
Multicore Programming – MPRI 2.37.1

Deterministic Parallel Programming

Adrien Guatto
adrien@guatto.org

IRIF

2019-2020
https://www.irif.fr/~guatto/teaching/multicore/

mailto:adrien@guatto.org
https://www.irif.fr/~guatto/teaching/multicore/

Why Parallel Programming?

In an ideal world, software should be:
1 correct — doing the thing it has been designed to do,
2 maintainable — easy to modify, evolve, and port to new systems,
3 performant — as fast as possible.

Our main tool to achieve the first two goals is abstraction:
hardware-agnostic programming languages,
modular program construction (via modules, objects, packages…).

However, the third goal requires staying reasonably close to the hardware.

A not-so-innocent question
What does high-performance hardware look like these days?

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Deterministic Parallelism ~guatto/teaching/multicore 2 / 81

Why Parallel Programming?

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 10

3
)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2017 by K. Rupp

Year

42 Years of Microprocessor Trend Data

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Deterministic Parallelism ~guatto/teaching/multicore 3 / 81

Parallel Programming Methodologies
There are many approaches, some competing, some complementary, to the
construction of parallel software. Here are some examples:

Shared-memory programming.
Classic system programming with OS threads, locks, semaphores, etc.

Add weak memory models for a new twist! See Luc’s part of the course.
Deterministic parallelism à la Cilk, OpenMP, Intel TBB, etc.

Message passing.
Various kind of actor languages and libraries, e.g., Erlang or Akka.
Cluster and grid computing, e.g. with MPI.

Dataflow computing.
Futures, promises, I-structures, Kahn networks (cf. MPRI 2.23.1).

Automatic parallelization of sequential code.
Dependence analysis, polytope model.

This part of the course
We will focus on deterministic parallel programming in Cilk.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Deterministic Parallelism ~guatto/teaching/multicore 4 / 81

Parallel Programming Methodologies
There are many approaches, some competing, some complementary, to the
construction of parallel software. Here are some examples:

Shared-memory programming.
Classic system programming with OS threads, locks, semaphores, etc.

Add weak memory models for a new twist! See Luc’s part of the course.
Deterministic parallelism à la Cilk, OpenMP, Intel TBB, etc.

Message passing.
Various kind of actor languages and libraries, e.g., Erlang or Akka.
Cluster and grid computing, e.g. with MPI.

Dataflow computing.
Futures, promises, I-structures, Kahn networks (cf. MPRI 2.23.1).

Automatic parallelization of sequential code.
Dependence analysis, polytope model.

This part of the course
We will focus on deterministic parallel programming in Cilk.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Deterministic Parallelism ~guatto/teaching/multicore 4 / 81

Deterministic Parallel Programming: Outline

Parallel
Programming

Systems and
Computer

Architecture

Programming
LanguagesAlgorithms

Computational
Complexity

1 [Jan. 16] Programming task-parallel algorithms, an introduction.
2 [Jan. 30] Implementing task parallelism on multicore processors.
3 [Feb. 20] Formalizing task parallelism, its semantics and its cost.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Deterministic Parallelism ~guatto/teaching/multicore 5 / 81

Lecture 1

Programming Task-Parallel Algorithms: An Introduction

Back to Basics: MergeSort

void mergesort_seq(int *B, int *A,
size_t lo, size_t hi) {

switch (range_size(lo, hi)) {
case 0: break;
case 1: B[lo] = A[lo]; break;
default:
{

size_t mid = midpoint(lo, hi);
mergesort_seq(A, B, lo, mid);
mergesort_seq(A, B, mid, hi);
merge_seq(B + lo, A, lo, mid, A, mid, hi);
break;

}
}

}

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 7 / 81

MergeSort Performance Results

Setup
All our experiments run on ginette:

40-core Intel Xeon E5-4640 (2.2 Ghz) with 2-way SMT,
750 GB of memory,
GNU/Linux Debian 4.9 with GCC 6.3 and glibc 2.24.

Sorting a 16 MB file of random 32-bit integers with this naive merge sort
takes ~2.47 s on ginette. Can we exploit parallelism to do better?

We are simple people: let’s use pthreads to parallelize the divide step.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 8 / 81

MergeSort Performance Results

Setup
All our experiments run on ginette:

40-core Intel Xeon E5-4640 (2.2 Ghz) with 2-way SMT,
750 GB of memory,
GNU/Linux Debian 4.9 with GCC 6.3 and glibc 2.24.

Sorting a 16 MB file of random 32-bit integers with this naive merge sort
takes ~2.47 s on ginette. Can we exploit parallelism to do better?

We are simple people: let’s use pthreads to parallelize the divide step.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 8 / 81

MergeSort Performance Results

Setup
All our experiments run on ginette:

40-core Intel Xeon E5-4640 (2.2 Ghz) with 2-way SMT,
750 GB of memory,
GNU/Linux Debian 4.9 with GCC 6.3 and glibc 2.24.

Sorting a 16 MB file of random 32-bit integers with this naive merge sort
takes ~2.47 s on ginette. Can we exploit parallelism to do better?

We are simple people: let’s use pthreads to parallelize the divide step.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 8 / 81

Naive Pthreaded MergeSort: Divide Step

size_t mid = midpoint(lo, hi);
// Do one recursive call in its own thread.
pa->A = A;
pa->B = B;
pa->lo = lo;
pa->hi = mid;
if (pthread_create(&t, NULL,

mergesort_par_stub, pa))
die("pthread_create()");

// Do the second call sequentially.
mergesort_par(A, B, mid, hi);
// Wait for the spawned thread to terminate.
if (pthread_join(t, NULL))
die("pthread_join()");

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 9 / 81

Not so Fast

Good, let’s try sorting a large-ish array, e.g., 64 MB.

aguatto@ginette$./msort-par-pthread.bin -i /tmp/16777216
pthread_create(): Cannot allocate memory
pthread_create(): Cannot allocate memory
pthread_create(): Cannot allocate memory
pthread_create(): Cannot allocate memory
pppthread_create(): Cannot allocate memory
tpthread_create(): Cannot allocate memory
ththread_create(): Cannot allocate memory
pthread_create(): Cannot allocate memory

On ginette, the failure occurs nondeterministically after creating around
50k pthreads. How could we try to fix this?

Create fewer pthreads. But how do we know which ones to create?
Lower their cost, e.g., shrink their stacks. Not enough here, I tried!

We will rather use higher-level abstractions.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 10 / 81

Not so Fast

Good, let’s try sorting a large-ish array, e.g., 64 MB.

aguatto@ginette$./msort-par-pthread.bin -i /tmp/16777216
pthread_create(): Cannot allocate memory
pthread_create(): Cannot allocate memory
pthread_create(): Cannot allocate memory
pthread_create(): Cannot allocate memory
pppthread_create(): Cannot allocate memory
tpthread_create(): Cannot allocate memory
ththread_create(): Cannot allocate memory
pthread_create(): Cannot allocate memory

On ginette, the failure occurs nondeterministically after creating around
50k pthreads. How could we try to fix this?

Create fewer pthreads. But how do we know which ones to create?
Lower their cost, e.g., shrink their stacks. Not enough here, I tried!

We will rather use higher-level abstractions.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 10 / 81

Not so Fast

Good, let’s try sorting a large-ish array, e.g., 64 MB.

aguatto@ginette$./msort-par-pthread.bin -i /tmp/16777216
pthread_create(): Cannot allocate memory
pthread_create(): Cannot allocate memory
pthread_create(): Cannot allocate memory
pthread_create(): Cannot allocate memory
pppthread_create(): Cannot allocate memory
tpthread_create(): Cannot allocate memory
ththread_create(): Cannot allocate memory
pthread_create(): Cannot allocate memory

On ginette, the failure occurs nondeterministically after creating around
50k pthreads. How could we try to fix this?

Create fewer pthreads. But how do we know which ones to create?
Lower their cost, e.g., shrink their stacks. Not enough here, I tried!

We will rather use higher-level abstractions.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 10 / 81

Not so Fast

Good, let’s try sorting a large-ish array, e.g., 64 MB.

aguatto@ginette$./msort-par-pthread.bin -i /tmp/16777216
pthread_create(): Cannot allocate memory
pthread_create(): Cannot allocate memory
pthread_create(): Cannot allocate memory
pthread_create(): Cannot allocate memory
pppthread_create(): Cannot allocate memory
tpthread_create(): Cannot allocate memory
ththread_create(): Cannot allocate memory
pthread_create(): Cannot allocate memory

On ginette, the failure occurs nondeterministically after creating around
50k pthreads. How could we try to fix this?

Create fewer pthreads. But how do we know which ones to create?
Lower their cost, e.g., shrink their stacks. Not enough here, I tried!

We will rather use higher-level abstractions.
A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 10 / 81

Task-Parallel Programming

We’ve seen that pthreads are…
heavy: each pthread mobilizes a lot of resources (e.g., a stack), even
for suspended pthreads,
not programmer-friendly: using the right amount of threads is hard.

How would we like to program instead?

Parallel Programming: The Ideal Model
Express only logical parallelism, abstract hardware parallelism away.
Reason about asymptotic performance in an analytic fashion.

Task parallelism, as implemented in Cilk [Frigo et al., 1998], offers
lightweight, 2nd-class threads that we can almost use as in the ideal model.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 11 / 81

Task-Parallel Programming

We’ve seen that pthreads are…
heavy: each pthread mobilizes a lot of resources (e.g., a stack), even
for suspended pthreads,
not programmer-friendly: using the right amount of threads is hard.

How would we like to program instead?

Parallel Programming: The Ideal Model
Express only logical parallelism, abstract hardware parallelism away.
Reason about asymptotic performance in an analytic fashion.

Task parallelism, as implemented in Cilk [Frigo et al., 1998], offers
lightweight, 2nd-class threads that we can almost use as in the ideal model.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 11 / 81

Task-Parallel Programming

We’ve seen that pthreads are…
heavy: each pthread mobilizes a lot of resources (e.g., a stack), even
for suspended pthreads,
not programmer-friendly: using the right amount of threads is hard.

How would we like to program instead?

Parallel Programming: The Ideal Model
Express only logical parallelism, abstract hardware parallelism away.
Reason about asymptotic performance in an analytic fashion.

Task parallelism, as implemented in Cilk [Frigo et al., 1998], offers
lightweight, 2nd-class threads that we can almost use as in the ideal model.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 11 / 81

Cilk in a Nutshell

Cilk is an implementation of task parallelism in C and C++.
We only use three simple constructs.

1 cilk_spawn: create a new parallel task capable of executing
immediately, in parallel with the spawning task.

2 cilk_sync: wait for all parallel tasks created since either the
beginning of execution or the last cilk_sync call.

3 cilk_for: run a for loop in parallel (expressible via spawn/sync).
Tasks have access to shared memory but data races disallowed.

Which Cilk Implementation?
I use the latest open-source implementation of Cilk, available at

http://cilk.mit.edu.

It is currently a bit fiddly to install (ask me in case of trouble!).

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 12 / 81

http://cilk.mit.edu

Cilk in a Nutshell

Cilk is an implementation of task parallelism in C and C++.
We only use three simple constructs.

1 cilk_spawn: create a new parallel task capable of executing
immediately, in parallel with the spawning task.

2 cilk_sync: wait for all parallel tasks created since either the
beginning of execution or the last cilk_sync call.

3 cilk_for: run a for loop in parallel (expressible via spawn/sync).
Tasks have access to shared memory but data races disallowed.

Which Cilk Implementation?
I use the latest open-source implementation of Cilk, available at

http://cilk.mit.edu.

It is currently a bit fiddly to install (ask me in case of trouble!).

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 12 / 81

http://cilk.mit.edu

Cilk in a Nutshell

Cilk is an implementation of task parallelism in C and C++.
We only use three simple constructs.

1 cilk_spawn: create a new parallel task capable of executing
immediately, in parallel with the spawning task.

2 cilk_sync: wait for all parallel tasks created since either the
beginning of execution or the last cilk_sync call.

3 cilk_for: run a for loop in parallel (expressible via spawn/sync).
Tasks have access to shared memory but data races disallowed.

Which Cilk Implementation?
I use the latest open-source implementation of Cilk, available at

http://cilk.mit.edu.

It is currently a bit fiddly to install (ask me in case of trouble!).

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 12 / 81

http://cilk.mit.edu

Cilk in a Nutshell

Cilk is an implementation of task parallelism in C and C++.
We only use three simple constructs.

1 cilk_spawn: create a new parallel task capable of executing
immediately, in parallel with the spawning task.

2 cilk_sync: wait for all parallel tasks created since either the
beginning of execution or the last cilk_sync call.

3 cilk_for: run a for loop in parallel (expressible via spawn/sync).

Tasks have access to shared memory but data races disallowed.

Which Cilk Implementation?
I use the latest open-source implementation of Cilk, available at

http://cilk.mit.edu.

It is currently a bit fiddly to install (ask me in case of trouble!).

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 12 / 81

http://cilk.mit.edu

Cilk in a Nutshell

Cilk is an implementation of task parallelism in C and C++.
We only use three simple constructs.

1 cilk_spawn: create a new parallel task capable of executing
immediately, in parallel with the spawning task.

2 cilk_sync: wait for all parallel tasks created since either the
beginning of execution or the last cilk_sync call.

3 cilk_for: run a for loop in parallel (expressible via spawn/sync).
Tasks have access to shared memory but data races disallowed.

Which Cilk Implementation?
I use the latest open-source implementation of Cilk, available at

http://cilk.mit.edu.

It is currently a bit fiddly to install (ask me in case of trouble!).

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 12 / 81

http://cilk.mit.edu

Cilk in a Nutshell

Cilk is an implementation of task parallelism in C and C++.
We only use three simple constructs.

1 cilk_spawn: create a new parallel task capable of executing
immediately, in parallel with the spawning task.

2 cilk_sync: wait for all parallel tasks created since either the
beginning of execution or the last cilk_sync call.

3 cilk_for: run a for loop in parallel (expressible via spawn/sync).
Tasks have access to shared memory but data races disallowed.

Which Cilk Implementation?
I use the latest open-source implementation of Cilk, available at

http://cilk.mit.edu.

It is currently a bit fiddly to install (ask me in case of trouble!).

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 12 / 81

http://cilk.mit.edu

Merge Sort in Cilk: Divide Step

size_t mid = midpoint(lo, hi);
cilk_spawn mergesort_par(A, B, lo, mid);
mergesort_par(A, B, mid, hi);
cilk_sync;

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 13 / 81

Cilk Programs and Their Serial Elisions

Here is an inefficient yet functionally correct implementation of Cilk:

#define cilk_spawn
#define cilk_sync
#define cilk_for for

Of course, real implementations of Cilk map tasks onto hardware
parallelism, as we will see in later parts of the course.
Yet, the above implementation supports an important idea.

A Core Principle of Cilk
Every Cilk program has a canonical serial elision.
A correct Cilk program and its serial elision have the same result.

Corollary: External Determinism
All the executions of a correct Cilk program compute the same result.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 14 / 81

Cilk Programs and Their Serial Elisions

Here is an inefficient yet functionally correct implementation of Cilk:
#define cilk_spawn
#define cilk_sync
#define cilk_for for

Of course, real implementations of Cilk map tasks onto hardware
parallelism, as we will see in later parts of the course.
Yet, the above implementation supports an important idea.

A Core Principle of Cilk
Every Cilk program has a canonical serial elision.
A correct Cilk program and its serial elision have the same result.

Corollary: External Determinism
All the executions of a correct Cilk program compute the same result.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 14 / 81

Cilk Programs and Their Serial Elisions

Here is an inefficient yet functionally correct implementation of Cilk:
#define cilk_spawn
#define cilk_sync
#define cilk_for for

Of course, real implementations of Cilk map tasks onto hardware
parallelism, as we will see in later parts of the course.

Yet, the above implementation supports an important idea.

A Core Principle of Cilk
Every Cilk program has a canonical serial elision.
A correct Cilk program and its serial elision have the same result.

Corollary: External Determinism
All the executions of a correct Cilk program compute the same result.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 14 / 81

Cilk Programs and Their Serial Elisions

Here is an inefficient yet functionally correct implementation of Cilk:
#define cilk_spawn
#define cilk_sync
#define cilk_for for

Of course, real implementations of Cilk map tasks onto hardware
parallelism, as we will see in later parts of the course.
Yet, the above implementation supports an important idea.

A Core Principle of Cilk
Every Cilk program has a canonical serial elision.
A correct Cilk program and its serial elision have the same result.

Corollary: External Determinism
All the executions of a correct Cilk program compute the same result.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 14 / 81

Cilk Programs and Their Serial Elisions

Here is an inefficient yet functionally correct implementation of Cilk:
#define cilk_spawn
#define cilk_sync
#define cilk_for for

Of course, real implementations of Cilk map tasks onto hardware
parallelism, as we will see in later parts of the course.
Yet, the above implementation supports an important idea.

A Core Principle of Cilk
Every Cilk program has a canonical serial elision.
A correct Cilk program and its serial elision have the same result.

Corollary: External Determinism
All the executions of a correct Cilk program compute the same result.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 14 / 81

From External to Internal Determinism

Many Cilk programs enjoy an even strong property: internal determinism.
Key to a well-defined notion of asymptotic performance.
Intuitively: for a fixed input, gives rise a unique “parallel computation”.
We need to make the latter more formal.

Computation Graphs of Cilk Programs [Blumofe and Leiserson, 1994]
Every run of a Cilk program induces a directed acyclic graph:

vertices are unit-time operations performed during execution,
edges are dependencies induced by program order, spawn, and sync.

