
Introduction to Cost Semantics for Parallel Languages
Adrien Guatto

MPRI 2.37.1
2019–2020

Abstract

In this short note, we present cost semantics for parallel λ-calculi. Such semantics
specify not only what programs compute, but also at what cost. We first apply this ap-
proach to a pure call-by-value λ-calculus. Following Blelloch and Greiner [1995], we sketch
a provably-efficient implementation of this calculus on top of a Parallel Random Access
Machine. Then, we extend the calculus with operations acting upon some abstract state
living in an arbitrary partial commutative monoid. We then instantiate this construction
to obtain an idealized version of Cilk [Frigo et al., 1998].

1 Introduction
During the previous lectures, we studied the performance of Cilk programs in an analytical
fashion, in terms of work and span. Rather than resorting to some low-level machine model,
we reasoned informally at the program level. This reasoning, however, was informal.

The goal of this lecture is to show how this approach can be made rigorous using techniques
inspired from programming languages semantics.

Conventions. By list we mean a finite sequence, possibly empty. We write (X∗, ·, ε) for
the free monoid over X, that is, for the set of lists of elements of X, equipped with the
concatenation operator x · y, as well as the empty list ε.

We write X →fin Y for the set of finite partial maps from X to Y . Given such a finite
partial map f , we write f [x 7→ y] for the finite partial map sending x′ to y when x = x′ or
to f(x′) when x′ 6= x and f(x′) is defined. We write dom(f) for the subset of X for which f
is defined. Thus, dom(f [x 7→ y]) = dom(f)∪{x}. We write ∅ for an empty finite partial map.

We write Mfin(X) for the set of finite multisets of elements of X. We write [x1, . . . , xn]
for the multiset of size n whose elements are x1, . . . , xn. By definition, we may have xi = xj .
Given two multisets A,B ∈ Mfin(X), we denote A+B their multiset union.

We assume given some disjoint countably infinite sets Var and Loc. We call variables the
elements x, y, z . . . of Var and locations the elements `, `1, `2 . . . of Loc.

All the syntactic objects we consider are always identified up to α-equivalence. Further-
more, we follow Barendregt’s variable convention: in a given metatheoretical statement, no
variable is both free and bound and all bound variables are distinct.

1

Terms M,N, S ::= x | λx.M | M N | c
Constants c ::= i | add | addi | sub | subi | . . .
Environments γ, σ ∈ Var →fin Val
Values V,W ::= c | (x.M){γ} | nil

Figure 1: Syntax of PAL

M ; γ ⇓ V

Const

c; γ ⇓ c

Var

x; γ ⇓ γ(x)

Fun

λx.M ; γ ⇓ (x.M){γ}

AppClo
M ; γ ⇓ (x.S){σ} N ; γ ⇓ V S;σ[x 7→ V] ⇓ W

M N ; γ ⇓ W

AppConst
M ; γ ⇓ c N ; γ ⇓ V

M N ; γ ⇓ δc(V)

Figure 2: Plain Semantics of PAL

2 A Stateless Calculus
2.1 Syntax and Plain Semantics
Our initial goal is to design a calculus for which a cost semantics is both interesting and useful.
Such a calculus is subject to the following requirements.

1. It should be as simple as possible to make formal study doable.

2. It should form a reasonable basis for a full-fledged programming language.

3. It has to be implementable efficiently atop a parallel machine model.

The first two requirements steer us towards a variant of λ-calculus. However, to make λ-
calculus into an idealized programming language, one should tame unrestricted β-reduction
by fixing an evaluation strategy. The third requirement discourages the use of call-by-name
and call-by-need, which have rather complicated cost models, especially in a parallel setting.
Less importantly, it also suggests adding dedicated arithmetic facilities to our calculus.

