formed.

{ ∆ ; Γ ; Γ′ ⊢ t ↑ct t ′
◻ ; Γ′ ⊢ t type

⇒ ∆ ; Γ⊢ t ′ type { ∆ ; Γ ; Γ′ ⊢ t ↓ct t ′
∆ ; Γ⊢ t type

⇒ ◻ ; Γ′ ⊢ t ′ type

Additionally, context Scattering preserves well-formedness.

{ ∆ ⊢ Γ ↓ct Γ′
∆⊢ Γ ctx

⇒ ◻⊢ Γ′ ctx

Property 62. Substituting well-formed types for variables preserves well-formedness.

{ ∆ ; Γ, x ∶ {n} ∶∶ ct ⊢ t ′ type
∆ ; Γ! ⊢ e ∶ {n} ∶∶ ct

⇒ ∆ ; Γ⊢ t ′[x/e] type

Property 63. Any type appearing in front of a context is well-formed in this same context.

∆⊢ Γ, x ∶ t ctx ⇒ ∆ ; (Γ, x ∶ t)! ⊢ t type

[31/10/16, 16:38]

216 CHAPTER 5. EXTENSIONS

This last technical property below is actually important. It depends crucially on the fact
that x cannot appear in t : observe for instance that in x ∶ {1} ∶∶ base, x ∶ {1} ∶∶ base on x it does
not hold. We can now prove the expected theorem.

Theorem 9. Typing derivations build well-formed types out of well-formed contexts.

∆⊢ Γ ctx
∆ ; Γ⊢ e ∶ t } ⇒ ∆ ; Γ! ⊢ t type

Proof. The proof proceeds by induction on the typing derivation. We will not delve into this
rather technical detail, but rather explain informally the most interesting cases. Other cases
can be proved using similar ideas, sometimes at the cost of new technical lemmas.

• Case VAR: this is exactly Property 63.

• Case WEAKEN: we know that ∆⊢ Γ ctx and thus ∆ ; Γ⊢ t ′ type by induction. Since t is a
value and x /∈ FV (t), we conclude ∆ ; Γ, x ∶ t ⊢ t ′ type by Property 57.

• Case FUN: The fact that t is well-formed in Γ! and x /∈ FV (t) gives ∆⊢ Γ, x ∶ t ctx. From
this and the induction hypothesis we obtain ∆ ; Γ!, x ∶ t ⊢ t ′ type. Since x /∈ FV (t ′), it
follows from Property 63 and Property 58 that t is well-formed in Γ!.

• Case APP: from the first part Property 59 we deduce ∆ ⊢ Γ1! ctx and ∆ ⊢ Γ2! ctx. Thus
by induction we obtain ∆ ; Γ1! ⊢ t1 type and ∆ ; Γ2! ⊢ t2 type. We conclude by the second
part of Property 59.

• Case SUB: combine Property 60, the induction hypothesis, and Property 59.

• Case RESCALE: combine Property 61 and the induction hypothesis.

• Case DFUN: the first premises of the rule give the arguments needed to show that Γ, x ∶
{n} ∶∶ ct is well-formed in ∆. From this we obtain ∆⊢ Γ!, x ∶ {n} ∶∶ ct type t by induction,
from which we conclude ∆⊢ Γ! typeΠ(x ∶ {n} ∶∶ ct).t using rule TYDPROD.

• Case DAPP: this is exactly Property 62.

Lexical context equivalence The second theorem is supposed to show that the type system
respects lexical scope. As usual, since we interpret typing derivations with explicit weaken-
ing and separation this is not completely immediate, in particular now that types include
expressions and thus variables. In Chapter 3 we did prove this result by showing that the
typed semantics refines the untyped semantics (Theorem 6), which respects lexical scope by
construction. However we cannot follow this route again since we have not described this
semantics for the language given in this section.

To be able to state a version of this theorem, we introduce a notion of lexical context
equivalence, or simply context equivalence. Informally, two contexts Γ1 and Γ2 are lexically
equivalent up to a finite set of variables S, written Γ1 ∼S Γ2, when they have the same rightmost

[31/10/16, 16:38]

5.4. DEPENDENT CLOCK TYPES 217

EMPTY

◻ ∼S ◻

JUNKL
Γ ∼S Γ

′ x /∈ S ⊢ t value

Γ, x ∶ t ∼S Γ
′

JUNKR
Γ ∼S Γ

′ x /∈ S ⊢ t value

Γ ∼S Γ
′, x ∶ t

EQ

Γ ∼S Γ
′ FV (t) ⊆ S

Γ, x ∶ t ∼S∪{x} Γ
′, x ∶ t

Figure 5.32: Dependent clock types - lexical context equivalence

bindings for all variables in S. The precise definition of this judgment is given in Figure 5.32.
Two empty contexts are equivalent up to any set. The JUNKL and JUNKR rules show that
variables not belonging to S can be freely added to one context or the other. The added variable
should be bound to a value type since we want lexical equivalence to preserve provability
of the well-typedness judgment. Finally, the EQ rule is the most important one: it makes it
possible to actually prove that a variable x belongs to S in a non-empty context, as its most
recent appearances in both Γ1 and Γ2 bind it to the same type t . Note that Γ1 and Γ2 must also
be equivalent modulo the free variables of t .

The lexical context equivalence relation enjoys the technical properties below. All will be
used to prove the second theorem.

Property 64. Any two contexts are equivalent up to the empty set.

Property 65. Context equivalence up to S is an equivalence relation, for any fixed S.

Property 66. Suppose Γ, x ∶ t ∼S Γ′ or Γ ∼S Γ′, x ∶ t . Then Γ ∼S∖{x} Γ′.

Property 67. Suppose Γ, x ∶ t ∼S Γ′ or Γ ∼S Γ′, x ∶ t with x /∈ S. Then Γ ∼S Γ′.

Property 68. Two contexts equivalent up to S1∪S2 are equivalent up to S1 and up to S2.

Note that the converse property is not true. For a counterexample take Γ = x ∶ t , y ∶ t ′
and Γ′ = y ∶ t ′, x ∶ t with S1 = {x} and S2 = {y}.

Lexical scope As before, we must prove a host of technical properties showing that the
auxiliary judgments of the type system play well with context equivalence.

Property 69. Any context equivalent to a value context is itself a value context.

⊢ Γ1 value
Γ1 ∼S Γ2 }⇒⊢ Γ2 value

Property 70. A derivation of the separation judgment in a certain context can be transformed
into a derivation in any context equivalent to the first one.

Γ1 ⊢ Γ1
1⊗Γ1

2
Γ1 ∼S Γ2 }⇒ ∃Γ2

1,Γ2
2.{ Γ2 ⊢ Γ2

1⊗Γ2
2

Γ1
i ∼S Γ

2
i for all i ∈ {1,2}

[31/10/16, 16:38]

218 CHAPTER 5. EXTENSIONS

Conversely, if two pairs of subcontexts are equivalent up to S1 and S2, their parent contexts are
equivalent up to S1∪S2.

Γi ⊢ Γi
1⊗Γi

2 for all i ∈ {1,2}
Γ1

i ∼Si Γ
2
i for all i ∈ {1,2} }⇒ Γ1 ∼S1∪S2 Γ

2

Property 71. The largest intuitionistic subcontexts of two contexts equivalent up to some S are
themselves also equivalent up to S.

Γ1 ∼S Γ2 ⇒ Γ1
! ∼S Γ

2
!

Property 72. A derivation of the clock-type well-formedness judgment for ct in a certain context
can be transformed into a derivation in any context equivalent to the first one up to the free
variables of ct. The bound is conserved.

∆ ; Γ1 ⊢ ct ≤n
Γ1 ∼FV(ct) Γ2 }⇒ ∆ ; Γ2 ⊢ ct ≤n

Property 73. A derivation of the type well-formedness judgment for t in a certain context can be
transformed into a derivation in any context equivalent to the first one up to the free variables
of t .

∆ ; Γ1 ⊢ t type
Γ1 ∼FV(t) Γ2 }⇒ ∆ ; Γ2 ⊢ t type

Property 74. A derivation of the adaptability judgment from t to t ′ in a certain context can be
transformed into a derivation in any context equivalent to the first one up to the free variables
of t (or t ′ since they are the same).

∆ ; Γ1 ⊢ t <∶k t ′
Γ1 ∼FV(t) Γ2 }⇒ ∆ ; Γ2 ⊢ t <∶k t ′

Property 75. A derivation of the scattering judgment from t to t ′ in certain pair of contexts can
be transformed into a derivation into any pair of contexts equivalent to the first one up to the
free variables of t for the first component and t ′ for the second. Similarly for gathering.

∆ ; Γ1 ; Γ′1 ⊢ t ↓ct t ′
Γ1 ∼FV(t) Γ2

Γ′1 ∼FV(t ′) Γ′2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⇒ ∆ ; Γ2 ; Γ′2 ⊢ t ↓ct t ′

∆ ; Γ1 ; Γ′1 ⊢ t ↑ct t ′
Γ1 ∼FV(t ′) Γ2

Γ′1 ∼FV(t) Γ′2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⇒ ∆ ; Γ2 ; Γ′2 ⊢ t ↑ct t ′

A similar property also holds for scattered contexts. For any clock type ct and finite set of
variables S, the following property holds.

∆ ⊢ Γ1 ↓ct Γ
′
1

Γ1 ∼S Γ2
} ⇒ ∃Γ′2.{ ∆ ; Γ2 ; Γ′2 ⊢ t ↓ct t ′

Γ′1 ∼S Γ
′
2

The above properties express that auxiliary judgments respect the context equivalence
relation in some sense. Thanks to them we can finally prove the second theorem of this section,
which is the analogue of these properties for the main typing judgment.

[31/10/16, 16:38]

5.4. DEPENDENT CLOCK TYPES 219

Theorem 10. Given a typing derivation for e ∶ t in a context Γ1 and a context Γ2 equivalent to Γ1

up to the free variables of e and t, one may build a typing derivation for e ∶ t in Γ2.

∆ ; Γ1 ⊢ e ∶ t
Γ1 ∼FV(e)∪FV(t) Γ2 } ⇒ ∆ ; Γ2 ⊢ e ∶ t

Proof. We proceed by induction over the derivation.

• Case VAR: we have Γ1, x ∶ t ∼{x}∪FV(t) Γ2. We proceed by induction over this equivalence.

– Case EMPTY: absurd.

– Case JUNKL: absurd since x ∈ {x}.

– Case JUNKR: we have Γ2 = Γ2′, y ∶ t ′ with x ≠ y , t ′ a value type and y /∈ FV (t), together
with Γ1, x ∶ t ∼{x}∪FV(t) Γ2′. From the latter property and the (inner) induction

hypothesis we obtain a derivation of ∆ ; Γ2′ ⊢ x ∶ t . Since y /∈ FV (x)∪FV (t) and t ′ is
a value type, we may apply rule WEAKEN to derive ∆ ; Γ2 ⊢ x ∶ t .

– Case EQ: we have Γ2 = Γ2′, x ∶ t with Γ1 ∼FV(t) Γ2′. By Property 69 we know that Γ2′

is a value context, and can thus derive ∆ ; Γ2′, x ∶ t ⊢ x ∶ t through the VAR rule.

• Case WEAKEN: we have Γ1, x ∶ t ∼FV(e)∪FV(t ′) Γ2. From the premise x /∈ FV (e)∪FV (t ′)
and Property 67 we know that Γ1 ∼FV(e)∪FV(t ′) Γ2. The induction hypothesis thus gives a
derivation of ∆ ; Γ2 ⊢ e ∶ t . This is enough to conclude.

• Case LAMBDA: we have Γ1 ∼(FV(e)∖{x})∪FV(t)∪FV(t ′) Γ2. Using the context equivalence
rule EQ we deduce Γ1, x ∶ t ∼FV(e)∪FV(t ′) Γ2, x ∶ t . The induction hypothesis thus gives a
derivation of ∆ ; Γ2, x ∶ t ⊢ e ∶ t ′. We also have a derivation of ∆ ; Γ2 ⊢ t type by Property 73.
From this we can reapply LAMBDA to derive ∆ ; Γ2 ⊢ fun (x ∶ t).e ∶ t ⊸ t ′.

• Case APP: straightforward application of Property 70 and Property 68 combined with the
induction hypothesis.

• Case PAIR: similar to APP.

• Case LETPAIR: similar to a combination of FUN and APP.

• Case FIX: we haveΓ1 ∼FV(e)∪FV(t)∪FV(t ′) Γ2. By Property 71 and Property 68,Γ1! ∼FV(t ′) Γ2!.
We derive ∆ ; Γ2! ⊢ t type by Property 73. On the other hand the induction hypothesis
gives ∆ ; Γ2 ⊢ e ∶ t . From this we can conclude using rule FIX.

• Case PWORD, NOT, OP, MERGE, WHEN: immediate.

• Case SUB: we have Γ1 ∼FV(e)∪FV(t ′) Γ2. By Property 53 we have FV (t) = FV (t ′) and
we thus apply the induction hypothesis to derive ∆ ; Γ2 ⊢ e ∶ t . By Property 74 we de-
rive ∆ ; Γ2 ⊢ t <∶k t ′. We can thus derive ∆ ; Γ2 ⊢ e ∶ t ′ using rule SUB.

[31/10/16, 16:38]

220 CHAPTER 5. EXTENSIONS

• Case RESCALE: we have Γ1 ∼FV(e)∪FV(ct)∪FV(t) Γ2. By Property 75 there exists a context Γ2′

such that ∆ ⊢ Γ2 ↓ct Γ2′ with Γ1′ ∼FV(e)∪FV(t) Γ2′. By Property 54 we know that FV (t ′) ⊆
FV (t), we have Γ1′ ∼FV(e)∪FV(t ′) Γ2′ and can thus obtain a derivation of ◻ ; Γ2′ ⊢ e ∶ t ′ by

induction. Thus by Property 75 again there exists a derivation of∆ ; Γ2 ; Γ2′ ⊢ t ′ ↑ct t , from
which we derive ∆ ; Γ2 ⊢ e ∶ t by RESCALE.

• Case CKGEN: immediate by induction.

• Case CKINST: straightforward application of Property 71 and the induction hypothesis.

• Case DFUN: similar to FUN.

• Case DAPP: similar to APP.

• Case DPAIR: similar to DFUN and PAIR.

• Case LETDPAIR: similar to DAPP and LETPAIR.

As for the first theorem, strictly speaking all the previous properties as well as the theorem
must be proved simultaneously by mutual induction. This concludes this preliminary study of
the meta-theoretic properties of dependent clock types.

Remark 32. Observe how in the proof of Theorem 10 the derivation we build only differs from
the original one by the occurrences of the weakening rule. We could make this notion formal
as another equivalence relation, this time between derivations of the main typing judgment.
Two derivations would be equivalent if their conclusion holds in equivalent contexts and they
only differ by the amount and positions of the weakening rule. Armed with such a definition
we could state and prove a result showing that any two derivations in equivalent contexts are
themselves equivalent. This only holds because the system of Figure 5.30 is syntax-directed.

5.4.4 Discussion

We finish this section with a high-level discussion of dependent clock types and their ad-
vantages as well as limitations. First we give some examples of applications and the added
expressiveness of the system compared to the previous ones in this thesis. Then we briefly
compare polymorphic and dependent clock types, showing how they are complementary
features. We finish with a comparison of our system with the one present in Lucid Synchrone.

Usage As alluded to in the beginning of this section, dependent clock types makes it possible
to express data-dependent sampling and merging conditions. In particular, dependent prod-
ucts makes it possible to write functions whose output streams have clocks depending on an
input. This makes them strictly more expressive than the systems featuring only ultimately
periodic words and polymorphic clock types. The example below shows a simple situation
exploiting this newfound expressiveness.

[31/10/16, 16:38]

5.4. DEPENDENT CLOCK TYPES 221

We start with a function that does not involve dependent clock types but is polymorphic.
This function csum given below computes the cumulative sum of its input, a stream of 8-bit
integers. To make its definition more readable we omit clock type abstractions and applications
and use constants rather than ultimately periodic words.

csum ∶ ∀(α ≤ 1).{255} ∶∶α⊸ {255} ∶∶α
sum = fun (x ∶ {255} ∶∶α).fix (fun (o ∶α on 0(1)).x+merge 1(0) 0 o)

Using sum we now define a generic sampled cumulative sum function scsum that receives a
stream of booleans and a stream of bytes, and produces a stream of bytes. It simply computes
the cumulative sum of its second argument sampled by its first argument.

scsum ∶ Π(c ∶ {1} ∶∶ base).{255} ∶∶ base⊸ {255} ∶∶ base on c

scsum = fun (c ∶ {1} ∶∶ base)(x ∶ {1} ∶∶ base).csum (when c x)

Dependent clock types can be combined with previously introduced features to old types in
new ways. For instance, imagine that we want to compute the sampled cumulative sum of a
stream with a fixed, ultimately periodic sampling pattern, with some change of scale applied.
The function oddsum computes the cumulative sum of the elements of its input of odd rank. It
introduces a local time scale to actually compute one element of output per time step, at the
price of consuming its input twice as fast.

oddsum ∶ {255} ∶∶ base on (2)⊸ {255} ∶∶ base
oddsum = ↑base on (2) (f (0 1))

Polymorphism and dependence From the type system design point of view, polymorphic
and dependent clocks are orthogonal: one may perfectly have one without the other. The
system presented in this section offers both to show that it is not difficult to combine them.