Internal Determinism
A Cilk program is internally deterministic when, for fixed inputs, all its
executions induce the same computation graph.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 15 / 81

From External to Internal Determinism

Many Cilk programs enjoy an even strong property: internal determinism.
Key to a well-defined notion of asymptotic performance.
Intuitively: for a fixed input, gives rise a unique “parallel computation”.
We need to make the latter more formal.

Computation Graphs of Cilk Programs [Blumofe and Leiserson, 1994]
Every run of a Cilk program induces a directed acyclic graph:

vertices are unit-time operations performed during execution,
edges are dependencies induced by program order, spawn, and sync.

Internal Determinism
A Cilk program is internally deterministic when, for fixed inputs, all its
executions induce the same computation graph.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 15 / 81

From External to Internal Determinism

Many Cilk programs enjoy an even strong property: internal determinism.
Key to a well-defined notion of asymptotic performance.
Intuitively: for a fixed input, gives rise a unique “parallel computation”.
We need to make the latter more formal.

Computation Graphs of Cilk Programs [Blumofe and Leiserson, 1994]
Every run of a Cilk program induces a directed acyclic graph:

vertices are unit-time operations performed during execution,
edges are dependencies induced by program order, spawn, and sync.

Internal Determinism
A Cilk program is internally deterministic when, for fixed inputs, all its
executions induce the same computation graph.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 15 / 81

Computation Graph of our Cilky Merge Sort
Imagine running our sort on [1, 4, 2, 0]. Its computation graph looks like:

• } Divide [1,430]"À
-

•
•

i. ! } Divide [2,0]Divide -4Mf ,
'
.

% Il

• •
• •

Base f.! !) Ba" "" " f; "{ ! ! } Base case [0]
! ! ! !

[il y , I. /

conquérir. ! !:) %! §;D
into [1,43 Ï- •
-

-

!
.

i. } Conquer (marge) into [912,4]

The goal of the Cilk runtime system is to schedule this graph, i.e.,
execute each node after its predecessors have been executed.
It strives to minimize running time by exploiting hardware parallelism.
Which structural features of the graph control parallel efficiency?

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 16 / 81

The Work/Span Model and Brent’s Theorem (1/2)
The two main parameters of a computation graph are its work and span.

Its work W is the total number of nodes in the graph.
Its span S is the length of its longest path.

Additionally, we define its parallelism P as simply W/S.

Theorem (Brent [1974])
A computation can execute on p cores within Tp units of time, with

Tp ≤ W
p + S.

This justifies trying to maximize P while keeping W under control: since

Tp ≤ W
p

(
1 +

p
P
)
,

when p is much smaller than P, we get an optimal (linear) speedup.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 17 / 81

The Work/Span Model and Brent’s Theorem (1/2)
The two main parameters of a computation graph are its work and span.

Its work W is the total number of nodes in the graph.
Its span S is the length of its longest path.

Additionally, we define its parallelism P as simply W/S.

Theorem (Brent [1974])
A computation can execute on p cores within Tp units of time, with

Tp ≤ W
p + S.

This justifies trying to maximize P while keeping W under control: since

Tp ≤ W
p

(
1 +

p
P
)
,

when p is much smaller than P, we get an optimal (linear) speedup.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 17 / 81

The Work/Span Model and Brent’s Theorem (1/2)
The two main parameters of a computation graph are its work and span.

Its work W is the total number of nodes in the graph.
Its span S is the length of its longest path.

Additionally, we define its parallelism P as simply W/S.

Theorem (Brent [1974])
A computation can execute on p cores within Tp units of time, with

Tp ≤ W
p + S.

This justifies trying to maximize P while keeping W under control: since

Tp ≤ W
p

(
1 +

p
P
)
,

when p is much smaller than P, we get an optimal (linear) speedup.
A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 17 / 81

The Work/Span Model and Brent’s Theorem (2/2)

Informal proof.
1 Say that a node is at depth i if it has exactly i − 1 predecessors.

2 Consider an idealized scheduler working in rounds, each of which
executes all the nodes at depth i ∈ [1,S].

3 All cores proceed independently within the same round, since all the
predecesors of any node at that depth have already been executed.

4 Thus, writing Wi for the number of nodes at depth i, we have

Tp =
S∑

i=1

⌈
Wi
p

⌉
≤

S∑
i=1

(
Wi
p + 1

)
=

∑S
i=1 Wi
p + S =

W
p + S.

Important Caveats
Rigorous proofs use abstract machine models, e.g., PRAM.
This scheduler is too centralized to be realistic. Wait for lecture 2!

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 18 / 81

The Work/Span Model and Brent’s Theorem (2/2)

Informal proof.
1 Say that a node is at depth i if it has exactly i − 1 predecessors.
2 Consider an idealized scheduler working in rounds, each of which

executes all the nodes at depth i ∈ [1,S].

3 All cores proceed independently within the same round, since all the
predecesors of any node at that depth have already been executed.

4 Thus, writing Wi for the number of nodes at depth i, we have

Tp =
S∑

i=1

⌈
Wi
p

⌉
≤

S∑
i=1

(
Wi
p + 1

)
=

∑S
i=1 Wi
p + S =

W
p + S.

Important Caveats
Rigorous proofs use abstract machine models, e.g., PRAM.
This scheduler is too centralized to be realistic. Wait for lecture 2!

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 18 / 81

The Work/Span Model and Brent’s Theorem (2/2)

Informal proof.
1 Say that a node is at depth i if it has exactly i − 1 predecessors.
2 Consider an idealized scheduler working in rounds, each of which

executes all the nodes at depth i ∈ [1,S].
3 All cores proceed independently within the same round, since all the

predecesors of any node at that depth have already been executed.

4 Thus, writing Wi for the number of nodes at depth i, we have

Tp =
S∑

i=1

⌈
Wi
p

⌉
≤

S∑
i=1

(
Wi
p + 1

)
=

∑S
i=1 Wi
p + S =

W
p + S.

Important Caveats
Rigorous proofs use abstract machine models, e.g., PRAM.
This scheduler is too centralized to be realistic. Wait for lecture 2!

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 18 / 81

The Work/Span Model and Brent’s Theorem (2/2)

Informal proof.
1 Say that a node is at depth i if it has exactly i − 1 predecessors.
2 Consider an idealized scheduler working in rounds, each of which

executes all the nodes at depth i ∈ [1,S].
3 All cores proceed independently within the same round, since all the

predecesors of any node at that depth have already been executed.
4 Thus, writing Wi for the number of nodes at depth i, we have

Tp =
S∑

i=1

⌈
Wi
p

⌉
≤

S∑
i=1

(
Wi
p + 1

)
=

∑S
i=1 Wi
p + S =

W
p + S.

Important Caveats
Rigorous proofs use abstract machine models, e.g., PRAM.
This scheduler is too centralized to be realistic. Wait for lecture 2!

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 18 / 81

The Work/Span Model and Brent’s Theorem (2/2)

Informal proof.
1 Say that a node is at depth i if it has exactly i − 1 predecessors.
2 Consider an idealized scheduler working in rounds, each of which

executes all the nodes at depth i ∈ [1,S].
3 All cores proceed independently within the same round, since all the

predecesors of any node at that depth have already been executed.
4 Thus, writing Wi for the number of nodes at depth i, we have

Tp =
S∑

i=1

⌈
Wi
p

⌉
≤

S∑
i=1

(
Wi
p + 1

)
=

∑S
i=1 Wi
p + S =

W
p + S.

Important Caveats
Rigorous proofs use abstract machine models, e.g., PRAM.
This scheduler is too centralized to be realistic. Wait for lecture 2!

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 18 / 81

Analysis of Cilky Merge Sort

Analysis
Assume the merge step is linear in work and span, and n is a power of 2.
This leads to the following recurrence equations:

W(n) = 2W(n/2) + O(n), S(n) = S(n/2) + O(n).

Solving them using standard techniques, we get

W(n) = O(n log n), S(n) = O(n).

Observations
We perform no more work than sequential sorts (work-efficiency).
The algorithm contains W/S = O(log n) parallelism, which is small.

Ok, we have an asymptotic analysis. What about empirical performance?

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 19 / 81

Analysis of Cilky Merge Sort

Analysis
Assume the merge step is linear in work and span, and n is a power of 2.
This leads to the following recurrence equations:

W(n) = 2W(n/2) + O(n), S(n) = S(n/2) + O(n).

Solving them using standard techniques, we get

W(n) = O(n log n), S(n) = O(n).

Observations
We perform no more work than sequential sorts (work-efficiency).
The algorithm contains W/S = O(log n) parallelism, which is small.

Ok, we have an asymptotic analysis. What about empirical performance?

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 19 / 81

Analysis of Cilky Merge Sort

Analysis
Assume the merge step is linear in work and span, and n is a power of 2.
This leads to the following recurrence equations:

W(n) = 2W(n/2) + O(n), S(n) = S(n/2) + O(n).

Solving them using standard techniques, we get

W(n) = O(n log n), S(n) = O(n).

Observations
We perform no more work than sequential sorts (work-efficiency).
The algorithm contains W/S = O(log n) parallelism, which is small.

Ok, we have an asymptotic analysis. What about empirical performance?

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 19 / 81

Merge Sort in Cilk: Results on 16 MB Arrays

●
●
●

●●

0.5

1.0

1.5

2.0

2.5

msort−par−naive msort−seq qsort−seq
Program

R
un

ni
ng

 ti
m

e
(s

)

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 20 / 81

Merge Sort in Cilk: Results on 512 MB Arrays

●●

●

●●●●●

5

10

15

20

msort−par−naive msort−seq qsort−seq
Program

R
un

ni
ng

 ti
m

e
(s

)

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 21 / 81

Observations

Data size qsort msort msort-par Speedup Self-speedup
16 MB 1.81 s 2.48 s 0.45 s 4x 5.5x

512 MB 16.12 s 22.21 s 2.93 s 5.5x 7.6x

Table: Synthetic Results

Not awful, but disappointing on a 40-cores processor.
How can we improve our algorithm and its implementation?

Coarsen the implementation to amortize bookkeeping costs.
Reduce the span of the algorithm to expose more parallelism.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 22 / 81

An Important, Heuristic Technique: Coarsening

In practice, it is detrimental to performance to spawn very small tasks.
It is better to call optimized sequential code for small input sizes.
This does not change the asymptotics of work and span.

Divide-and-conquer algorithms are easy to coarsen by changing base cases.
if (range_size(lo, hi) <= MSORT_CUTOFF) {
quicksort_seq(B, lo, hi);
return;

}

Caveats
The parameter MSORT_CUTOFF has been fixed experimentally to 4096.
This is not portable: depends on the system, or even on inputs.
One can try computing it online [Acar et al., 2016a, for ex.].

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 23 / 81

An Important, Heuristic Technique: Coarsening

In practice, it is detrimental to performance to spawn very small tasks.
It is better to call optimized sequential code for small input sizes.
This does not change the asymptotics of work and span.

Divide-and-conquer algorithms are easy to coarsen by changing base cases.
if (range_size(lo, hi) <= MSORT_CUTOFF) {
quicksort_seq(B, lo, hi);
return;

}

Caveats
The parameter MSORT_CUTOFF has been fixed experimentally to 4096.
This is not portable: depends on the system, or even on inputs.
One can try computing it online [Acar et al., 2016a, for ex.].

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 23 / 81

An Important, Heuristic Technique: Coarsening

In practice, it is detrimental to performance to spawn very small tasks.
It is better to call optimized sequential code for small input sizes.
This does not change the asymptotics of work and span.

Divide-and-conquer algorithms are easy to coarsen by changing base cases.
if (range_size(lo, hi) <= MSORT_CUTOFF) {
quicksort_seq(B, lo, hi);
return;

}

Caveats
The parameter MSORT_CUTOFF has been fixed experimentally to 4096.
This is not portable: depends on the system, or even on inputs.
One can try computing it online [Acar et al., 2016a, for ex.].

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 23 / 81

Improving Parallelism (1/3): Idea

How to reduce the span of our merge sort? By parallelizing the merge.
Divide-and-conquer algorithms are easy to program in Cilk. How
could we express the merge in such a recursive fashion?

Recursive Merge
To merge two sorted arrays A and B of size nA ≥ nB:

1 split A in two, and find the value a of its midpoint ia,
2 find the position ib of the smallest value of B larger than a,
3 recursively merge A[0..ia) with B[0..ib) and A[ia..na) with B[ib..nb).

There are two key optimizations:
perform step 2 using binary search,
coarsen the algorithm to merge sequentially for small enough arrays.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 24 / 81

Improving Parallelism (1/3): Idea

How to reduce the span of our merge sort? By parallelizing the merge.
Divide-and-conquer algorithms are easy to program in Cilk. How
could we express the merge in such a recursive fashion?

Recursive Merge
To merge two sorted arrays A and B of size nA ≥ nB:

1 split A in two, and find the value a of its midpoint ia,
2 find the position ib of the smallest value of B larger than a,
3 recursively merge A[0..ia) with B[0..ib) and A[ia..na) with B[ib..nb).

There are two key optimizations:
perform step 2 using binary search,
coarsen the algorithm to merge sequentially for small enough arrays.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 24 / 81

Improving Parallelism (1/3): Idea

How to reduce the span of our merge sort? By parallelizing the merge.
Divide-and-conquer algorithms are easy to program in Cilk. How
could we express the merge in such a recursive fashion?

Recursive Merge
To merge two sorted arrays A and B of size nA ≥ nB:

1 split A in two, and find the value a of its midpoint ia,
2 find the position ib of the smallest value of B larger than a,
3 recursively merge A[0..ia) with B[0..ib) and A[ia..na) with B[ib..nb).

There are two key optimizations:
perform step 2 using binary search,
coarsen the algorithm to merge sequentially for small enough arrays.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 24 / 81

Improving Parallelism (2/3): Implementation
void merge_par(int *C,

const int *A, size_t A_lo, size_t A_hi,
const int *B, size_t B_lo, size_t B_hi) {

assert (C);
assert (A);
assert (B);

if (range_size(A_lo, A_hi) < range_size(B_lo, B_hi)) {
merge_par(C, B, B_lo, B_hi, A, A_lo, A_hi);
return;

}

if (range_size(A_lo, A_hi) <= 1
|| range_size(A_lo, A_hi) + range_size(B_lo, B_hi) <= MERGE_CUTOFF) {

merge_seq(C, A, A_lo, A_hi, B, B_lo, B_hi);
return;

}

size_t A_mid = midpoint(A_lo, A_hi);
size_t B_mid = search_sorted(B, B_lo, B_hi, A[A_mid]);
cilk_spawn merge_par(C, A, A_lo, A_mid, B, B_lo, B_mid);
merge_par(C + range_size(A_lo, A_mid) + range_size(B_lo, B_mid),

A, A_mid, A_hi, B, B_mid, B_hi);
cilk_sync;

} A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 25 / 81

Improving Parallelism (3/3): Analysis

Preliminary Remarks
Write n for the problem size, i.e., nA + nB. Assume na ≥ nb w.l.o.g.

The recursive calls have size n′ ≜ nA/2 + iB and n′′ ≜ nA/2 + nB − iB.
In the worst case, max(n′, n′′) = nA/2 + nB ≤ 3n/4.

Writing Sm and Wm for the span and work of merge, we have:

Sm(n) = Sm(3n/4) + O(log n),
Wm(n) = Wm(αn) + Wm((1 − α)n) + O(log n) where 1/4 ≤ α ≤ 3/4.

Solving them leads to Sm(n) = O(log2(n)) and Wm(n) = O(n).

Our merge sort now has S(n) = O(log3 n), hence n/ log2(n) parallelism!

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 26 / 81

Improving Parallelism (3/3): Analysis

Preliminary Remarks
Write n for the problem size, i.e., nA + nB. Assume na ≥ nb w.l.o.g.
The recursive calls have size n′ ≜ nA/2 + iB and n′′ ≜ nA/2 + nB − iB.

In the worst case, max(n′, n′′) = nA/2 + nB ≤ 3n/4.

Writing Sm and Wm for the span and work of merge, we have:

Sm(n) = Sm(3n/4) + O(log n),
Wm(n) = Wm(αn) + Wm((1 − α)n) + O(log n) where 1/4 ≤ α ≤ 3/4.

Solving them leads to Sm(n) = O(log2(n)) and Wm(n) = O(n).

Our merge sort now has S(n) = O(log3 n), hence n/ log2(n) parallelism!

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 26 / 81

Improving Parallelism (3/3): Analysis

Preliminary Remarks
Write n for the problem size, i.e., nA + nB. Assume na ≥ nb w.l.o.g.
The recursive calls have size n′ ≜ nA/2 + iB and n′′ ≜ nA/2 + nB − iB.
In the worst case, max(n′, n′′) = nA/2 + nB ≤ 3n/4.

Writing Sm and Wm for the span and work of merge, we have:

Sm(n) = Sm(3n/4) + O(log n),
Wm(n) = Wm(αn) + Wm((1 − α)n) + O(log n) where 1/4 ≤ α ≤ 3/4.

Solving them leads to Sm(n) = O(log2(n)) and Wm(n) = O(n).

Our merge sort now has S(n) = O(log3 n), hence n/ log2(n) parallelism!

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 26 / 81

Improving Parallelism (3/3): Analysis

Preliminary Remarks
Write n for the problem size, i.e., nA + nB. Assume na ≥ nb w.l.o.g.
The recursive calls have size n′ ≜ nA/2 + iB and n′′ ≜ nA/2 + nB − iB.
In the worst case, max(n′, n′′) = nA/2 + nB ≤ 3n/4.

Writing Sm and Wm for the span and work of merge, we have:

Sm(n) = Sm(3n/4) + O(log n),
Wm(n) = Wm(αn) + Wm((1 − α)n) + O(log n) where 1/4 ≤ α ≤ 3/4.

