
Deterministic Parallel Programming Exercises
MPRI 2.37.1

February 27, 2020

1 MergeShuffle
Bacher, Bodini, Hollender, and Lumbroso have proposed the following subroutine for producing a
randomly shuffled union of two randomly shuffled arrays.1

// Shuffle A[lo, mid) and A[mid, hi) into A[lo, hi).
void shuffle_halves(int *A, size_t lo, size_t mid, size_t hi) {

size_t i = lo, j = mid;
while (1) {

if (flip_coin()) {
if (j == hi) break;
swap(A[i], A[j++]);

} else {
if (i == j) break;

}
i++;

}
for (; i < hi; i++)

swap(A[i], A[rand(i - lo + 1)]);
}

Questions.
1. Use this routine to implement a parallel shuffling algorithm in Cilk.

2. State the work and span of your proposal. Is it work-efficient?

3. Propose a coarsened version of your algorithm.

2 Matrix Multiplication
Let A and B be n×n matrices, with n a power of 2. The equation below expresses their product AB
in terms of four submatrices Aij and Bij .[

A11 A12
A21 A22

]
·
[

B11 B12
B21 B22

]
=

[
A11B11 A11B12
A21B11 A21B12

]
+

[
A12B21 A12B22
A22B21 A22B22

]
Questions.

1. Implement a parallel matrix multiplication algorithm using this decomposition.

2. State the work and span of your algorithm. Is it work-efficient?

3. Discuss the space complexity of your implementation. Do you see an alternative implemen-
tation with lower space usage? How would its span compare to the previous one?

1https://arxiv.org/abs/1508.03167

1

https://arxiv.org/abs/1508.03167

3 Spanning Forests
A spanning forest for an undirected graph G = (V, E) is a set F ⊆ E such that (V, F) is a maximal
acyclic subgraph of G. If the graph comes equipped with edge weights w : E → N, one may want F
to be a minimum spanning forest, i.e., one minimizing

∑
f∈F w(f).

Kruskal’s algorithm computes a minimum spanning forest in a greedy manner, using a disjoint-
set data structure to represent its result. The algorithm runs in O(|E| log |E|) time.2

disjoint_set_t *kruskal(graph_t *G) {
disjoint_set_t *F = ds_make(number_of_nodes(G));
sort_edges_by_weight(G); /* Useless when G is not weighted. */
for (edge_t *e = first_edge(G); e != last_edge(G); e = next_edge(G, e)) {

int u = ds_find(F, e->u), v = ds_find(F, e->v);
if (u != v) {
/* Links the set represented by u to the set represented by v, keeping the

representative of v as the representative of the resulting union. */
ds_link(F, u, v);

}
}
return F;

}

The goal of this exercise is to sketch internally-deterministic versions of spanning forest com-
putations, using the deterministic-reservations framework to parallelize Kruskal’s algorithm.

For each algorithm, you should provide at least the two functions bool reserve(int i)
and bool commit(int i) expected by the deterministic-reservations framework, as well as any
auxiliary state and initialization code required for their operation. The reserve(i) function
should return false to discard iteration i, never calling commit(i); the commit(i) function
should return true to mark iteration i as processed, and false to retry it next round.

These parallel implementations have to make assumptions on the commutativity of the oper-
ations acting upon the disjoint-set data structure. You may assume the following:

• calls to ds_find commute with each other,

• calls to ds_link(F, y1, x1) and ds_link(F, y2, x2) commute when y1 != y2,

• calls to ds_link(F, y1, x1) and ds_find(F, x2) commute when x1 == x2.

Questions.

1. Propose a parallel implementation for the unweighted case. It does not have to return the
same spanning forest as the sequential algorithm.
Hint: you may want to use the write_max() primitive.

2. Propose a parallel implementation for the weighted case. It does not have to return the same
spanning forest as the sequential algorithm, but should return a minimum spanning forest.
You may assume as given an efficient parallel comparison sort.

3. Propose an implementation of the disjoint-set data structure that respects the commutativity
properties stated above. Its operations do not have to run in better than linear time.

2We assume a general comparison sort is required. Special-purpose sorts, when relevant, can decrease running
time to O(|E| α(|V |)), where α is the inverse of the Ackermann function.

2

	MergeShuffle
	Matrix Multiplication
	Spanning Forests

