
Two-way finite automata with restricted
nondeterminism and descriptional complexity

Internship report − May-August 2011

Bruno Guillon
Internship director : Giovanni Pighizzini

Università degli studi di Milano

Acknowledgements : many thanks to professor Giovanni Pighizzini for its
welcome and for having directed my internship. Many thanks also to Carlo
Mereghetti and Beatrice Palano and all organizing committee of NCMA work-
shop for having given me the possibility to assist at this workshop. Many
thanks also to Viliam Geffert for his contribution to our work. Thanks to An-
tonio Capoduro for coffees and pleasant discussions, and more generally thanks
to all persons encountered at university, for welcoming me.

Contents
Introduction 2

1 Definitions and readings 3
1.1 Descriptional complexity . 3
1.2 Generalities on Finite Automata 4
1.3 Problem raised . 7

1.3.1 One-way is simpler . 7
1.3.2 Problems raised and analogy with complexity theory . . . 7

1.4 Different approaches of Sakoda & Sipser’s main questions 8
1.5 Two-way restricted finite automata 9

2 Results 11
2.1 Reach . 11
2.2 Polynomial reduction from 2rnfa to 2svfa 13
2.3 Subexponential reduction from 2rnfa to 2dfa 15
2.4 Polynomial reduction from 2rnfa to 2dfa, assuming L= NL . . 16
2.5 Other results . 18

Conclusion 19

1

Bibliographie 19

Introduction
One important aim in theoritical computer science is to answer the question:
how difficult is a problem. To approach this question, and so to “measure” the
difficulty of problems, researchers have used different ways. The descriptional
complexity area, in which the internship took place, is one of these ways. Con-
trary to the complexity theory, the question is not to know how many space
or time a computation machine needs to resolve a problem, rather, what is the
required size of a given model to do that. This can be viewed as the question
of how difficult to explain is a problem.

This area was introduced by A. R. Meyer and M. J. Fisher in the 70s [19].
This approach is general, meaning that all calculation models can be study-
ing with this question in aim, however the majority of works (and also this
internship) have be done interesting in finite automata models (see Section 1.2).
Finite automata model is one of the simplest calculation model, so it is a good
start point for research. A lot of variant of the classical finite automata have
been introduced, like two-ways (we allow the input head to change direction),
nondeterministic or pushdown automata. One important aspect of these area
is to compare required size of different models for a given problem.

W. J. Sakoda and M. Sipser have observed and presented [23] an analogy,
by introducing descriptionnal complexity classes (see Section 1.3.2), between
descriptionnal complexity theory and complexity theory. They also raise two
main questions, still open, with an analogy with the well known P ?= NP open
problem. The links between both theories was enforced by P. Berman and A.
Lingas [1] by proving a relation with the well known open problem about space
bounded Turing machines: L = NL. Other relations have been found later, like
in [6] or in this internship (see Theorem 3 in Section 2).

This three month internship took place at the end of the first year of master
PENSUNS (from May to August 2011), at Università degli studi di Milano, and
was directed by professor Giovanni Pighizzini. It was naturally composed of
three times: (1) I started (3-4 weeks) to discover the descriptionnal complexity
area, with many readings (see Bibliography), from generality to details in a
more restricted area (that is two-ways finite automata). This first time ended
with a presentation of general view of these readings. (2) Then in a second time
(5-6 weeks), I start to search new results1. Some of these new results, which are
in fact a generalisation of existing results from unary case, are good candidates
for an article. (3) So, in the last time (3 weeks), I wrote an article (still a draft)
presenting these results. This third time will probably be continued by e-mails

1One of these main found results, not presented in this report, turned out not to be new.
This result was the proof of the existence of a language L over binary alphabet, accepted
by a O(n)-state sweeping automaton but rather neither this language nor its complement
was accepted by a one-way nondeterministic automaton with fewer than 2n−1 states (see
Section 1.2 and 1.4 for definitions). An analog result (with other proof) was already published.

2

exchange, to finish the redaction of this article, and propose it for publication.
At these three times, I add also the workshop NCMA, which took place in Milan,
the 18th and 19th July, and at which I was allowed to assist (for free), thanks
to the organizing committee.