Solving them leads to Sm(n) = O(log2(n)) and Wm(n) = O(n).

Our merge sort now has S(n) = O(log3 n), hence n/ log2(n) parallelism!

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 26 / 81

Improving Parallelism (3/3): Analysis

Preliminary Remarks
Write n for the problem size, i.e., nA + nB. Assume na ≥ nb w.l.o.g.
The recursive calls have size n′ ≜ nA/2 + iB and n′′ ≜ nA/2 + nB − iB.
In the worst case, max(n′, n′′) = nA/2 + nB ≤ 3n/4.

Writing Sm and Wm for the span and work of merge, we have:

Sm(n) = Sm(3n/4) + O(log n),
Wm(n) = Wm(αn) + Wm((1 − α)n) + O(log n) where 1/4 ≤ α ≤ 3/4.

Solving them leads to Sm(n) = O(log2(n)) and Wm(n) = O(n).

Our merge sort now has S(n) = O(log3 n), hence n/ log2(n) parallelism!

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 26 / 81

Improving Parallelism (3/3): Analysis

Preliminary Remarks
Write n for the problem size, i.e., nA + nB. Assume na ≥ nb w.l.o.g.
The recursive calls have size n′ ≜ nA/2 + iB and n′′ ≜ nA/2 + nB − iB.
In the worst case, max(n′, n′′) = nA/2 + nB ≤ 3n/4.

Writing Sm and Wm for the span and work of merge, we have:

Sm(n) = Sm(3n/4) + O(log n),
Wm(n) = Wm(αn) + Wm((1 − α)n) + O(log n) where 1/4 ≤ α ≤ 3/4.

Solving them leads to Sm(n) = O(log2(n)) and Wm(n) = O(n).

Our merge sort now has S(n) = O(log3 n), hence n/ log2(n) parallelism!

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 26 / 81

Optimized Merge Sort: Results on 16 MB Arrays

●

●
●●●

0.0

0.5

1.0

1.5

msort−par msort−par−opt qsort−seq
Program

R
un

ni
ng

 ti
m

e
(s

)

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 27 / 81

Optimized Merge Sort: Results on 512 MB Arrays

●
●
●●

●
●

4

8

12

16

msort−par msort−par−opt qsort−seq
Program

R
un

ni
ng

 ti
m

e
(s

)

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 28 / 81

Merge Sort: Conclusion

Data size qsort msort-par msort-par-opt Spd. (par) Spd. (opt)
16 MB 1.81 s 0.45 s 0.19 s 4x 9.5x

512 MB 16.12 s 2.93 s 1.27 s 5.5x 12.7x

Table: Synthetic Results

Pleasingly better than the initial version.
Still naive, in no way a very fast parallel sort.
Good enough for our first Cilk program!

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 29 / 81

Interlude: How General is Internal Determinism?

The Parallel Paradise of Divide-and-Conquer Algorithms
Merge sort was easy to parallelize.
In particular, its serial elision is the sequential algorithm!
Work-efficiency and internal determinism are immediate consequences.

This works well, but isn’t it a bit disappointing? Are there examples were
coming out with an internally-deterministic algorithm is harder?

Yes! Let’s finish with a more complex example.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 30 / 81

Interlude: How General is Internal Determinism?

The Parallel Paradise of Divide-and-Conquer Algorithms
Merge sort was easy to parallelize.
In particular, its serial elision is the sequential algorithm!
Work-efficiency and internal determinism are immediate consequences.

This works well, but isn’t it a bit disappointing? Are there examples were
coming out with an internally-deterministic algorithm is harder?

Yes! Let’s finish with a more complex example.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 30 / 81

Interlude: How General is Internal Determinism?

The Parallel Paradise of Divide-and-Conquer Algorithms
Merge sort was easy to parallelize.
In particular, its serial elision is the sequential algorithm!
Work-efficiency and internal determinism are immediate consequences.

This works well, but isn’t it a bit disappointing? Are there examples were
coming out with an internally-deterministic algorithm is harder?

Yes! Let’s finish with a more complex example.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 30 / 81

Fisher-Yates Shuffling

Simple process for shuffling arrays/generating uniform permutations.
Rediscovered multiple times since the 1930s: Durstenfeld, Knuth.

void fy_shuffle_seq(size_t n, int *A) {
for (size_t i = n - 1; i > 0; i--)
swap(A[rand() % (i + 1)], A[i]);

}

Pulling out random number generation, we get:
void fy_shuffle_seq(size_t n, int *A, const int *H) {

for (size_t i = n - 1; i > 0; i--)
swap(A[H[i]], A[i]);

}

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 31 / 81

Fisher-Yates Shuffling

Simple process for shuffling arrays/generating uniform permutations.
Rediscovered multiple times since the 1930s: Durstenfeld, Knuth.

void fy_shuffle_seq(size_t n, int *A) {
for (size_t i = n - 1; i > 0; i--)
swap(A[rand() % (i + 1)], A[i]);

}

Pulling out random number generation, we get:
void fy_shuffle_seq(size_t n, int *A, const int *H) {

for (size_t i = n - 1; i > 0; i--)
swap(A[H[i]], A[i]);

}

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 31 / 81

Fisher-Yates Shuffling

Simple process for shuffling arrays/generating uniform permutations.
Rediscovered multiple times since the 1930s: Durstenfeld, Knuth.

void fy_shuffle_seq(size_t n, int *A) {
for (size_t i = n - 1; i > 0; i--)
swap(A[rand() % (i + 1)], A[i]);

}

Pulling out random number generation, we get:
void fy_shuffle_seq(size_t n, int *A, const int *H) {

for (size_t i = n - 1; i > 0; i--)
swap(A[H[i]], A[i]);

}

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 31 / 81

Parallelizing Fisher-Yates?

Desiderata
Implement parallel shuffling code that:

is internally deterministic,
given H, generates the exact same permutation as Fisher-Yates.

This problem was studied by Shun et al. [2014]. Why is it interesting?
At first glance, the code does not seem to contain a lot of parallelism.
Yet, we’ll see that it fits into a general framework for parallelizing
certain sequential algorithms, proposed by Blelloch et al. [2012].

So, first, how sequential is this code really?

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 32 / 81

Parallelizing Fisher-Yates?

Desiderata
Implement parallel shuffling code that:

is internally deterministic,
given H, generates the exact same permutation as Fisher-Yates.

This problem was studied by Shun et al. [2014]. Why is it interesting?
At first glance, the code does not seem to contain a lot of parallelism.
Yet, we’ll see that it fits into a general framework for parallelizing
certain sequential algorithms, proposed by Blelloch et al. [2012].

So, first, how sequential is this code really?

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 32 / 81

Parallelizing Fisher-Yates?

Desiderata
Implement parallel shuffling code that:

is internally deterministic,
given H, generates the exact same permutation as Fisher-Yates.

This problem was studied by Shun et al. [2014]. Why is it interesting?
At first glance, the code does not seem to contain a lot of parallelism.
Yet, we’ll see that it fits into a general framework for parallelizing
certain sequential algorithms, proposed by Blelloch et al. [2012].

So, first, how sequential is this code really?

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 32 / 81

Dependence Structure of Fisher-Yates
void fy_shuffle_seq(size_t n, int *A, const int *H) {

for (size_t i = n - 1; i > 0; i--)
swap(A[H[i]], A[i]);

}
i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
A[i] a b c d e f g h

Dependence forest (tree) induced by H:
1 start with edges i → H[i],
2 chain immediate predecessors,
3 (chain roots.)

Theorem (Shun et al. [2014])
Shaped like a random binary search tree,
hence height of Θ(log n) w.h.p.

0

1

2 4 7

5

3

6

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 33 / 81

Dependence Structure of Fisher-Yates
void fy_shuffle_seq(size_t n, int *A, const int *H) {

for (size_t i = n - 1; i > 0; i--)
swap(A[H[i]], A[i]);

}
i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
A[i] a h c d e f g b

Dependence forest (tree) induced by H:
1 start with edges i → H[i],
2 chain immediate predecessors,
3 (chain roots.)

Theorem (Shun et al. [2014])
Shaped like a random binary search tree,
hence height of Θ(log n) w.h.p.

0

1

2 4 7

5

3

6

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 33 / 81

Dependence Structure of Fisher-Yates
void fy_shuffle_seq(size_t n, int *A, const int *H) {

for (size_t i = n - 1; i > 0; i--)
swap(A[H[i]], A[i]);

}
i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
A[i] a h c g e f d b

Dependence forest (tree) induced by H:
1 start with edges i → H[i],
2 chain immediate predecessors,
3 (chain roots.)

Theorem (Shun et al. [2014])
Shaped like a random binary search tree,
hence height of Θ(log n) w.h.p.

0

1

2 4 7

5

3

6

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 33 / 81

Dependence Structure of Fisher-Yates
void fy_shuffle_seq(size_t n, int *A, const int *H) {

for (size_t i = n - 1; i > 0; i--)
swap(A[H[i]], A[i]);

}
i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
A[i] a h f g e c d b

Dependence forest (tree) induced by H:
1 start with edges i → H[i],
2 chain immediate predecessors,
3 (chain roots.)

Theorem (Shun et al. [2014])
Shaped like a random binary search tree,
hence height of Θ(log n) w.h.p.

0

1

2 4 7

5

3

6

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 33 / 81

Dependence Structure of Fisher-Yates
void fy_shuffle_seq(size_t n, int *A, const int *H) {

for (size_t i = n - 1; i > 0; i--)
swap(A[H[i]], A[i]);

}
i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
A[i] a e f g h c d b

Dependence forest (tree) induced by H:
1 start with edges i → H[i],
2 chain immediate predecessors,
3 (chain roots.)

Theorem (Shun et al. [2014])
Shaped like a random binary search tree,
hence height of Θ(log n) w.h.p.

0

1

2 4 7

5

3

6

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 33 / 81

Dependence Structure of Fisher-Yates
void fy_shuffle_seq(size_t n, int *A, const int *H) {

for (size_t i = n - 1; i > 0; i--)
swap(A[H[i]], A[i]);

}
i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
A[i] a e f g h c d b

Dependence forest (tree) induced by H:
1 start with edges i → H[i],
2 chain immediate predecessors,
3 (chain roots.)

Theorem (Shun et al. [2014])
Shaped like a random binary search tree,
hence height of Θ(log n) w.h.p.

0

1

2 4 7

5

3

6

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 33 / 81

Dependence Structure of Fisher-Yates
void fy_shuffle_seq(size_t n, int *A, const int *H) {

for (size_t i = n - 1; i > 0; i--)
swap(A[H[i]], A[i]);

}
i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
A[i] a f e g h c d b

Dependence forest (tree) induced by H:
1 start with edges i → H[i],
2 chain immediate predecessors,
3 (chain roots.)

Theorem (Shun et al. [2014])
Shaped like a random binary search tree,
hence height of Θ(log n) w.h.p.

0

1

2 4 7

5

3

6

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 33 / 81

Dependence Structure of Fisher-Yates
void fy_shuffle_seq(size_t n, int *A, const int *H) {

for (size_t i = n - 1; i > 0; i--)
swap(A[H[i]], A[i]);

}
i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
A[i] f a e g h c d b

Dependence forest (tree) induced by H:
1 start with edges i → H[i],
2 chain immediate predecessors,
3 (chain roots.)

Theorem (Shun et al. [2014])
Shaped like a random binary search tree,
hence height of Θ(log n) w.h.p.

0

1

2 4 7

5

3

6

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 33 / 81

Dependence Structure of Fisher-Yates
void fy_shuffle_seq(size_t n, int *A, const int *H) {

for (size_t i = n - 1; i > 0; i--)
swap(A[H[i]], A[i]);

}
i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
A[i] f a e g h c d b

Dependence forest (tree) induced by H:
1 start with edges i → H[i],
2 chain immediate predecessors,
3 (chain roots.)

Theorem (Shun et al. [2014])
Shaped like a random binary search tree,
hence height of Θ(log n) w.h.p.

0

1

2 4 7

5

3

6

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 33 / 81

Dependence Structure of Fisher-Yates
void fy_shuffle_seq(size_t n, int *A, const int *H) {

for (size_t i = n - 1; i > 0; i--)
swap(A[H[i]], A[i]);

}
i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
A[i] f a e g h c d b

Dependence forest (tree) induced by H:

1 start with edges i → H[i],
2 chain immediate predecessors,
3 (chain roots.)

Theorem (Shun et al. [2014])
Shaped like a random binary search tree,
hence height of Θ(log n) w.h.p.

0

1

2 4 7

5

3

6

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 33 / 81

Dependence Structure of Fisher-Yates
void fy_shuffle_seq(size_t n, int *A, const int *H) {

for (size_t i = n - 1; i > 0; i--)
swap(A[H[i]], A[i]);

}
i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
A[i] f a e g h c d b

Dependence forest (tree) induced by H:
1 start with edges i → H[i],

2 chain immediate predecessors,
3 (chain roots.)

Theorem (Shun et al. [2014])
Shaped like a random binary search tree,
hence height of Θ(log n) w.h.p.

0

1

2 4 7

5

3

6

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 33 / 81

Dependence Structure of Fisher-Yates
void fy_shuffle_seq(size_t n, int *A, const int *H) {

for (size_t i = n - 1; i > 0; i--)
swap(A[H[i]], A[i]);

}
i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
A[i] f a e g h c d b

Dependence forest (tree) induced by H:
1 start with edges i → H[i],

2 chain immediate predecessors,
3 (chain roots.)

Theorem (Shun et al. [2014])
Shaped like a random binary search tree,
hence height of Θ(log n) w.h.p.

0

1

2 4 7

5

3

6

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 33 / 81

Dependence Structure of Fisher-Yates
void fy_shuffle_seq(size_t n, int *A, const int *H) {

for (size_t i = n - 1; i > 0; i--)
swap(A[H[i]], A[i]);

}
i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
A[i] f a e g h c d b

Dependence forest (tree) induced by H:
1 start with edges i → H[i],
2 chain immediate predecessors,

3 (chain roots.)

Theorem (Shun et al. [2014])
Shaped like a random binary search tree,
hence height of Θ(log n) w.h.p.

0

1

2 4 7

5

3

6

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 33 / 81

Dependence Structure of Fisher-Yates
void fy_shuffle_seq(size_t n, int *A, const int *H) {

for (size_t i = n - 1; i > 0; i--)
swap(A[H[i]], A[i]);

}
i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
A[i] f a e g h c d b

Dependence forest (tree) induced by H:
1 start with edges i → H[i],
2 chain immediate predecessors,
3 (chain roots.)

Theorem (Shun et al. [2014])
Shaped like a random binary search tree,
hence height of Θ(log n) w.h.p.

0

1

2 4 7

5

3

6

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 33 / 81

Dependence Structure of Fisher-Yates
void fy_shuffle_seq(size_t n, int *A, const int *H) {

for (size_t i = n - 1; i > 0; i--)
swap(A[H[i]], A[i]);

}
i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
A[i] f a e g h c d b

Dependence forest (tree) induced by H:
1 start with edges i → H[i],
2 chain immediate predecessors,
3 (chain roots.)

Theorem (Shun et al. [2014])
Shaped like a random binary search tree,
hence height of Θ(log n) w.h.p.

0

1

2 4 7

5

3

6

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 33 / 81

Parallel Fisher-Yates via Deterministic Reservations (1/2)

In average, the code does contain parallelism, after all. Great!

Yet, extracting this parallelism does not seem easy.
(Wrong idea: generate the dependence forest and traverse it.)
Following Blelloch et al. [2012], we’ll use deterministic reservations.

Deterministic Reservations

A general framework for parallelizing iterative algorithms.
speculative_for (reserve, commit, lo, hi);

Processes every iteration in [lo, hi), in a round-per-round fashion.
Every round proceeds as follows:

1 pick a subset of remaining iterations,
2 run reserve in parallel on every iteration of the chosen subset,
3 run commit in parallel on every iteration of the chosen subset,
4 mark every iteration where commit succeeded as done.

This is internally deterministic if the choice of subset is deterministic.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 34 / 81

Parallel Fisher-Yates via Deterministic Reservations (1/2)

In average, the code does contain parallelism, after all. Great!
Yet, extracting this parallelism does not seem easy.

(Wrong idea: generate the dependence forest and traverse it.)
Following Blelloch et al. [2012], we’ll use deterministic reservations.

Deterministic Reservations

A general framework for parallelizing iterative algorithms.
speculative_for (reserve, commit, lo, hi);

Processes every iteration in [lo, hi), in a round-per-round fashion.
Every round proceeds as follows:

1 pick a subset of remaining iterations,
2 run reserve in parallel on every iteration of the chosen subset,
3 run commit in parallel on every iteration of the chosen subset,
4 mark every iteration where commit succeeded as done.

This is internally deterministic if the choice of subset is deterministic.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 34 / 81

Parallel Fisher-Yates via Deterministic Reservations (1/2)

In average, the code does contain parallelism, after all. Great!
Yet, extracting this parallelism does not seem easy.
(Wrong idea: generate the dependence forest and traverse it.)

Following Blelloch et al. [2012], we’ll use deterministic reservations.

Deterministic Reservations

A general framework for parallelizing iterative algorithms.
speculative_for (reserve, commit, lo, hi);

Processes every iteration in [lo, hi), in a round-per-round fashion.
Every round proceeds as follows:

1 pick a subset of remaining iterations,
2 run reserve in parallel on every iteration of the chosen subset,
3 run commit in parallel on every iteration of the chosen subset,
4 mark every iteration where commit succeeded as done.

This is internally deterministic if the choice of subset is deterministic.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 34 / 81

Parallel Fisher-Yates via Deterministic Reservations (1/2)

In average, the code does contain parallelism, after all. Great!
Yet, extracting this parallelism does not seem easy.
(Wrong idea: generate the dependence forest and traverse it.)
Following Blelloch et al. [2012], we’ll use deterministic reservations.