The key difference between dependent products and clock quantification is that the latter
only exists at the type level. Indeed, rule DFUN types lambda-abstractions appearing in
the “raw” source code, and thus characterizes untyped behavior. In particular, dependent
products may only be introduced when the program syntax contains a function. In contrast,
rule CKGEN is syntax-directed only for technical reasons and its untyped semantics is the
identity function. In other words, clock quantification can be introduced (and eliminated) at
any point. The fact that polymorphism only makes sense at the typed level explains why clock
type variables belong to their own namespace, disjoint from the one of program variables.

This difference between the two constructs should have an impact on the design of a prac-
tical languages based on the ideas of this thesis. While dependent types should be introduced
by (dedicated?) binders written by the programmer, we believe that polymorphic clock types
should probably be inferred by default, as in ML-like languages.

Comparison with Lucid Synchrone As alluded to in the beginning of this section, this is not
the first proposal for a synchronous language with dependent clocks. Indeed, we are indebted
to the work on Lucid Synchrone [Caspi and Pouzet, 1996]. The main difference between the

[31/10/16, 16:38]

222 CHAPTER 5. EXTENSIONS

system presented in this section and the one proposed by Caspi and Pouzet—apart from the
orthogonal fact that we handle integer clocks—is our close adherence to the usual metatheory
of dependent types à la Martin-Löf, as well as the presence of linearity. In contrast, the solution
proposed in Caspi and Pouzet [1996] and its variations implemented in the successive versions
of the Lucid Synchrone compiler is more practical. In particular, the authors adapt an idea
originally proposed by Laufer and Odersky for adding abstract data types to ML in order to
recover type inference in a robust manner. Our proposal is a calculus rather than a language: it
is regular and relatively simple, but the questions remains as to whether it is usable and
implementable in practice.

[31/10/16, 16:38]

Chapter 6

Perspectives

This last chapter concludes the thesis with a general discussion of the links between our work
and the broader world of programming languages. Section 6.1 opens the chapter with a discus-
sion of related works, focused mainly on the links with existing synchronous and functional
languages. We briefly touch upon the connection with models for the cyclic scheduling of
streaming systems such as the so-called Synchronous Dataflow Graphs. Section 6.2 describes
what we believe are the most important questions this thesis has given rise to. Some of them
are related to the practical issues a usable language based on integer clocks and higher-order
linearity would have to face. Others are more theoretical and could lead to a better under-
standing of the intrinsic nature of clocks. The practical and theoretical problems are closely
intertwined. Finally, Section 6.3 concludes this final chapter by a discussion of the lessons we
have learned during the writing of this manuscript, as well as long-term goals for this line of
research.

6.1 Related Work

6.1.1 Functional Synchronous Languages

The languages presented in this thesis all belong to the family of synchronous functional
languages originating from Lustre [Caspi et al., 1987]. They share the common characteristics
of being stream-oriented domain-specific languages compiled to finite-state machines. We
give a short account of their history before explaining the benefits of our proposal over the
state of the art.

Lustre Lustre [Caspi et al., 1987] borrows from the Lucid dataflow language of Ashcroft
and Wadge [1977] the idea of streams processing. However, the original Lucid requires a
complicated implementation strategy to deal with the fact that it manipulates infinite streams
in an unrestricted way. This makes it unfit for critical systems. Lustre restricts Lucid to
synchronous stream functions, where the elements of rank i in output streams depend at most
on the elements of rank i in input streams. This is checked by what is to our knowledge the

223

224 CHAPTER 6. PERSPECTIVES

first instance of a clock calculus, introduced in the same paper; clocks were later studied in
depth by Caspi [1992]. The compiler also enforces that all definitions are productive (absence
of deadlock) by verifying that every recursive stream definition is guarded by a constructor,
which in Lustre corresponds to the delay operator.

Lustre is the ancestor of AcidS. It is a mature language usable in practice which offers
useful and pragmatic features that our development lacks, such as a macro-like system for
static programming (including static recursion) or integration with model-checking tools. Its
static analyses are not expressed as type-like systems, and are inherently non-modular. The
compilation of Lustre is traditionally viewed as a global process that compiles a complete
program at once [Halbwachs et al., 1991]. In contrast we insist on separate compilation,
modularity, and explain code generation in a type-directed manner.

Lucid Synchrone While Lustre introduced several new ideas and techniques, its expres-
siveness is relatively low compared to mainstream functional languages. To remediate this
fact, Caspi and Pouzet [1996] introduce Lucid Synchrone, a synchronous functional language
bringing Lustre closer to the ML tradition through the addition of higher-order functions
and pattern matching. The language was then extended over the years with new high-level
constructs such as hierarchical state machines [Colaço et al., 2005] and signals [Colaço et al.,
2006]. Another specificity is the formulation of all static analyses needed for the compilation of
synchronous programs as type systems, such as the clock calculus [Colaço and Pouzet, 2003],
causality analysis [Cuoq and Pouzet, 2001], and initialization analysis [Colaço and Pouzet,
2002]. The latter checks that the unspecified elements added to streams by uninitialized delay
operators do not influence the results of computations.

In contrast with Lucid Synchrone, AcidS is purely geared towards stream processing and
lacks the constructs used for writing control-dominated code in Lucid Synchrone, such as
hierarchical automata or signals. These constructs ultimately rely on the presence of a modu-
lar reinitialization operator, which we do not know how to handle; we discuss this operator
in the next section. On the other hand, the type system of AcidS is arguably simpler than
the conjunction of the clocking, initialization, and causality type systems of Lucid Synchrone.
The simplicity of the whole thing makes it possible to give a full formal description of the
compilation process, from the untyped semantics to code generation, in a handful of pages. To
our knowledge no similar treatment for Lucid Synchrone has appeared.

Another difference lies in the handling of higher-order functions. In Lucid Synchrone
unrestricted higher-order functions are available, in contrast with even the most expressive
systems in Chapter 5. The price to pay is that Lucid Synchrone compiles to OCaml and
relies on its dynamic memory management and garbage collection facilities. In our proposal
linearity makes it possible to reconcile higher-order functions with static memory usage. A last
difference pertaining to functions is that in Lucid Synchrone one may send a function over a
signal, which in effect creates a pseudostream of functions. The streams of AcidS are restricted
to scalars or first-order data types. Note however that in Lucid Synchrone the free variables of
a function transmitted over a signal are forced to be constant.

Finally, and as expressed in Chapter 4, it is possible to understand the clock-directed

[31/10/16, 16:38]

6.1. RELATED WORK 225

compilation scheme of Biernacki et al. [2008] as the composition of a source-to-source pass,
which introduces new binary local time scales as guards, and normal software code generation.
This shows that local time scales, even when not explicitly exposed to the programmer, are
actually useful to streamline the compilation process. Expressing the generation of guards as a
source-to-source transformation might help with formal proofs of compiler correctness.

n-synchrony and Lucy-n Lucid Synchrone is a relatively large language. In its third incarna-
tion [Pouzet, 2006], it is probably the richest synchronous functional language available. Yet, it
shares with Lustre the preeminence of the delay operator, which is a one-place buffer (register)
with a programmer-specified initial value.1 This operator is trivial from the clock point of
view: its typing rule asks for its inputs and outputs to have the same clock type. Thus, in Lustre
and Lucid Synchrone, clock types enforce that no implicit buffering happen.

Of course, programmers may use the delay operator to implement more complex buffering
behaviors by hand. In practice however, since delays and complex clock types do not mix well,
streams computed according to complicated conditions are frequently filled with “junk” values
so that their clock stays simple. The programmer then has to know the exact rank of actually
valid elements and sample or buffer the resulting stream accordingly.

The work on n-synchrony [Cohen et al., 2006] arises from the observation that this program-
ming style is too low-level for some programs. In particular, multimedia processing frequently
involves periodic computations for which it is very error-prone to implement complex buffers
by hand. In n-synchronous language clock types reveal quantitative information about clocks
so that the compiler can actually decide whether it is possible to buffer a stream into another.
Lucy-n [Mandel et al., 2010] implements the n-synchronous point of view in a simplified vari-
ant of Lucid Synchrone endowed with an explicit buffering construct. Its compiler implements
sophisticated clock type inference algorithms [Cohen et al., 2008; Mandel and Plateau, 2012].
Another example of a language that fits within the n-synchronous framework is Prelude [Forget
et al., 2008], which is from the clock typing point of view an interesting special case of Lucy-n.

Lucy-n is the closest relative to the languages present in this thesis and several key concepts
of AcidS, such as clock adaptability, originate from its metatheory. We believe that the main
conceptual contributions of Lucy-n are the following. First, it introduced the idea that clock
types were not only a tool to reject programs but also made it possible to drive the code
generation process, an idea that is instrumental in the design of integer clocks and local time
scales. Second, it managed to separate the orthogonal concepts of initialization and buffering
which were tied together by the delay operator in Lustre or Lucid Synchrone. This has the
immediate benefit that the dedicated initialization analysis of Lucid Synchrone disappears,
as it is now completely subsumed by clock typing. This separation also paves the way for the
clock-based handling of causality enabled by local time scales.

From a technical point of view, as a language Lucy-n is in fact equivalent to the first-order
and binary fragment of AcidS, with the node and clock polymorphism extensions of Chapter 5,
and with an explicit Curry-style construct for buffering. It is important that while the presence
of an explicit buffering construct is probably important in practice, it makes no difference

1The initial value may be the special value nil in the case of so-called uninitialized delays.

[31/10/16, 16:38]

226 CHAPTER 6. PERSPECTIVES

for the metatheoretical point of view. An important part of the work on Lucy-n has focused
on the design of usable algorithms for clock type inference [Cohen et al., 2008; Mandel and
Plateau, 2012; Plateau, 2010]. We have completely neglected this aspect up to now, and will
discuss it at length in the next section. Also, code generation for Lucy-n, while supposedly a
straightforward variation of the traditional clock-directed scheme [Biernacki et al., 2008], had
never been actually fleshed out. Chapter 4 may now serve as a reference for this point.

6.1.2 Other Synchronous Languages

In this thesis we have only studied functional synchronous languages in the vein of Lustre. Let
us still say a word of the synchronous languages that do not belong to this tradition.

Extrinsic and intrinsic synchrony The two other original synchronous languages are Es-
terel [Berry and Gonthier, 1992] and Signal [Le Guernic et al., 1991]. Esterel, in its first incarna-
tion, is an imperative and concurrent language whose original strength is in the implementa-
tion of control-dominated code. Its most recent version, Esterel v7 [Esterel Technologies, 2005],
is much more expressive. For example, it includes as a sublanguage the control-free fragment
of Lustre.2 We discuss its compilation to circuits, which has been thoroughly studied, in the
next paragraph. Signal, while closer to Lustre than the original Esterel, is more expressive since
Signal programs describe relations rather than functions on streams. The price to pay for this
increased flexibility is that code generation becomes more difficult.

In our opinion, an important difference between Esterel and Signal on the one hand,
and recent dialects of Lustre on the other, is that the former assumes an intrinsic notion of
time, while in the latter it is an extrinsic notion.3 In both Esterel and Signal, time is explicit
in programs and dealt with directly by the programmer. For instance, in Esterel one may
write “pause” statements and react to the absence of signals, and in Signal relations may make
the values produced by a program depend on clocks. Contrast with Lucid Synchrone, Lucy-n,
or AcidS, in which it is impossible for a program to observe the clock of a stream. In these
three languages, the reaction at which a given computation occurs is entirely and uniquely
determined by clock typing, and hence is external, or extrinsic. This is especially visible in a
language such as AcidS, where distinct typing derivations for the same program may lead to
very different temporal behaviors. Interestingly, the control-free fragment of Lustre admits
both intrinsic and extrinsic interpretations.

Whether time is intrinsic or extrinsic has a deep impact on a synchronous language. From
the theoretical side, languages with extrinsic time tend to take a time-free semantics as the
reference one; this is the untyped semantics of Chapter 3 or the so-called “Kahn” semantics
of Pouzet [2006] or Mandel et al. [2010]. From the practical side, extrinsic time makes clock
inference much more feasible. In a language with clocks but intrinsic time such as Signal, as-
signing different clock types to the same program may lead to unrelated final results. Moreover,

2 We call “control-free” the fragment of Lustre without stream sampling or merging.
3 Strictly speaking, time in the original Lustre is also intrinsic because of the current operator. This construct

has been removed from recent Lustre dialects such as SCADE6 or Heptagon.

[31/10/16, 16:38]

6.1. RELATED WORK 227

being able to react instantaneously to the absence of a signal complicates the generation of
efficient distributed code [Potop-Butucaru et al., 2006]. Yet, in some situations intrinsic time is
more appropriate and natural; this is certainly the case when programming control-dominated
synchronous circuits, for instance.

To conclude, we would like to emphasize that programs written in extrinsic synchronous
languages can be thought of as parametric over the underlying time scale: the result of execu-
tion is essentially unaffected by changes in computation rates, as expressed formally by Theo-
rem 6. This is why a construct such as local time scales could be introduced. Some authors
assert that the ability to react to absence, which strongly weakens this form of parametricity, is
part of the very essence of synchrony; witness for instance the following definition, extracted
from Benveniste et al. [2000]. Emphasis is ours.

There have been several attempts to characterize the essentials of the synchronous
paradigm. With some experience, we feel that the following features are indeed
essential and sufficient for characterizing this paradigm: 1/ Programs progress via
an infinite sequence of reactions [. . .] 2/ Within a reaction, decisions can be taken
on the basis of the absence of some events [. . .] 3/ Communication is performed via
instantaneous broadcast.

If this is indeed the case, then we believe that extrinsic synchronous languages ought to be
called synchronized rather than synchronous languages.

Synchronous languages and circuits The close match between the original synchronous
languages and digital synchronous circuits makes the idea of using the former to program the
latter very natural, and this thesis takes another step in this general direction. However, we
stress that the present work only studies a relatively small part of the problem, centered around
an abstract view of circuits as stream processors. In particular, we have neglected interesting
and difficult problems that arise in a practical language for circuits, such as language design,
optimization, or verification questions. For example, AcidS currently lacks some high-level lin-
guistic constructs found in other synchronous languages, such as hierarchical state machines,
preemption, or reinitialization. We rather focus on the exploration of space/time trade-offs
at the language level, which has perhaps been less explored in synchronous languages, as
remarked by Berry [2007, Section 5].

Let us briefly mention related work addressing the design and implementation of syn-
chronous languages dedicated to circuits. On the Lustre side, researchers have mostly focused
on the generation of efficient software code, with the exception of Rocheteau [1992], as already
discussed in Chapter 4. In contrast, the use of Esterel in hardware design has been thoroughly
investigated, including specific language extensions (e.g., [Berry and Sentovich, 2001]), opti-
mization of the generated circuits (e.g., [Sentovich et al., 1996]), and formal verification. The
seventh version of the language [Esterel Technologies, 2005] combines these works and others
to offer a rich circuit design environment which is able to describe both data paths and control
logic. Berry et al. [2003] demonstrate its use for the design of a system mixing hardware and

[31/10/16, 16:38]

228 CHAPTER 6. PERSPECTIVES

software. The current reference for the compilation of Esterel is the already mentioned book
by Potop-Butucaru et al. [2007].

Local time scales in other languages Benveniste et al. [1992] propose a denotational se-
mantics based on streams and clocks for Signal programs. While their definition of clocks is
restricted to binary ones, since they are defined as strictly-increasing index functions, they
introduce a multiplexing operation that is similar to the post-composition with an integer
clock. The multiplexing of a clock by an integer signal creates a new clock which intuitively
goes “faster” than the original one. The theory is complicated by the fact that integer signals
are not clocks, and that clocks are defined on varying time bases, which the multiplexing
operator changes. Allowing arbitrary integers in clocks as in this thesis makes the theory more
uniform, as everything can be expressed using clock composition. In particular, it appears that
Theorem 2 in [Benveniste et al., 1992, Section 4.3.3] boils down to the fact that any clock can be
expressed uniquely as the composition of a strictly positive and binary one. Additionally, as far
as we know multiplexing was not conceived as an operation to be performed on programs in
addition to clocks. To the best of our knowledge, it was never actually put into practice as a
language feature, and the connections with loop generation and space-time trade-offs were
not made.

Another related line of thought is the introduction of time refinement in the imperative
synchronous language Quartz [Gemünde et al., 2013] and in the functional reactive language
ReactiveML [Mandel et al., 2013]. The latter work was a direct inspiration for local time
scales. ReactiveML [Mandel and Pouzet, 2005] is a higher-order language mixing ML-style
programming with the reactive model of Boussinot and De Simone [1996]. In broad strokes,
the reactive model of Boussinot is a variation on Esterel where instantaneous reaction to
absence is forbidden. In such a language all programs are causal by construction. This makes
it easier to add dynamic process creation and termination. Time refinement was added to
ReactiveML by Mandel et al. [2013] and provides a clock domain construct that is very much
like our local time scale. A clock domain is a piece of code that goes faster than the outside
world. In accordance with the philosophy of the language, clock domains are completely
dynamic. The amount of local steps a domain performs for a given global step is determined
by the code running inside the domain, in contrast with local time scales. No attempt is made
to statically schedule programs or to check that they can be implemented within bounded
memory. This means in particular that clock domains scales are not guaranteed to cooperate.
The proposed type system still enforces two safety properties. First, signals defined locally to a
domain cannot escape to the outside world. Second, the code running inside a domain may
not react instantaneously to signals defined in the slower global time scale. This latter issue is
not a problem in our setting.