For these reasons, we follow Blelloch and Greiner [1995] and study the Parallel Applica-
tive Calculus (PAL), an applicative (call-by-value) calculus parameterized over a family of
constants. Its syntax is given in Figure 1. The definition of terms is unremarkable. Con-
stants c should include at least integer literals i and some arithmetic operations such as add

and addi. We will explain the latter shortly. This grammar also includes the objects that,
while not part of the syntax proper, are needed by our semantics. Values V,W are the results
of execution, and can be either a constant c or a closure (x.M){γ} bundling a λ-abstraction
with an environment γ holding the values of the free variables of M . The special value nil
plays a technical role in a later section, and can be ignored for now. An environment is a
finite map from variables to values.

The cost semantics we will adopt for PAL constitutes an extension of the classic big-step
formulation of call-by-value with environments and closures, so it is worth remembering its

2

definition. It takes the form of an evaluation judgment

M ; γ ⇓ V

stating that M evaluates to V in the environment γ. The rules of this judgment are given
in Figure 2. A constant evaluates to itself. A variable x evaluates to the value assigned to it
in γ. Its evaluation is not defined if x 6∈ dom(γ). A λ-abstraction evaluates by closing over
the environment. Finally, there are two rules for applications M N depending on whether the
function M evaluates to a closure or to a constant. When M evaluates to a closure (x.S){σ},
the final result is that of the evaluatation of S in σ extended by binding the formal parameter x
to the value W of N . When M evaluates to a constant c, the final result is determined
according to a family of partial map (δc : Val ⇀ Val)c∈Const . This map is a parameter of PAL,
as is the language of constants. As an example, it could contain the following clauses.

δadd(i) = addi δaddi(j) = i+ j δsub(i) = subi δsubi(j) = i− j . . .

This illustrates the purely technical role played by constants such as addi and subi, which serve
as intermediate steps when evaluating add and sub. An alternative would be to enrich PAL
with pairs and formulate add and sub as uncurried operations.

2.2 Cost Semantics
For our purpose, a cost semantics for PAL should give enough information to analyze its
performance on a parallel machine. To do so, we will associate to every evaluation a cost
graph build according to the following grammar.

Cost graph g ::= 0 | 1 | g1 ⊕ g2 | g1 ⊗ g2

Here, 0 is the graph with no vertex, 1 the graph with a single vertex and no edge, g1 ⊕ g2
the series composition of g1 and g2 and g1 ⊗ g2 their parallel composition. We write n for 1
composed sequentially with itself n times. The work work(g) and span span(g) of a cost
graph g are defined as expected.

work(0) = 0
work(1) = 1

work(g1 ⊕ g2) = work(g1) + work(g2)
work(g1 ⊗ g2) = work(g1) + work(g2)

span(0) = 0
span(1) = 1

span(g1 ⊕ g2) = span(g1) + span(g2)
span(g1 ⊗ g2) = max(span(g1), span(g2))

Now, we can restate our big-step judgment as M ;σ ⇓ V ; g, where g describes the cost
of evaluating M . Its rules are given in Figure 3. They compute the same result V as those
of Figure 2. Since we are mostly interested in asymptotics, elementary operations are assumed
to have unit costs (rules Const, Var, and Fun). Rule AppClo is more interesting: it specifies
that the function and its argument are evaluated in parallel. The overhead of the rule itself
is 2. This choice of constant is needed to obtain a tight correspondance with the machine
model described in the next section — one may replace it with 1 without affecting asymptotic
complexity results. Rule AppConst is similar but simpler.

3

M ; γ ⇓ V ; g

Const

c; γ ⇓ c;1

Var

x; γ ⇓ γ(x);1

Fun

λx.M ; γ ⇓ (x.M){γ};1

AppClo
M ; γ ⇓ (x.S){σ}; g1 N ; γ ⇓ V ; g2 S;σ[x 7→ V] ⇓ W ; g3

M N ; γ ⇓ W ; (g1 ⊗ g2)⊕ g3 ⊕ 2

AppConst
M ; γ ⇓ c; g1 N ; γ ⇓ V ; g2

M N ; γ ⇓ δc(V); (g1 ⊗ g2)⊕ 2

Figure 3: Cost Semantics of PAL

2.3 Towards A Provable Implementation
We have defined a cost semantics for PAL, but how do we know that this semantics is sensible,
in the sense that it can be used to reason about real-world performance, even when one
only cares about asymptotics? After all, mathematics does not prevent us from associating
evaluations with arbitrary cost graphs.