Deterministic Reservations

A general framework for parallelizing iterative algorithms.
speculative_for (reserve, commit, lo, hi);

Processes every iteration in [lo, hi), in a round-per-round fashion.
Every round proceeds as follows:

1 pick a subset of remaining iterations,
2 run reserve in parallel on every iteration of the chosen subset,
3 run commit in parallel on every iteration of the chosen subset,
4 mark every iteration where commit succeeded as done.

This is internally deterministic if the choice of subset is deterministic.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 34 / 81

Parallel Fisher-Yates via Deterministic Reservations (1/2)

In average, the code does contain parallelism, after all. Great!
Yet, extracting this parallelism does not seem easy.
(Wrong idea: generate the dependence forest and traverse it.)
Following Blelloch et al. [2012], we’ll use deterministic reservations.

Deterministic Reservations
A general framework for parallelizing iterative algorithms.
speculative_for (reserve, commit, lo, hi);

Processes every iteration in [lo, hi), in a round-per-round fashion.
Every round proceeds as follows:

1 pick a subset of remaining iterations,
2 run reserve in parallel on every iteration of the chosen subset,
3 run commit in parallel on every iteration of the chosen subset,
4 mark every iteration where commit succeeded as done.

This is internally deterministic if the choice of subset is deterministic.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 34 / 81

Parallel Fisher-Yates via Deterministic Reservations (1/2)

In average, the code does contain parallelism, after all. Great!
Yet, extracting this parallelism does not seem easy.
(Wrong idea: generate the dependence forest and traverse it.)
Following Blelloch et al. [2012], we’ll use deterministic reservations.

Deterministic Reservations
A general framework for parallelizing iterative algorithms.
speculative_for (reserve, commit, lo, hi);

Processes every iteration in [lo, hi), in a round-per-round fashion.

Every round proceeds as follows:

1 pick a subset of remaining iterations,
2 run reserve in parallel on every iteration of the chosen subset,
3 run commit in parallel on every iteration of the chosen subset,
4 mark every iteration where commit succeeded as done.

This is internally deterministic if the choice of subset is deterministic.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 34 / 81

Parallel Fisher-Yates via Deterministic Reservations (1/2)

In average, the code does contain parallelism, after all. Great!
Yet, extracting this parallelism does not seem easy.
(Wrong idea: generate the dependence forest and traverse it.)
Following Blelloch et al. [2012], we’ll use deterministic reservations.

Deterministic Reservations
A general framework for parallelizing iterative algorithms.
speculative_for (reserve, commit, lo, hi);

Processes every iteration in [lo, hi), in a round-per-round fashion.
Every round proceeds as follows:

1 pick a subset of remaining iterations,
2 run reserve in parallel on every iteration of the chosen subset,
3 run commit in parallel on every iteration of the chosen subset,
4 mark every iteration where commit succeeded as done.

This is internally deterministic if the choice of subset is deterministic.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 34 / 81

Parallel Fisher-Yates via Deterministic Reservations (1/2)

In average, the code does contain parallelism, after all. Great!
Yet, extracting this parallelism does not seem easy.
(Wrong idea: generate the dependence forest and traverse it.)
Following Blelloch et al. [2012], we’ll use deterministic reservations.

Deterministic Reservations
A general framework for parallelizing iterative algorithms.
speculative_for (reserve, commit, lo, hi);

Processes every iteration in [lo, hi), in a round-per-round fashion.
Every round proceeds as follows:

1 pick a subset of remaining iterations,

2 run reserve in parallel on every iteration of the chosen subset,
3 run commit in parallel on every iteration of the chosen subset,
4 mark every iteration where commit succeeded as done.

This is internally deterministic if the choice of subset is deterministic.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 34 / 81

Parallel Fisher-Yates via Deterministic Reservations (1/2)

In average, the code does contain parallelism, after all. Great!
Yet, extracting this parallelism does not seem easy.
(Wrong idea: generate the dependence forest and traverse it.)
Following Blelloch et al. [2012], we’ll use deterministic reservations.

Deterministic Reservations
A general framework for parallelizing iterative algorithms.
speculative_for (reserve, commit, lo, hi);

Processes every iteration in [lo, hi), in a round-per-round fashion.
Every round proceeds as follows:

1 pick a subset of remaining iterations,
2 run reserve in parallel on every iteration of the chosen subset,

3 run commit in parallel on every iteration of the chosen subset,
4 mark every iteration where commit succeeded as done.

This is internally deterministic if the choice of subset is deterministic.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 34 / 81

Parallel Fisher-Yates via Deterministic Reservations (1/2)

In average, the code does contain parallelism, after all. Great!
Yet, extracting this parallelism does not seem easy.
(Wrong idea: generate the dependence forest and traverse it.)
Following Blelloch et al. [2012], we’ll use deterministic reservations.

Deterministic Reservations
A general framework for parallelizing iterative algorithms.
speculative_for (reserve, commit, lo, hi);

Processes every iteration in [lo, hi), in a round-per-round fashion.
Every round proceeds as follows:

1 pick a subset of remaining iterations,
2 run reserve in parallel on every iteration of the chosen subset,
3 run commit in parallel on every iteration of the chosen subset,

4 mark every iteration where commit succeeded as done.
This is internally deterministic if the choice of subset is deterministic.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 34 / 81

Parallel Fisher-Yates via Deterministic Reservations (1/2)

In average, the code does contain parallelism, after all. Great!
Yet, extracting this parallelism does not seem easy.
(Wrong idea: generate the dependence forest and traverse it.)
Following Blelloch et al. [2012], we’ll use deterministic reservations.

Deterministic Reservations
A general framework for parallelizing iterative algorithms.
speculative_for (reserve, commit, lo, hi);

Processes every iteration in [lo, hi), in a round-per-round fashion.
Every round proceeds as follows:

1 pick a subset of remaining iterations,
2 run reserve in parallel on every iteration of the chosen subset,
3 run commit in parallel on every iteration of the chosen subset,
4 mark every iteration where commit succeeded as done.

This is internally deterministic if the choice of subset is deterministic.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 34 / 81

Parallel Fisher-Yates via Deterministic Reservations (1/2)

In average, the code does contain parallelism, after all. Great!
Yet, extracting this parallelism does not seem easy.
(Wrong idea: generate the dependence forest and traverse it.)
Following Blelloch et al. [2012], we’ll use deterministic reservations.

Deterministic Reservations
A general framework for parallelizing iterative algorithms.
speculative_for (reserve, commit, lo, hi);

Processes every iteration in [lo, hi), in a round-per-round fashion.
Every round proceeds as follows:

1 pick a subset of remaining iterations,
2 run reserve in parallel on every iteration of the chosen subset,
3 run commit in parallel on every iteration of the chosen subset,
4 mark every iteration where commit succeeded as done.

This is internally deterministic if the choice of subset is deterministic.
A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 34 / 81

Parallel Fisher-Yates via Deterministic Reservations (2/2)
(Assume R is a boolean array of the same size as A and H.)

bool fy_reserve(int i) {
write_max(&R[i], i); write_max(&R[H[i]], i);

}
bool fy_commit(int i) {

if (R[H[i]] == i && R[i] == i) {
swap(A[H[i]], A[i]);
return 1;

}
return 0;

}

i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
R[i] 0 0 0 0 0 0 0 0
A[i] a b c d e f g h

Round: 5.

Phase: commit.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 35 / 81

Parallel Fisher-Yates via Deterministic Reservations (2/2)
(Assume R is a boolean array of the same size as A and H.)

bool fy_reserve(int i) {
write_max(&R[i], i); write_max(&R[H[i]], i);

}
bool fy_commit(int i) {

if (R[H[i]] == i && R[i] == i) {
swap(A[H[i]], A[i]);
return 1;

}
return 0;

}

i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
R[i] 0 0 0 0 0 0 0 0
A[i] a b c d e f g h

Round: 5.

Phase: commit.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 35 / 81

Parallel Fisher-Yates via Deterministic Reservations (2/2)
(Assume R is a boolean array of the same size as A and H.)

bool fy_reserve(int i) {
write_max(&R[i], i); write_max(&R[H[i]], i);

}
bool fy_commit(int i) {

if (R[H[i]] == i && R[i] == i) {
swap(A[H[i]], A[i]);
return 1;

}
return 0;

}

i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
R[i] 0 0 0 0 0 0 0 0
A[i] a b c d e f g h

Round: 1.

Phase: commit.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 35 / 81

Parallel Fisher-Yates via Deterministic Reservations (2/2)
(Assume R is a boolean array of the same size as A and H.)

bool fy_reserve(int i) {
write_max(&R[i], i); write_max(&R[H[i]], i);

}
bool fy_commit(int i) {

if (R[H[i]] == i && R[i] == i) {
swap(A[H[i]], A[i]);
return 1;

}
return 0;

}

i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
R[i] 0 7 5 6 4 5 6 7
A[i] a b c d e f g h

Round: 1.
Phase: reserve.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 35 / 81

Parallel Fisher-Yates via Deterministic Reservations (2/2)
(Assume R is a boolean array of the same size as A and H.)

bool fy_reserve(int i) {
write_max(&R[i], i); write_max(&R[H[i]], i);

}
bool fy_commit(int i) {

if (R[H[i]] == i && R[i] == i) {
swap(A[H[i]], A[i]);
return 1;

}
return 0;

}

i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
R[i] 0 7 5 6 4 5 6 7
A[i] a h f g e c d b

Round: 1.
Phase: commit.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 35 / 81

Parallel Fisher-Yates via Deterministic Reservations (2/2)
(Assume R is a boolean array of the same size as A and H.)

bool fy_reserve(int i) {
write_max(&R[i], i); write_max(&R[H[i]], i);

}
bool fy_commit(int i) {

if (R[H[i]] == i && R[i] == i) {
swap(A[H[i]], A[i]);
return 1;

}
return 0;

}

i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
R[i] 0 0 0 0 0 0 0 0
A[i] a h f g e c d b

Round: 2.

Phase: commit.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 35 / 81

Parallel Fisher-Yates via Deterministic Reservations (2/2)
(Assume R is a boolean array of the same size as A and H.)

bool fy_reserve(int i) {
write_max(&R[i], i); write_max(&R[H[i]], i);

}
bool fy_commit(int i) {

if (R[H[i]] == i && R[i] == i) {
swap(A[H[i]], A[i]);
return 1;

}
return 0;

}

i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
R[i] 0 4 2 3 4 0 0 0
A[i] a h f g e c d b

Round: 2.
Phase: reserve.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 35 / 81

Parallel Fisher-Yates via Deterministic Reservations (2/2)
(Assume R is a boolean array of the same size as A and H.)

bool fy_reserve(int i) {
write_max(&R[i], i); write_max(&R[H[i]], i);

}
bool fy_commit(int i) {

if (R[H[i]] == i && R[i] == i) {
swap(A[H[i]], A[i]);
return 1;

}
return 0;

}

i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
R[i] 0 4 2 3 4 0 0 0
A[i] a e f g h c d b

Round: 2.
Phase: commit.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 35 / 81

Parallel Fisher-Yates via Deterministic Reservations (2/2)
(Assume R is a boolean array of the same size as A and H.)

bool fy_reserve(int i) {
write_max(&R[i], i); write_max(&R[H[i]], i);

}
bool fy_commit(int i) {

if (R[H[i]] == i && R[i] == i) {
swap(A[H[i]], A[i]);
return 1;

}
return 0;

}

i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
R[i] 0 0 0 0 0 0 0 0
A[i] a e f g h c d b

Round: 3.

Phase: commit.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 35 / 81

Parallel Fisher-Yates via Deterministic Reservations (2/2)
(Assume R is a boolean array of the same size as A and H.)

bool fy_reserve(int i) {
write_max(&R[i], i); write_max(&R[H[i]], i);

}
bool fy_commit(int i) {

if (R[H[i]] == i && R[i] == i) {
swap(A[H[i]], A[i]);
return 1;

}
return 0;

}

i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
R[i] 1 2 2 0 0 0 0 0
A[i] a e f g h c d b

Round: 3.
Phase: reserve.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 35 / 81

Parallel Fisher-Yates via Deterministic Reservations (2/2)
(Assume R is a boolean array of the same size as A and H.)

bool fy_reserve(int i) {
write_max(&R[i], i); write_max(&R[H[i]], i);

}
bool fy_commit(int i) {

if (R[H[i]] == i && R[i] == i) {
swap(A[H[i]], A[i]);
return 1;

}
return 0;

}

i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
R[i] 1 2 2 0 0 0 0 0
A[i] a f e g h c d b

Round: 3.
Phase: commit.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 35 / 81

Parallel Fisher-Yates via Deterministic Reservations (2/2)
(Assume R is a boolean array of the same size as A and H.)

bool fy_reserve(int i) {
write_max(&R[i], i); write_max(&R[H[i]], i);

}
bool fy_commit(int i) {

if (R[H[i]] == i && R[i] == i) {
swap(A[H[i]], A[i]);
return 1;

}
return 0;

}

i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
R[i] 0 0 0 0 0 0 0 0
A[i] a f e g h c d b

Round: 4.

Phase: commit.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 35 / 81

Parallel Fisher-Yates via Deterministic Reservations (2/2)
(Assume R is a boolean array of the same size as A and H.)

bool fy_reserve(int i) {
write_max(&R[i], i); write_max(&R[H[i]], i);

}
bool fy_commit(int i) {

if (R[H[i]] == i && R[i] == i) {
swap(A[H[i]], A[i]);
return 1;

}
return 0;

}

i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
R[i] 1 1 0 0 0 0 0 0
A[i] a f e g h c d b

Round: 4.
Phase: reserve.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 35 / 81

Parallel Fisher-Yates via Deterministic Reservations (2/2)
(Assume R is a boolean array of the same size as A and H.)

bool fy_reserve(int i) {
write_max(&R[i], i); write_max(&R[H[i]], i);

}
bool fy_commit(int i) {

if (R[H[i]] == i && R[i] == i) {
swap(A[H[i]], A[i]);
return 1;

}
return 0;

}

i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
R[i] 1 1 0 0 0 0 0 0
A[i] f a e g h c d b

Round: 4.
Phase: commit.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 35 / 81

Parallel Fisher-Yates via Deterministic Reservations (2/2)
(Assume R is a boolean array of the same size as A and H.)

bool fy_reserve(int i) {
write_max(&R[i], i); write_max(&R[H[i]], i);

}
bool fy_commit(int i) {

if (R[H[i]] == i && R[i] == i) {
swap(A[H[i]], A[i]);
return 1;

}
return 0;

}

i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
R[i] 0 0 0 0 0 0 0 0
A[i] f a e g h c d b

Round: 5.

Phase: commit.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 35 / 81

Parallel Fisher-Yates via Deterministic Reservations (2/2)
(Assume R is a boolean array of the same size as A and H.)

bool fy_reserve(int i) {
write_max(&R[i], i); write_max(&R[H[i]], i);

}
bool fy_commit(int i) {

if (R[H[i]] == i && R[i] == i) {
swap(A[H[i]], A[i]);
return 1;

}
return 0;

}

i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
R[i] 0 0 0 0 0 0 0 0
A[i] f a e g h c d b

Round: 5.
Phase: reserve.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 35 / 81

Parallel Fisher-Yates via Deterministic Reservations (2/2)
(Assume R is a boolean array of the same size as A and H.)

bool fy_reserve(int i) {
write_max(&R[i], i); write_max(&R[H[i]], i);

}
bool fy_commit(int i) {

if (R[H[i]] == i && R[i] == i) {
swap(A[H[i]], A[i]);
return 1;

}
return 0;

}

i 0 1 2 3 4 5 6 7
H[i] 0 0 1 3 1 2 3 1
R[i] 0 0 0 0 0 0 0 0
A[i] f a e g h c d b

Round: 5.
Phase: commit.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 35 / 81

Implementing Deterministic Reservations (1/3)

What’s missing from our informal implementation of parallel Fisher-Yates?
Implement write_max().
Implement speculative_for().

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 36 / 81

Implementing Deterministic Reservations (2/3)

static inline int res_write_max_sc(reserve_t *ptr, int val) {
assert (val >= 0);

int current = atomic_load(ptr);
while (current < val &&

!atomic_compare_exchange_strong(ptr, ¤t, val)) {
asm volatile ("pause");

}

assert (atomic_load(ptr) >= val);
return max(current, val);

}

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 37 / 81

Implementing Deterministic Reservations (3/3)

The code for fy_shuffle_par is a bit too long to display on a slide.

Key issue: which iterations should be retried next round?
We maintain an array of boolean flags to record failed iterations.
At the end of each round, we repack failed iterations.

This repacking is a key operation in deterministic reservations.
/* Given two arrays of integers dst and src, and an array of booleans keep, all

of size n, pack_par(dst, src, keep, n) copies into dst all the elements
src[i] such that keep[i] is true, in order. It returns the number of copied
elements. */

size_t pack_par(int *dst, const int *src, const bool *keep, size_t n);

We can implement it efficiently on top of an exclusive prefix sum.

src a b c d e f g
keep 1 1 0 1 0 0 1
dst a b d g

prefix sum of keep 0 1 2 2 3 3 3

Look at array.c for a simple parallel implementation.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 38 / 81

Implementing Deterministic Reservations (3/3)

The code for fy_shuffle_par is a bit too long to display on a slide.
Key issue: which iterations should be retried next round?

We maintain an array of boolean flags to record failed iterations.
At the end of each round, we repack failed iterations.