The first time of my work is presented briefly in the first part of this intro-
duction and also in Section 1 and Bibliography. The two following times are
presented in Section 2 (some parts of the article are reused in this report). In
Conclusion I will speak about my experiment of this stage.

1 Definitions and readings
1.1 Descriptional complexity
As said in introduction, I started the internship with many readings in order to
discover the general descriptional complexity area, and then to be able to choose
the restricted area, for my work, that is the case of two-way finite automata.

The first article I red [7] give me a survey of the area. It also give me the main
results, especially about finite automata. The article of A.R. Meyer and M.J.
Fisher [19], was the historical introduction of the area, and give me its general
aim. Then I red a more recent paper [15], that was written in tribute to late
Chandra Kintala, which was one of the co-founder of descriptional complexity.
Therefore many of his results and general ideas are given in this article.

The most often, in descriptional complexity, we try to compare different the-
oretical computation machines. Given two classesM1 andM2 of computation
machines and two functions size fromMi to R+, there exists two main family
of results :

• Upper bounds : if we can simulate every machine of M1 of size n by
a machine ofM2 with size f(n), we say that f(n) is an upper bound for
the reductionM1 →M2.

• Lower bounds : if there exists a machine M1 of M1 of size n, which
cannot be simulate by a machine M2 ofM2 with size less than f(n), then
f(n) is said to be a lower bound of the reductionM1 →M2.

For example, ifM1 andM2 are classes respectively of usual2 deterministic
finite automata (dfa), and nondeterministic finite automata (nfa), and both
functions size are the number of states, then, it is known that 2n is an upper
bound for the reduction dfa→ nfa (by the subset construction, see [21] for
details), and it is also a lower bound 2n (we say that 2nfas are exponentially
more succinct than 2dfas). When an upper bound is also a lower bound, like
in this example, we say that the upper bound is tight, and we speak about the
best lower or upper bound.

2Definition of finite automata are given later, in Section 1.2.

3

1.2 Generalities on Finite Automata
Then I started to read articles on more precise subject. So I studied finite
automata, and especially two-way finite automata, which are equivalent to read-
only Turing machines.

Finite automata is an old calculation model. It is well known for its sim-
plicity (in case one-way). In this subsection, we presents different variants of
the usual finite automaton (i.e., the one-way deterministic finite automaton).
We start our definition from the most general main finite automaton, which is
nondeterministic and two-way, and then we will define the other usual finite
automata, by restriction of it.
Definition 1

A two-way nondeterministic finite automaton (2nfa for short) is a quintuple
(Q,Σ, δ, qstart, F) where Q is the set of state, Σ is an alphabet (i.e., a finite
set of symbols), δ is a function from (Q× (Σ ∪ {`,a})) to P(Q× {/,O, .}),
called transition function where `,a /∈ Σ are respectively the left and right
endmarker, qstart ∈ Q is the initial state, and F ⊆ Q is the set of accepting
states.

At each step, the automaton read an input symbol (a symbol c ∈ Σ∪ {`,a}
from an input tape), change it state and move its input head backward, forward
or keeps it stationary, depending on whether δ return with /,. or O respectively
(we will speak about respectively /-, .-, and O-transitions). The input head
cannot go outer of the input, that means that we have no transitions of the
form (_, /) ∈ δ(_,`) or (_, .) ∈ (_,a).

Given a word w = w1, w2, . . . , w|w| ∈ Σ∗, we extend it by w0 =` and
w|w|+1 =a, the two endmarkers.

During a computation, the automaton can change its state and can move
the head to the left, to the right or keep at the same position. So, in order to
describe the situation of the automaton at a fixed time, we only have to know
its head position, and its state. That is why we define configurations:
Definition 2

A configuration is a pair (q, h) with q ∈ Q and h ∈ {0, 1, . . . , |w|+ 1}.