The solution is, as in the sequential case, to implement PAL on top of some widely-
accepted, concrete parallel machine model, and then show that this implementation is sound
with respect to our cost semantics. In other words, it should compute the same values as the
cost semantics, and with the same work and span (up to constant factors).

We follow the exact same route as Blelloch and Greiner [1995], using an abstract machine
as an intermediate point between PAL and the concrete machine model. We then implement
this abstract machine onto the concrete machine. The only difference with their work is that
we use a variant of the Krivine/CK machine rather than the SECD machine.

2.3.1 A Parallel Abstract Machine

The abstract machine schedules the execution of PAL programs onto several parallel threads.
It also uses a global store to hold thread results. The grammar below describes its components.

Configuration C ::= T /R
Thread pools T ∈ Mfin(Thr)
Threads t ::= 〈V | − |K〉 | 〈M |σ |K〉
Stack K ::= □ℓt | □ℓa ::K | □ℓf ::K | (V □) ::K
Results R ∈ Loc →fin Val

The global store R is a finite map from locations to values. A thread pool T is a bag of
threads. Each thread t is a call-by-value Krivine machine, which pairs a stack K with either
a value V or a closure (M |σ). The empty stack □ℓt designates a final result to be stored
in R(`). The stack (V □) ::K appears as is in the usual CK machine — it represents the
evaluation context K[V □]. The contexts □ℓa ::K and □ℓf ::K are used for synchronization, as
will be made evident by machine transitions.

4

〈c |σ |K〉⇝ 〈c | − |K〉 SConst
〈x |σ |K〉⇝ 〈σ(x) | − |K〉 SVar

〈λx.M |σ |K〉⇝ 〈(x.σ){M} |− |K〉 SFun
〈V | − | ((x.M){σ}□) ::K〉⇝ 〈M |σ[x 7→ V] |K〉 SAppClo

〈V | − | (c□) ::K〉⇝ 〈δ(c, V) | − |K〉 SAppConst

EStep
t⇝ t′

[t] /R ⇒e [t′] /R

ESpawn
` 6∈ dom(R)

[〈M N |σ |K〉] /R ⇒e [〈M |σ |□ℓa ::K〉, 〈N |σ |□ℓf ::K〉] /R[` ↪→ nil]

EIdleA

[〈V | − |□ℓa ::K〉] /R ⇒e [〈V | − |□ℓa ::K〉] /R

EIdleF

[〈V | − |□ℓf ::K〉] /R ⇒e [〈V | − |□ℓf ::K〉] /R

EFinish

[〈V | − |□ℓt〉] /R ⇒e [] /R[` ↪→ V]

EPar
T1 /R ⇒e T ′

1 /R
′ T2 /R

′ ⇒e T ′
2 /R

′′

T1 + T2 /R ⇒e T ′
1 + T2 /R

′′

FStore
R(`) = nil

[〈V | − |□ℓf ::K〉] /R ⇒f [] /R[` ↪→ V]

FSync
R(`) 6= nil

[〈V | − |□ℓf ::K〉] /R ⇒f [〈R(`) | − | (V □) ::K〉] /R

FIdle
t 6= 〈− |− |□−f ::−〉
[t] /R ⇒a [t] /R

FPar
T1 /R ⇒f T

′
1 /R

′ T2 /R
′ ⇒f T

′
2 /R

′′

T1 + T2 /R ⇒f T
′
1 + T2 /R

′′

AStore
R(`) = nil

[〈V | − |□ℓa ::K〉] /R ⇒a [] /R[` ↪→ V]