This repacking is a key operation in deterministic reservations.
/* Given two arrays of integers dst and src, and an array of booleans keep, all

of size n, pack_par(dst, src, keep, n) copies into dst all the elements
src[i] such that keep[i] is true, in order. It returns the number of copied
elements. */

size_t pack_par(int *dst, const int *src, const bool *keep, size_t n);

We can implement it efficiently on top of an exclusive prefix sum.

src a b c d e f g
keep 1 1 0 1 0 0 1
dst a b d g

prefix sum of keep 0 1 2 2 3 3 3

Look at array.c for a simple parallel implementation.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 38 / 81

Implementing Deterministic Reservations (3/3)

The code for fy_shuffle_par is a bit too long to display on a slide.
Key issue: which iterations should be retried next round?
We maintain an array of boolean flags to record failed iterations.

At the end of each round, we repack failed iterations.
This repacking is a key operation in deterministic reservations.
/* Given two arrays of integers dst and src, and an array of booleans keep, all

of size n, pack_par(dst, src, keep, n) copies into dst all the elements
src[i] such that keep[i] is true, in order. It returns the number of copied
elements. */

size_t pack_par(int *dst, const int *src, const bool *keep, size_t n);

We can implement it efficiently on top of an exclusive prefix sum.

src a b c d e f g
keep 1 1 0 1 0 0 1
dst a b d g

prefix sum of keep 0 1 2 2 3 3 3

Look at array.c for a simple parallel implementation.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 38 / 81

Implementing Deterministic Reservations (3/3)

The code for fy_shuffle_par is a bit too long to display on a slide.
Key issue: which iterations should be retried next round?
We maintain an array of boolean flags to record failed iterations.
At the end of each round, we repack failed iterations.

This repacking is a key operation in deterministic reservations.
/* Given two arrays of integers dst and src, and an array of booleans keep, all

of size n, pack_par(dst, src, keep, n) copies into dst all the elements
src[i] such that keep[i] is true, in order. It returns the number of copied
elements. */

size_t pack_par(int *dst, const int *src, const bool *keep, size_t n);

We can implement it efficiently on top of an exclusive prefix sum.

src a b c d e f g
keep 1 1 0 1 0 0 1
dst a b d g

prefix sum of keep 0 1 2 2 3 3 3

Look at array.c for a simple parallel implementation.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 38 / 81

Implementing Deterministic Reservations (3/3)

The code for fy_shuffle_par is a bit too long to display on a slide.
Key issue: which iterations should be retried next round?
We maintain an array of boolean flags to record failed iterations.
At the end of each round, we repack failed iterations.

This repacking is a key operation in deterministic reservations.
/* Given two arrays of integers dst and src, and an array of booleans keep, all

of size n, pack_par(dst, src, keep, n) copies into dst all the elements
src[i] such that keep[i] is true, in order. It returns the number of copied
elements. */

size_t pack_par(int *dst, const int *src, const bool *keep, size_t n);

We can implement it efficiently on top of an exclusive prefix sum.

src a b c d e f g
keep 1 1 0 1 0 0 1
dst a b d g

prefix sum of keep 0 1 2 2 3 3 3

Look at array.c for a simple parallel implementation.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 38 / 81

Implementing Deterministic Reservations (3/3)

The code for fy_shuffle_par is a bit too long to display on a slide.
Key issue: which iterations should be retried next round?
We maintain an array of boolean flags to record failed iterations.
At the end of each round, we repack failed iterations.

This repacking is a key operation in deterministic reservations.
/* Given two arrays of integers dst and src, and an array of booleans keep, all

of size n, pack_par(dst, src, keep, n) copies into dst all the elements
src[i] such that keep[i] is true, in order. It returns the number of copied
elements. */

size_t pack_par(int *dst, const int *src, const bool *keep, size_t n);

We can implement it efficiently on top of an exclusive prefix sum.

src a b c d e f g
keep 1 1 0 1 0 0 1
dst a b d g

prefix sum of keep 0 1 2 2 3 3 3

Look at array.c for a simple parallel implementation.
A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 38 / 81

Fisher-Yates: Results on 16 MB Arrays

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

0.1

0.2

0.3

0.4

shuffle−par.bin shuffle−seq.bin
Program

R
un

ni
ng

 ti
m

e
(s

)

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 39 / 81

Fisher-Yates: Results on 4 GB Arrays

●

●

●

●

●

●

●●●●●

●

20

30

40

shuffle−par.bin shuffle−seq.bin
Program

R
un

ni
ng

 ti
m

e
(s

)

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 40 / 81

Fisher-Yates: Conclusion

Data size seq par Speedup
16 MB 0.05 s 0.10 s 0.2 x

4 GB 34.69 s 15.30 s 2.26 x

Table: Synthetic Results

There is extractable parallelism in Fisher-Yates, for large arrays.
The original paper announced higher numbers…

Is my implementation bad?
We may need to experiment on even larger arrays.

Exercise: improve my implementation of parallel Fisher-Yates.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 41 / 81

Fisher-Yates: Conclusion

Data size seq par Speedup
16 MB 0.05 s 0.10 s 0.2 x

4 GB 34.69 s 15.30 s 2.26 x

Table: Synthetic Results

There is extractable parallelism in Fisher-Yates, for large arrays.
The original paper announced higher numbers…

Is my implementation bad?
We may need to experiment on even larger arrays.

Exercise: improve my implementation of parallel Fisher-Yates.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 41 / 81

Conclusion of Lecture 1

We’ve written our first internally-deterministic parallel programs in Cilk.
Good parallel algorithms are work-efficient, low-span.
Their performance can be analyzed using classical tools.
Divide-and-conquer algorithms are easy to parallelize.

But you generally need to parallelize the conquer phase!
Even algorithms that look sequential can contain parallelism.

It can often be extracted using ideas like deterministic reservations.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Introduction to Cilk ~guatto/teaching/multicore 42 / 81

Lecture 2

Implementing Task Parallelism on Multicore Hardware

Previously on MPRI 2.37.1
Last week, we’ve discussed several ideas:

The work/span model for performance analysis.
Internally-deterministic, task-parallel algorithms.
Their implementation in the Cilk extension to C and C++.

Why Task Parallelism?
Convenient, high-level parallel programming model.
Useful performance model close to that of sequential algorithms.
Well-understood implementations efficient in theory and in practice.

And what about Cilk itself?
Cilk is just a vehicle, our programs could be written using many other
technologies: OpenMP, java.util.concurrent, Rayon (Rust)…
The implementation techniques invented for Cilk are now standard.

Today: the standard implementation of Cilk and its formal properties.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 43 / 81

Previously on MPRI 2.37.1
Last week, we’ve discussed several ideas:

The work/span model for performance analysis.
Internally-deterministic, task-parallel algorithms.
Their implementation in the Cilk extension to C and C++.

Why Task Parallelism?
Convenient, high-level parallel programming model.
Useful performance model close to that of sequential algorithms.
Well-understood implementations efficient in theory and in practice.

And what about Cilk itself?
Cilk is just a vehicle, our programs could be written using many other
technologies: OpenMP, java.util.concurrent, Rayon (Rust)…
The implementation techniques invented for Cilk are now standard.

Today: the standard implementation of Cilk and its formal properties.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 43 / 81

Previously on MPRI 2.37.1
Last week, we’ve discussed several ideas:

The work/span model for performance analysis.
Internally-deterministic, task-parallel algorithms.
Their implementation in the Cilk extension to C and C++.

Why Task Parallelism?
Convenient, high-level parallel programming model.
Useful performance model close to that of sequential algorithms.
Well-understood implementations efficient in theory and in practice.

And what about Cilk itself?
Cilk is just a vehicle, our programs could be written using many other
technologies: OpenMP, java.util.concurrent, Rayon (Rust)…
The implementation techniques invented for Cilk are now standard.

Today: the standard implementation of Cilk and its formal properties.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 43 / 81

Previously on MPRI 2.37.1
Last week, we’ve discussed several ideas:

The work/span model for performance analysis.
Internally-deterministic, task-parallel algorithms.
Their implementation in the Cilk extension to C and C++.

Why Task Parallelism?
Convenient, high-level parallel programming model.
Useful performance model close to that of sequential algorithms.
Well-understood implementations efficient in theory and in practice.

And what about Cilk itself?
Cilk is just a vehicle, our programs could be written using many other
technologies: OpenMP, java.util.concurrent, Rayon (Rust)…
The implementation techniques invented for Cilk are now standard.

Today: the standard implementation of Cilk and its formal properties.
A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 43 / 81

The Simplest Bad Cilk Program

unsigned int fib(unsigned int n) {
unsigned int x, y;
if (n <= 1) return 1;
cilk_spawn x = fib(n - 1);
y = fib(n - 2);
cilk_sync;
return x + y;

}

The Implementations We Know

Its serial elision, obtained by erasing cilk_spawn and cilk_sync.
Not a provably-efficient implementation.

Its direct implementation using one pthread per task.
Slow or even unworkable in practice (cf. last lecture).

The scheduler seen in the proof of Brent’s theorem
Slow in practice because of its centralized structure.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 44 / 81

The Simplest Bad Cilk Program

unsigned int fib(unsigned int n) {
unsigned int x, y;
if (n <= 1) return 1;
cilk_spawn x = fib(n - 1);
y = fib(n - 2);
cilk_sync;
return x + y;

}

The Implementations We Know
Its serial elision, obtained by erasing cilk_spawn and cilk_sync.

Not a provably-efficient implementation.

Its direct implementation using one pthread per task.
Slow or even unworkable in practice (cf. last lecture).

The scheduler seen in the proof of Brent’s theorem
Slow in practice because of its centralized structure.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 44 / 81

The Simplest Bad Cilk Program

unsigned int fib(unsigned int n) {
unsigned int x, y;
if (n <= 1) return 1;
cilk_spawn x = fib(n - 1);
y = fib(n - 2);
cilk_sync;
return x + y;

}

The Implementations We Know
Its serial elision, obtained by erasing cilk_spawn and cilk_sync.

Not a provably-efficient implementation.
Its direct implementation using one pthread per task.

Slow or even unworkable in practice (cf. last lecture).

The scheduler seen in the proof of Brent’s theorem
Slow in practice because of its centralized structure.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 44 / 81

The Simplest Bad Cilk Program

unsigned int fib(unsigned int n) {
unsigned int x, y;
if (n <= 1) return 1;
cilk_spawn x = fib(n - 1);
y = fib(n - 2);
cilk_sync;
return x + y;

}

The Implementations We Know
Its serial elision, obtained by erasing cilk_spawn and cilk_sync.

Not a provably-efficient implementation.
Its direct implementation using one pthread per task.

Slow or even unworkable in practice (cf. last lecture).
The scheduler seen in the proof of Brent’s theorem

Slow in practice because of its centralized structure.
A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 44 / 81

Computation Graph of Fib

fib(n)

fib(n − 1)

. . .

. . .

. . .

Three kinds of edges: seq (black), spawn (blue), and join (red).

At most one incoming/outgoing seq/spawn edge per node.
Tasks are maximal seq-chains, represented as light-blue boxes .
Together, tasks and join edges form the program’s activation tree.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 45 / 81

Computation Graph of Fib

fib(n)

fib(n − 1)

. . .

. . .

. . .

Three kinds of edges: seq (black), spawn (blue), and join (red).
At most one incoming/outgoing seq/spawn edge per node.

Tasks are maximal seq-chains, represented as light-blue boxes .
Together, tasks and join edges form the program’s activation tree.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 45 / 81

Computation Graph of Fib

fib(n)

fib(n − 1)

. . .

. . .

. . .

Three kinds of edges: seq (black), spawn (blue), and join (red).
At most one incoming/outgoing seq/spawn edge per node.
Tasks are maximal seq-chains, represented as light-blue boxes .

Together, tasks and join edges form the program’s activation tree.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 45 / 81

Computation Graph of Fib

fib(n)

fib(n − 1)

. . .

. . .

. . .

Three kinds of edges: seq (black), spawn (blue), and join (red).
At most one incoming/outgoing seq/spawn edge per node.
Tasks are maximal seq-chains, represented as light-blue boxes .
Together, tasks and join edges form the program’s activation tree.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 45 / 81

Formal Interlude: Schedules

A (finite) computation graph gives rise to a (finite) poset C.
We abstract our p-core machine as the locally finite poset P, where

|P| = [p]× N+, (i, n) <P (j,m) ⇔ n < m.

For example, the two lowest levels of 4 look like:

We denote T : P → ω the map T(x) ≜ 1 +max{T(y) | y < x}.

Definitions

A schedule X is a monotonic injective function C → P.
The scheduling time of a ∈ C in X is defined as TX (a) = T(X (a)).
The length of X is defined as T(X) ≜ max{T(x) | x ∈ X (C)}.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 46 / 81

Formal Interlude: Schedules
A (finite) computation graph gives rise to a (finite) poset C.

We abstract our p-core machine as the locally finite poset P, where

|P| = [p]× N+, (i, n) <P (j,m) ⇔ n < m.

For example, the two lowest levels of 4 look like:

We denote T : P → ω the map T(x) ≜ 1 +max{T(y) | y < x}.

Definitions

A schedule X is a monotonic injective function C → P.
The scheduling time of a ∈ C in X is defined as TX (a) = T(X (a)).
The length of X is defined as T(X) ≜ max{T(x) | x ∈ X (C)}.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 46 / 81

Formal Interlude: Schedules
A (finite) computation graph gives rise to a (finite) poset C.
We abstract our p-core machine as the locally finite poset P, where

|P| = [p]× N+, (i, n) <P (j,m) ⇔ n < m.

For example, the two lowest levels of 4 look like:

We denote T : P → ω the map T(x) ≜ 1 +max{T(y) | y < x}.

Definitions

A schedule X is a monotonic injective function C → P.
The scheduling time of a ∈ C in X is defined as TX (a) = T(X (a)).
The length of X is defined as T(X) ≜ max{T(x) | x ∈ X (C)}.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 46 / 81

Formal Interlude: Schedules
A (finite) computation graph gives rise to a (finite) poset C.
We abstract our p-core machine as the locally finite poset P, where

|P| = [p]× N+, (i, n) <P (j,m) ⇔ n < m.

For example, the two lowest levels of 4 look like:

We denote T : P → ω the map T(x) ≜ 1 +max{T(y) | y < x}.

Definitions

A schedule X is a monotonic injective function C → P.
The scheduling time of a ∈ C in X is defined as TX (a) = T(X (a)).
The length of X is defined as T(X) ≜ max{T(x) | x ∈ X (C)}.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 46 / 81

Formal Interlude: Schedules
A (finite) computation graph gives rise to a (finite) poset C.
We abstract our p-core machine as the locally finite poset P, where

|P| = [p]× N+, (i, n) <P (j,m) ⇔ n < m.

For example, the two lowest levels of 4 look like:

We denote T : P → ω the map T(x) ≜ 1 +max{T(y) | y < x}.

Definitions
A schedule X is a monotonic injective function C → P.

The scheduling time of a ∈ C in X is defined as TX (a) = T(X (a)).
The length of X is defined as T(X) ≜ max{T(x) | x ∈ X (C)}.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 46 / 81

Formal Interlude: Schedules
A (finite) computation graph gives rise to a (finite) poset C.
We abstract our p-core machine as the locally finite poset P, where

|P| = [p]× N+, (i, n) <P (j,m) ⇔ n < m.

For example, the two lowest levels of 4 look like:

We denote T : P → ω the map T(x) ≜ 1 +max{T(y) | y < x}.

Definitions
A schedule X is a monotonic injective function C → P.

The scheduling time of a ∈ C in X is defined as TX (a) = T(X (a)).
The length of X is defined as T(X) ≜ max{T(x) | x ∈ X (C)}.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 46 / 81

Formal Interlude: Schedules
A (finite) computation graph gives rise to a (finite) poset C.
We abstract our p-core machine as the locally finite poset P, where

|P| = [p]× N+, (i, n) <P (j,m) ⇔ n < m.

For example, the two lowest levels of 4 look like:

We denote T : P → ω the map T(x) ≜ 1 +max{T(y) | y < x}.

Definitions
A schedule X is a monotonic injective function C → P.

The scheduling time of a ∈ C in X is defined as TX (a) = T(X (a)).
The length of X is defined as T(X) ≜ max{T(x) | x ∈ X (C)}.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 46 / 81

Formal Interlude: Schedules
A (finite) computation graph gives rise to a (finite) poset C.
We abstract our p-core machine as the locally finite poset P, where

|P| = [p]× N+, (i, n) <P (j,m) ⇔ n < m.

For example, the two lowest levels of 4 look like:

We denote T : P → ω the map T(x) ≜ 1 +max{T(y) | y < x}.

Definitions
A schedule X is a monotonic injective function C → P.
The scheduling time of a ∈ C in X is defined as TX (a) = T(X (a)).

The length of X is defined as T(X) ≜ max{T(x) | x ∈ X (C)}.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 46 / 81

Formal Interlude: Schedules
A (finite) computation graph gives rise to a (finite) poset C.
We abstract our p-core machine as the locally finite poset P, where

|P| = [p]× N+, (i, n) <P (j,m) ⇔ n < m.

For example, the two lowest levels of 4 look like:

We denote T : P → ω the map T(x) ≜ 1 +max{T(y) | y < x}.

Definitions
A schedule X is a monotonic injective function C → P.
The scheduling time of a ∈ C in X is defined as TX (a) = T(X (a)).
The length of X is defined as T(X) ≜ max{T(x) | x ∈ X (C)}.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 46 / 81

Formal Interlude: Greedy Scheduling Theorem

Definitions
The set of instructions ready in X at t ∈ ω is defined as

RX (t) ≜ {a ∈ C | ∀b <C a,TX (b) < n}.

The set of processor steps active in X at t ∈ ω is defined as

AX (t) ≜ {i ∈ [p] | ∃x ∈ C,X (x) = (i, t)}.