6.1.3 Dataflow Languages

All synchronous languages involve a notion of discrete time but differ in whether they are
oriented towards stream processing. Let us now consider the other side of the spectrum, where

[31/10/16, 16:38]

6.1. RELATED WORK 229

programming is based on streams or similar lazy data structures, but where the notion of time
plays no important role, the so-called dataflow languages.

StreamIt We have already evoked Lucid [Ashcroft and Wadge, 1977], one of the original
dataflow languages, and its influence on Lustre and its descendants—including AcidS. A more
recent dataflow language is StreamIt [Thies et al., 2002]. While its authors conceived Lucid as a
general purpose programming language and were intent on replacing conventional imperative
programming [Wadge and Ashcroft, 1985], StreamIt is fully devoted to the programming of
high-performance streaming applications such as multimedia processing. The idea is that a
domain-specific language makes programming easier but still exposes more information to the
compiler than traditionally available. This information should enable optimizations that are in
practice out of reach of compilers for low-level languages such as C, such as whole-program
automatic parallelization.

StreamIt is a two-level language. The top-level part of StreamIt is a declarative description
of the structure of a program, which is an assemblage of processes called actors. Technically,
StreamIt program gives rise to a Synchronous Dataflow Graph (SDF) of Lee and Messerschmitt
[1987], or more precisely to a Cyclo-Static Dataflow Graph (CSDF) of Bilsen et al. [1996]. We
will discuss these models in a moment, for now let us only say that (C)SDF graphs are special
cases of Kahn process networks where communication information is statically known. The
low-level part of StreamIt describes the internals of each actor. An actor is defined by a piece of
first-order imperative code for its transition function together with the description of its private,
internal state. The imperative code may feature loops and arrays. The transition function
is annotated with periodic production and consumption information for all its inputs and
outputs. Such a program is analyzed by the StreamIt compiler, scheduled, and translated into
sequential or parallel code.

StreamIt and AcidS both describe computation rhythms of as periodic words, and use
this information to generate code. The StreamIt authors have focused on the optimization
and scheduling problems posed by its compilation [Thies, 2009; Gordon, 2010], which are
invisible to the programmer. In contrast, we have focused on the orthogonal matter of devising
a precise language for schedules in the guise of integer clocks and local time scales. This
language should serve as an interface between the programmer and the compiler, which is
necessary in a modular compilation setting. Another difference is that our language is safe: well-
typed programs cannot encounter runtime errors. The StreamIt compiler does not attempt to
check that the imperative code of an actor respects its declared production and consumption
rates. Finally, one could say that StreamIt is in a sense lower-level: many benchmarks in the
StreamIt distribution have actors with non-trivial transition functions that, in a sense, have
been scheduled manually by the programmer. As a consequence, idiomatic StreamIt programs
tend to directly expose less dependencies to the compiler than AcidS programs.

Remark 33. The work of Thies et al. on the phased scheduling of StreamIt programs [Thies
et al., 2002] looks for schedules in which some activations have been regrouped in order to
improve code size while minimizing buffering requirements. The resulting schedules bear a
certain resemblance to ultimately periodic integer clocks and generate nested loops.

[31/10/16, 16:38]

230 CHAPTER 6. PERSPECTIVES

Model Authors Communication patterns
Synchronous Dataflow (SDF) Lee and Messerschmitt [1987] Constant words
Cyclo-Static Dataflow (CSDF) Bilsen et al. [1996] Strictly periodic words
Thresholded Cyclo-Static Dataflow (TCSDF) Bodin [2013] Ultimately periodic words
Scenario-Aware Dataflow (SADF) Theelen et al. [2006] Markov chains

Table 6.1: Some scheduled dataflow models

Polyhedral languages Like StreamIt, those languages focus on the generation of efficient
code from high-level descriptions of dataflow-like programs. While languages such as Al-
pha [Le Verge et al., 1991], ArrayOL [Demeure et al., 1995] and CRP [Feautrier, 2006] do not
manipulate streams, their compilation focuses on the problem of turning a program computing
lazily over an unbounded (or very large) piece of data into a sequential or parallel piece of code
that can be efficiently implemented on a finite computer or circuit. These languages are based
on the polyhedral model [Feautrier, 1992a,b] which provides an expressive multidimensional
setting for scheduling and code generation [Bastoul, 2004]. Like StreamIt, these languages
focus on the search for good schedules rather than on the study of such schedules as objects
exposed to the programmer and integrated into the language. Most of them also reject separate
compilation, with the notable exception of CRP.

Other languages Other dataflow languages include the Ptolemy framework, developed by
Lee and his students in Berkeley [Eker et al., 2003], and the Orcc [Yviquel et al., 2013] imple-
mentation of CAL [Eker and Janneck, 2003]. They are more expressive than both AcidS and
the aforementioned scheduled dataflow languages. For instance, RVC-CAL is able to express
non-determinism. The price to pay is that, in general, programs written in these languages
have to be interpreted, making them unfit for critical systems or circuits. Static scheduling is
viewed as a best-effort optimization that is not exposed to the programmer, in contrast with
the clock types of synchronous languages.

6.1.4 Models for Streaming Systems

Schedulable dataflow StreamIt is partly founded on (C)SDF graphs. Such graphs belong
to a family of formalisms used for the analysis of streaming systems. This area is generally
considered to spark from the Synchronous Dataflow Graphs of Lee and Messerschmitt [1987],
but its roots go back at least to the Computation Graphs of Karp and Miller [1966] and to the
Even Graphs of Commoner et al. [1971], the latter being a subclass of Petri Nets. We will call
such models schedulable dataflow for the lack of a standard name.

All these works represent a static Kahn network as a finite graph where nodes correspond
to processes and edges to channels. The graph is supplemented with quantitative information
including at least the initial occupancy of each channel and, for each actor, the amount of data
consumed and produced by its firing. The exact format of this information depends on the
formalism used; we recall some of them in Table 6.1, in order of increasing expressiveness.

[31/10/16, 16:38]

6.1. RELATED WORK 231

a b

c

6

95

2 3

3

44

2

(a) - An example SDF graph

⎧⎪⎪⎪⎨⎪⎪⎪⎩

wa on (2)ω <∶1 wb on (3)ω on 06(1)ω
wb on (3)ω <∶1 wc on (4)ω on 09(1)ω
wc on (4)ω <∶1 wa on (2)ω on 05(1)ω

(b) - Inequations obeyed by its schedules

wa = (1)ω, wb = 12(12 0)ω, wc = 13(12 02)ω

(c) - A valid solution; describes a schedule

Figure 6.1: Encoding SDF graphs as inequations on clocks

The literature has mostly focused on performance and scheduling analyses enabled by the
availability of such static information.

An essential difference between schedulable dataflow models and the synchronous pro-
gramming world is a difference of objectives. From the point of view of schedulable dataflow,
the interest of clock types is the close integration of scheduling inside the programming lan-
guage. This integration provided by the type-based approach has several benefits. First, it
exposes schedules to the programmer via a precise language. Second, clock types are modular
in the sense that they express the precise interface between a subprogram and its calling
context. Third, one may use them to explain the generation of statically-scheduled code in a
precise manner, as in Chapter 4. Furthermore, separate compilation is built-in, alleviating the
need for ad hoc extensions such as in Tripakis et al. [2013].

The problem of scheduling a (C)SDF graph is equivalent to solving a system of inequations
over ultimately periodic integer words. Figure 6.1 gives an example of this correspondence for
SDF graphs. The left side of the figure describes the graph. Round nodes correspond to actors
and square nodes to initialized buffers. The number in a square node gives the amount of
initialization data and the numbers on edges model data consumed and produced by one firing
of the corresponding actor. The right upper side of the figure gives the system of inequations
on clocks. Each actor x gives rise to an unknown clock wx which models its schedule. Each
channel where a producer x writes p values, a consumer y reads c values and initialized with n
initial values gives rise to an inequation wx on (p)ω <∶1 wy on (c)ω on 0n(1)ω. The use of 1-
adaptability is consistent with the usual semantics of schedulable dataflow graphs, where no
instantaneous communication may occur. The lower right side gives a possible solution to the
system. The fact that such a solution exists guarantees that the underlying SDF is deadlock-free,
since all its words have non-zero rates. This encoding readily adapts to CSDF or Thresholded
CSDF graphs.

This thesis proposes new operations that were, to our knowledge, never considered in
schedulable dataflow models. Traditional scheduling techniques search for solutions within
the set of binary words, where a process is only fired once per global time step. In fact, authors

[31/10/16, 16:38]

232 CHAPTER 6. PERSPECTIVES

with a background in Petri nets (e.g., Benabid-Najjar et al. [2012]) typically add additional non-
reentrance constraints that forbid multiple firings of the same actor per time step, and thus
reject integer clocks from the start. This comes from the fact that, in the SDF setting, it is
generally assumed that actors fired at the same time step execute in a completely independent
fashion. From this point of view, simultaneous firings of the same actor correspond to parallel
execution, which is problematic if the actor is stateful. Concerning local time scales, rescaling
by a constant strictly positive clock corresponds to unfolding, which has been used by several
authors [Parhi and Messerschmitt, 1991; Chao and Sha, 1997]. More general cases have not
been studied, as far as we know. This might come from the fact that they become needed
when one wants to compose separate programs, which has traditionally not been a focus in
the schedulable dataflow community.

An important criticism of our work is that its algorithmic side is nearly non-existent com-
pared to the wealth of proposals available for schedulable dataflow graphs and related for-
malisms. Powerful optimization and analysis techniques for (C)SDF graphs abound, including
for instance scheduling techniques that balance throughput and buffer sizes [Bodin et al., 2013].
Such a technique would correspond to a clock type inference algorithm in our setting; we
will discuss this question in Section 6.2. We believe that most of the literature on schedulable
dataflow could be reused and studied from the clock typing point of view, and therefore that
the two approaches are complementary rather than in competition.

Modeling languages Beyond schedulable dataflow lies the question of documenting, model-
ing, and analyzing arbitrary systems that involve timing and causality issues. This problem
is very general, and thus a large number of approaches have been proposed. Let us only
mention the Clock Constraint Specification Language (CCSL) of André and Mallet [Mallet, 2008;
André, 2009]. CCSL provides a rich language of operators and relations to describe timing and
causality constraints which are partly inspired from the original work on n-synchrony [Cohen
et al., 2006], including ultimately periodic binary clocks. It has recently been used to analyze
and schedule stream-processing systems [Mallet et al., 2010; Yin et al., 2013]. Like schedulable
dataflow models, such works are generally more concerned with modeling and analysis than
with programming and code generation.

6.1.5 Functional Programming

Most of the languages we have discussed up to this point are first-order, with the exception
of Lucid Synchrone and ReactiveML. We now turn to work proposed by the programming
language community at large, and in particular to functional programming languages. Since
the literature is huge, we focus on the work related to the design and implementation of reactive
systems and digital circuits.

Functional Reactive Programming The ability to program with streams and other infinite
data structures is intrinsic to higher-order lazy functional languages, which should therefore
be relevant programming reactive systems. Indeed, in an influential paper Elliott and Hudak

[31/10/16, 16:38]

6.1. RELATED WORK 233

[1997] propose Fran, a Haskell library dedicated to Functional Reactive Programming (FRP).
The lazy nature of Haskell makes describing time-varying behaviors simple, and they are easily
composed through dedicated combinators. As a library, Fran integrates well with the rest of
the language. Unfortunately, the expressiveness of Haskell is both a blessing and a curse: a
well-known problem of traditional FRP is that it makes it too easy to leak memory by retaining
history from the past indefinitely. Various solutions to this problem have been proposed, some
abandoning the first-class nature of time-varying values [Wan et al., 2002; Nilsson et al., 2002],
while more recent ones use dedicated type systems inspired from modal logic to keep the
amount of retained history in check [Jeffrey, 2012; Jeltsch, 2012; Krishnaswami, 2013].

A difference between traditional FRP and synchronous languages is that the latter seek to
enforce that programs have finite state, and if it is the case to generate such an implemen-
tation. This motivates the use of type systems which by their very nature reject some good
programs, favoring safety over expressiveness. With the more recent FRP systems that rely
on dedicated type systems, this distinction is less clear cut. In particular, some aspects of the
type system proposed by Krishnaswami [2013], such as its fixpoint rule inherited from modal
logic, looks similar to ours. The proposed implementation technique is also very reminiscent
of synchronous programming. Yet, the idea that a program may receive distinct types that
drive the code generation process is absent from this line of work, which also does not accept
stream functions whose untyped semantics is not length-preserving. On the other hand, the
language of Krishnaswami handles general user-declared time-varying data types, including
but not limited to streams.

Functional programming for circuits Predating FRP by more than a decade, another line of
work concerns the use of functional programming languages to describe and reason about
digital circuits. Gammie [2013] surveys this area.

An important class of languages dedicated to circuits are domain-specific ones embedded
into a functional host language as libraries. The idea is that functional programs using such
libraries are actually circuit generators which, when run, produce a complete netlist. This
netlist can then be passed to the usual synthesis flow. The Lava language [Bjesse et al., 1998],
already mentioned in Chapter 3, is the poster-child for this approach. Programming circuit
generators in a high-level language is convenient, making it easy, for example, to program a
whole family of circuits parametrized over its number of inputs as a single Haskell function.
Similarly, recursive circuits are simply recursive Haskell functions. All these features are not
available in the languages proposed in this thesis. Another difference is that Lava is able to
describe layout constraints, which are integral to a design targeting traditional VLSI, but do not
accept the complicated stream functions accepted in our system. Thus, we would argue that
Lava sits at a a lower-level of abstraction than AcidS where the programmer directly programs
a circuit. Sheeran [2005] recounts the history of languages in the style of Lava, including
predecessors and successors.

The Ruby language of Jones and Sheeran [1991] is a higher-order relational language
tailored to the description of regular circuits. As for Signal, Ruby programs denote relations
rather than functions, which makes the language very expressive, but non-executable in

[31/10/16, 16:38]

234 CHAPTER 6. PERSPECTIVES

general. Ruby is particularly apt at refinement, transforming abstract, naive programs into more
concrete ones until an executable and efficient form is reached. Sheeran [1988] investigates
the use for refinement for implementing the classic circuit transformations known as retiming
and slowdown. Slowdown consists in adding a number of registers everywhere to a circuit,
which in effect makes it compute on several distinct interleaved streams. Thus, conceptually,
this transformation turns a single circuit into several slower ones. Slowdown is different
from rescaling and buffering; its integration in our setting should be possible, and exhibit
interactions between clocks and linearity.

Lava and its descendants, as well as Ruby, describe circuits where timing behavior is
fixed by the designer, while in AcidS this is decided by clock types. This makes our work
closer to the so-called High-Level Synthesis work, which seeks to compile timing-independent
descriptions to digital hardware. While most of the works in this area apply to imperative
languages such as C or C++, some authors have considered functional languages closer to our
work. A first example is the Statically Allocated Functional Language (SAFL) of Mycroft and
Sharp [2000]. SAFL is a first-order call-by-value language in which recursion may only occur
in tail position. There is no restriction on linearity but the compiler has to count its number
of calls in the whole program, breaking separate compilation. Mycroft and Sharp investigate
program transformations resulting in space-time trade-offs similar to the ones that can be
achieved using local time scales and integer clocks. The fact that our transformations are
characterized through a type system has the advantage of reducing the correctness of each
transformation to the soundness of the type system. Another example which was a direct
inspiration for our handling of higher-order functions is the Geometry of Synthesis of Ghica
and his collaborators [Ghica, 2007; Ghica and Smith, 2010, 2011; Ghica et al., 2011]. We have
already discussed it in detail at the end of Chapter 4.

Productivity in Type Theory The type systems proposed in this thesis rule out programs that
do not define infinite streams. The same need arises in type theories with coinductive objects,
where partial definitions need to be rejected to preserve logical consistency. Following Nakano
[2000], various authors (e.g., [Appel et al., 2007; Krishnaswami and Benton, 2011; Birkedal et al.,
2012; Atkey and McBride, 2013; Bizjak et al., 2016]) have built type-based productivity checkers
into programming languages or proof assistants. The basic idea dates back to the Gödel-Löb
logic of provability. Predicates are enriched with a “later” modality ⊳ such that the formula ⊳ P
denotes the truth of P at the next time step. Productive recursive definitions are then allowed
by the presence of an axiom fix ∶ (⊳ P ⇒ P)⇒ P , which is very similar to our FIX rule. This
axiom is sometimes called the Löb or Gödel-Löb rule. We call modal type theories the type
theories that are based on a “later”-like modality and the Löb rule.

In contrast with the clock type systems exposed in this thesis, modal type theories aim at
generality and relative simplicity. For instance, they allow arbitrary coinductive types, such as
infinite trees. In contrast, clock type systems only handle stream transformers. On the other
hand, clock type systems describe fine-grained aspects of operational behavior that are not
captured by current modal type theories. This is what enables the use of clock for generating
finite-state code. Also, modal type theories have a more Church-style outlook than us: types

[31/10/16, 16:38]

6.1. RELATED WORK 235

come first, and typing is generally not regarded as a refinement process that brings additional
information about untyped programs.