ASync
R(`) 6= nil

[〈V | − |□ℓa ::K〉] /R ⇒a [〈V | − | (R(`)□) ::K〉] /R

AIdle
t 6= 〈− |− |□−a ::−〉
[t] /R ⇒a [t] /R

APar
T1 /R ⇒a T ′

1 /R
′ T2 /R

′ ⇒a T ′
2 /R

′′

T1 + T2 /R ⇒a T ′
1 + T2 /R

′′

Step
T /R ⇒e T ′ /R′ T ′ /R′ ⇒f T

′′ /R′′ T ′′ /R′ ⇒a T ′′′ /R′′′

T /R ⇒ T ′′′ /R′′′

Figure 4: Parallel Abstract Machine for PAL

5

The transitions between threads and configurations are given in Figure 4. The relation⇝
on threads is the usual one for the call-by-value Krivine machine, with most transitions related
to applications missing. The main relation, ⇒, operates on configurations. Its execution
divides into three phases modeled by the relations ⇒e, ⇒a, and ⇒f , as per rule Step. All
three perform exactly one transition per thread in the current thread pool — this form of
parallelism arises from rules EPar, APar, and FPar.

1. The evaluation relation ⇒e performs either a sequential step ⇝ (EStep), or com-
putes M N by spawning two new threads to compute M and N in parallel (ESpawn).
In this case, we allocate a fresh location ` to store the result of the first thread to
terminate. This location is initialized to nil, so that a location is only allocated once.

2. The main rules of the function synchronization relation ⇒a are FStore and FSync.
They deal with threads of the form 〈V | − |□ℓa ::K〉, with the rule FIdle ensuring that
all other threads are left unchanged. Such a thread has finished computing the value V
of the function term in some application that was spawned previously. What happens
depends on whether the evaluation of the corresponding argument term has finished
during the previous ⇒a-phase. If it is the case, then R(`) contains its result. Then,
rule FSync proceeds by, so to speak, joining the two threads into 〈R(`) | − | (V □) ::K〉,
which will resume evaluating at the next ⇒e-phase. Otherwise, R(`) is nil, and rule FS-
tore replaces it with V . This binding will be used once the argument term terminates
during a subsequent ⇒a-phase.

3. The argument synchronization relation ⇒a is similar to the previous one, except that it
deals with the argument terms spawned by applications, rather than the function ones.

To summarize, this semantics works by alternating phases that make sequential progress,
spawning new threads as needed, and phases that check whether each spawned thread has
finished running its subcomputation, in which case its result should be either stored or give
rise to a new continuation thread.

As stated, our semantics is not deterministic, since new locations get allocated into the
store in a nondeterministic manner by rule ESpawn. However, this is the sole source of
nondeterminism: since the semantics is parallel and greedy, every thread terminates as early
as possible. In the following, we reason up to the renaming of locations by a bijection. This
can of course be made formal, at the cost of heavier theorem statements.

In the remainder of this subsection, we prove that the parallel abstract machine is a provably-
efficient implementation of the cost semantics. In other words, it computes correct results,
and its performance matches the work and span specified by our big-step judgment. To do so,
we need a number of technical results, such as the fact that the store R grows monotonically.

Definition 1 (Store Extension). R′ is an extension of R, denoted R v R′, when dom(R) ⊆
dom(R′) and for all ` ∈ dom(R), R(`) 6= nil implies R′(`) = R(`).

Proposition 1 (Store Monotonicity). If T /R ⇒ T ′ /R′ then R v R′.

We can now state our main result.

Theorem 1. If M ; ∅ ⇓ V ; g then there is R such that [〈M | ∅ |□ℓt〉] / ∅[` ↪→ nil] ⇒span(g) [] /R
with R(`) = V . Furthermore, this reduction sequence creates work(g) threads.