The schedule X is greedy if #AX (t) = min(p,#RX (t)).

Theorem (Blumofe and Leiserson [1998])
Any greedy schedule X achieves

T(X) ≤ W(C)

p + S(C).

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 47 / 81

Formal Interlude: Greedy Scheduling Theorem

Definitions
The set of instructions ready in X at t ∈ ω is defined as

RX (t) ≜ {a ∈ C | ∀b <C a,TX (b) < n}.

The set of processor steps active in X at t ∈ ω is defined as

AX (t) ≜ {i ∈ [p] | ∃x ∈ C,X (x) = (i, t)}.

The schedule X is greedy if #AX (t) = min(p,#RX (t)).

Theorem (Blumofe and Leiserson [1998])
Any greedy schedule X achieves

T(X) ≤ W(C)

p + S(C).

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 47 / 81

Formal Interlude: Greedy Scheduling Theorem (Proof)
Let Dt and Wt be the two subposets of C such that C ∼= Dt + Wt and the
elements of Dt are

∪
t′≤t AX (t′). We prove, by induction on t ≤ T(X),

t ≤ W(Dt)

p + S(C)− S(Wt).

If #AX (t + 1) = p, we have

t + 1 ≤ W(Dt)

p + S(C)− S(Wt) + 1 (I.H.)

=
W(Dt)

p + S(C)− S(Wt) +
#AX (t + 1)

p

≤ W(Dt+1)

p + S(C)− S(Wt+1).

If #AX (t + 1) < p, since X is greedy we have #RX (t + 1) < p. This
entails S(Wt) = S(Wt+1) + 1 and, as a consequence,

t + 1 ≤ W(Dt)

p + S(C)− S(Wt) + 1 ≤ W(Dt+1)

p + S(C)− S(Wt+1).

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 48 / 81

Strictness and Full Strictness

fib(n)

fib(n − 1)

. . .

. . .

. . .

A Key Invariant
A program is strict (resp. fully strict) when its join edges always connect a
task to one of its ancestors (resp. to its parent) in the activation tree.

Can you write a Cilk program that is not fully strict?

No.

How would you write a non-strict program?

Futures, raw pthreads…

Why is strictness important?

It safeguards memory usage.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 49 / 81

Strictness and Full Strictness

fib(n)

fib(n − 1)

. . .

. . .

. . .

A Key Invariant
A program is strict (resp. fully strict) when its join edges always connect a
task to one of its ancestors (resp. to its parent) in the activation tree.

Can you write a Cilk program that is not fully strict?

No.

How would you write a non-strict program?

Futures, raw pthreads…

Why is strictness important?

It safeguards memory usage.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 49 / 81

Strictness and Full Strictness

fib(n)

fib(n − 1)

. . .

. . .

. . .

A Key Invariant
A program is strict (resp. fully strict) when its join edges always connect a
task to one of its ancestors (resp. to its parent) in the activation tree.

Can you write a Cilk program that is not fully strict?

No.
How would you write a non-strict program?

Futures, raw pthreads…

Why is strictness important?

It safeguards memory usage.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 49 / 81

Strictness and Full Strictness

fib(n)

fib(n − 1)

. . .

. . .

. . .

A Key Invariant
A program is strict (resp. fully strict) when its join edges always connect a
task to one of its ancestors (resp. to its parent) in the activation tree.

Can you write a Cilk program that is not fully strict? No.

How would you write a non-strict program?

Futures, raw pthreads…

Why is strictness important?

It safeguards memory usage.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 49 / 81

Strictness and Full Strictness

fib(n)

fib(n − 1)

. . .

. . .

. . .

A Key Invariant
A program is strict (resp. fully strict) when its join edges always connect a
task to one of its ancestors (resp. to its parent) in the activation tree.

Can you write a Cilk program that is not fully strict? No.
How would you write a non-strict program?

Futures, raw pthreads…
Why is strictness important?

It safeguards memory usage.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 49 / 81

Strictness and Full Strictness

fib(n)

fib(n − 1)

. . .

. . .

. . .

A Key Invariant
A program is strict (resp. fully strict) when its join edges always connect a
task to one of its ancestors (resp. to its parent) in the activation tree.

Can you write a Cilk program that is not fully strict? No.
How would you write a non-strict program? Futures, raw pthreads…

Why is strictness important?

It safeguards memory usage.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 49 / 81

Strictness and Full Strictness

fib(n)

fib(n − 1)

. . .

. . .

. . .

A Key Invariant
A program is strict (resp. fully strict) when its join edges always connect a
task to one of its ancestors (resp. to its parent) in the activation tree.

Can you write a Cilk program that is not fully strict? No.
How would you write a non-strict program? Futures, raw pthreads…
Why is strictness important?

It safeguards memory usage.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 49 / 81

Strictness and Full Strictness

fib(n)

fib(n − 1)

. . .

. . .

. . .

A Key Invariant
A program is strict (resp. fully strict) when its join edges always connect a
task to one of its ancestors (resp. to its parent) in the activation tree.

Can you write a Cilk program that is not fully strict? No.
How would you write a non-strict program? Futures, raw pthreads…
Why is strictness important? It safeguards memory usage.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 49 / 81

Thinking About Space Usage

Space Usage in the Task-Parallel Model

We assume every task reserves a certain amount of memory.
It is natural to think of it as stack usage, but this is not essential.

We assume this memory cannot be freed before the task and all its
children in the activation tree terminate.
The schedule X thus determines space usage M(X).

For the sake of simplicity, we henceforth assume unit-size stack frames.

A Lower Bound
Writing D(C) for the height of the activation tree of C, we have

D(C) ≤ M(X).

Clearly there are computations for which linear speedup require linear
expansion of space (e.g., p independent tasks). But can it get worse?

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 50 / 81

Thinking About Space Usage

Space Usage in the Task-Parallel Model
We assume every task reserves a certain amount of memory.

It is natural to think of it as stack usage, but this is not essential.

We assume this memory cannot be freed before the task and all its
children in the activation tree terminate.
The schedule X thus determines space usage M(X).

For the sake of simplicity, we henceforth assume unit-size stack frames.

A Lower Bound
Writing D(C) for the height of the activation tree of C, we have

D(C) ≤ M(X).

Clearly there are computations for which linear speedup require linear
expansion of space (e.g., p independent tasks). But can it get worse?

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 50 / 81

Thinking About Space Usage

Space Usage in the Task-Parallel Model
We assume every task reserves a certain amount of memory.

It is natural to think of it as stack usage, but this is not essential.
We assume this memory cannot be freed before the task and all its
children in the activation tree terminate.

The schedule X thus determines space usage M(X).

For the sake of simplicity, we henceforth assume unit-size stack frames.

A Lower Bound
Writing D(C) for the height of the activation tree of C, we have

D(C) ≤ M(X).

Clearly there are computations for which linear speedup require linear
expansion of space (e.g., p independent tasks). But can it get worse?

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 50 / 81

Thinking About Space Usage

Space Usage in the Task-Parallel Model
We assume every task reserves a certain amount of memory.

It is natural to think of it as stack usage, but this is not essential.
We assume this memory cannot be freed before the task and all its
children in the activation tree terminate.
The schedule X thus determines space usage M(X).

For the sake of simplicity, we henceforth assume unit-size stack frames.

A Lower Bound
Writing D(C) for the height of the activation tree of C, we have

D(C) ≤ M(X).

Clearly there are computations for which linear speedup require linear
expansion of space (e.g., p independent tasks). But can it get worse?

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 50 / 81

Thinking About Space Usage

Space Usage in the Task-Parallel Model
We assume every task reserves a certain amount of memory.

It is natural to think of it as stack usage, but this is not essential.
We assume this memory cannot be freed before the task and all its
children in the activation tree terminate.
The schedule X thus determines space usage M(X).

For the sake of simplicity, we henceforth assume unit-size stack frames.

A Lower Bound
Writing D(C) for the height of the activation tree of C, we have

D(C) ≤ M(X).

Clearly there are computations for which linear speedup require linear
expansion of space (e.g., p independent tasks). But can it get worse?

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 50 / 81

Thinking About Space Usage

Space Usage in the Task-Parallel Model
We assume every task reserves a certain amount of memory.

It is natural to think of it as stack usage, but this is not essential.
We assume this memory cannot be freed before the task and all its
children in the activation tree terminate.
The schedule X thus determines space usage M(X).

For the sake of simplicity, we henceforth assume unit-size stack frames.

A Lower Bound
Writing D(C) for the height of the activation tree of C, we have

D(C) ≤ M(X).

Clearly there are computations for which linear speedup require linear
expansion of space (e.g., p independent tasks). But can it get worse?

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 50 / 81

Thinking About Space Usage

Space Usage in the Task-Parallel Model
We assume every task reserves a certain amount of memory.

It is natural to think of it as stack usage, but this is not essential.
We assume this memory cannot be freed before the task and all its
children in the activation tree terminate.
The schedule X thus determines space usage M(X).

For the sake of simplicity, we henceforth assume unit-size stack frames.

A Lower Bound
Writing D(C) for the height of the activation tree of C, we have

D(C) ≤ M(X).

Clearly there are computations for which linear speedup require linear
expansion of space (e.g., p independent tasks). But can it get worse?

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 50 / 81

Non-strict Computations and Memory Usage

Theorem (Blumofe and Leiserson [1998])
There exists a family of computations for which linear speedup can only be
obtained at the cost of a superlinear increase in space usage.

… …

D(C) = 5
λ = 2
ν = 5

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 51 / 81

Non-strict Computations and Memory Usage

Theorem (Blumofe and Leiserson [1998])
There exists a family of computations for which linear speedup can only be
obtained at the cost of a superlinear increase in space usage.

… …

D(C) = 5
λ = 2
ν = 5

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 51 / 81

Strict Programs And Eagerness

A fully-strict computation with six tasks α ∈ {a, b, c, d, e, f}:

a0 a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5 c0 c1 c2

d0 d1 e0 e1 f0 f1 f2

Strictness has important consequences:
every task subtree, once started, can be finished by a single processor,
a ready leaf task α cannot stall, i.e., block on incoming dependencies.

We will exploit such properties in a scheduler that guarantees at worst
linear space expansion: the busy-leaves algorithm.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 52 / 81

Strict Programs And Eagerness

A fully-strict computation with six tasks α ∈ {a, b, c, d, e, f}:

a0 a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5 c0 c1 c2

d0 d1 e0 e1 f0 f1 f2

Strictness has important consequences:
every task subtree, once started, can be finished by a single processor,
a ready leaf task α cannot stall, i.e., block on incoming dependencies.

We will exploit such properties in a scheduler that guarantees at worst
linear space expansion: the busy-leaves algorithm.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 52 / 81

Strict Programs And Eagerness

A fully-strict computation with six tasks α ∈ {a, b, c, d, e, f}:

a0 a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5 c0 c1 c2

d0 d1 e0 e1 f0 f1 f2

Strictness has important consequences:
every task subtree, once started, can be finished by a single processor,
a ready leaf task α cannot stall, i.e., block on incoming dependencies.

We will exploit such properties in a scheduler that guarantees at worst
linear space expansion: the busy-leaves algorithm.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 52 / 81

The Eager Algorithm

1: αi ← nil for all i ∈ [p]; R← {αinit}
2: while αinit is not finished do
3: for i ∈ [p] parallel do
4: if αi = nil and R ̸= ∅ then
5: αi ← some ready task from R; R← {αi} \ R
6: end if
7: if αi ̸= nil then
8: execute the next instruction of αi; let γ be the parent task of αi
9: if αi has spawned β then
10: R← R ∪ {αi}; αi ← β
11: else if αi is now stalled then
12: R← R ∪ {αi}; αi ← nil
13: else if αi has died then
14: if γ has no living children and ∀j, γ ̸= αj then
15: αi ← γ
16: else
17: αi ← nil
18: end if
19: end if
20: end if
21: end for
22: end while

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 53 / 81

The Eager Algorithm: Example

a0 a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5 c0 c1 c2

d0 d1 e0 e1 f0 f1 f2

p0p0

R = ∅

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 54 / 81

The Eager Algorithm: Example

a0 a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5 c0 c1 c2

d0 d1 e0 e1 f0 f1 f2

p0 p0

R = ∅

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 54 / 81

The Eager Algorithm: Example

a0 a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5 c0 c1 c2

d0 d1 e0 e1 f0 f1 f2

p0

p0

p1

R = ∅

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 54 / 81

The Eager Algorithm: Example

a0 a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5 c0 c1 c2

d0 d1 e0 e1 f0 f1 f2

p0

p0

p1

R = {b1}

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 54 / 81

The Eager Algorithm: Example

a0 a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5 c0 c1 c2

d0 d1 e0 e1 f0 f1 f2

p0

p0

p1

R = {b1, a4}

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 54 / 81

The Eager Algorithm: Example

a0 a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5 c0 c1 c2

d0 d1 e0 e1 f0 f1 f2

p0

p0 p1

R = {a4}

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 54 / 81

The Eager Algorithm: Example

a0 a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5 c0 c1 c2

d0 d1 e0 e1 f0 f1 f2

p0

p0

p1

R = {b2, a4}

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 54 / 81

The Eager Algorithm: Example

a0 a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5 c0 c1 c2

d0 d1 e0 e1 f0 f1 f2

p0

p0

p1

R = {b2}

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 54 / 81

The Eager Algorithm: Example

a0 a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5 c0 c1 c2

d0 d1 e0 e1 f0 f1 f2

p0

p0

R = {a5}

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 54 / 81

The Eager Algorithm: Example

a0 a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5 c0 c1 c2

d0 d1 e0 e1 f0 f1 f2

p0

p0

p1

R = {a5}

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 54 / 81

The Eager Algorithm: Example

a0 a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5 c0 c1 c2

d0 d1 e0 e1 f0 f1 f2

p0

p0

p1

R = {a5}

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 54 / 81

The Eager Algorithm: Example

a0 a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5 c0 c1 c2

d0 d1 e0 e1 f0 f1 f2

p0

p0

p1

R = {b5}

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 54 / 81

The Eager Algorithm: Example

a0 a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5 c0 c1 c2

d0 d1 e0 e1 f0 f1 f2

p0

p0

R = {a6}

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 54 / 81

The Eager Algorithm: Example

a0 a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5 c0 c1 c2

d0 d1 e0 e1 f0 f1 f2

p0 p0

R = ∅

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 54 / 81

The Eager Algorithm: Example

a0 a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5 c0 c1 c2

d0 d1 e0 e1 f0 f1 f2

p0

R = ∅

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 54 / 81

The Eager Algorithm: Properties

An Online, Serially-Consistent, Greedy, Eager Scheduling Algorithm
Online: does not rely on global graph properties.
Serially-consistent: follows the serial order exactly when p = 1.
Greedy: computes greedy schedules, hence T(X) ≤ W(C)

p + S(C).
Eager: computes eager schedules, with busy leaves.

Definition (Eager Schedules)
At each round, each living task that has no living children is active.

Theorem (Blumofe and Leiserson [1994])
If X is eager then M(X) ≤ pD(C).

Proof Sketch.
At any t, at most p leaves are active, each using D(C) space at most.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 55 / 81

The Eager Algorithm: Properties

An Online, Serially-Consistent, Greedy, Eager Scheduling Algorithm
Online: does not rely on global graph properties.
Serially-consistent: follows the serial order exactly when p = 1.
Greedy: computes greedy schedules, hence T(X) ≤ W(C)

p + S(C).
Eager: computes eager schedules, with busy leaves.

Definition (Eager Schedules)
At each round, each living task that has no living children is active.

Theorem (Blumofe and Leiserson [1994])
If X is eager then M(X) ≤ pD(C).

Proof Sketch.
At any t, at most p leaves are active, each using D(C) space at most.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 55 / 81

The Eager Algorithm: Properties

An Online, Serially-Consistent, Greedy, Eager Scheduling Algorithm
Online: does not rely on global graph properties.
Serially-consistent: follows the serial order exactly when p = 1.
Greedy: computes greedy schedules, hence T(X) ≤ W(C)

p + S(C).
Eager: computes eager schedules, with busy leaves.

Definition (Eager Schedules)
At each round, each living task that has no living children is active.

Theorem (Blumofe and Leiserson [1994])
If X is eager then M(X) ≤ pD(C).

Proof Sketch.
At any t, at most p leaves are active, each using D(C) space at most.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 55 / 81

The Eager Algorithm: Properties

An Online, Serially-Consistent, Greedy, Eager Scheduling Algorithm
Online: does not rely on global graph properties.
Serially-consistent: follows the serial order exactly when p = 1.
Greedy: computes greedy schedules, hence T(X) ≤ W(C)

p + S(C).
Eager: computes eager schedules, with busy leaves.

Definition (Eager Schedules)
At each round, each living task that has no living children is active.

Theorem (Blumofe and Leiserson [1994])
If X is eager then M(X) ≤ pD(C).

Proof Sketch.
At any t, at most p leaves are active, each using D(C) space at most.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 55 / 81

The Eager Algorithm: Limitations

Concurrency Issues in the Eager Algorithm
The pseudocode is, by design, fuzzy on concurrency issues. ▷ pseudocode

What part of that algorithm should be executed atomically?

Limits of Centralization
An implementation needs to make accesses to R mutually exclusive.
This will be difficult to scale beyond a few processors.
Instead, we would like to use per-processor data structures…

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 56 / 81

The Eager Algorithm: Limitations

Concurrency Issues in the Eager Algorithm
The pseudocode is, by design, fuzzy on concurrency issues. ▷ pseudocode

What part of that algorithm should be executed atomically?