The initial configuration is (qstart, 0) that means that the automaton begins in
state qstart with the head scanning w0, that is the left endmarker. In general,
for configurations (q, 0) (resp. (q, |w|+ 1)), we will speak about left-endmarker-
configurations (resp. right-endmarker-configurations) (we also will use general
endmarker-configurations term for the union). A successor of a configuration
(q, h) is a configuration (q′, h′) such that (q′, d) ∈ δ(q, h) with d equal to /,
O or . depending on whether h′ − h is respectively equal to −1, 0 or +1. If
there exists no successor, configuration (q, h) is said to be halting. We define
symmetrically the term predecessor.
Definition 3

A path ofA on w is a possibly infinite sequence of configurations {c0; . . . ; cm},

4

m ∈ (N ∪ {∞}) such that: for each i, 0 ≤ i < m, ci+1 is a successor of ci.

Let P = {(q0, h0); . . . ; (qm, hm)} be a finite path (we speak about path from
(q0, h0) to (qm, hm)). If there is no possible extensions of the path, (i.e., config-
uration (qm, hm) has no successor), we speak about maximal path (we also say
that all infinite paths are maximal).

A configuration is said reachable if there exists a path from the initial config-
uration to it (else it is said unreachable). We now introduce computation, which
describe the calculation of the automaton on a word.
Definition 4

A computation is a possibly infinite maximal path starting from the initial
configuration.

Observe that, by definition, a computation contains only reachable config-
urations. And reciprocally, all reachable configurations belong to at least one
computation.

We say that a 2nfa A accepts a word w ∈ Σ∗ if there is a computation
{(q0, h0); (q1, h1); . . . ; (qm, hm)} of A on ` w a such that for some j ≤ m, qj ∈ F
(such a computation is said to be accepting). The language L(A) ⊆ Σ∗ accepted
by the automaton A is the set of all words accepted by A. We say that two
automata are equivalent if they accept the same language.

Observe that remove all transitions from each accepting states (so enforce
accepting states to be halting) does not change the accepted language.
Lemma 1

We can always suppose that all accepting states are halting.

With this assumption, accepting computations are finite and have exactly one
accepting configuration, moreover this is the last of the sequence.

In order to simplify our proofs, we prove the following lemma, which claims
that we can remove O-transitions.
Lemma 2

For all 2nfas we can remove O-transitions without changing the accepted
language, only by modifying the transition function (so without increasing
the number of states).

Proof : We define the subset Sp,c of state sequences as follow: {p1; p2; . . . ; ps} ∈
Sp,c if and only if p1 = p and ∀i, 1 < i ≤ s, (pi,O) ∈ δ(pi−1, c) and for
i 6= j, pi 6= pj . Sp,c can be seen as the set of all sequences of states that can
be reached from (p, c), without entering any loop and using only O-transitions.
Let Mp,c be the set of all /- and .-transitions of δ(p, c). We transform the
transition function δ of the given automaton into a function δ′ as follow:

if there is a state qf ∈ F that appear in a sequence of Sp,c then δ′(p, c) =
{(qf , /)} (except if c =`, in this case we use .).

else δ(p, c) =
⋃

q appears in s∈Sp,c

Mq,c

5

With this transition function δ′, the new automaton accepts the same language,
and never uses O-transitions.

We now look at some special behaviors.
Definition 5

We say that a computation has a loop if it contains a repeated configuration.

We can easily prove the following result about accepting computations and
loops by cutting sequences.
Property 1

One can simplify all accepting computations into an accepting computation
without loop.

Note that, because there are a finite number of configurations, there are
finitely many computations without loops. This fact is essential in our following
proofs.

Let us now define some restricted models. The automaton is said:

• one-way if neither /- nor O-transitions are used3,

• deterministic if for each symbol σ of Σ ∪ {`,a} and each q, |δ(q, σ)| ≤ 1,

• halting if there exists a path from each reachable configurations to an
halting state,

• unambiguous if for each word there is at most one accepting computation.

Note that, with the given definition, an halting automaton can have infinite
computation, we only require that it always has the possibility to join an halting
configuration.

We also define self-verifying automata (svfas; 1svfas and 2svfas respec-
tively one-way and two-way): a svfa is a nfa which has three types of answer:
yes, no and I don’t know. By definition, we ensure that the automaton can
always answer and never lies, that is, for each word w, exactly one of these two
cases holds:

1. there is an accepting computation (i.e., a computation with answer yes).