6

Proof sketch. To prove the theorem, we need to generalize its statement to nonempty en-
vironments and general stacks: if M ; γ ⇓ V ; g then, for all R, ` 6∈ dom(R), and K of the
form □ℓt, □ℓa ::K ′, or □ℓa ::K ′, there exists R′ w R such that

T + [〈M | γ |K〉] /R[` ↪→ nil] ⇒span(g) T ′ /R′

with R′(`) = V . In addition, this reduction sequence creates one thread per work item.
We proceed by induction over the cost-semantics derivation. The only interesting rule

is AppClo, the case AppConst being a simpler variant. By the induction hypothesis, M
completes in span(g1) steps and N in span(g2) steps. Assume that span(g1) < span(g2).
Then, M terminates first, and N must terminate with ASync, which triggers the evaluation
of the closure body. This takes span(g2)+span(g3)+2 = max(span(g1), span(g2))+span(g3)+2
steps, with the 2 additional steps coming from ESpawn and ASync. The case of span(g2) <
span(g1) is symmetric, with the argument term triggering the evaluation of the closure body.
In the case of span(g1) = span(g2), it is again the function term that triggers the evaluation
of the closure, since ⇒f -phases happen before ⇒a-phases in the definition of ⇒.

2.3.2 From Abstract to Concrete

The structure of the parallel abstract machine makes makes it simple to implement on top of
a low-level machine model. We choose the popular Parallel Random Access Machine (PRAM)
model, in its Concurrent-Read Exclusive-Write (CREW) variant. A PRAM is a variant of
the classic RAM machine, itself a convenient extension of the Turing machine. In a PRAM, p
processors access a shared memory in parallel. Each step of the machine performs one step
on each processor. The CREW variant is reminiscent of the data-race-free model studied
in L. Maranget’s part of the course: any number of processors may read the same memory
cell during the same step, but two processors writing to the same cell raises an error.

As usual with PRAM arguments, we describe the simulation in an informal way. The
multiset T of threads is represented in an array of size q ≜ |T |. We fix an ordering of its
threads. Processor i ∈ [1, p] is responsible for threads [iq/p, . . . , (i+1)q/p−1]. In addition to
the thread array, memory also holds the contents of R. This part of memory, which we will
call R-cells, is the only one that is logically shared between processors; however, no data race
may occur. The simulation proceeds in four phases, at the end of which all processors wait
for one another.

1. Each processor evaluates the ⇒e transitions on its segment of the thread array, updating
it as needed. This requires no communication between processors, assuming we maintain
a bound on the maximum memory cell used up to now, and use it in order to allocate
fresh cells when simulating ESpawn. This guarantees that the only write to an R-cell,
which occurs in ESpawn, cannot be concurrent with another write. Nor can it be
concurrent to a read since those happen during later phases.

2. Each processor evaluates the ⇒f transitions on its segment of the thread array. At most
one processor will read or write to the same R-cell during this phase.

3. Similarly for ⇒a transitions.

4. Finally, each thread has generated zero, one, or two threads to be processed during the
next simulation step. They need to be flattened into a new thread array. This can

7

be accomplished using a prefix-sum computation to compute their offsets into the new
array, as seen during the first lecture.

Of course, a more formal description would have to explain how to implement functional
programming constructs on top of a (P)RAM machine. For example, we must assume the
machine has unit-time operations implementing all the constants in PAL. The only non-trivial
thing is the handling of environments, which can be implemented using balanced trees. This
is why the following result features an overhead of vM , where vM is the logarithm of the
number of variables in M .

Lemma 1. A simulation step runs in kve(dq/pe+ log p) time, with k some positive constant.

Theorem 2. If M ; ∅ ⇓ V ; g then M is computed in kvM (work(g)/p + span(g) log p) time,
with k some positive constant.

Proof. By combining Theorem 1 and Lemma 1 as in the proof of Brent’s bound.

Blelloch and Greiner [1995] also discuss the reverse direction, where one simulates an
arbitrary PRAM algorithm onto the parallel abstract machine. This requires implementing
the random-access memory in a purely functional way, which has some overhead.

3 A Stateful Calculus
While its simplicity makes it an appealing object of study, the calculus presented in the
previous section is a bit too far from actual parallel programming languages. In particular,
our experience writing Cilk code should have convinced us that state actually plays a crucial
role when implementing real algorithms. For this reason, we would like to extend the calculus
to deal with some global state.