Limits of Centralization
An implementation needs to make accesses to R mutually exclusive.
This will be difficult to scale beyond a few processors.
Instead, we would like to use per-processor data structures…

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 56 / 81

Towards Work Stealing

We’ve seen how the eager algorithm strives to mimick serial execution.
Serial execution relies on a stack to implement its LIFO policy.
What similar data structure could we use to compute eager schedules?

Double-Ended Queues and Work-Stealing Scheduling

push pop

steal

Organization of the algorithm:
Each processor has its owns double-ended
queue (deque) in which it stores tasks.
Deques hold the live subset of the spawn tree.

Outline of the scheduler:

1 Push continuation tasks to the bottom (push).
2 When out of work, pop from bottom (pop),
3 If pop fails, pick some other processor at random

and try to steal a task from the top of its deque.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 57 / 81

Towards Work Stealing

We’ve seen how the eager algorithm strives to mimick serial execution.
Serial execution relies on a stack to implement its LIFO policy.
What similar data structure could we use to compute eager schedules?

Double-Ended Queues and Work-Stealing Scheduling

push pop

steal

Organization of the algorithm:
Each processor has its owns double-ended
queue (deque) in which it stores tasks.
Deques hold the live subset of the spawn tree.

Outline of the scheduler:

1 Push continuation tasks to the bottom (push).
2 When out of work, pop from bottom (pop),
3 If pop fails, pick some other processor at random

and try to steal a task from the top of its deque.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 57 / 81

Towards Work Stealing

We’ve seen how the eager algorithm strives to mimick serial execution.
Serial execution relies on a stack to implement its LIFO policy.
What similar data structure could we use to compute eager schedules?

Double-Ended Queues and Work-Stealing Scheduling

push

pop

steal

Organization of the algorithm:
Each processor has its owns double-ended
queue (deque) in which it stores tasks.
Deques hold the live subset of the spawn tree.

Outline of the scheduler:
1 Push continuation tasks to the bottom (push).

2 When out of work, pop from bottom (pop),
3 If pop fails, pick some other processor at random

and try to steal a task from the top of its deque.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 57 / 81

Towards Work Stealing

We’ve seen how the eager algorithm strives to mimick serial execution.
Serial execution relies on a stack to implement its LIFO policy.
What similar data structure could we use to compute eager schedules?

Double-Ended Queues and Work-Stealing Scheduling

push pop

steal

Organization of the algorithm:
Each processor has its owns double-ended
queue (deque) in which it stores tasks.
Deques hold the live subset of the spawn tree.

Outline of the scheduler:
1 Push continuation tasks to the bottom (push).
2 When out of work, pop from bottom (pop),

3 If pop fails, pick some other processor at random
and try to steal a task from the top of its deque.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 57 / 81

Towards Work Stealing

We’ve seen how the eager algorithm strives to mimick serial execution.
Serial execution relies on a stack to implement its LIFO policy.
What similar data structure could we use to compute eager schedules?

Double-Ended Queues and Work-Stealing Scheduling

push pop

steal Organization of the algorithm:
Each processor has its owns double-ended
queue (deque) in which it stores tasks.
Deques hold the live subset of the spawn tree.

Outline of the scheduler:
1 Push continuation tasks to the bottom (push).
2 When out of work, pop from bottom (pop),
3 If pop fails, pick some other processor at random

and try to steal a task from the top of its deque.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 57 / 81

The Work-Stealing Algorithm

1: Q0 ← {αinit}; Qi ← empty for all 0 < i < p; alphai ← nil for all i ∈ [p];
2: while αinit is not finished do
3: for i ∈ [p] parallel do
4: if αi = nil then
5: αi ← pop(Qi)
6: end if
7: if αi = nil then
8: αi ← steal(Qj) with j picked randomly in [p];
9: end if
10: if αi ̸= nil then
11: execute the next instruction of αi
12: if αi has spawned β then
13: push(Qi, αi); αi ← β
14: else if αi is now stalled or has died then
15: αi ← nil
16: else if αi has enabled a stalled β then
17: push(Qi, β)
18: end if
19: end if
20: end for
21: end while

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 58 / 81

The Work-Stealing Algorithm: Space Usage
Consider the contents of a deque of size k during work-stealing.

.

. . .

. . .

. . .

. . .

Qk
i

Qk−1
i

. . .

Q1
i

Q0
i = αi

Invariant: Qm+1
i has spawned Qm

i , and only Qk
i may have worked since.

Theorem
Work-Stealing computes eager schedules.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 59 / 81

The Work-Stealing Algorithm: Time Bounds

Schedules X computed by work-stealing are eager but not greedy.
Steals may fail; Blumofe and Leiserson [1994] also consider contention.

The length of X thus depends on the number of steal attempts.

Theorem
The expected number of steals is O(pS(C)).

Proof.
Intricate! Intuitively, a large number of steal attempts is unlikely because
it would be reflecting the persistent presence of certain instructions,
deemed critical. But such instructions cannot occur deep in the deque,
and hence are eliminated with high probability by steal attempts.

Theorem
The expected length is W(C)/p + O(S(C)).

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 60 / 81

The Work-Stealing Algorithm: Time Bounds

Schedules X computed by work-stealing are eager but not greedy.
Steals may fail; Blumofe and Leiserson [1994] also consider contention.

The length of X thus depends on the number of steal attempts.

Theorem
The expected number of steals is O(pS(C)).

Proof.
Intricate! Intuitively, a large number of steal attempts is unlikely because
it would be reflecting the persistent presence of certain instructions,
deemed critical. But such instructions cannot occur deep in the deque,
and hence are eliminated with high probability by steal attempts.

Theorem
The expected length is W(C)/p + O(S(C)).

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 60 / 81

The Work-Stealing Algorithm: Time Bounds

Schedules X computed by work-stealing are eager but not greedy.
Steals may fail; Blumofe and Leiserson [1994] also consider contention.

The length of X thus depends on the number of steal attempts.

Theorem
The expected number of steals is O(pS(C)).

Proof.
Intricate!

Intuitively, a large number of steal attempts is unlikely because
it would be reflecting the persistent presence of certain instructions,
deemed critical. But such instructions cannot occur deep in the deque,
and hence are eliminated with high probability by steal attempts.

Theorem
The expected length is W(C)/p + O(S(C)).

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 60 / 81

The Work-Stealing Algorithm: Time Bounds

Schedules X computed by work-stealing are eager but not greedy.
Steals may fail; Blumofe and Leiserson [1994] also consider contention.

The length of X thus depends on the number of steal attempts.

Theorem
The expected number of steals is O(pS(C)).

Proof.
Intricate! Intuitively, a large number of steal attempts is unlikely because
it would be reflecting the persistent presence of certain instructions,
deemed critical. But such instructions cannot occur deep in the deque,
and hence are eliminated with high probability by steal attempts.

Theorem
The expected length is W(C)/p + O(S(C)).

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 60 / 81

The Work-Stealing Algorithm: Time Bounds

Schedules X computed by work-stealing are eager but not greedy.
Steals may fail; Blumofe and Leiserson [1994] also consider contention.

The length of X thus depends on the number of steal attempts.

Theorem
The expected number of steals is O(pS(C)).

Proof.
Intricate! Intuitively, a large number of steal attempts is unlikely because
it would be reflecting the persistent presence of certain instructions,
deemed critical. But such instructions cannot occur deep in the deque,
and hence are eliminated with high probability by steal attempts.

Theorem
The expected length is W(C)/p + O(S(C)).

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 60 / 81

An Important Metric: Deviations
Interacting with the scheduler is both a blessing and a curse.

It is necessary to exploit parallelism, obviously.
It incurs high costs: bookkeeping overheads, loss of locality.

Fortunately, one can bound the number of deviations [Acar et al., 2000].

Definition (Deviation)
A deviation is a pair (a, b) ∈ C2 such that b occurs immediately after a in
the serial execution but either X (a).p ̸= X (b).p or X (b).t > X (a).t + 1.

Theorem (Acar et al. [2000])
Work-Stealing incurs an expected number of O(pS(C)) deviations.

Proof Sketch.
Each steal induces at most two deviations. Can you guess which?
Steals themselves, as well as enablings of stalled tasks.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 61 / 81

An Important Metric: Deviations
Interacting with the scheduler is both a blessing and a curse.

It is necessary to exploit parallelism, obviously.
It incurs high costs: bookkeeping overheads, loss of locality.

Fortunately, one can bound the number of deviations [Acar et al., 2000].

Definition (Deviation)
A deviation is a pair (a, b) ∈ C2 such that b occurs immediately after a in
the serial execution but either X (a).p ̸= X (b).p or X (b).t > X (a).t + 1.

Theorem (Acar et al. [2000])
Work-Stealing incurs an expected number of O(pS(C)) deviations.

Proof Sketch.
Each steal induces at most two deviations. Can you guess which?
Steals themselves, as well as enablings of stalled tasks.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 61 / 81

An Important Metric: Deviations
Interacting with the scheduler is both a blessing and a curse.

It is necessary to exploit parallelism, obviously.
It incurs high costs: bookkeeping overheads, loss of locality.

Fortunately, one can bound the number of deviations [Acar et al., 2000].

Definition (Deviation)
A deviation is a pair (a, b) ∈ C2 such that b occurs immediately after a in
the serial execution but either X (a).p ̸= X (b).p or X (b).t > X (a).t + 1.

Theorem (Acar et al. [2000])
Work-Stealing incurs an expected number of O(pS(C)) deviations.

Proof Sketch.
Each steal induces at most two deviations. Can you guess which?

Steals themselves, as well as enablings of stalled tasks.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 61 / 81

An Important Metric: Deviations
Interacting with the scheduler is both a blessing and a curse.

It is necessary to exploit parallelism, obviously.
It incurs high costs: bookkeeping overheads, loss of locality.

Fortunately, one can bound the number of deviations [Acar et al., 2000].

Definition (Deviation)
A deviation is a pair (a, b) ∈ C2 such that b occurs immediately after a in
the serial execution but either X (a).p ̸= X (b).p or X (b).t > X (a).t + 1.

Theorem (Acar et al. [2000])
Work-Stealing incurs an expected number of O(pS(C)) deviations.

Proof Sketch.
Each steal induces at most two deviations. Can you guess which?
Steals themselves, as well as enablings of stalled tasks.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 61 / 81

Towards An Implementation

Ok, are we ready to implement Cilk?

Still missing:
Manipulating programs rather than abstract graphs.
Implementing deques.
Clarifying dependence resolution, as used when enabling stalled tasks.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 62 / 81

Towards An Implementation

Ok, are we ready to implement Cilk? Still missing:
Manipulating programs rather than abstract graphs.
Implementing deques.
Clarifying dependence resolution, as used when enabling stalled tasks.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 62 / 81

Naive Compilation

What do we put in work-stealing deques, concretely? Frames.

Frames and Their Usage
Frames package the data necessary to run Cilk tasks.
They typically bundle a code pointer, a parent-task pointer, local data
used by the program, and bookkeeping data used by the scheduler.
Portable implementations store a shadow stack in the heap.

This suffers from restrictions Mainly, C code cannot call Cilk functions.
Ambitious Cilk implementations use actual stack frames.

The system stack becomes a cactus stack, i.e., a tree. Systems
aficionados may want to read Yang and Mellor-Crummey [2016].

Where do Code Pointers Come From?
The Cilk compiler performs a source-to-source, partial CPS translation,
outlining every continuation of cilk_spawn into its own C function.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 63 / 81

Naive Compilation

What do we put in work-stealing deques, concretely? Frames.

Frames and Their Usage
Frames package the data necessary to run Cilk tasks.
They typically bundle a code pointer, a parent-task pointer, local data
used by the program, and bookkeeping data used by the scheduler.
Portable implementations store a shadow stack in the heap.

This suffers from restrictions Mainly, C code cannot call Cilk functions.
Ambitious Cilk implementations use actual stack frames.

The system stack becomes a cactus stack, i.e., a tree. Systems
aficionados may want to read Yang and Mellor-Crummey [2016].

Where do Code Pointers Come From?
The Cilk compiler performs a source-to-source, partial CPS translation,
outlining every continuation of cilk_spawn into its own C function.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 63 / 81

Naive Compilation

What do we put in work-stealing deques, concretely? Frames.

Frames and Their Usage
Frames package the data necessary to run Cilk tasks.
They typically bundle a code pointer, a parent-task pointer, local data
used by the program, and bookkeeping data used by the scheduler.
Portable implementations store a shadow stack in the heap.

This suffers from restrictions Mainly, C code cannot call Cilk functions.
Ambitious Cilk implementations use actual stack frames.

The system stack becomes a cactus stack, i.e., a tree. Systems
aficionados may want to read Yang and Mellor-Crummey [2016].

Where do Code Pointers Come From?
The Cilk compiler performs a source-to-source, partial CPS translation,
outlining every continuation of cilk_spawn into its own C function.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 63 / 81

Naive Compilation

What do we put in work-stealing deques, concretely? Frames.

Frames and Their Usage
Frames package the data necessary to run Cilk tasks.
They typically bundle a code pointer, a parent-task pointer, local data
used by the program, and bookkeeping data used by the scheduler.
Portable implementations store a shadow stack in the heap.

This suffers from restrictions Mainly, C code cannot call Cilk functions.
Ambitious Cilk implementations use actual stack frames.

The system stack becomes a cactus stack, i.e., a tree. Systems
aficionados may want to read Yang and Mellor-Crummey [2016].

Where do Code Pointers Come From?
The Cilk compiler performs a source-to-source, partial CPS translation,
outlining every continuation of cilk_spawn into its own C function.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 63 / 81

Naive Deques and Counters

How do we implement deques? How do we do dependence resolution?

Not so Concurrent Deques
Protect your favorite sequential deque with your favorite lock.
Important: in the implementation of steal, use try_lock.

Dependence Resolution
Frames include a join counter, manipulated as follows.

1 It is initialized to one.
2 Spawning a task increment the counter of its frame.
3 Joining a task decrements the counter of its parent’s frame. If it

reaches zero, the parent is pushed to the bottom of the local deque.
4 Syncinc a task decrements the counter of its frame. If it reaches

zero, sync proceeds. Otherwise, it returns to the scheduler.
Key invariant: every frame present in a deque has a counter > 1.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 64 / 81

Naive Deques and Counters

How do we implement deques? How do we do dependence resolution?

Not so Concurrent Deques
Protect your favorite sequential deque with your favorite lock.
Important: in the implementation of steal, use try_lock.

Dependence Resolution
Frames include a join counter, manipulated as follows.

1 It is initialized to one.
2 Spawning a task increment the counter of its frame.
3 Joining a task decrements the counter of its parent’s frame. If it

reaches zero, the parent is pushed to the bottom of the local deque.
4 Syncinc a task decrements the counter of its frame. If it reaches

zero, sync proceeds. Otherwise, it returns to the scheduler.
Key invariant: every frame present in a deque has a counter > 1.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 64 / 81

Naive Deques and Counters

How do we implement deques? How do we do dependence resolution?

Not so Concurrent Deques
Protect your favorite sequential deque with your favorite lock.
Important: in the implementation of steal, use try_lock.

Dependence Resolution
Frames include a join counter, manipulated as follows.

1 It is initialized to one.
2 Spawning a task increment the counter of its frame.
3 Joining a task decrements the counter of its parent’s frame. If it

reaches zero, the parent is pushed to the bottom of the local deque.
4 Syncinc a task decrements the counter of its frame. If it reaches

zero, sync proceeds. Otherwise, it returns to the scheduler.
Key invariant: every frame present in a deque has a counter > 1.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 64 / 81

The Work-First Principle (1/2)
We have a working, provably-efficient Cilk implementation.

Also, a quite
slow one. What should we optimize? Let’s exploit our time bound.

Notations for overheads
Let Tp denote minX T(X) where X is a p-processor schedule.
Let Ts denote the running time of the program’s serial elision.
Write c1 for T1/Ts and c∞ for the hidden constant in O(S(C)).

The work-stealing time bound becomes as

Tp ≤ c1Ts/p + c∞S(C)

≈ c1Ts/p assuming P/p ≫ c∞.

This has an important consequence, called the work-first principle:
c1 matters more for performance than c∞,
therefore we should minimize c1, even at the cost of a larger c∞.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 65 / 81

The Work-First Principle (1/2)
We have a working, provably-efficient Cilk implementation. Also, a quite
slow one. What should we optimize?

Let’s exploit our time bound.

Notations for overheads
Let Tp denote minX T(X) where X is a p-processor schedule.
Let Ts denote the running time of the program’s serial elision.
Write c1 for T1/Ts and c∞ for the hidden constant in O(S(C)).

The work-stealing time bound becomes as

Tp ≤ c1Ts/p + c∞S(C)

≈ c1Ts/p assuming P/p ≫ c∞.

This has an important consequence, called the work-first principle:
c1 matters more for performance than c∞,
therefore we should minimize c1, even at the cost of a larger c∞.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 65 / 81

The Work-First Principle (1/2)
We have a working, provably-efficient Cilk implementation. Also, a quite
slow one. What should we optimize? Let’s exploit our time bound.

Notations for overheads
Let Tp denote minX T(X) where X is a p-processor schedule.
Let Ts denote the running time of the program’s serial elision.
Write c1 for T1/Ts and c∞ for the hidden constant in O(S(C)).

The work-stealing time bound becomes as

Tp ≤ c1Ts/p + c∞S(C)

≈ c1Ts/p assuming P/p ≫ c∞.

This has an important consequence, called the work-first principle:
c1 matters more for performance than c∞,
therefore we should minimize c1, even at the cost of a larger c∞.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 65 / 81

The Work-First Principle (1/2)
We have a working, provably-efficient Cilk implementation. Also, a quite
slow one. What should we optimize? Let’s exploit our time bound.