6.1.6 Circuit Design

Latency-Insensitive Design In general, inserting a register in a synchronous digital circuit
completely changes its final result. This makes it difficult to tweak the number and position
of registers in a circuit to improve its performance, or to compose two circuits that have
been designed separately. Carloni et al. [2001] proposed to work around this limitation by
making circuits tolerate the insertion of arbitrary delays on datapaths. Such circuits are
called Latency-Insensitive Designs (LIDs). Under mild hypotheses, a digital synchronous
circuit can be enclosed within control logic that makes it latency-insensitive. LIDs can be
composed using dynamic (e.g., Carloni et al. [2001]; Cortadella et al. [2006]; Cao et al. [2015])
or static (e.g., Boucaron et al. [2007]; Carmona et al. [2011]) scheduling. Compared to ordinary
circuits, latency-insensitive ones can be optimized and analyzed in novel ways [Bufistov et al.,
2008; Oms et al., 2010].

The goals and methods of this line of work are very close to n-synchrony. Indeed, we like
to think that Latency-Insensitive Design is the study of efficient implementation and analysis
techniques for Kahn Process Networks implemented in hardware. In fact, Lucy-n has been
used to model statically-scheduled latency-insensitive designs [Mandel et al., 2011], and de
Simone and his students have used ultimately periodic clocks [Boucaron et al., 2007; Millo and
De Simone, 2012] to study LIDs. Like Lucy-n, well-typed µAS programs give rise to statically-
scheduled circuits that are latency-insensitive by construction. Moreover, one can see this
thesis as extending the idea of modular circuit design to circuits that are not only insensitive to
variations in time but also to variations in space. From a more technical point of view, LIDs
also ask the question of mixing dynamic and static scheduling. We will discuss this point in
more details in Section 6.2.

High-Level Synthesis Let us finish with a quick word of traditional High-Level Synthesis.
Coussy et al. [2009] provide an introduction. The generation of an efficient digital circuit from
a piece of C code, for instance, is a difficult problem which requires powerful static analyses,
language restrictions, and aggressive optimizers. High-Level Synthesizers typically work as
black boxes whose inner working is difficult to understand by the programmer. The remarks
we made for schedulable dataflow models apply: clock types and integer clocks offer a precise
and clean language shared between the programmer and the compiler. They also express what
it means for a schedule to be valid for a given program, and the corresponding code generation
scheme, from the heuristics searching for such a schedule. A variant of AcidS might serve as a
good intermediate language in a High-Level Synthesis tool flow, but this idea remains to be
investigated.

[31/10/16, 16:38]

236 CHAPTER 6. PERSPECTIVES

6.2 Future Work

In this section we discuss future research directions, improvements, and issues we have not
tackled yet. Some of these questions are practical and need to be addressed before a realistic
implementation of AcidS is possible, while others are more theoretical in nature; some are
halfway between theory and practice. We begin with the more practical side before moving on
to theoretical matters.

6.2.1 Practical Aspects

The languages presented in Chapter 3 and the extensions in Chapter 5 are in a sense ready to
be implemented. One can simply propose a Church-style syntax for the language akin to the
one in Section 5.4, with explicit type abstractions and applications, local time scales, as well as
Lucy-n-style buffers for introducing adaptability constraints. This makes type-checking simple.
One may then compile the resulting fully typed digital circuits using the code generation
scheme of Chapter 4.

Unfortunately, this approach does not result in a usable programming language. First,
the amount of code needed to type a program is potentially very large and difficult to find.
This mandates some amount of type inference. Second, the expressiveness of the language is
questionable. Third, in practice one may sometimes want to generate software code rather
than circuits, an issue we have not discussed yet. We now discuss each of these questions in
turn, including complete or partial solutions to some of them.

Type Inference

Up to now we have not discussed at all the issue of type inference. In the setting of Chapter 3, a
type inference procedure can be understood formally as a computable partial function taking a
program e and a context Γ and returning a type t and a derivation of Γ⊢ e ∶ t . This may involve
finding the clock types of polymorphic operators such as constants, introducing adaptability
constraints through the SUB rule, and inferring local time scales together with their driving
clock types. While we do not have a complete solution to this problem, the design space is
partly understood.

In the case of ultimately periodic binary clocks and in the absence of local time scales, type
inference has been thoroughly investigated by Plateau and collaborators [Cohen et al., 2008;
Mandel and Plateau, 2012; Plateau, 2010]. Since the type system reasons up to equivalence of
clock types, type inference involves algebraic manipulations of ultimately periodic words. A
raw source program gives rise to a set of adaptability and equality constraints on types, which
is then reduced to a set of equations and inequations over ultimately periodic words. The
real difficulty lies in the resolution of such a system; various trade-offs between precision and
efficiency have been explored. Any solution to the constraints on ultimately periodic word
immediately gives rise to a solution at the level of types. It is then simple to elaborate the
program into an explicitly typed form.

[31/10/16, 16:38]

6.2. FUTURE WORK 237

S ∶∶= ∃B∗.C∗ Constraint system
B ∶∶= c ≤ n Unknown (with n ∈N∪{∞})
C ∶∶= s <∶n s Adaptability constraint

∣ s = s Equality constraint
s ∶∶= c on p Unknown composed with a constant

∣ p Constant word

(a) Syntax of constraints over ultimately periodic words

∃(cx ≤∞,cy ≤∞).{ cx on (1 0) = cx on (0 1)
cx on (0 1 0) <∶1 cy on (1 0 0) { cx = (2)

cy = 0(1 0 5)

(b) An example of system and one of its possible solutions

Figure 6.2: Systems of ultimately periodic words

This approach can be extended to infer type instantiations and subtyping (adaptability) in
the polymorphic system of Section 5.3. As before a source program gives rise to a canonical
set of constraints on words, which may now contain arbitrary natural numbers. The precise
syntax of a system of constraints S is given in Figure 6.2 (a). A system is formed of a finite
list of constraints C . A constraint is either a k-adaptability constraint, coming from implicit
applications of the subtyping rule or fixpoints, or an equality constraint. Constraints involve
either an unknown c composed with a constant word p on the right, or simply a constant p.
As usual, constraints without unknowns can simply be removed once their validity has been
verified. A simple example of constraint system is given in Figure 6.2 (b), together with one
possible solution.

We have experimented with techniques for solving such systems, including a preliminary
implementation. Our initial approach is to extend to the general integer case the concrete
resolution algorithm of Mandel and Plateau [2012]. Briefly, this algorithm reduces the system of
constraints to an Integer Linear Programming (ILP) problem whose variables are the positions
of 1 in unknowns words. The inequalities in the integer linear program encode the adaptability,
equality and boundedness constraints from the word system, but also enforce that the integer
variables actually describe well-formed words. The generation of inequalities has to be slightly
modified to allow general integer words; for instance, the original technique enforces that the
positions of successive ones are strictly increasing. This is no longer necessary with integer
clocks, where several ones may be placed at the same position, indicating that an integer larger
than one occurs there. One may encode various optimization goals as the objective function of
the resulting linear program, as expressed in Mandel and Plateau [2012, Section 5.3].

While this algorithm is practical for small programs, it leads to linear programs exponen-
tial in the size of the original system. Since Integer Linear Programming is NP-hard, this is
prohibitively expensive for larger programs. The abstract resolution algorithm of Cohen et al.
[2008] is much more efficient. It replaces each word with its envelope, which is a pair of lines
bounding the cumulative sum of the clock from below and above. This leads to an abstracted

[31/10/16, 16:38]

238 CHAPTER 6. PERSPECTIVES

system of constraints whose unknowns and constants are both envelopes, and can be solved
by a linear program of proportional size. A solution to the abstract system consists in an enve-
lope per unknown, and any word which belongs to this envelope is a solution of the original
concrete system. This approach should readily adapt with integer clocks too, as remarked
by Plateau [2010, Section 11.1.1] in the conclusion of her PhD thesis, but we have not developed
nor implemented her insights yet.

Another approach to the resolution of ultimately periodic word would consist in adopting
techniques from the schedulable dataflow community. As a first step in this direction, we are
currently studying the scheduling techniques proposed by Bodin et al. [2013] for cyclo-static
dataflow graphs in an n-synchronous perspective. It seems that most of the development
therein carries over to our setting, including their key notion of precedence constraints over
activations. Many details remain to be ironed out however.

Finally, let us go back to the level of types and typing derivations. The reduction of a
typing problem to a system of constraints following the syntax of Figure 6.2 (a) only handles
subtyping and clock instantiations, which are not the only typing constructs that need to be
handled. First, we need to decide when to introduce polymorphic clock quantification. A
simple solution would be to adopt ML-style polymorphism, where types are restricted to rank
one polymorphism and generalized only at let bindings. The inference of local time scales
is a more complex question. It may be more reasonable not to infer them, at least in a first
implementation. Finally, we expect the inference of bounded exponentials of Section 5.1
to be straightforward. Since the language does not contain recursive functions or usage
polymorphism, we may simply count the number of occurrences of each identifier. Node
declarations should pose no particular problem since they are not first-class objects and their
typing is syntax-directed: type inference should reduce to type checking.

Expressiveness

In this thesis we have focused more on the formal study of our proposed extensions, showing
in particular how they make clock typing more uniform and modular, rather than on pro-
gramming concrete applications and programs. As such, it is probable that AcidS is not a very
convenient programming language without further extensions, even taking into account the
developments in Chapter 5. Even if the precise design of such extensions should go hand-in-
hand with the development of realistic programs, we now discuss some broad ideas related to
both types and terms.

A first remark is that the type system presented in Section 5.4 is relatively inflexible. While
more expressive than both Lustre and the ultimately periodic part of Lucy-n taken separately,
this system is basically unable to say anything about clock types containing expressions that
are not words. The authors of Lucy-n have proposed to expose the envelopes of the previous
subsection to the programmer, in addition to their role as technical devices in abstract resolu-
tion. This leads to a clock type language that is able to express non-strictly periodic rhythms
yet restrictive enough for the compiler to do algebraic reasoning. We wish to extend this idea
first by clarifying some semantics issues that appear when one adds envelopes in clock types,
then by designing other quantitative abstractions as well as a way to combine them together.

[31/10/16, 16:38]

6.2. FUTURE WORK 239

Another important issue is the design of an actual set of useful constructions and operators
on streams. We have deliberately left the set of operators op unspecified in earlier chapters,
since they are orthogonal to the type soundness and compilation issues under study. In practice,
a realistic language targeting circuits should have a rich library of arithmetic operators and
types handling several integer widths. It is possible that to be really convenient a language
featuring such expressive types should have dedicated subtyping rules injecting inhabitants of
narrow integer types into wider ones.

A more interesting and specific issue is the question of array handling. Since the beginning
of this thesis we have only considered arrays with suspicion: one of the original ideas behind in-
teger clocks was to generate efficient array-processing software code without mentioning them
in the source language. In particular, it was felt that the complexity of optimizing functional
arrays into traditional imperative code (e.g., Gérard et al. [2012]) could be sidestepped using a
clock-based scheme. It is true that, using the work presented in this thesis, a programmer may
generate distinct array-processing code from the same program with the guarantee that they
compute the same final result. However, the generated code will not necessarily be efficient, as
we will discuss later in this section. More importantly, arrays have a striking feature compared
to streams: they allow random access to their elements. This is probably more convenient in
lots of code, compared to expressing complicated access patterns using stream sampling and
merging.

To add arrays to AcidS in practice, one can introduce a type dt[n] similar the one present
in the language of machines to the grammars of data types dt, as well as array indexing. The
indices can be bounded using the bounded integer type appearing in Section 5.4. Interestingly,
arrays integrate well with integer clocks. Consider the following operators.

vecn ∶ dt ∶∶ ct on (n)⊸ dt[n] ∶∶ ct
strn ∶ dt[n] ∶∶ ct⊸ dt ∶∶ ct on (n)

The idea is that vecn transforms a stream of, say, integers into a “shorter” stream of arrays of
integers, and conversely for strn . Integer clocks makes it easy to express the action of such
operators on clock types, and the data representation of Chapter 4 makes their compilation
almost trivial: they simply correspond to the gathering and scattering machines.

The question of the amount of inference required from the compiler is not yet decided,
as shown in the previous paragraph. In any case, it is probably useful to have explicit buffer
operators corresponding to a Church-style SUB rule, as in Lucy-n. Initialized buffers are also
an interesting possibility, since they are very easy to add to the type system and probably leads
to the generation of better code. We will soon come back to this later point.

A difficult point is the reinitialization operator introduced in Lucid Synchrone and later
adopted in modern Lustre dialects such as Heptagon or SCADE6. Earlier we have mentioned
that this operator is at the heart of important high-level constructs such as hierarchical state-
machines. Unfortunately, in our opinion its semantics is unclear, which makes understanding
its interaction with n-synchronous clock types difficult. For instance, assuming that f is an
expression of type (1 0)⊸ (0 1), how can we understand f every (1 0), which intuitively
expresses that we reinitialize f at every even time steps? Should its type be (1 1 0)⊸ (0 0 1), or
possibly (1)⊸ (0)? Can we reinitialize things that are not functions? It is possible that a type

[31/10/16, 16:38]

240 CHAPTER 6. PERSPECTIVES

system such as the one proposed by Hamon and Pouzet [2000] for controlling reinitializations
could be added to AcidS; but they do not give an untyped semantics for the operator, which
makes it hard to really understand.

Code Generation

Generating correct software code While Chapter 4 gives a blueprint for writing a compiler
from AcidS to a hardware description language, it does not completely explain compilation
to software language such as C. The issue lies in the feedback machine used to compile
higher-order functions. While this machine has a direct implementation as a circuit, its
implementation as software is difficult. In a lazy language such as Haskell, it can be simulated
using the usual recursive definition of a fixpoint from the host language. Moreover, this is
a modular implementation in the sense that the combinator implementing the feedback
machine mfbmt3

mt1,mt2
(m) is independent from the implementation of the wrapped machine m.

This does not work in a call-by-value language such as C since their semantics preclude
recursively-defined values.

One possible solution is to translate the final circuit into sequential C code using techniques
like those traditionally found in Esterel compilers [Potop-Butucaru et al., 2007]. This breaks
separate compilation. A more modular approach would be to avoid the Int() construction
altogether and apply the usual closure-conversion transformation. Fortunately, the number of
closures needed for each function is statically bounded because of the linear type system, and
thus garbage collection is not needed. One may even allocate closures at compilation time,
avoiding dynamic memory allocation.

Bypassing the Int() construction step reduces drastically the number of feedback machine
in the output code. The only remaining feedback loops come from the compilation of the FIX

rule and thus of source-level recursive definitions. Fortunately, the additional premises of
the FIX rule makes their compilation easy. We will now explain it with an example. Assume
that we have a library of ring buffers implementing at least the interface given in Figure 6.3 (a).
The source code to be compiled is given in Figure 6.3 (b); the function f is abstract, and g is
the prototypical fixpoint computation. Figure 6.3 (b) gives a simplified and idealized version of
the C code generated for this fixpoint computation.

In this example each piece of code is compiled to three elements: a structure representing
its internal state, a function allocating and initializing this internal state, and a transition
function. The first part of the code gives the declarations of the corresponding objects for f .
The second part gives the corresponding definitions for g . The internal state of g , g_mem,
is composed of the state for the call to f , the buffer involved in the adaptability premise of
the FIX rule, and an integer field holding the current value of the clock 0(1)ω. The initialization
function creates an instance of this record with an initially empty buffer and the field w1p0

set to 1, the first value of 0(1)ω. In accordance with the FIX rule, at every time step the buffer
contains the latest output of f ; the first call to g_step reads nothing from it, but we know from
the type of f that at this point f_step does not depend on its input anyway.

[31/10/16, 16:38]

6.2. FUTURE WORK 241

struct buffer;
struct buffer *buffer_alloc(size_t n);
void buffer_write(struct buffer *, const int *src , size_t n);
void buffer_read(struct buffer *, int *dst , size_t n);

(a) - Buffer abstract data type

f ∶ int ∶∶ 0(1)⊸ int ∶∶ (1) g ∶ int ∶∶ (1)
f = . . . g = fix f

(b) - Example of fixpoint computation

// Declarations for f : int :: 0(1) -o int :: (1)

struct f_mem;
struct f_mem *f_alloc ();
void f_step(struct f_mem *mem , int inp , int *out);

// Definitions for g : int :: (1)

struct g_mem // Internal state of g
{

struct f_mem *f_mem; // Memory for the application of f
struct buffer *fb_buff; // Buffer from the fixpoint rule
int w0p1; // Current value of 0(1)

};

struct g_mem *g_alloc () // State allocation function of g
{

struct g_mem *mem = malloc(sizeof *mem);
mem ->f_mem = f_alloc (); // Create the state of f
mem ->fb_buff = buffer_alloc (1); // Create a 1-place buffer
mem ->w0p1 = 0; // Set first value of 0(1)

}

void g_step(struct g_mem *mem , int *out) // Transition function of g
{

int inp_ck , inp , out;
inp_ck = mem ->w0p1; mem ->w0p1 = 1; // Compute current value of 0(1)
buffer_read(mem ->fb_buff , &inp , inp_ck); // Read previous output
f_step(mem ->f_mem , inp , &out); // Compute current output
buffer_write(mem ->fb_buff , &out , 1); // Store current output
return out; // Return current output

}

(c) - Generated C code for example (b)

Figure 6.3: Generating C code - buffers and fixpoints

[31/10/16, 16:38]

242 CHAPTER 6. PERSPECTIVES

node f() returns (x : int :: base;
y : int :: base)

let
y = x + 1;
x = 0 fby y;

tel

struct f_mem {
int x;

};

struct f_mem *f_alloc () {
struct f_mem *mem = malloc(sizeof *mem);
mem ->x = 0;
return mem;

}

void f_step(struct f_mem *mem ,
int *ox, int *oy)

{
*ox = mem ->x;
*oy = *ox + 1;
mem ->x = *oy;

}

(a) - Heptagon/Lustre source code (b) - Generated C code

Figure 6.4: Generating C code - intra-step scheduling in Heptagon

f ∶ (1)⊗(1)
f = ↑(2) fix (fun (x ∶ (0 1),y ∶ 0(0 1)).(merge 1(0) 0 y,1+x) ∶ (1 0)⊗(0 1))

Figure 6.5: Generating C code - intra-step scheduling reflected in clock types

Generating efficient software code Generating good code will require specific optimiza-
tions in addition to those already discussed in Section 4.5. More specifically, our use of local
time scales to avoid the traditional intra-step scheduling raises serious efficiency questions.
Consider the Lustre node in Figure 6.4 (a). Its two outputs denote the streams of natural
numbers and of strictly positive natural numbers, respectively. The C code generated by the
Heptagon [Delaval et al., 2012] compiler looks basically like the one given in Figure 6.4 (b),
up to uninteresting technical details. It produces one element per time step for each stream.
Figure 6.5 gives a version of this program in µAS, using a small amount of syntactic sugar, type
annotations, and an explicit local time scale.