One option would be to fix some notion of state, perhaps as a form of heap. We will rather
construct a calculus parameterized by an arbitrary partial commutative monoid (PCM), a
concept that arose in the study of separation logic. Its elements will provide the abstract
notion of state, and its monoid law a way to split the state into distinct parts which can be
acted upon independently.

We start by recalling the definition of a PCM before describing our calculus and its cost
semantics. We then instantiate the construction to obtain an idealized variant of Cilk.

3.1 Partial Commutative Monoids
We follow the modular algebraic approach to PCMs outlined by Jung et al. [2015].

Definition 2. A partial commutative monoid M is a tuple (|M|, ·M, εM,⊥M) where (M, ·M, εM)
is a commutative monoid and ⊥M ∈ |M| is absorbing for ·M.

As usual, we omit the subscripts and brackets | − | when the PCM is clear from the
context. Given such a PCM, we write (−)� (=) for the partial function from M2 to M such
that x� y ≜ x · y when x · y 6= ⊥, and is undefined otherwise. When defining the carrier of a
PCM, we frequently omit the elements 1 and 0, and specify only �.

Definition 3. The exclusive PCM over a set X, denoted Ex(X), is (X] {ε,⊥}, ·, ε,⊥) with
the monoid law defined only by x� ε = ε� x = x for all x ∈ X.

8

M ; γ;A ⇓ V ;B; g

Const

c; γ;A ⇓ c;A;1

Var
γ(x) = V

x; γ;A ⇓ V ;A;1

Fun

λx.M ; γ;A ⇓ (x.M){γ};A;1

AppClo
M ; γ;A ⇓ (x.S){σ};A′; g1 N ; γ;B ⇓ V ;B′; g2 S;A′ ⊛B′;σ[x 7→ V] ⇓ W ;C; g3

M N ; γ;A⊛B ⇓ W ;C; (g1 ⊗ g2)⊕ g3 ⊕ 1

AppConst
M ; γ;A ⇓ c;A′; g1 N ; γ;B ⇓ V ;B′; g2 (V,A′ ⊛B′) δc (W,C)

M N ; γ;A⊛B ⇓ W ;C; (g1 ⊗ g2)⊕ 1

Figure 5: Cost Semantics of SPALM

Given a map f : X → M, we define dom(f) ≜ {x | f(x) 6= ⊥}.

Definition 4. The finite map PCM over a set X and a monoid M, denoted FMap(X,M),
is defined as ({f ∈ Πx∈X |M| | dom(f) finite} ∪ ⊥, ∗, x 7→ εM,⊥) where f ⊛ g is defined
as x 7→ f(x) · g(x) only when f(x) · g(x) 6= ⊥M for all x ∈ dom(f) ∪ dom(g).

Definition 5. The plain heap PCM over a set X, denoted Heap(X), is FMap(Loc,Ex(X)).

It is worth unfolding the last definition. The set of non-⊥ elements of Heap(X) is isomor-
phic to maps Loc →fin X. The composite f ⊛ g is defined only when dom(f) ∩ dom(g) = ∅,
in which case it sends ` ∈ dom(f) ∪ dom(g) to f(`) if ` ∈ dom(g) and to g(`) otherwise.

We write ` ↪→ x for the element of Heap(X) sending ` to x and `′ 6= ` to ε.

3.2 The Generic Calculus
We now fix a PCM M and use it build our calculus, the Stateful Parallel Applicative Calculus
over M, which we abbreviate SPALM. We write A,B,C for the elements of M.

This calculus and PAL share the same syntax. However, its language of constants will
generally feature items related to M, or contain operations able to act upon an element of
the monoid. Its cost semantics, again expressed as a big-step judgment M ;σ;A ⇓ V ;B; g,
modifies that of PAL to express the relation between the initial state A and the final state B
reached after evaluation has terminated. The rules of this semantics are given in Figure 5.

• Rules Const, Var, and Fun do not affect the state.

• Parallelism is handled via the monoid law: to apply rules AppClo and AppConst, one
has to split the input state into distinct parts, but also to recombine the final states.