Notations for overheads
Let Tp denote minX T(X) where X is a p-processor schedule.
Let Ts denote the running time of the program’s serial elision.
Write c1 for T1/Ts and c∞ for the hidden constant in O(S(C)).

The work-stealing time bound becomes as

Tp ≤ c1Ts/p + c∞S(C)

≈ c1Ts/p assuming P/p ≫ c∞.

This has an important consequence, called the work-first principle:
c1 matters more for performance than c∞,
therefore we should minimize c1, even at the cost of a larger c∞.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 65 / 81

The Work-First Principle (1/2)
We have a working, provably-efficient Cilk implementation. Also, a quite
slow one. What should we optimize? Let’s exploit our time bound.

Notations for overheads
Let Tp denote minX T(X) where X is a p-processor schedule.
Let Ts denote the running time of the program’s serial elision.
Write c1 for T1/Ts and c∞ for the hidden constant in O(S(C)).

The work-stealing time bound becomes as

Tp ≤ c1Ts/p + c∞S(C)

≈ c1Ts/p assuming P/p ≫ c∞.

This has an important consequence, called the work-first principle:
c1 matters more for performance than c∞,
therefore we should minimize c1, even at the cost of a larger c∞.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 65 / 81

The Work-First Principle (1/2)
We have a working, provably-efficient Cilk implementation. Also, a quite
slow one. What should we optimize? Let’s exploit our time bound.

Notations for overheads
Let Tp denote minX T(X) where X is a p-processor schedule.
Let Ts denote the running time of the program’s serial elision.
Write c1 for T1/Ts and c∞ for the hidden constant in O(S(C)).

The work-stealing time bound becomes as

Tp ≤ c1Ts/p + c∞S(C)

≈ c1Ts/p assuming P/p ≫ c∞.

This has an important consequence, called the work-first principle:
c1 matters more for performance than c∞,
therefore we should minimize c1, even at the cost of a larger c∞.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 65 / 81

Fast Clone, Slow Clone (1/3)

The General Idea
Actual compilers compile every Cilk function into two distinct C functions:

the fast clone contains almost very little parallel bookkeeping,
the slow clone contains bookkeeping, but is only called after a steal.

Since steals are rare, fast clones dominate: we are putting work first.

How do Slow Clones Work?
Created on steals. Spawns fast clones itself.
Its spawn/join/sync are implemented as in previous frames.

How do Fast Clones Work?
Invariant: a fast clone has never been stolen.
spawn: normal C call.
join: as in the slow clone.
sync: completely free!

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 66 / 81

Fast Clone, Slow Clone (1/3)

The General Idea
Actual compilers compile every Cilk function into two distinct C functions:

the fast clone contains almost very little parallel bookkeeping,
the slow clone contains bookkeeping, but is only called after a steal.

Since steals are rare, fast clones dominate: we are putting work first.

How do Slow Clones Work?
Created on steals. Spawns fast clones itself.
Its spawn/join/sync are implemented as in previous frames.

How do Fast Clones Work?
Invariant: a fast clone has never been stolen.
spawn: normal C call.
join: as in the slow clone.
sync: completely free!

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 66 / 81

Fast Clone, Slow Clone (1/3)

The General Idea
Actual compilers compile every Cilk function into two distinct C functions:

the fast clone contains almost very little parallel bookkeeping,
the slow clone contains bookkeeping, but is only called after a steal.

Since steals are rare, fast clones dominate: we are putting work first.

How do Slow Clones Work?
Created on steals. Spawns fast clones itself.
Its spawn/join/sync are implemented as in previous frames.

How do Fast Clones Work?
Invariant: a fast clone has never been stolen.
spawn: normal C call.
join: as in the slow clone.
sync: completely free!

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 66 / 81

Fast Clone, Slow Clone (2/3)

Here is the fast clone for our fib function from the first slides. ▷ code

unsigned int fib_fast(unsigned int n) {
unsigned int x, y;
if (n <= 1)

return 1;
fib_frame *f = alloc_fib_frame(); /* Prepare frame by... */
f->continuation = FIB_CONT_0; /* ... storing the continuation... */
f->n = n; /* ... and live data. */
deque_push(f); /* Push it onto the work-stealing deque. */
x = fib(n - 1); /* Run the work. */
if (fib_pop(x) == FAILURE) /* Has the parent been stolen? */

join_and_return_to_scheduler(); /* Get back to scheduling loop. */
y = fib_fast(n - 2); /* Run the code sequentially. */
; /* Sync is free! */
destroy_fib_frame(f); /* Deallocate the frame. */
return x + y; /* Return to caller. */

}

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 67 / 81

Fast Clone, Slow Clone (3/3)
Here is the slow clone for our fib function from the first slides. ▷ code

void fib_slow(fib_frame *self) {
unsigned int n;
switch (self->continuation) {
case FIB_CONT_0: goto L_FIB_CONT_0;
case FIB_CONT_1: goto L_FIB_CONT_1;
}
...; /* Same code as in fast clone, except... */
if (fib_pop(x) == FAILURE)

join_and_return_to_scheduler();
if (0) { /* ... at continuation labels. */
L_FIB_CONT_0:

n = self->n; /* Reload live data. */
}
...;
if (sync() == FAILURE) /* Check join counter. */

join_and_return_to_scheduler();
if (0) {
L_FIB_CONT_1:

x = self->x; y = self->y; /* Reload live data. */
}
...; /* Run the continuation of sync, free frames. */
return x + y; /* Return to caller. */

}
A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 68 / 81

Concurrent Deques?

Sequential deques with locks are fast in the absence of contention.
This might be good enough for Cilk, where steals are infrequent.

Frigo et al. [1998] used the THE protocol for concurrent deque access.
Many general-purpose concurrent deques have been studied since.

The Key Issues
Steals might race with push.
Steals might race with pop.
Steals might race with each other.
The deque might need to be resized.

The State of the Art
We will have a glance at the dynamic circular deques proposed by Chase
and Lev [2005], in a presentation due to Lê et al. [2013].

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 69 / 81

Concurrent Deques?

Sequential deques with locks are fast in the absence of contention.
This might be good enough for Cilk, where steals are infrequent.
Frigo et al. [1998] used the THE protocol for concurrent deque access.

Many general-purpose concurrent deques have been studied since.

The Key Issues
Steals might race with push.
Steals might race with pop.
Steals might race with each other.
The deque might need to be resized.

The State of the Art
We will have a glance at the dynamic circular deques proposed by Chase
and Lev [2005], in a presentation due to Lê et al. [2013].

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 69 / 81

Concurrent Deques?

Sequential deques with locks are fast in the absence of contention.
This might be good enough for Cilk, where steals are infrequent.
Frigo et al. [1998] used the THE protocol for concurrent deque access.
Many general-purpose concurrent deques have been studied since.

The Key Issues
Steals might race with push.
Steals might race with pop.
Steals might race with each other.
The deque might need to be resized.

The State of the Art
We will have a glance at the dynamic circular deques proposed by Chase
and Lev [2005], in a presentation due to Lê et al. [2013].

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 69 / 81

Concurrent Deques?

Sequential deques with locks are fast in the absence of contention.
This might be good enough for Cilk, where steals are infrequent.
Frigo et al. [1998] used the THE protocol for concurrent deque access.
Many general-purpose concurrent deques have been studied since.

The Key Issues
Steals might race with push.
Steals might race with pop.
Steals might race with each other.
The deque might need to be resized.

The State of the Art
We will have a glance at the dynamic circular deques proposed by Chase
and Lev [2005], in a presentation due to Lê et al. [2013].

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 69 / 81

Concurrent Deques?

Sequential deques with locks are fast in the absence of contention.
This might be good enough for Cilk, where steals are infrequent.
Frigo et al. [1998] used the THE protocol for concurrent deque access.
Many general-purpose concurrent deques have been studied since.

The Key Issues
Steals might race with push.
Steals might race with pop.
Steals might race with each other.
The deque might need to be resized.

The State of the Art
We will have a glance at the dynamic circular deques proposed by Chase
and Lev [2005], in a presentation due to Lê et al. [2013].

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 69 / 81

Chase-Lev Deques: Push

void push(deque *q, int x) {
size_t b = atomic_load(&q->bottom);
size_t t = atomic_load(&q->top);
array *a = atomic_load(&q->array);
if (b - t > a->size - 1) { /* Full queue. */
resize(q);
a = atomic_load(&q->array);

}
atomic_store(&a->buffer[b % a->size], x);
atomic_store(&q->bottom, b + 1);

}

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 70 / 81

Chase-Lev Deques: Pop
int pop(deque *q) {

size_t b = atomic_load(&q->bottom) - 1;
array *a = atomic_load(&q->array);
atomic_store(&q->bottom, b);
size_t t = atomic_load(&q->top);
int x;
if (t <= b) { /* Non-empty queue. */

x = atomic_load(&a->buffer[b % a->size]);
if (t == b) { /* Single last element in queue. */

if (!compare_exchange_strong(&q->top, &t, t + 1))
x = EMPTY; /* Failed race. */

atomic_store(&q->bottom, b + 1);
}

} else { /* Empty queue. */
x = EMPTY;
atomic_store(&q->bottom, b + 1);

}
return x;

}
A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 71 / 81

Chase-Lev Deques: Steal

int steal(deque *q) {
size_t t = atomic_load(&q->top);
size_t b = atomic_load(&q->bottom);
int x = EMPTY;
if (t < b) {
/* Non-empty queue. */
array *a = atomic_load(&q->array);
x = atomic_load(&a->buffer[t % a->size]);
if (!compare_exchange_strong(&q->top, &t, t + 1))

/* Failed race. */
return ABORT;

}
return x;

}

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 72 / 81

(Chase-Lev Deques: Weak Memory Models)

Lê et al. [2013] actually gave a relaxed version of Chase-Lev deques.

Look at the code and its proof, if you dare!

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 73 / 81

(Chase-Lev Deques: Weak Memory Models)

Lê et al. [2013] actually gave a relaxed version of Chase-Lev deques.

Look at the code and its proof, if you dare!

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 73 / 81

All These Things We Didn’t Talk About

State-of-the-art implementations of task parallelism may use:
dedicated compiler transformations [Schardl et al., 2017],
efficient join counters such as SNZI [Ellen et al., 2007],
lower-level primitives than spawn/sync [Acar et al., 2016b],
disciplined, provably-efficient uses of futures [Lee et al., 2015].

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 74 / 81

Conclusion

We’ve had a look at the design of Cilk runtime systems.
The work-span model allows us to design provably-efficient runtimes.
Time efficiency is generally easy to obtain.

Be it via Brent’s scheduler, or greedy scheduling, or work-stealing…
At-most-linear space expansion is impossible in general.

This justifies the restriction to (full) strictness in Cilk.
Work-Stealing schedulers use double-ended queues to store ready
tasks in a decentralized way.

Read https://github.com/OpenCilk/cilkrts for more!
A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Implementing Parallel Tasks ~guatto/teaching/multicore 75 / 81

https://github.com/OpenCilk/cilkrts

Lecture 3

Formal Semantics of Task Parallelism

See semantics-intro.pdf.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Semantics of Task Parallelism ~guatto/teaching/multicore 76 / 81

Bibliography

References I

Matteo Frigo, Charles Leiserson, and Keith Randall. The Implementation
of the Cilk-5 Multithreaded Language. In Programming Language
Design and Implementation (PLDI’98). ACM, 1998. URL
http://supertech.csail.mit.edu/papers/cilk5.pdf.

Robert Blumofe and Charles Leiserson. Scheduling Multithreaded
Computations by Work Stealing. In Symposium on Foundations of
Computer Science (FOCS’94). IEEE, 1994. URL
http://supertech.csail.mit.edu/papers/steal.pdf.

Richard P. Brent. The Parallel Evaluation of General Arithmetic
Expressions. J. ACM, 21(2):201–206, 1974. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
100.9361&rep=rep1&type=pdf.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Semantics of Task Parallelism ~guatto/teaching/multicore 77 / 81

http://supertech.csail.mit.edu/papers/cilk5.pdf
http://supertech.csail.mit.edu/papers/steal.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.9361&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.9361&rep=rep1&type=pdf

References II

Umut Acar, Arthur Charguéraud, and Mike Rainey. Oracle-Guided
Scheduling for Controlling Granularity in Implicitly Parallel Languages.
Journal of Functional Programming, 26, November 2016a. URL
https://hal.inria.fr/hal-01409069/document.

Julian Shun, Yan Gu, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B.
Gibbons. Sequential Random Permutation, List Contraction and Tree
Contraction are Highly Parallel. In Discrete Algorithms (SODA’15).
Society for Industrial and Applied Mathematics, Dec 2014. ISBN
9781611973730. doi: 10.1137/1.9781611973730.30. URL
https://www.cs.cmu.edu/~guyb/papers/SGBFG15.pdf.

Guy Blelloch, Jeremy Fineman, Phillip Gibbons, and Julian Shun.
Internally Deterministic Parallel Algorithms Can Be Fast. Principles and
Practice of Parallel Programming (PPoPP’12), 47(8):181, Sep 2012.
ISSN 0362-1340. doi: 10.1145/2370036.2145840. URL
https://www.cs.cmu.edu/~guyb/papers/BFGS12.pdf.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Semantics of Task Parallelism ~guatto/teaching/multicore 78 / 81

https://hal.inria.fr/hal-01409069/document
https://www.cs.cmu.edu/~guyb/papers/SGBFG15.pdf
https://www.cs.cmu.edu/~guyb/papers/BFGS12.pdf

References III

Robert D. Blumofe and Charles E. Leiserson. Space-Efficient Scheduling of
Multithreaded Computations. SIAM Journal on Computing, 27(1):
202–229, Feb 1998. ISSN 1095-7111. URL https://epubs.siam.
org/doi/abs/10.1137/S0097539793259471?journalCode=smjcat.

Umut Acar, Guy Blelloch, and Robert Blumofe. The Data Locality of
Work Stealing. Symposium on Parallel Algorithms and Architectures
(SPAA’00), 2000. doi: 10.1145/341800.341801. URL
https://www.cs.cmu.edu/~guyb/papers/locality2000.pdf.

Chaoran Yang and John Mellor-Crummey. A Practical Solution to the
Cactus Stack Problem. In Parallelism in Algorithms and Architectures
(SPAA’16). ACM, 2016. ISBN 9781450342100. doi:
10.1145/2935764.2935787. URL
http://chaoran.me/assets/pdf/ws-spaa16.pdf.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Semantics of Task Parallelism ~guatto/teaching/multicore 79 / 81

https://epubs.siam.org/doi/abs/10.1137/S0097539793259471?journalCode=smjcat
https://epubs.siam.org/doi/abs/10.1137/S0097539793259471?journalCode=smjcat
https://www.cs.cmu.edu/~guyb/papers/locality2000.pdf
http://chaoran.me/assets/pdf/ws-spaa16.pdf

References IV

David Chase and Yossi Lev. Dynamic circular work-stealing deque.
Symposium on Parallel Algorithms and Architectures (SPAA’05), 2005.
URL https://www.dre.vanderbilt.edu/~schmidt/PDF/
work-stealing-dequeue.pdf.

Nhat Minh Lê, Antoniu Pop, Albert Cohen, and Francesco Zappa Nardelli.
Correct and efficient work-stealing for weak memory models. Principles
and Practice of Parallel Programming (PPoPP ’13), 2013. URL
https://www.di.ens.fr/~zappa/readings/ppopp13.pdf.

Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir:
Embedding Fork-Join Parallelism into LLVM’s Intermediate
Representation. In Principles and Practice of Parallel Programming.
ACM, 2017. ISBN 9781450344937. doi: 10.1145/3018743.3018758.
URL https://papers.wsmoses.com/tapir.pdf.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Semantics of Task Parallelism ~guatto/teaching/multicore 80 / 81

https://www.dre.vanderbilt.edu/~schmidt/PDF/work-stealing-dequeue.pdf
https://www.dre.vanderbilt.edu/~schmidt/PDF/work-stealing-dequeue.pdf
https://www.di.ens.fr/~zappa/readings/ppopp13.pdf
https://papers.wsmoses.com/tapir.pdf

References V

Faith Ellen, Yossi Lev, Victor Luchangco, and Mark Moir. SNZI: Scalable
NonZero Indicators. In Principles of Distributed Computing (PODC’07).
ACM, 2007. ISBN 9781595936165. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
169.6386&rep=rep1&type=pdf.

Umut A. Acar, Arthur Charguéraud, Mike Rainey, and Filip Sieczkowski.
Dag-Calculus: A Calculus for Parallel Computation. volume 51, page
18–32. ACM, Sep 2016b. doi: 10.1145/3022670.2951946. URL https:
//hal.inria.fr/hal-01409022/file/dag_calculus_icfp16.pdf.

I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Zhunping
Zhang, and Jim Sukha. On-the-Fly Pipeline Parallelism. Transactions on
Parallel Computing, 2015. doi: 10.1145/2809808. URL https://www.
cse.wustl.edu/~angelee/home_page/papers/pipep-topc.pdf.

A. Guatto (adrien@guatto.org) MPRI 2.37.1 – Semantics of Task Parallelism ~guatto/teaching/multicore 81 / 81

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.169.6386&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.169.6386&rep=rep1&type=pdf
https://hal.inria.fr/hal-01409022/file/dag_calculus_icfp16.pdf
https://hal.inria.fr/hal-01409022/file/dag_calculus_icfp16.pdf
https://www.cse.wustl.edu/~angelee/home_page/papers/pipep-topc.pdf
https://www.cse.wustl.edu/~angelee/home_page/papers/pipep-topc.pdf

	Introduction
	Programming Task-Parallel Algorithms: An Introduction
	Implementing Parallel Tasks
	Formal Semantics of Task Parallelism
	References