Looking carefully at the clock types of x and y, we see that they reflect the intra-step
scheduling performed by the Heptagon compiler. The goal is now to exploit this information to
obtain code similar to the one in Figure 6.4 (b). To show that this is not completely trivial, Fig-
ure 6.6 features the code that could be generated by a naive AcidS compiler. Its state consists
in two counters implementing ultimately periodic words, and two integers implementing
the one-place buffers that correspond to the premise ⊢ (1 0)⊗(0 1) <∶1 (0 1)⊗0(0 1) in the
fixpoint rule. The body of the transition function consists in a counted loop implementing the
local time scale driven by (2)ω. Its body can be decomposed into four main parts. The first
three parts implement the fixpoint compilation scheme as in Figure 6.3. Lines 21-30 read the
previous outputs of the fixpoint, computing the required clock (0 1)ω and 0(0 1)ω. Remark
how we have assume that the compiler is smart enough to compute (0 1)ω using the loop
index; this is not immediate either. Lines 31-41 implement the body of the fixpoint. Remember

[31/10/16, 16:38]

6.2. FUTURE WORK 243

1 struct f_mem {
2 int w1p0; // 1(0)
3 int w0p01; // 0(0 1)
4 int b1;
5 int b2;
6 };
7
8 struct f_mem *f_alloc ()
9 {

10 struct f_mem *mem = malloc(sizeof *mem);
11 mem ->w1p0 = 1;
12 mem ->w0p01 = 0;
13 return mem;
14 }
15
16
17 void f_step(struct f_mem *mem , int *ox, int *oy)
18 {
19 int x, y, nx, ny, y_ck;
20 for (int i = 0; i < 2; ++i) {
21 // Fixpoint: read previous output x on (0 1)
22 if (i == 1) x = mem ->b1;
23 // Compute current value of 0(0 1)
24 y_ck = (mem ->w0p01 > 1) && (mem ->w0p01 % 2 == 0);
25 if (mem ->w0p01 < 2) mem ->w0p01 ++;
26 // Fixpoint: read previous output y on 0(0 1)
27 if (y_ck == 1) y = mem ->b2;
28 // Merge: driven by (1 0)
29 if (i == 0) {
30 if (mem ->w1p0 == 1) {
31 mem ->w1p0 = 0;
32 nx = 0;
33 } else
34 nx = y;
35 }
36 // Operator: driven by (0 1)
37 if (i == 1) ny = x + 1;
38 // Fixpoint: store current output x on (1 0)
39 if (i == 0) mem ->b1 = nx;
40 // Fixpoint: store current output y on (0 1)
41 if (i == 1) mem ->b2 = ny;
42 // Local time scale: gather x from (1 0) to (1)
43 if (i == 0) *ox = nx;
44 // Local time scale: gather y from (0 1) to (1)
45 if (i == 1) *oy = ny;
46 }
47 }

Figure 6.6: Generating C code - intra-step scheduling in AcidS - semi-naive

[31/10/16, 16:38]

244 CHAPTER 6. PERSPECTIVES

1 struct f_mem {
2 int w1p0; // 1(0)
3 int b2;
4 };
5
6 struct f_mem *f_alloc ()
7 {
8 struct f_mem *mem = malloc(sizeof *mem);
9 mem ->w1p0 = 1;

10 return mem;
11 }
12
13
14 void f_step(struct f_mem *mem , int *ox, int *oy)
15 {
16 int x, y, nx, ny, y_ck , b1;
17
18 // First iteration
19 if (mem ->w1p0 == 0) y = mem ->b2;
20 if (mem ->w1p0 == 1) {
21 mem ->w1p0 = 0;
22 nx = 0;
23 } else
24 nx = y;
25 *ox = nx;
26 b1 = nx;
27
28 // Second iteration
29 x = b1;
30 *oy = x + 1;
31 mem ->b2 = y;
32 *oy = y;
33 }

Figure 6.7: Generating C code - intra-step scheduling in AcidS - optimized

from Chapter 4 that compiling stream merging and pointwise operators generate new local
time scales because of their implicit clock-polymorphism. This is what the tests on lines 32 and
40 correspond to. Lines 42-47 store the current outputs of the fixpoint into the buffer. Finally,
lines 48-53 performs gathering, which is here particularly simple: one simply has to store each
current output of the fixpoint into the corresponding output of f at the proper time.

The code from Figure 6.6 is unsatisfactory. It is true that optimizing C compilers may
recover some amount of performance using traditional optimizations. For instance, in our
precise example it is clearly helpful to unroll the loop and perform constant folding and other
dataflow optimizations. However, this is only limited. First, on embedded platforms we may
not have a good enough optimizing C compiler at our disposal. Second, some optimizations
cannot be performed by the C compilers, barring whole-program compilation. One such
optimizations appears in the C code of Figure 6.6: the clock 0(0 1)ω is actually redundant as it
can here be expressed in terms of 0(1)ω. To see why, consider the effect of unrolling the local
time scale driven by (2). In the first iteration, we only see the elements of 0(0 1)ω of even rank,
that is 0(0 1)ω when (1 0)ω = 0(1)ω. This clock is the element-wise negation of 1(0)ω, which
already appears as the argument of the stream merging operator. For the second iteration, we

[31/10/16, 16:38]

6.2. FUTURE WORK 245

have 0(0 1)ω when (0 1)ω = (0)ω. This equation implies that some conditions are always false
in the second iteration, and the corresponding if statements can thus be removed.

Figure 6.7 gives a new version of the C code implementing Figure 6.5. We have unrolled the
loop, removed statements which were only executed in one iteration from the other, optimized
some variables away, and performed the clock simplification explained above. We have left
some simple redundancies and useless variables to make the link with the previous code
clearer; they would be removed by any copy propagation pass. One interesting point is that the
buffer b1 has disappeared. It was in fact always empty at the end of a call to f_step, as its only
role is to transmit data from the first iteration to the second one. One may implement such
behavior using a simple local variable. In contrast, the value stored into b2 survives from one
global time step to the next, and therefore this variable has to be part of the state record, as in
the code generated by Heptagon (Figure 6.4 (b)).

Remark 34. We believe that his example sheds light on the notion of local variable in syn-
chronous languages. The compilation of synchronous languages involves both transient
storage, corresponding to wires (in circuits) or local variables (in software), and persistent
storage, that is registers (in circuits) or state variables (in software). In existing languages,
an expression is implemented through a register if and only if it is a delay in Lustre/Lucid
Synchrone, or buffer in Lucy-n. In contrast, in AcidS a buffer can sometimes be implemented
as a local variable, provided it is observed at a sufficiently high level of granularity. Local time
scales makes it possible to control this granularity, hiding internal steps and thus transforming
persistent storage into transient storage, as in our example. Thus the fact that a variable is local
or not depends on the clock at which it can be observed rather than on a syntactic criterion.

One may argue that the code in Figure 6.7 is not yet as satisfying as the one in Figure 6.4 (b),
even after copy propagation has been performed. Indeed, it features some unnecessary state
and control related to the fact that, conceptually, the code generated by Heptagon has pre-
computed some results used in the first time step. The solution is probably to add an initialized
buffering operator generalizing fby to the n-synchronous setting. Using such an operator it
should be possible to generate code comparable to the one produced by existing compilers in
the case of Lustre-like programs.

This discussion and illustration of the optimizations needed for sequential code generation
shows that much work remains to be done. While we do not have a good grip on which
optimizations are important and which are redundant with the ones provided by optimizing C
compilers, we feel that the unrolling of local time scales is promising and should be investigated
further. Its interaction with clock types should allow for further optimizations.

Modular compilation All along this thesis we have defended the dogma of modularity, un-
derstood in the sense of separate compilation. But separate compilation actually consists
in two different properties, separate type checking and separate code generation. The first
property is actually a general property of type systems: the type of a program is only deter-
mined by the type of its constituent, not by their bodies. In practice, this property is not true of
languages with macro systems such as C++ templates or the static recursion of Lustre, where it
is impossible to type-check programs without a first phase of global program rewriting. The

[31/10/16, 16:38]

246 CHAPTER 6. PERSPECTIVES

second property is more restrictive, as it means that changing the body of a subprogram does
not cause the recompilation of the surrounding context as long as its type does not change.

Separate code generation is actually an expensive property when targeting circuits. This
comes from the fact that circuits not only have finite state, but state whose size is statically
bounded syntactically. Indeed, we have excluded several very useful type constructors from
the type systems of Chapter 5 because of our insistence on separate code generation. These
type formers include unbounded clock polymorphism and unbounded exponentials, but also
other forms of polymorphism such as the usual “data” parametric polymorphism. One cannot
generate a unique piece of circuit for a program with such a type, since they can be called from
arbitrary many contexts needing different physical data representations.

In practice the value of such features may outweigh the benefits of completely separate
code generation. The general solution is to introduce a dedicated linking process that would
inline and specialize nodes with such types, making them disappear before code generation.
Note that in contrast with the removal of higher-order features from a functional language,
such transformations are type-directed local reductions that do not require a form of global
rewriting. The handling of nodes of monomorphic or bounded type would still be modular.

Parallelism A last and more speculative subject is the generation of parallel software code
from AcidS programs. At first sight it may seem trivial: any program, even an ill-typed one, has
a natural interpretation as a Kahn network. In addition, the type system provides sufficient
buffer sizes for well-typed programs. There is thus no technical difficulty running AcidS
programs on top of any runtime implementing the Kahn model. The difficulty is rather in
the generation of good parallel code. This question differs from the traditional issues of
distribution (e.g., Girault [2005]) or real-time scheduling (e.g., Forget et al. [2008]) of Lustre
programs. We do not wish to add explicit parallel programming constructs [Cohen et al., 2012]
either. Lustre-like languages encourage very fine-grained code with lots of tightly-coupled
dependencies. This is not good for parallelism, as even efficient runtime systems struggle
when buried under huge numbers of very short tasks. Moreover, on modern platforms it is
actually beneficial to communicate large chunks of data sparingly rather than frequently but
by small amounts [Lê et al., 2013].

A potentially important feature of integer clocks is that they are actually capable of express-
ing trade-offs between computation and synchronization that matter in parallel programs. In
fact, this was one of the original motivations for their introduction. As an example, a program-
mer can easily introduce buffering to turn a stream of clock (1)ω into one of clock (0 0 3)ω
which may be processed faster in practice. Similarly, creating a local time scale driven by a fast
clock makes it possible to increase the computation/synchronization ratio of a piece of code,
while being sure that its functional semantics is preserved.

The addition of actual parallel programming features to AcidS raises a lot of questions,
from a practical but also theoretical point of view. Can we design a language where parts of
programs are dynamically-scheduled and others are sequential and statically-scheduled? How
should the boundaries between such parts be delimited? Should the compiler, informed with
clocking information, try to set this frontier, seen as an automatic parallelization problem?

[31/10/16, 16:38]

6.2. FUTURE WORK 247

∆ ; Γ⊢ t ≥ t ′

∆ ; Γ⊢ t ≥ t

∆ ; Γ⊢ t1 ≥ t2 ∆ ; Γ⊢ t2 ≥ t3

∆ ; Γ⊢ t1 ≥ t3

∆ ; Γ⊢ t1 ≥ t ′1 ∆ ; Γ⊢ t2 ≥ t ′2
∆ ; Γ⊢ t1⊗ t2 ≥ t ′1⊗ t ′2

∆ ; Γ⊢ t ′1 ≥ t1 ∆ ; Γ⊢ t2 ≥ t ′2
∆ ; Γ⊢ t1⊸ t2 ≥ t ′1⊸ t ′2

∆,α ≤ n ; Γ⊢ t ≥ t ′

∆ ; Γ⊢∀(α ≤ n).t ≥∀(α ≤ n).t ′

∆ ; Γ ⊢ t <∶0 t ′

∆ ; Γ⊢ t ≥ t ′
∆⊢ ct ≤ n ∆ ⊢ Γ ↓ct Γ

′ ∆ ⊢ t ↑ct t ′

∆ ; Γ⊢ t ≥ t ′
∆⊢ ct ≤ n

∆ ; Γ⊢∀(α ≤ n).t ≥ t[α/ct]

Figure 6.8: Principality - type containment for polymorphic clock types

What should these boundaries look like as syntactic as well as semantic features? Could such a
multi-mode language lead to a more elegant source-to-source formulation of compilation?
These issues remain to be investigated, and a practical parallel code generator will have to wait
for the availability of a good sequential code generator.

6.2.2 Theoretical Aspects

We finish this section with a discussion of the theoretical properties of the type system from
the point of view of modularity, as well as improved formulations of the semantics of AcidS.

Clocks and Types

The design of a practical type system as well as type inference engine for AcidS raises the
issue of the relationship between an untyped program and its set of possible types and typing
derivations. This raises two different issues, one being syntactic and the other syntactic.

Principality A well-known property a type system may enjoy is the existence of principal
types. A principal type is the most general type for a given program in a fixed typing environ-
ment in the sense that any other type is an instance of the principal one. The precise definition
of the instance relation between types depends on the system under consideration; for more
details and nuance we refer the reader to Wells [2002].4 In the best case the principal type of a
program can actually be computed, a famous example being the Damas-Milner type system
used in ML. This tends to make type inference more robust and predictable.

To discuss the issue of principality in our systems, we first need to fix a reasonable instance
relationship between clock types. We focus on the polymorphic type system of Section 5.3

4The paper of Wells is actually about the more general notion of principal typings, but principal types are also
discussed at length.

[31/10/16, 16:38]

248 CHAPTER 6. PERSPECTIVES

since it strikes a good balance between simplicity and expressiveness. The type containment
relation characterizes the clock transformations that can be applied to a typed program. It is
expressed as a judgment holding in a fixed pair of typing contexts∆ and Γ; we write∆ ; Γ⊢ t ≥ t ′.
A derivation of ∆ ; Γ ⊢ t ≥ t ′ encodes a way of turning any derivation of ∆ ; Γ ⊢ e ∶ t ′ into one
of ∆ ; Γ ⊢ e ∶ t . Thus, a type inference engine focused on modularity should maximize the
inferred types, and principality can be understood as the existence a largest type for any fixed
well-typed program.

The rules of the type containment judgment are given in Figure 6.8. Most of them are ad-
ministrative, expressing that it is a preorder and a congruence with regard to type constructors.
The interesting rules express that type containment includes adaptability, the creation of local
time scales, and the instantiation of polymorphic types.

Remark 35. This definition of type containment describes type transformations related to
clocks. It is also possible to define a containment relation characterizing transformations
related to the system with bounded exponentials of Section 5.1. We have not studied the
corresponding notion of principality.

The type systems proposed in this thesis do not have principal types. Let us begin with
the monomorphic clock type system of µAS (Chapter 3). The type containment relation
of Figure 6.8 adapts to this simpler system by removing clock contexts and rules related to
quantifiers. The fact that this system does not have principal types can be seen by examin-
ing the program fun (x,y).(x,y), introduced in the thesis of Gonthier [1988], which we will
henceforth call gon. The problem with gon here is that while its two outputs are completely
independent, any monomorphic type will add unwanted dependencies between them. For
example, the type (1)⊗(1)⊸ (1)⊗(1) makes the second output depend on the first output,
and thus cannot be turned into the type 0(1)⊗(1)⊸ 0(1)⊗(1) which is also valid for gon.
Bounded polymorphic clock types solve this problem by assigning to gon a type such as

∀(α1 ≤n1).∀(α2 ≤n2).α1⊗α2⊸α1⊗α2

with n1 and n2 fixed constants, which clearly reflects the independence of x and y. Unfor-
tunately, the presence of bounds on polymorphic variables break principality again. In the
type above the choice of n1 and n2 are arbitrary, and will thus forbid valid instantiations of the
corresponding type variables. This defect also affects the dependent clock types of Section 5.4.