• Constants may alter the current state. It is convenient to generalize δ from a partial
function to a family of relations (δc ⊆ (Val ×M)2)c∈Const .

This means that the only way to do a primitive state modification is via the proper constants.
To illustrate this fact, let us describe a useful family of constants for SPALHeap(Z).

c ::= i | · · · | ` | alloc | read | write | writeℓ

9

Their semantics is unsurprising.

(i, A) δalloc (`, A⊛ ` ↪→ i)
(`, A⊛ ` ↪→ i) δread (i, A⊛ ` ↪→ i)

(`, A) δwrite (writeℓ, A)
(i, A⊛ ` ↪→ j) δwriteℓ (i, A⊛ ` ↪→ i)

One should try to play with this definition. How does it differ from a language like Cilk?

3.3 A Cilk-like Instance
To allow for concurrent reads yet disallow races, we use fractional permissions, another well-
known idea from separation logic [Boyland, 2003, Jung et al., 2015].

Definition 6. The PCM of fractional permissions over a set X, denoted Frac(X), is ((Q ∩
(0, 1]×X) ∪ {ε,⊥}, ·, ε,⊥), where the monoid law is defined only by

(q, x)� (q′, x′) ≜ (q + q′, x) if x = x′ and q + q′ ≤ 1.

Definition 7. The fractional heap PCM over a set X, denoted Frac(X), is FMap(Loc,Frac(X)).

Again, let us unfold this definition. The set of non-⊥ elements of Frac(X) is isomorphic
to maps Loc →fin (Q ∩ (0, 1]) × X. The composite f ⊛ g is defined only when for all ` ∈
dom(f) ∪ dom(g), f(`) = (q, x) and g(`) = (q′, x) and q + q′ ≤ 1, in which case it sends `
to (q + q′, x).

We write `
q
↪−→ x for the element of Heap(X) sending ` to (q, x) and `′ 6= ` to ε.

The semantics of constants only allows writing to a location ` that is fully owned, in the
sense that `

1
↪−→ i for some i. A location is fully owned by the code that created it.

(i, A) δalloc (`, A⊛ `
1
↪−→ i)

(`, A⊛ `
q
↪−→ i) δread (i, A⊛ `

q
↪−→ i)

(`, A) δwrite (writeℓ, A)

(i, A⊛ `
1
↪−→ j) δwriteℓ (i, A⊛ `

1
↪−→ i)

References
Guy Blelloch and John Greiner. Parallelism in Sequential Functional Languages. In Functional

Programming Languages and Computer Architecture (FPCA ’95). ACM, 1995. URL http:
//www.cs.cmu.edu/~blelloch/papers/BG95.pdf.

John Boyland. Checking interference with fractional permissions. Springer, 2003. URL
http://www.cs.uwm.edu/faculty/boyland/papers/permissions.pdf.

Matteo Frigo, Charles Leiserson, and Keith Randall. The Implementation of the Cilk-5 Mul-
tithreaded Language. In Programming Language Design and Implementation (PLDI’98).
ACM, 1998. URL http://supertech.csail.mit.edu/papers/cilk5.pdf.

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Rea-
soning. ACM, 2015. URL https://iris-project.org/pdfs/2015-popl-iris1-final.
pdf.

10

http://www.cs.cmu.edu/~blelloch/papers/BG95.pdf
http://www.cs.cmu.edu/~blelloch/papers/BG95.pdf
http://www.cs.uwm.edu/faculty/boyland/papers/permissions.pdf
http://supertech.csail.mit.edu/papers/cilk5.pdf
https://iris-project.org/pdfs/2015-popl-iris1-final.pdf
https://iris-project.org/pdfs/2015-popl-iris1-final.pdf

	Introduction
	A Stateless Calculus
	Syntax and Plain Semantics
	Cost Semantics
	Towards A Provable Implementation
	A Parallel Abstract Machine
	From Abstract to Concrete

	A Stateful Calculus
	Partial Commutative Monoids
	The Generic Calculus
	A Cilk-like Instance