2. there is a rejecting computation (i.e., a computation with answer no).

In fact such an automaton can recognise a language and its complement.
3In fact, by Lemma 1, one can easily simulate every automaton using only O- and .-, but

no /-transitions by a one-way automaton.

6

1.3 Problems raised in descriptional complexity and finite
automata theory

It is known that all these variants of finite automata accept the same class of lan-
guage, i.e., the regular languages (see [8]). However, in descriptional complexity,
we will see that they have different succinctness, and so they are separated.

For the majority of works (and also ours), the size function chosen is the
number of states (i.e. |Q|), which will be use for all the end of this report.

1.3.1 One-way is simpler

In case of one-way finite automata (1fas), it is known, as said in Section 1.1,
that upper bound for the reduction 2nfa→ 2dfa is 2n, and that this bound is
tight. The upper bound is given by power set construction (see [21]), and we
give here a witness language for the lower bound: the language Ln of binary
(Σ = {0, 1}) words which have a 1 in position l− n where l is the length of the
word can easily be accepted by a n state 1nfa (just guess nondeterministically
the position l−n and check it), but no accepting 1dfa have less than 2n states.
Note that the size of the alphabet is constant in n.

1.3.2 Problems raised and analogy with complexity theory

W. Sakoda and M. Sipser have introduced in the 70s [23] classes of families of
languages. They observed with this system an analogy with complexity theory.

We define the class 1D as the set of all family of languages (Lh)h ∈ N such
that some polynomial p(i) bounds the size of the minimal accepting 1dfa of lan-
guage Li. Analogously, we define classes 2D, 1N , 2N , 1SV , 2SV , respectively
for 2dfa, 1nfa, 2nfa, 1svfa, 2svfa.

From these definitions, the two authors raised two main questions, still open:
Questions 1

• Is 2N equal to 2D ?

• Is 2D equal to 1N ?

Because 2dfas and 1nfas can be seen as particular 2nfas, we already know that
2D ⊆ 2N and 1N ⊆ 2N . The previous result, from Subsection 1.3.1, claims
that 1D (1N .

W. Sakoda and M. Sipser define also a reduction between two language
sequences, analog to the polynomial reduction from complexity theory: given
two alphabets ∆ and ∆′ and languages L ⊂ ∆∗ and L ⊂ ∆′∗, we say that
L homomorphically reduces to L′ (h-reducible for short) if there is a map g :
∆ → ∆′∗ and i, f ∈ ∆′∗ such that for any string s = s1s2 · · · sk, (sj ∈ ∆),
s ∈ L iff ig(s1)g(s2) · · · g(sk)f ∈ L′. Now we are able to define our reduction
for language sequences: given two language sequences (Lh)h≥1 and (L′h)h≥1, we

7

say that L ≤h L
′ if there is polynomial p such that for each i, Li is h-reducible

to L′j for some j ≤ p(i).
It easy to see that all classes 2D, 2N . . . are closed under ≤h.
In analogy to the complexity theory, the classes 2D, 2N . . . play the role of

the complexity classes P , NP . . . (P and NP denote the classes of languages ac-
cepted by a Turing machine, respectively, in deterministic and nondeterministic
polynomial time), and the reduction ≤h has the role of the polynomial reduc-
tion. Therefore the question 2D equal to 2N is analog to the well known open
problem P ?= NP. In their article, Sakoda and Sipser also present two family of
languages complete for 2D and 2N thanks, thanks to the reduction ≤h, analog
to the well known SAT problem.

The analogy between complexity and descriptional complexity theories, is
enforced by some theorems which give explicit relation, especially with a second
well known question in complexity theory, that is L ?= NL (L and NL denote the
classes of languages accepted, respectively, in deterministic and nondeterministic
logarithmic space) (see [1, 6, 14] and Theorem 3).

1.4 Different approaches of Sakoda & Sipser’s main ques-
tions

In order to approach the two main questions raised by Sakoda and Sipser, known
to be difficult by analogy and relation with difficult problems of complexity
theory, researchers have introduced many variants of automata4.