Unbounded polymorphism, as proposed in the conclusion of Section 5.3, is able to as-
sign the type ∀(α1 ≤∞).∀(α2 ≤∞).α1⊗α2⊸α1⊗α2 to the function gon. This type would
actually be principal for such a system. One may wonder whether a system with unbounded
polymorphism has principal types in general. Unfortunately this is not the case. We explain
why using an example proposed by Raymond [1988] in his master thesis. Call ray the pro-
gram fun (x,y).(and(x,y),y), and being the usual boolean conjunction lifted elementwise.
Its first output depends on both of its inputs while the second output only depends on the
first input. Let us call ctx , ct y , ctp , and ctq the clock types of x, y and of the first and second
outputs respectively. In a language such as µAS or Lucy-n, ctx and ct y must both be adaptable
to ctp , and thus synchronizable. It is also clear that ct y must be synchronizable with ctq . Since
synchronizability is an equivalence relation, this implies that all four clock types must be

[31/10/16, 16:38]

6.2. FUTURE WORK 249

synchronizable. Since we want to fix buffer sizes locally, we must fix those synchronizable clock
types at this point. There are lots of choices, including for instance ∀(α ≤∞).α⊗α⊸α⊗α
and variations. Unfortunately, none of them are principal. In any case, the synchronizability
constraints force all the clock types to have the same root, and thus express that the second
output may depend on the first input, which is untrue. This is problematic, since there exists
fixpoint computations that are rejected by one of these choices but accepted for the other.

This example can be understood as an intrinsic limitation of (n-)synchrony. Finite buffers
introduce back-pressure dependencies: production depends on the availability of free space in
the buffer, and thus on consumption. The shape and amount of back-pressure dependencies
is determined by the size of the buffer rather than by the semantics of the untyped program. In
the ray program, fixing buffer sizes introduce dependencies of the second output on the first
input. In general, such dependencies need not exist, and thus no principal type exists.

This example illustrates a defect of our work: our type system mixes finiteness and causality,
which are unrelated issues. We may abandon finiteness and thus synchronizability constraints,
which leaves us only with the precedence relation. Clocks ordered by precedence form a
lattice, in contrast with clocks ordered by adaptability. Thus, we could imagine having a least
upper bound operator ⊔ in clock types. In such a system, the function ray could receive the
type ∀(α1 ≤∞).∀(α2 ≤∞).α1⊗α2⊸ (α1⊔α2)⊗α2 which captures exactly the dependencies
between inputs and outputs. The interest of such a type is debatable: one may argue that it
reveals too much information about the inner workings of the program. In any case, this type
should be principal for ray in a system which does not deal with the finiteness of buffers.

To conclude this discussion, we believe that this example illustrates how in a language
where causality and scheduling are captured inside types, the existence of principal types is
intimately related to modular scheduling [Raymond, 1988; Pouzet and Raymond, 2010]. We
feel that the nonexistence of principal types caused by finiteness constraints is a limitation of
synchrony, and prevents truly modular scheduling in our setting. It should be noted, however,
that our approach schedules more programs than traditional techniques [Pouzet and Raymond,
2010] can handle. Finally, and from a more philosophical point of view, this illustrates once
again that finiteness is often at odds with true modularity.

Completeness Principality is a syntactic property of a type system. In our case, types are
mostly approximations of clocks, which are semantic, non-computable objects. Clocks de-
scribe the growth of streams and make it possible to capture the semantics of stream functions,
as explained in Chapter 2. One may wonder whether an analogue of the best clock type exists in
the semantic setting: can we define a notion of best clock characterizing a stream function, and
study its (in)existence? Gérard [2013] has studied this question in the third part of his thesis.
We believe that his work could be revisited with integer clocks and local time scales in mind.

Semantics

Category theory In Chapter 3 and Chapter 4 we have given two separate interpretations
of typing derivations. The first one was the synchronous denotational semantics defined in
terms of domains. The second one was the compilation to higher-order macro-machines. We

[31/10/16, 16:38]

250 CHAPTER 6. PERSPECTIVES

strongly suspect that these two translations are actually the same interpretation in disguise
and should thus be unified. Indeed, each translation can for the most part be explained as
the interpretation of a program in a symmetric monoidal closed category (SMCC) where,
for instance, value types correspond to comonoid objects. In the case of the synchronous
semantics, this construction is somewhat obscured by the fact that the monoidal category of
domains is actually cartesian. The categorical viewpoint would also justify retrospectively the
organization of Chapter 4, decomposing the compilation process factors as the construction of
a closed category of macro-machines from the non-closed monoidal category of machines
followed by the generic interpretation of µAS into an SMCC with adequate structure.

The difficulty in giving a convincing categorical semantics for our language is one of
axiomatization. We do not yet know what should be the structure required of a SMCC to
interpret clock-related constructions, and in particular local time scales. An interesting lead is
to remark that rescaling is fundamentally a substitution operation of a special kind occurring
in types. This suggests interpreting it using fibrational techniques, as for ordinary parametric
polymorphism, with the RESCALE rule corresponding to a change of base operation.

Type theory Another kind of improvement for the mathematical development present in
this thesis would be to express them in a computer proof assistant based on dependent types.
Most chapters of this thesis are already written in an informal type-theoretical framework, and
we believe that moving from informal to formal would not be a very large step. Concretely, we
contemplate the formalization of µAS and its derivatives in the style of Chapman [2009]. This
would enable longer-term projects such as the development of a certified compiler.

Beyond streams

A last, more speculative research direction consists in seeking connections with other fields of
programming language theory. We are particularly interested in investigating the relationship
between synchronous compilation and the strictness analysis and deforestation optimization
of lazy functional programs. The link between the two appears to be folklore in some parts of
the synchronous and functional programming communities. For instance, one may read the
following paragraph in Caspi and Pouzet [1996].

Lazy evaluating this program is costly: intermediate lists are allocated and de-
allocated by the Garbage Collector during execution. On the contrary, the syn-
chronous dataflow compilers translate it into a sequential program with bounded
memory and response time. One could say that these compilers transform the
call-by-need evaluation into a call-by-value one.

The connection between synchrony and the call-by-value evaluation strategy was also high-
lighted by Krishnaswami [2013] in more recent work. But, as far as we know, there is no
systematic investigation of this link, which remains unclear at the moment. Another possibility
is to understand synchronous compilation as a very specific kind of incrementalization of
a stream function. Indeed, the resulting state machine is able to process streams chunk-by-
chunk, while in the untyped semantics the whole output has to be recomputed each time

[31/10/16, 16:38]

6.3. CONCLUSION 251

a new input is received. In any case, we believe that explaining synchronous compilation
within a larger semantic framework may help with its extension to more expressive languages,
including the ability to handle richer data types than streams.

6.3 Conclusion

In this thesis we have proposed a higher-order functional programming language called AcidS
in which programs manipulate infinite streams of data. Each program has a natural interpreta-
tion as a Kahn process network, a well-known model of deterministic parallel computation.
The language is endowed with a type system, called clock typing, which rejects programs that
deadlock or cannot be executed within a finite amount of memory. This system works by
establishing a notion of discrete time step through the whole program, following the tradition
of synchronous languages. In a well-typed program each stream is paired with a clock, which
is a mathematical object assigning to every element a time step at which it has to be com-
puted. Well-typed programs are compiled to ordinary finite-state digital circuits. The role of
typing information is not only to reject ill-behaved programs but also to drive code generation,
influencing the shape of the final circuit in a precise way.

Several elements set our work apart from previous synchronous languages. First, in AcidS
several elements of a stream may be computed during the same time step, which manifests
by the fact that clocks are streams of integers rather than streams of booleans. The existing
theory of clocks extends smoothly to this new setting. Second, the language offers a local time
scale construct which hides from the outside some of the steps performed by a subprogram.
Third, we enforce a linear discipline on higher-order functions, which must be used a statically
bounded amount of times.

The combination of such features has a profound effect on the theory and practice of the
type system. The linear nature of higher-order functions makes their modular compilation to
circuits possible. Local time scales offer a new kind of modularity in synchronous functional
languages; their ability to abstract precise timing information is instrumental in the integration
of causality (deadlock-freedom) into types. Integer clocks give a high-level description of
space/time trade-offs in the implementation of the same source program. In addition, having
a unified type system that captures all the properties needed for the compilation to circuits
makes the full formal description of the language tractable. This thesis provided a complete de-
scription of a synchronous functional language, its type system, and type-directed compilation
function, including soundness proofs.

[31/10/16, 16:38]

Appendix A

Index

Semantics

fix f . 21
A →c B . 21
A ≅B . 22
A ⊲B . 22
Stream(D) . 25
SStream(D) . 29
CStream w(D) . 39

Ow . 30
Iw . 31
unpack . 29
packw . 30
repackw . 30
on . 36
(desync t ,sync t) . 79

Judgments

Γ⊢ e ∶ t . 61
⊢ t value . 61
⊢ Γ value . 61
Γ⊢ Γ1⊗Γ2 . 62
⊢ t <∶k t ′ . 64
⊢ t ↑ct t ′ . 65
⊢ t ↓ct t ′ . 65
γ ≡Γ ;S γ′ . 98
⊢ v ∶mt . 117
⊢i v ∶mt . 117
⊢m ∶mtm . 119
m/x→m′/y . 120
m/xl→n m′/yl . 120

⊢ t ≤○ t ′ . 169
⊢ Γ ≤○ Γ′ . 169
t ⊢ t1⊗ t2 . 169
Θ↪ Γ . 178
⊢ p ∶Θ . 178
∆⊢ ct ≤n . 191
∆⊢ t type . 191
∆⊢ Γ ctx (polymorphism) 191
ct1 ≡ ct2 (polymorphism) 189
∆ ⊢ t <∶k t ′ . 192
∆ ⊢ ct1 ↑ct ct2 . 192
∆ ⊢ t ↑ct t ′ . 192
∆ ⊢ t ↓ct t ′ . 192

253

254 INTERPRETATIONS

∆ ⊢ Γ ↓ct Γ′ (polymorphism) 192
∆ ; Γ⊢ e ∶ t (polymorphism) 193
∆ ; Γ⊢ ct ≤n . 209
∆⊢ Γ type t . 209
∆⊢ Γ ctx (dependence) 209
ct1 ≡ ct2 (dependence) 208
∆ ; Γ ⊢ t <∶k t ′ . 211

∆ ; Γ ; Γ′ ⊢ ct1 ↑ct ct2 . 211

∆ ; Γ ; Γ′ ⊢ t ↑ct t ′ . 211

∆ ; Γ ; Γ′ ⊢ t ↓ct t ′ . 211

∆ ⊢ Γ ↓ct Γ′ (dependence) 211

∆ ; Γ⊢ e ∶ t (dependence) 212

∆ ; Γ⊢ t ≥ t ′ . 247

Interpretations

KJeK . 54
SJΓ⊢ e ∶ tK . 81
SJΓ⊢ Γ1⊗Γ2K . 83
SJ⊢ t <∶k t ′K . 83
SJ⊢ t ↑ct t ′K . 84
SJ⊢ t ↓ct t ′K . 84
SJ⊢ Γ ↓ct Γ′K . 84
LΓ⊢ e ∶ tM . 152
L⊢ t valueMD . 147
L⊢ t valueME . 147
L⊢ Γ valueME . 147
LΓ⊢ Γ1⊗Γ2M . 147

L⊢ t <∶k t ′M . 148
L⊢ t ↑ct t ′M . 149
L⊢ t ↓ct t ′M . 149
L⊢ t ≤○ t ′M . 174
Lt ⊢ t1⊗ t2M . 174
L⊢ p ∶ΘM . 184
L∆M . 200
L∆⊢ t typeM . 200
L∆⊢ Γ ctxM . 200
L∆ME . 201
L∆⊢ ct ≤nM . 201
L∆ ; Γ⊢ e ∶ tM . 202

[31/10/16, 16:38]

Appendix B

Figures

1.1 The JPEG Zigzag Scan . 15

2.1 The domain Stream(B�) of boolean streams . 26
2.2 The domain List(B�) of boolean lists . 28
2.3 The domain CStream2.0.1.�(B�) . 40

3.1 Syntax of µAS . 50
3.2 Syntax of µAS - free variables . 53
3.3 Untyped semantics . 54
3.4 Circuit composition in h′ . 58
3.5 Typing - main judgment . 61
3.6 Typing - value judgment . 61
3.7 Typing - splitting judgment . 62
3.8 Typing - adaptability judgment . 64
3.9 Typing - gathering/scattering judgments. 65
3.10 Example 9 - typing the identity function . 67
3.11 Example 10 - typing derivations . 68
3.12 Example 13 - gathering, adaptability, and equivalence classes . 69
3.13 Example 11 - typing derivations . 70
3.14 Example 12 - typing derivations . 71
3.15 Example 15 - gathering by (3 0 1) . 73
3.16 Example 16 - typing derivations . 74
3.17 Example 17 - first derivation. 76
3.18 Example 17 - second derivation. 77
3.19 Typed semantics - main function . 81
3.20 Typed semantics - context splitting judgment . 83
3.21 Typed semantics - adaptability judgment . 83
3.22 Typed semantics - gathering/scattering judgment. 84
3.23 Interpretation of the typing judgment with explicit Church-style derivations 85
3.24 Tentative totality predicate . 87

255

256 APPENDIX B. FIGURES

3.25 Step-indexed totality predicate . 87
3.26 Typing derivations where SJΓ⊢ e ∶ tK○ syncΓ ⊏ sync t ○KJeK . 96
3.27 Context equivalence . 98
3.28 Lucy-n program - clock-dependent causality . 108

4.1 Compilation - overview .. 114
4.2 Compilation - informal compilation scheme for a local time scale driven by (2) . 115
4.3 Machine language - syntax of values and types. 116
4.4 Machines - value typing judgment . 117
4.5 Machine language - syntax of machines . 118
4.6 Machines - main typing judgment . 119
4.7 Machines - reaction judgment . 120
4.8 Machines - graphical representation . 127
4.9 First-order macro-machines - typing and expansions. 131
4.10 Higher-order macro-machines - syntax of types . 134
4.11 Higher-order macro-machines - expansions of types . 135
4.12 Higher-order macro-machines - syntax . 136
4.13 Higher-order macro-machines - typing . 137
4.14 Higher-order macro-machines - selected graphical representations. 138
4.15 The machine mplug(mhoidmtm,m) is equivalent to m . 140
4.16 The machine (mhoidmtm ⧈ mhoidmtm) is equivalent to mhoidmtm ∶mtm ⊟ mtm . 142
4.17 Compilation - value judgment . 147
4.18 Compilation - context splitting judgment . 147
4.19 Compilation - adaptability judgment . 148
4.20 Compilation - gathering and scattering judgments . 149
4.21 Compilation - main typing judgment . 152
4.22 Typing and reaction rules for the testing machine . 156
4.23 Soundness proof - implementations of types, contexts, and typings. 157
4.24 Machines - special cases of replication . 161
4.25 Replication - implementing mrepln(m) using machines from Figure 4.24 161

5.1 Bounded exponential modality - additions and modifications to the type system 169
5.2 Bounded exponential modality - machines and macro-machines 173
5.3 Bounded exponential modality - compilation . 174
5.4 Nodes - syntax and untyped semantics . 177
5.5 Nodes - additions and modifications to the type system .. 178
5.6 Nodes - additions and modifications to the machine syntax . 181
5.7 Nodes - additions and modifications to the machine type system 182
5.8 Nodes - compilation . 184
5.9 Nodes - closure . 185
5.10 Example - Gathering and nodes . 186
5.11 Clock polymorphism - extended type syntax . 189
5.12 Clock polymorphism - extended type system - free type variables 189

[31/10/16, 16:38]

257

5.13 Clock polymorphism - extended type system - equivalence judgment 189
5.14 Clock polymorphism - clock type normalization. 190
5.15 Clock polymorphism - extended type system - well-formedness judgments 191
5.16 Clock polymorphism - extended type system - auxiliary judgments 192
5.17 Clock polymorphism - extended type system - main judgment . 193
5.18 Clock polymorphism - typed semantics - interpretation of clock types 196
5.19 Clock polymorphism - typed semantics - interpretation of types and contexts 197
5.20 Clock polymorphism - compilation - types . 200
5.21 Clock polymorphism - compilation - clock types . 201
5.22 Clock polymorphism - compilation - auxiliary judgments . 201
5.23 Clock polymorphism - compilation - expressions . 202
5.24 Clock polymorphism - example derivations . 204
5.25 Dependent clock types - modified syntax . 207
5.26 Dependent clock types - type system - modified clock-type equivalence judgment 208
5.27 Dependent clock types - type system - modified value and splitting judgments . . 208
5.28 Dependent clock types - type system - modified well-formedness judgments 209
5.29 Dependent clock types - type system - modified auxiliary judgments 211
5.30 Dependent clock types - type system - modified main judgment 212
5.31 Dependent clock types - free variables in expressions, clock types, and types. 213
5.32 Dependent clock types - lexical context equivalence . 217

6.1 Encoding SDF graphs as inequations on clocks . 231
6.2 Systems of ultimately periodic words . 237
6.3 Generating C code - buffers and fixpoints . 241
6.4 Generating C code - intra-step scheduling in Heptagon . 242
6.5 Generating C code - intra-step scheduling reflected in clock types 242
6.6 Generating C code - intra-step scheduling in AcidS - semi-naive. 243
6.7 Generating C code - intra-step scheduling in AcidS - optimized. 244
6.8 Principality - type containment for polymorphic clock types . 247

[31/10/16, 16:38]

Bibliography

Samson Abramsky and Achim Jung. Domain theory. In Handbook of Logic in Computer Science,
pages 1–168. Clarendon Press, 1994. Cited on pages 20 and 25.

Rajeev Alur and Thomas A Henzinger. Reactive modules. Formal Methods in System Design, 15
(1):7–48, 1999. Cited on page 166.

R.M. Amadio and P.L. Curien. Domains and Lambda-Calculi. Cambridge University Press,
1998. Cited on pages 25, 83, and 199.

Charles André. Syntax and semantics of the clock constraint specification language (CCSL).
Technical report, INRIA, 2009. Cited on page 232.

Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 2006. Cited on
page 57.

Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. A Very
Modal Model of a Modern, Major, General Type System. In Symposium on Principles of
Programming Languages (POPL’07). ACM, 2007. Cited on page 234.

Edward A. Ashcroft and William W. Wadge. Lucid, a nonprocedural language with iteration.
Communications of the ACM, 20(7):519–526, 1977. Cited on pages 223 and 229.

Robert Atkey and Conor McBride. Productive Coprogramming with Guarded Recursion. In
International Conference on Functional Programming (ICFP 2013). ACM, 2013. Cited on
page 234.

Steve Awodey. Category Theory. Oxford University Press, 2006. Cited on page 25.

Marc Bagnol and Adrien Guatto. Synchronous Machines: a Traced Category. Research report,
INRIA, November 2012. URL https://hal.inria.fr/hal-00748010. Cited on page 165.

Cédric Bastoul. Code generation in the polyhedral model is easier than you think. In Inter-
national Conference on Parallel Architectures and Compilation Techniques (PACT’04). IEEE,
2004. Cited on page 230.

Abir Benabid-Najjar, Claire Hanen, Olivier Marchetti, and Alix Munier-Kordon. Periodic sched-
ules for Unitary Timed Weighted Event Graphs. Automatic Control, IEEE Transactions on, 57
(5), 2012. Cited on page 232.

259

https://hal.inria.fr/hal-00748010

260 BIBLIOGRAPHY

Nick Benton, Chung-Kil Hur, Andrew J. Kennedy, and Conor McBride. Strongly Typed Term
Representations in Coq. Journal of Automated Reasoning, 49(2):141–159, 2012. Cited on
page 110.

Albert Benveniste, Paul Le Guernic, Yves Sorel, and Michel Sorine. A denotational theory of
synchronous reactive systems. Inf. Comput., 99(2):192–230, 1992. Cited on pages 47 and 228.

Albert Benveniste, Benoıt Caillaud, and Paul Le Guernic. Compositionality in dataflow syn-
chronous languages: Specification and distributed code generation. Information and Com-
putation, 163(1):125–171, 2000. Cited on page 227.

Gérard Berry and Georges Gonthier. The esterel synchronous programming language: Design,
semantics, implementation. Science of computer programming, 19(2):87–152, 1992. Cited
on page 226.

Gérard Berry and Ellen Sentovich. Multiclock Esterel. In IFIP Workshop on Correct Hardware
Design and Verification Methods (CHARME’01), 2001. Cited on page 227.

Gérard Berry, Michael Kishinevsky, and Satnam Singh. System Level Design and Verification
Using a Synchronous Language. In International Conference on Computer-Aided Design
(ICCAD’03), 2003. Cited on page 227.

Gérard Berry. Circuit Design and Verication with Esterel v7 and Esterel Studio. In High Level
Design Validation and Test Workshop (HLVDT 2007). IEEE, 2007. Cited on page 227.

Dariusz Biernacki, Jean-Louis Colaço, Gregoire Hamon, and Marc Pouzet. Clock-directed
modular code generation for synchronous data-flow languages. In ACM Symposium on
Languages, Compilers and Tools for Embedded Systems (LCTES’08), 2008. Cited on pages 46,
47, 110, 164, 225, and 226.

G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cyclo-Static Dataflow. Signal Process-
ing, IEEE Transactions on, 44(2):397–408, Feb 1996. Cited on pages 229 and 230.

Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. First steps
in synthetic guarded domain theory: step-indexing in the topos of trees. Logical Methods in
Computer Science, 8(4), 2012. Cited on pages 107 and 234.

Aleš Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus E. Møgelberg, and Lars Birkedal.
Guarded Dependent Type Theory with Coinductive Types. In Foundations of Software Science
and Computation Structures (FoSSaCS’16). Springer, 2016. Cited on page 234.

Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hardware Design in Haskell.
In International Conference on Functional Programming (ICFP’98). ACM, 1998. Cited on
page 233.

Bruno Bodin. Analyse d’applications flot de données pour la compilation multiprocesseur. PhD
thesis, Université Pierre et Marie Curie, 2013. Cited on page 230.

[31/10/16, 16:38]

BIBLIOGRAPHY 261

Bruno Bodin, Alix Munier Kordon, and Benoît Dupont de Dinechin. Periodic schedules for
Cyclo-Static Dataflow. In ESTImedia, 2013. Cited on pages 232 and 238.

Julien Boucaron, Robert De Simone, and Jean-Vivien Millo. Formal methods for scheduling
of latency-insensitive designs. EURASIP journal on Embedded Systems, 2007(1):8–8, 2007.
Cited on page 235.

Frédéric Boussinot and Robert De Simone. The SL Synchronous Language. Software Engineer-
ing, IEEE Transactions on, 22(4):256–266, 1996. Cited on page 228.

Dmitry Bufistov, Jorge Júlvez, and Jordi Cortadella. Performance optimization of elastic systems
using buffer resizing and buffer insertion. In International Conference on Computer-Aided
Design (ICCAD’08). IEEE, 2008. Cited on page 235.

B. Cao, K. A. Ross, M. A. Kim, and S. A. Edwards. Implementing latency-insensitive dataflow
blocks. In International Conference on Formal Methods and Models for System Design (MEM-
OCODE’15). ACM, 2015. Cited on page 235.

Luca P Carloni, Kenneth L McMillan, and Alberto L Sangiovanni-Vincentelli. Theory of Latency-
Insensitive Design. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-
tions on, 20(9):1059–1076, 2001. Cited on page 235.

Josep Carmona, Jorge Júlvez, Jordi Cortadella, and Michael Kishinevsky. A scheduling strategy
for synchronous elastic designs. Fundamenta Informaticae, 108(1-2):1–21, 2011. Cited on
page 235.

Paul Caspi. Clocks in dataflow languages. Theoretical Computer Science, 94(1):125–140, 1992.
Cited on pages 47 and 224.

Paul Caspi and Nicolas Halbwachs. A functional model for describing and reasoning about
time behaviour of computing systems. Acta Informatica, 22(6):595–627, 1986. Cited on pages
31 and 47.

Paul Caspi and Marc Pouzet. Synchronous Kahn Networks. In International Conference on
Functional Programming (ICFP’96). ACM, 1996. Cited on pages 13, 17, 52, 164, 167, 188, 221,
222, 224, and 250.

Paul Caspi and Marc Pouzet. A co-iterative characterization of synchronous stream functions.
Electronic Notes in Theoretical Computer Science, 11:1–21, 1998. Cited on page 165.

Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. Lustre: A declarative lan-
guage for programming synchronous systems. In Symposium on Principles of Programming
Languages (POPL’87), 1987. Cited on pages 13, 46, and 223.

Liang-Fang Chao and Edwin Hsing-Mean Sha. Scheduling data-flow graphs via retiming and
unfolding. Transactions on Parallel and Distributed Systems, IEEE Transactions on, 8(12):
1259–1267, 1997. Cited on page 232.

[31/10/16, 16:38]

262 BIBLIOGRAPHY

James Chapman. Type theory should eat itself. Electronic Notes in Theoretical Computer
Science, 228:21–36, 2009. Cited on page 250.

Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti, Florence Plateau, and Marc
Pouzet. N-synchronous Kahn networks: a relaxed model of synchrony for real-time systems.
In Symposium on Principles of Programming Languages (POPL’06), 2006. Cited on pages 14,
46, 48, 109, 225, and 232.

Albert Cohen, Louis Mandel, Florence Plateau, and Marc Pouzet. Abstraction of Clocks in
Synchronous Data-flow Systems. In The Sixth Asian Symposium on Programming Languages
and Systems (APLAS 2008), 2008. Cited on pages 225, 226, 236, and 237.

Albert Cohen, Léonard Gérard, and Marc Pouzet. Programming parallelism with futures in
lustre. In International Conference on Embedded Software (EMSOFT’12). ACM, 2012. Cited
on page 246.

Jean-Louis Colaço and Marc Pouzet. Type-based Initialization Analysis of a Synchronous
Data-flow Language. In Synchronous Languages, Applications, and Programming, volume 65.
Electronic Notes in Theoretical Computer Science, 2002. Cited on page 224.

Jean-Louis Colaço and Marc Pouzet. Clocks as First Class Abstract Types. In International
Conference on Embedded Software (EMSOFT’03). ACM, 2003. Cited on page 224.

Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. A Conservative Extension of Synchronous
Data-flow with State Machines. In ACM International Conference on Embedded Software
(EMSOFT’05), Jersey city, New Jersey, USA, September 2005. Cited on page 224.

Jean-Louis Colaço, Grégoire Hamon, and Marc Pouzet. Mixing Signals and Modes in Syn-
chronous Data-flow Systems. In ACM International Conference on Embedded Software
(EMSOFT’06), Seoul, South Korea, October 2006. Cited on page 224.

Frederic Commoner, Anatol W. Holt, Shimon Even, and Amir Pnueli. Marked directed graphs.
Journal of Computer and System Sciences, 5(5):511–523, 1971. Cited on page 230.

Thierry Coquand, Carl Gunter, and Glynn Winskel. Domain theoretic models of polymorphism.
Information and Computation, 81(2):123–167, 1989. Cited on pages 195 and 196.

Jordi Cortadella, Mike Kishinevsky, and Bill Grundmann. Self: Specification and design of
synchronous elastic circuits. In International Workshop on Timing Issues in the Specification
and Synthesis of Digital Systems (TAU’06). IEEE, 2006. Cited on page 235.

Philippe Coussy, Daniel D Gajski, Michael Meredith, and Andres Takach. An Introduction to
High-Level Synthesis. IEEE Design & Test of Computers, 26(4):8–17, 2009. Cited on page 235.

Pascal Cuoq and Marc Pouzet. Modular Causality in a Synchronous Stream Language. In
European Symposium on Programming (ESOP’01). Springer, 2001. Cited on pages 13, 64,
and 224.

[31/10/16, 16:38]

BIBLIOGRAPHY 263

Gwenaël Delaval, Léonard Gérard, Adrien Guatto, Hervé Marchand, Cédric Pasteur, Marc
Pouzet, and Éric Rutten. The Heptagon synchronous language. http://heptagon.gforge.
inria.fr, 2012. Cited on pages 188 and 242.

Alain Demeure, Anne Lafage, Emmanuel Boutillon, Didier Rozzonelli, Jean-Claude Dufourd,
and Jean-Louis Marro. Array-OL: Proposition d’un formalisme tableau pour le traitement de
signal multi-dimensionnel. In 15° Colloque sur le traitement du signal et des images. Groupe
d’Etudes du Traitement du Signal et des Images (GRESTI), 1995. Cited on page 230.

Thomas Ehrhard. A categorical semantics of constructions. In Symposium on Logic in Computer
Science (LICS’88). IEEE, 1988. Cited on page 195.

Johan Eker and Jorn W. Janneck. CAL language report: Specification of the CAL actor language,
2003. Cited on page 230.

Johan Eker, Jorn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig, Sonia Sachs,
Yuhong Xiong, and Stephen Neuendorffer. Taming Heterogeneity - the Ptolemy approach.
Proceedings of the IEEE, 91(1):127–144, 2003. Cited on page 230.

Conal Elliott and Paul Hudak. Functional Reactive Animation. In International Conference on
Functional Programming (ICFP’97). ACM, 1997. Cited on page 232.

Esterel Technologies. The Esterel v7 Reference Manual, 2005. Version v7_30 - initial IEEE
standardization proposal. Cited on pages 16, 110, 226, and 227.

Esterel Technologies. SCADE Suite. http://www.esterel-technologies.com/products/
scade-suite/, 2015. Cited on pages 14 and 188.

Paul Feautrier. Some efficient solutions to the affine scheduling problem. I. One-dimensional
time. International journal of parallel programming, 21(5):313–347, 1992a. Cited on
page 230.

Paul Feautrier. Some efficient solutions to the affine scheduling problem. Part II. Multidimen-
sional time. International journal of parallel programming, 21(6):389–420, 1992b. Cited on
page 230.

Paul Feautrier. Scalable and structured scheduling. International Journal of Parallel Program-
ming, 2006. Cited on page 230.

Matthias Felleisen. On the expressive power of programming languages. In European Sympo-
sium on Programming (ESOP’90). Springer, 1990. Cited on page 175.

Julien Forget, Fréderic Boniol, Daniel Lesens, and Claire Pagetti. A Multi-Periodic Synchronous
Data-Flow Language. In Symposium on High-Assurance Systems Engineering (HASE’08).
IEEE, 2008. Cited on pages 225 and 246.

[31/10/16, 16:38]

http://heptagon.gforge.inria.fr
http://heptagon.gforge.inria.fr
http://www.esterel-technologies.com/products/scade-suite/
http://www.esterel-technologies.com/products/scade-suite/

264 BIBLIOGRAPHY

Peter Gammie. Synchronous digital circuits as functional programs. ACM Computing Surveys,
46(2):21:1–21:27, November 2013. ISSN 0360-0300. doi: 10.1145/2543581.2543588. URL
http://doi.acm.org/10.1145/2543581.2543588. Cited on page 233.

Mike Gemünde, Jens Brandt, and Klaus Schneider. Clock refinement in imperative synchronous
languages. EURASIP Journal on Embedded Systems, 2013(1):1–21, 2013. Cited on pages 47
and 228.

Léonard Gérard, Adrien Guatto, Cédric Pasteur, and Marc Pouzet. A Modular Memory Optimiza-
tion for Synchronous Data-flow Languages: Application to Arrays in a Lustre Compiler. In
International Conference on Languages, Compilers, Tools and Theory for Embedded Systems
(LCTES’12). ACM, 2012. Cited on pages 16 and 239.

Dan R. Ghica. Geometry of Synthesis: A Structured Approach to VLSI Design. In Symposium
on Principles of Programming Languages (POPL’07). ACM, 2007. Cited on pages 17, 166,
and 234.

Dan R. Ghica and Mohamed N. Menaa. On the compositionality of round abstraction. In
CONCUR 2010-Concurrency Theory, pages 417–431. Springer, 2010. Cited on page 166.

Dan R. Ghica and Alex Smith. Geometry of Synthesis II: From Games to Delay-Insensitive
Circuits. In Mathematical Foundations of Programming Semantics (MFPS’10). Elsevier, 2010.
Cited on pages 166 and 234.

Dan R. Ghica and Alex Smith. Geometry of Synthesis III: Resource Management Through Type
Inference. In Symposium on Principles of Programming Languages (POPL’11). ACM, 2011.
Cited on pages 166 and 234.

Dan R. Ghica, Alex Smith, and Satnam Singh. Geometry of Synthesis IV: Compiling Affine
Recursion Into Static Hardware. In International Conference on Functional Programming
(ICFP’11). ACM, 2011. Cited on pages 166 and 234.

Jean-Yves Girard. Linear Logic. Theoretical Computer Science, 50(1):1 – 101, 1987. Cited on
pages 58, 59, 111, and 154.

Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Bounded Linear Logic: a Modular Ap-
proach to Polynomial-time Computability. Theoretical Computer Science, 97(1):1–66, 1992.
Cited on page 167.

Alain Girault. A survey of automatic distribution method for synchronous programs. In
International Workshop on Synchronous Languages, Applications and Programs (SLAP’05),
2005. Cited on page 246.

Georges Gonthier. Sémantiques et modèles d’exécution des langages réactifs synchrones appli-
cation à Esterel. PhD thesis, Université Paris-Sud, 1988. Cited on page 248.

[31/10/16, 16:38]

http://doi.acm.org/10.1145/2543581.2543588

BIBLIOGRAPHY 265

Michael I. Gordon. Compiler techniques for scalable performance of stream programs on
multicore architectures. PhD thesis, Massachusetts Institute of Technology, 2010. Cited on
page 229.

Léonard Gérard. Programmer le parallélisme avec des futures en Heptagon un langage synchrone
flot de données et étude des réseaux de Kahn en vue d’une compilation synchrone. PhD thesis,
Université Paris-Sud, 2013. Cited on pages 47 and 249.

N. Halbwachs, P. Raymond, and C. Ratel. Generating efficient code from data-flow programs.
In Third International Symposium on Programming Language Implementation and Logic
Programming, Passau (Germany), August 1991. Cited on pages 164 and 224.

Nicolas Halbwachs. Modelling and analysis of timed computer system behaviour. Habilitation
à Diriger des Recherches, Institut National Polytechnique de Grenoble ; Université Joseph-
Fourier, 1984. Cited on page 31.

Nicolas Halbwachs. A Synchronous Language at Work: the Story of Lustre. In International
Conference on Formal Methods and Models for Co-Design (MEMOCODE’05). IEEE, 2005.
Cited on pages 16, 47, and 110.

Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. Synchronous Observers and the
Verification of Reactive Systems. In International Conference on Algebraic Methodology and
Software Technology (AMAS’93). Springer, 1994. Cited on page 154.

Grégoire Hamon and Marc Pouzet. Modular Resetting of Synchronous Data-flow Programs. In
International Symposium on Principles and Practice of Declarative Programming (PPDP’00).
ACM, 2000. Cited on page 240.

IEEE. VHDL Register Transfer Level (RTL) Synthesis. IEEE Std 1076.6-1999, 2000. Cited on
page 162.

IEEE. Verilog Hardware Description Language. IEEE Std 1364-2005 (Revision of IEEE Std
1364-2001), 2006. Cited on page 162.

IEEE. VHDL Language Reference Manual. IEEE Std 1076-2008 (Revision of IEEE Std 1076-2002),
2009. Cited on page 162.