In 1980, M. Sipser introduced sweeping automata (sa) [25], which are 2dfas
but with head reversals only at the endmarkers (so with restricted bidirection-
ality). He proved that 1nfas can be exponentially more succinct than sas.
However, P. Berman [2] and S. Micali [20] independently proved that this does
not solve the general problem: in fact the simulation of 2dfas by sas requires
an exponential number of states.

The result of Sipser was generalized by Hromkovic and Schnitger [9] con-
sidering oblivious machines and, recently, by Kapoutsis [13] considering “few
reversal” 2dfas. However, even these last restricted models have been proved
to be less succinct than 2dfas. Hence the general problem remains open.

A different kind of restriction has been investigated in the literature, start-
ing in 2003 with a paper by Geffert et al. [4]. They considered the unary case,
namely the case of automata with a one letter input alphabet. Under this strong
restriction, the problem of Sakoda and Sipser looks also difficult. Furthermore,
it is connected with the open question L ?= NL in complexity theory. More
precisely, in [4] the authors proved that each n-state unary 2nfa can be sim-
ulated by an equivalent 2dfa with O(ndlog2(n+1)+3e) = nO(log n) states, hence
obtaining a subexponential but still superpolynomial upper bound. We do not

4We do not present all results seen in readings during the internship. In fact, we don’t
speak about [3, 17, 18, 9, 10, 12], because the results are not interesting for our work presented
in Section 2, but the reading of these articles was a important time at the beginning of the
internship.

8

know whether or not that simulation is tight. However, a positive answer to
this question would imply the separation between the classes L and NL. In fact,
in [6] it was shown that if L = NL then each unary 2nfa with n states can be
simulated by a deterministic automaton with a number of states polynomial in
n. (For further connections between the question of Sakoda and Sipser and the
problem L ?= NL we address the reader to [1, 14]).

Using similar techniques, in [6] the authors also proved that each unary 2nfa
can be made unambiguous with a polynomial increasing in the number of the
states.

Along these lines of investigation, Geffert et al. considered in [5] the problem
of the complementation of unary 2nfas. They proved that for each n-state 2nfa
accepting a unary language L there exists a 2nfa with O(n8) states accepting
the complement of L. They also discuss the relationships between the problem
of the complementation of 2nfas and the problem of Sakoda and Sipser. The
proof of this result was given using inductive counting arguments and a kind of
normal form for unary 2nfas which allows to restrict nondeterministic choices
and head reversals only at the endmarkers.

Kapoutsis [11] considered the problem of the complementation in the case
of machines with general input alphabets, but with restrictions on the head
reversals. He proved that the complementation of sweeping 2nfas (namely,
2nfas with input head reversal only at the endmarkers) requires exponentially
many states, thus emphasizing an important difference with the unary case.5

1.5 Two-way restricted finite automata
In the internship we further consider the case of general alphabets, but under a
restriction which is different from those investigated so far. From one hand, we
do not put any constraint on the head movement, i.e., we allow head reversals
not only at the endmarkers, but at any input position. On the other hand, we
permit nondeterministic choices only when the input head is scanning one of
the endmarkers. We call these models two-way restricted nondeterministic finite
automata (2rnfas).
Definition 6

A 2rnfa is a 2nfa (Q,Σ, δ, qstart, F) such that, for each q ∈ Q:

c 6=`,a ⇒ |δ(q, c)| ≤ 1

We show that several results obtained in the case of unary 2nfas can be
extended to 2rnfas with any input alphabet. These results are presented in
this section.

5Due to the above mentioned normal form, with a linear increasing in the number of
the states, in unary 2nfas it is always possible to restrict nondeterministic choices and head
reversals only at the endmarkers. Hence from the result on the complementation of unary
2nfas in [5] follows that the complementation of unary sweeping 2nfas can be done with a
polynomial number of states.

9

In order to simplify our proofs, we start to prove the following lemma, which
give us a normal form for 2rnfa.
Lemma 3

For every n-state 2rnfa A there exists an equivalent (3n)-state 2rnfa A′
with the following properties:

1. There is a unique accepting state qaccept which is also halting,

2. qaccept is reachable only from the left endmarker by O-transition,

3. nondeterministic choices can occur only at the left endmarker,

4. O-transitions can occur only at the left endmarker, to reach qaccept.

Proof : Let A = (Q,Σ, δ, qstart, F) be a n-state 2rnfa. We suppose F nonempty,
otherwise, we are in the trivial case of empty language.

First, observe that we can remove all O-transitions by Lemma 2, without
increasing the number of state. So assume that A does not have such a transi-
tion. We define an automaton A′ equivalent to A which has properties (1)-(3),
and property (4) will be implied by this previous observation. Let qaccept /∈ Q
be a new state, and let ←−Q = {←−q , q ∈ Q} and −→Q = {−→q , q ∈ Q\F} be two new
state sets. We define the transition function δ′ of A′′ as follow: ∀c ∈ Σ, ∀q ∈ Q

• if q ∈ F then δ′(q, c) = {(←−q , /)}
else δ′(q, c) = δ(q, c)
• δ′(q,a) = {(←−q , /)}
• if q ∈ F then δ′(q,`) = {(qaccept,O)}
else δ′(q,`) = δ(q,`)
• δ′(←−q , c) = {(←−q , /)}
• δ′(−→q , c) = {(−→q , .)}
• δ′(−→q ,a) = {(q, /)}
• if q ∈ F then δ′(←−q ,`) = {(qaccept,O)}
else δ′(←−q ,`) = {(−→p , .), (p, /) ∈ δ(q,a)}

All other transitions, not given in the previous list of rules, are set to be empty
(for completeness). In this construction, we use the set ←−Q and −→Q to transfer
state information to the left endmarker. If the state is accepting, then the left
endmarker goes to qaccept, if not, that means that the transfer comes from the
right endmarker, and the automaton simulates, possibly using nondetermin-
ism, with this state information, the initial transition at the right endmarker,
and then transfer the new state information, using −→Q . By construction, the
automaton A′ = ((Q ∪←−Q ∪−→Q ∪ {qaccept}),Σ, δ′, q0, qaccept) proves the lemma.

Let us now observe a computation of such an automaton on word w =
w1w2 . . . wl, with convention w0 =` and wl+1 =a. The previous lemma ensures
us to have in each computation, a sequence of deterministic parts (when the

10

head don’t cross the left endmarker). That is why we define segments, which
correspond to such a part.
Definition 7

We call segment, a subsequence (qk, hk), . . . , (qk+j , hk+j) of a computation,
such that: whk

= whk+j
=` and for every i, k < i < (k + l)⇒ whj

6=a.

2 Results
2.1 Reach
One crucial point of all our results is, given two states s and t, to deterministi-
cally answer the question of whether we can reach t from s in exactly one seg-
ment. Starting from an n-state 2rnfa A in the normal form given by Lemma 3,
we will now construct a family (REACH(A)s,t)(s,t)∈Q×Q of 2dfas such that:
REACH(A)s,t accepts a word w if and only if there is a one segment path of
A from s to t reading w.

A first idea, in order to construct such an automaton, is to simulate directly
and deterministically, using the initial automaton, all segments starting from s,
and verify whether t is encountered at the left endmarker or not. But, our initial
automaton is allowed to enter in a deterministic loop, and so never answer (never
cross the left endmarker again). To avoid this problem, we shall now present the
construction of the halting 2dfa REACH(A)s,t, by suitably refining Sipser’s
construction for space bounded Turing machines [24]. We suppose to have a
linear order on Q. We give here only the main idea by recalling the original
Sipser’s construction.

Recall of the original Sipser’s construction

We want to transform a 2dfa A into an equivalent halting 2dfa A′. Assume
that A starts with the initial state q0 at the left endmarker, and accepts in a
unique accepting state qf only at the left endmarker. For each w ∈ Σ∗, A accepts
w if and only if there is a "backward" path, following the history of the accepting
computation in reverse, from the unique accepting configuration (qf , 0) to the
unique initial configuration (q0, 0).

Consider the graph whose nodes represent configurations and edges compu-
tation steps. Since A is deterministic, the component of the graph containing
(qf , 0) is a tree rooted at this configuration, with backward paths branching to
all possible predecessors of (qf , 0). In addition, no backward path starting from
(qf , 0) can cycle (hence, it is of finite length), because the halting configuration
(qf , 0) cannot be reached by a forward path from a cycle.