Bart Jacobs. Categorical Logic and Type Theory. Elsevier, 1999. Cited on page 199.

Alan Jeffrey. LTL types FRP: Linear-Time Temporal Logic Propositions as Types, Proofs as
Functional Reactive Programs. In Programming Languages meets Program Verification
(PLPV’12). ACM, 2012. Cited on page 233.

Wolfgang Jeltsch. Towards a Common Categorical Semantics for Linear-Time Temporal Logic
and Functional Reactive Programming. In Mathematical Foundations of Programming
Semantics (MFPS’XXVIII). Elsevier, 2012. Cited on page 233.

[31/10/16, 16:38]

266 BIBLIOGRAPHY

Geraint Jones and Mary Sheeran. Deriving bit-serial circuits in Ruby. In VLSI’91, 1991. Cited
on page 233.

André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. Mathematical
Proceedings of the Cambridge Philosophical Society, 119:447–468, 4 1996. Cited on pages 17
and 165.

Gilles Kahn. The semantics of a simple language for parallel programming. In Information
Processing Congress (IFIP’74). IFIP, 1974. Cited on pages 12, 19, and 46.

R. Karp and R. Miller. Properties of a model for parallel computations: Determinacy, ter-
mination, queueing. SIAM Journal on Applied Mathematics, 14(6):1390–1411, 1966. doi:
10.1137/0114108. Cited on pages 47 and 230.

Neelakantan R Krishnaswami. Higher-Order Functional Reactive Programming without Space-
time Leaks. In International Conference on Functional Programming (ICFP’13). ACM, 2013.
Cited on pages 233 and 250.

Neelakantan R. Krishnaswami and Nick Benton. Ultrametric Semantics of Reactive Programs.
In Annual Symposium on Logic in Computer Science (LICS’11). IEEE, 2011. Cited on pages
107 and 234.

Peter J Landin. The mechanical evaluation of expressions. The Computer Journal, 6(4):308–320,
1964. Cited on page 57.

Nhat Minh Lê, Adrien Guatto, Albert Cohen, and Antoniu Pop. Correct and Efficient Bounded
FIFO Queues. In Computer Architecture and High Performance Computing (SBAC-PAD’13).
IEEE, 2013. Cited on page 246.

Paul Le Guernic, Thierry Gautier, Michel Le Borgne, and Claude Le Maire. Programming
real-time applications with SIGNAL. Proceedings of the IEEE, 79(9):1321–1336, 1991. Cited
on pages 19 and 226.

Hervé Le Verge, Christophe Mauras, and Patrice Quinton. The ALPHA language and its use for
the design of systolic arrays. Journal of VLSI signal processing systems for signal, image and
video technology, 3(3):173–182, 1991. Cited on page 230.

Edward A. Lee and David G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,
75(9):1235–1245, 1987. Cited on pages 18, 47, 229, and 230.

Charles E. Leiserson and James B. Saxe. Retiming Synchronous Circuitry. Algorithmica, 1991.
Cited on page 16.

Frédéric Mallet. Clock Constraint Specification Language: Specifying Clock Constraints with
UML/MARTE. Innovations in Systems and Software Engineering, 4(3):309–314, 2008. Cited
on page 232.

[31/10/16, 16:38]

BIBLIOGRAPHY 267

Frédéric Mallet, Julien DeAntoni, Charles André, and Robert De Simone. The clock constraint
specification language for building timed causality models. Innovations in Systems and
Software Engineering, 6(1-2):99–106, 2010. Cited on page 232.

Louis Mandel and Florence Plateau. Scheduling and buffer sizing of n-synchronous systems:
Typing of ultimately periodic clocks in Lucy-n. In Mathematics of Program Construction
(MPC’12). Springer, 2012. Cited on pages 225, 226, 236, and 237.

Louis Mandel and Marc Pouzet. ReactiveML: a reactive extension to ML. In International
Symposium on Principles and Practice of Declarative Programming (PPDP’05). ACM, 2005.
Cited on pages 110 and 228.

Louis Mandel, Florence Plateau, and Marc Pouzet. Lucy-n: a n-Synchronous Extension of
Lustre. In Mathematics of Program Construction (MPC’10). Springer, 2010. Cited on pages
14, 46, 109, 110, 188, 225, and 226.

Louis Mandel, Florence Plateau, and Marc Pouzet. Static Scheduling of Latency Insensitive
Designs with Lucy-n. In Formal Methods in Computer Aided Design (FMCAD’11), 2011. Cited
on page 235.

Louis Mandel, Cédric Pasteur, and Marc Pouzet. Time refinement in a functional synchronous
language. In International Symposium on Principles and Practice of Declarative Programming
(PPDP’13). ACM, 2013. Cited on pages 47 and 228.

Paul-André Melliès and Jérôme Vouillon. Recursive polymorphic types and parametricity in an
operational framework. In Symposium on Logic in Computer Science (LICS’05). IEEE, 2005.
Cited on page 158.

Jean-Vivien Millo and Robert De Simone. Periodic scheduling of marked graphs using balanced
binary words. Theoretical Computer Science, 458:113–130, 2012. Cited on page 235.

Lionel Morel. Efficient compilation of array iterators for Lustre. In International Workshop on
Synchronous Languages, Applications, and Programming (SLAP’02). Elsevier, 2002. Cited on
page 16.

Alan Mycroft and Richard Sharp. A Statically Allocated Parallel Functional Language. In
International Conference on Automata, Languages and Programming (ICALP’00). Springer,
2000. Cited on page 234.

Hiroshi Nakano. A Modality for Recursion. In Symposium on Logic in Computer Science
(LICS’00). IEEE, 2000. Cited on page 234.

Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive programming,
continued. In SIGPLAN Haskell Workshop (Haskell’02). ACM, 2002. Cited on page 233.

Marc Galceran Oms, Jordi Cortadella, and Michael Kishinevsky. Symbolic performance analysis
of elastic systems. In International Conference on Computer-Aided Design (ICCAD’10). IEEE,
2010. Cited on page 235.

[31/10/16, 16:38]

268 BIBLIOGRAPHY

Keshav K. Parhi and David G. Messerschmitt. Static Rate-Optimal Scheduling of Iterative Data-
Flow Programs via Optimum Unfolding. Computer, IEEE Transactions on, 40(2):178–195,
1991. Cited on pages 16, 47, and 232.

Cédric Pasteur. Raffinement temporel et exécution parallèle dans un langage synchrone fonc-
tionnel. PhD thesis, Université Pierre et Marie Curie, 2013. Cited on page 110.

Benjamin C Pierce. Types and programming languages. MIT press, 2002. Cited on page 188.

Andrew M. Pitts. Relational Properties of Domains. Information and Computation, 127(2):66 –
90, 1996. Cited on page 25.

Andrew M. Pitts. Parametric Polymorphism and Operational Equivalence. Mathematical
Structures in Computer Science, 10(3):321–359, 2000. Cited on page 154.

Florence Plateau. Modèle n-synchrone pour la programmation de réseaux de Kahn à mémoire
bornée. PhD thesis, Université Paris-Sud, 2010. Cited on pages 20, 31, 32, 41, 47, 50, 109, 188,
226, 236, and 238.

Dumitru Potop-Butucaru, Benoît Caillaud, and Albert Benveniste. Concurrency in synchronous
systems. Formal Methods in System Design, 28(2):111–130, 2006. Cited on page 227.

Dumitru Potop-Butucaru, Stephen A Edwards, and Gérard Berry. Compiling Esterel, volume 86.
Springer Science & Business Media, 2007. Cited on pages 228 and 240.

Marc Pouzet. Lucid Synchrone: un langage synchrone d’ordre supérieur. Paris, France, 14
novembre 2002. Habilitation à diriger les recherches. Cited on page 53.

Marc Pouzet. Lucid Synchrone, version 3. Tutorial and reference manual. Université Paris-Sud,
LRI, April 2006. Cited on pages 46, 225, and 226.

Marc Pouzet and Pascal Raymond. Modular static scheduling of synchronous data-flow net-
works. Design Automation for Embedded Systems, 14(3):165–192, 2010. Cited on page 249.

Pascal Raymond. Compilation séparée de programmes lustre. Technical report, Projet SPEC-
TRE, IMAG, july 1988. Cited on pages 248 and 249.

Pascal Raymond. Compilation efficace d’un langage déclaratif synchrone : Le générateur de
code Lustre-V3. PhD thesis, Institut National Polytechnique de Grenoble, 1991. Cited on
pages 110 and 164.

John C. Reynolds. Definitional interpreters for higher-order programming languages. In
Reprinted from the proceedings of the 25th ACM National Conference, pages 717–740. ACM,
1972. Cited on page 57.

John C. Reynolds. Theories of Programming Languages. Cambridge University Press, 1996.
Cited on page 25.

[31/10/16, 16:38]

BIBLIOGRAPHY 269

John C. Reynolds. The Meaning of Types — From Intrinsic to Extrinsic Semantics. Technical
report, University of Aarhus, Department of Computer Science, BRICS, 2000. Cited on
page 110.

Frédéric Rocheteau. Extension of the Lustre language and application to hardware design: the
Lustre-v4 language and the Pollux system. PhD thesis, Institut National Polytechnique de
Grenoble, 1992. Cited on pages 164 and 227.

Frédéric Rocheteau and Nicolas Halbwachs. Implementing Reactive Programs on Circuits: a
Hardware Implementation of LUSTRE. In Real-Time: Theory in Practice (REX Workshop’92),
1992. Cited on page 164.

Dana S. Scott. A Type-theoretical Alternative to ISWIM, CUCH, OWHY. unpublished paper
from 1969 later published in Theoretical Computer Science, 121(1-2):411–440, December
1969. ISSN 0304-3975. Cited on pages 20 and 25.

Ellen Sentovich, Horia Toma, and Gérard Berry. Latch optimization in circuits generated from
high-level descriptions. In International Conference on Computer Assisted Design (ICCAD’96),
1996. Cited on page 227.

Mary Sheeran. Slowdown and Retiming in Ruby. In IFIP Workshop on The Fusion of Hardware
Design and Verification, 1988. Cited on page 234.

Mary Sheeran. Hardware Design and Functional Programming: a Perfect Match. Journal of
Universal Computer Science, 2005. Cited on page 233.

Thomas Streicher. Domain-Theoretic Foundations of Functional Programming. World Scien-
tific, 2006. Cited on pages 24 and 25.

Bart D Theelen, Marc CW Geilen, Twan Basten, Jeroen PM Voeten, Stefan Valentin Gheorghita,
and Sander Stuijk. A scenario-aware data flow model for combined long-run average and
worst-case performance analysis. In International Conference on Formal Methods and Models
for Co-Design (MEMOCODE’06). IEEE, 2006. Cited on page 230.

William Thies. Language and Compiler Support for Stream Programs. PhD thesis, Mas-
sachusetts Institute of Technology, 2009. Cited on page 229.

William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A Language for Stream-
ing Applications. In Compiler Construction, pages 179–196. Springer, 2002. Cited on page 229.

Stavros Tripakis, Dai Bui, Marc Geilen, Bert Rodiers, and Edward A Lee. Compositionality
in synchronous data flow: Modular code generation from hierarchical sdf graphs. ACM
Transactions on Embedded Computing Systems (TECS), 12(3):83, 2013. Cited on page 231.

Jaap Van Oosten. Realizability: an introduction to its categorical side, volume 152. Elsevier,
2008. Cited on page 111.

[31/10/16, 16:38]

270 BIBLIOGRAPHY

Jean E. Vuillemin. On circuits and numbers. Computers, IEEE Transactions on, 43:868–879,
1994. Cited on page 160.

William W. Wadge and Edward A. Ashcroft. LUCID, the Dataflow Programming Language.
Academic Press Professional, Inc., San Diego, CA, USA, 1985. Cited on page 229.

Zhanyong Wan, Walid Taha, and Paul Hudak. Event-driven FRP. In Practical Aspects of
Declarative Languages (PADL’02). Springer, 2002. Cited on page 233.

Joe B. Wells. The Essence of Principal Typings. In International Conference on Automata,
Languages and Programming (ICALP’02). Springer, 2002. Cited on page 247.

Glynn Winskel. The Formal Semantics of Programming Languages. The MIT Press, 1993. Cited
on pages 25 and 28.

Ling Yin, Jing Liu, Zuohua Ding, Frédéric Mallet, and Robert De Simone. Schedulability Analysis
with CCSL Specifications. In Asia-Pacific Software Engineering Conference (APSEC’13). IEEE,
2013. Cited on page 232.

Herve Yviquel, Antoine Lorence, Khaled Jerbi, Gildas Cocherel, Alexandre Sanchez, and Mick-
ael Raulet. Orcc: Multimedia Development Made Easy. In International Conference on
Multimedia (MM’13). ACM, 2013. Cited on page 230.

[31/10/16, 16:38]

Résumé

Cette thèse traite de la conception et implémentation
d’un langage de programmation pour les systèmes de
traitement de flux en temps réel, comme l’encodage
vidéo. Le modèle des réseaux de Kahn est bien adapté
à ce domaine et y est couramment utilisé. Dans ce
modèle, un programme consiste en un ensemble de
processus parallèles communicant à travers des files
mono-producteur, mono-consommateur. La force du
modèle réside en son déterminisme.

Les langages synchrones fonctionnels comme Lustre
sont dédiés aux systèmes embarqués critiques. Un pro-
gramme Lustre définit un réseau de Kahn synchrone
qui peut être exécuté avec des files bornées et sans blo-
cage. Cette propriété est garantie par un système de
types dédié, le calcul d’horloge, qui établit une échelle
de temps globale à un programme. Cette échelle de
temps globale est utilisée pour définir les horloges, sé-
quences booléennes indiquant pour chaque file, et à
chaque pas de temps, si un processus produit ou con-
somme une donnée. Cette information sert non seule-
ment à assurer la synchronie mais également à générer
du logiciel ou matériel à état fini.

Nous proposons et étudions les horloges entières, une
généralisation des horloges booléennes autorisant des
entiers naturels arbitrairement grands. Les horloges
entières décrivent la production ou consommation de
plusieurs valeurs depuis une même file au cours d’un
instant. Nous les utilisons pour définir la construc-
tion d’échelle de temps locale, qui peut masquer des
pas de temps cachés par un sous-programme au con-
texte englobant.

Ces principes sont intégrés à un calcul d’horloge pour
un langage fonctionnel d’ordre supérieur. Nous étu-
dions ses propriétés et prouvons en particulier que les
programmes bien typés ne bloquent pas. Nous com-
pilons les programmes typés vers des circuits numéri-
ques synchrones en adaptant le schéma de génération
de code dirigé par les horloges de Lustre. L’information
de typage contrôle certains compromis entre temps et
espace dans les circuits générés.

Mots-clés

Langages de programmation fonctionnels; langages
de programmation synchrones; systèmes de types;
compilation; circuits numériques synchrones.

Abstract

This thesis addresses the design and implementation
of a programming language for real-time streaming ap-
plications, such as video decoding. The model of Kahn
process networks is a natural fit for this area and has
been used extensively. In this model, a program consists
in a set of parallel processes communicating via single
reader, single writer queues. The strength of the model
lies in its determinism.

Synchronous functional languages such as Lustre are
dedicated to critical embedded systems. A Lustre pro-
gram defines a synchronous Kahn process network, that
is, which can be executed using finite queues and with-
out deadlocks. This is enforced by a dedicated type sys-
tem, the clock calculus, which establishes a global time
scale throughout a program. The global time scale is
used to define clocks: per-queue boolean sequences in-
dicating, for each time step, whether a process produces
or consumes a token in the queue. This information is
used both for enforcing synchrony and for generating
finite-state software or hardware.

We propose and study integer clocks, a generalization
of boolean clocks featuring arbitrarily big natural num-
bers. Integer clocks model the production or consump-
tion of several values from the same queue in the course
of a time step. We then rely on integer clocks to define
the local time scale construction, which may hide time
steps performed by a sub-program from the surround-
ing context.

These principles are integrated into a clock calculus for
a higher-order functional language. We study its prop-
erties, proving among other results that well-typed pro-
grams do not deadlock. We adjust the clock-directed
code generation scheme of Lustre to generate finite-state
digital synchronous circuits from typed programs. The
typing information controls certain trade-offs between
time and space in the generated circuits.

Keywords

Functional programming languages; synchronous
programming languages; type systems; compilation;
digital synchronous circuits.

Numéro national
de thèse : 70793

	Contents
	Introduction
	Real-Time Stream Processing
	Kahn Process Networks and Synchrony
	Synchrony and Performance
	Contributions
	Outline of the Thesis

	Streams
	Domains
	Streams
	Segments
	An Informal Metalanguage
	Segmented Streams and Clocks
	Buffering and Clock Adaptability
	Rescaling and Clock Composition
	Properties of Clocks
	Clocked Streams
	Ultimately Periodic Clocks
	Bibliographic notes

	Language
	Syntax and Untyped Semantics
	Type System
	Typed Semantics
	Metatheoretical Properties
	Discussion
	Bibliographic notes

	Compilation
	Overview
	A Machine Construction Kit
	Linear Higher-Order Machines
	The Translation
	From Machines to Circuits
	Bibliographic Notes

	Extensions
	Bounded Linear Types
	Nodes
	Clock Polymorphism
	Dependent Clock Types

	Perspectives
	Related Work
	Future Work
	Conclusion

	Index
	Semantics
	Judgments
	Interpretations

	Figures
	Bibliography