Thus, the equivalent halting machine can perform a depth-first search of this
tree in order to detect whether the initial configuration (q0, 0) belongs to the
predecessors of (qf , 0). If this is the case, the simulator accepts. On the other
hand, if all the tree has been examined without reaching (q0, 0), this means that

11

there are no path from (q0, 0) to (qf , 0) and so the w is not in the language, so
the simulator rejects.

The depth-first search strategy visits the first (in some fixed lexicographic
order) immediate predecessor of the current configuration that has not been
visited yet. If there are no such predecessors, the machine travels along the
edge towards the unique immediate successor. (Traveling forward along an edge
is simulated by executing a single computation step of A, traveling backward is
a corresponding "undo" operation).

For this search, the simulator has only to keep, in its finite control, the state q
related to the currently visited configuration (q, i) (the input head position i is
represented by its own input head), together with the information about the
previously visited configuration (its state and input head position relative to
the current head position, i.e., a number ±1). Hence, the simulator uses O(n2)
states.

Reach

Now we briefly present our improvements to this procedure and problems en-
countered. Here, t plays the role of qf , and we suppose t 6= qaccept. Hence,
predecessors of t are right predecessors (by Lemma 3, configuration (t,`) is not
reachable by O-transitions). Therefore, until reaching the next left endmarker
configuration, the sequence of predecessors is a tree rooted in (t,`), because of
determinism in such parts.

Because we want to check segments, we don’t have to look at predecessors
of left endmarker configuration (because our search stops at left endmarker).
So when we reach a left endmarker configuration, we just test whether this
configuration is (s,`) or not: if it is, we directly accept, else we cut the subtree
rooted in it, and we continue the search.

Our automaton examines at each time a current configuration in two modes:
(1) examination of the left predecessors, (2) examination of the right predeces-
sors. As explain in the recall of Sipser’s construction, this can be done by
remembering only the state of q of the current examined configuration.

For each q ∈ Q, we create states q↖, q↓1, q↗ and q↓2, and we also add a new
accepting state qf . So the state set of our automaton is

Q′ = {q↖, q↓1, q↗, q↓2 : q ∈ Q} ∪ {qf}.

The meaning of these states is:

q↖ Starting state for Mode 1: examination of left predecessors of (q, i). The
input head is positioned in i − 1. If i − 1 is the position of the right
endmarker, then we just check, as said before, if (q, .) ∈ δ(s,`).

q↓1 Finishing state of Mode 1: all left predecessors of (q, i) have been exam-
ined. The input head is positioned in i. The transition function will start
the Mode 2, except if i is the position of the right endmarker (if it is, it
directly finishes the Mode 2 in q↓2).

12

q↗ Starting state of Mode 2: examination of right successors of (q, i). The
input head is positioned in i+ 1.

q↓2 Finishing state of Mode 2: all predecessors (in at most one segment) of
(q, i) have been examined (and (s,`) didn’t appears). The transition
function will start the examination of the next (according to linear order)
predecessor of direct successor of (q, i). This examination will start in
state Mode 1. If no such configuration exists, depending of whether the
successor of (q, i) is left or right, the automaton finishes Mode 1 or 2 of
examination of this successor.

qf Accepting state, which is reached only if configuration (s, 0) is encoun-
tered.

By Lemma 3 we know that we can reach qaccept only by stationary move.
So REACHs,qaccept

just have to test whether (qaccept,O) ∈ δ(s,`). (We can do
this for each s ∈ Q with 2dfa with only 1 states.)

We have given here general ideas to obtain our family (REACH(A)s,t)s,t∈Q×Q

which has, by construction, the following wanted property.
Property 2
∀w ∈ Σ∗ and ∀s, t ∈ Q, REACH(A)s,t accepts w if and only if we can
reach t from s in exactly one segment by using the transition function of A
reading w. Moreover REACH(A)s,t has O(n) states.

Starting from the normal form of Lemma 3, and using the REACH au-
tomata family, we are now able to prove results of following subsections (we will
only give some general ideas).

In all this subsections, we will start from a n-state 2rnfaA = (Q,Σ, δ, qstart, {qaccept})
in normal form.

2.2 Polynomial reduction from 2rnfa to 2svfa
By Property 1, we know that for all words of accepted language, there is an
accepting computation without loop. Such a computation has at most |Q| seg-
ments (otherwise two left configurations are equal, and so we have a loop).

So the main idea is to use inductive counting6, and simulate recursively a
finite number (maximum |Q|) of segments, checking at each recursive call, if we
can reach the accepting state.

To reader’s ease of mind, we prefer to present the simulating 2svfa in the
form of algorithm, written in high-level code. We will then informally discuss
the actual implementation, evaluating the number of states required. In the
following code, we use two subroutines:

6The inductive counting technique is based on the following idea: instead of remembering
many objects (that can have exponential cost), we only remembering their number, and try
to recover them using nondeterminism and some linear order.

13

• simulation(k): a nondeterministic function, returning a nondeterminis-
tically chosen state q that is reachable by a computation path of A in
exactly k segments from the initial configuration. The call of this function
may also abort the entire simulation by halting in a “don’t-know” state q?,
due to a wrong sequence of nondeterministic guesses, if the chosen path
halts too early, not having completed k segments. This subroutine can be
simulated using a direct simulation of our initial automaton A (so using
O(n) states).

• reach(s, t): a deterministic function. It returns true/false, depending on
whether the state t can be reached from the state s in exactly one segment.
This subfunction does exactly the same work as the automaton REACHs,t

presented in Section 2.1 (so by Property 2 we already know that we can
do this work with a O(n)-state 2dfa for each pair of state (s, t)).

The nondeterministic simulation algorithm, based on the well-known induc-
tive counting technique, is displayed here:
Algorithm 1: Main simulation

1 m′ ← 1;
2 for k ← 1 to |Q| − 1 do
3 m← m′; m′ ← 0;
4 for each t ∈ Q do
5 for i← 1 to m do
6 s← simulation(k);
7 if (i > 1 and s ≤ sprev) then halt in q?;
8 sprev ← s;
9 if reach(s, t) then

10 if t = qaccept then halt in qyes;
11 m′ ← m′ + 1;
12 break;
13 end
14 end
15 end
16 end
17 halt in qno;

Basically, the algorithm proceeds by counting, for k = 0, . . . , |Q| − 1, the
number of states reachable by A at the left endmarker by all computation paths
starting from the initial configuration and composed by exactly k segments. As
a side effect of this counting, the algorithm generates all states reachable at the
left endmarker, and hence it can correctly decide whether to accept or reject
the given input (so the algorithm is self-verifying).

Because the main algorithm has 7 variables (of Q), and because both sub-
routines need only one more variable (by a good implementation of subroutine
reach reusing variables s and t of the main algorithm), the implementation of the
algorithm by a finite automaton requires only O(n8) states (that is polynomial).

14

Theorem 1
For all n-state 2rnfa A there exists a O(n8)-state 2svfa A′, that accepts
the same language as A.

2.3 Subexponential reduction from 2rnfa to 2dfa
Again using Property 2, we prove now that we can simulate each 2rnfa by a
2dfa, which has a subexponential number of states.

We also give the 2dfa in form of an algorithm written in high-level code.
This algorithm, called reachable, is based on the divide(and-conquer technique.
Hence it is recursive and it reuses the same deterministic subroutine reach(s,t)
as previously, for its base case (k = 1). reachable(s, t, k) answers the question
of whether there is an at most k segments path from s to t.
Algorithm 2: reachable(s, t, k)

18 if k=1 then
19 if p=q then return true
20 else return reach(s,t)
21 end
22 else
23 for each state r ∈ Q do
24 if reachable(s, r, dk/2e) then
25 if reachable(r, t, dk/2e) then return true
26 end
27 end
28 return false

29 end

Observe first that this algorithm is deterministic, and because of Property 1,
the call of reachable(qstart, qaccept, |Q|) will answer the question of reachability
of (qaccept, 0) that is the question of whether w is in the accepted language or
not. So reachable “accepts” the same language as A.

To explain how implement this algorithm with a 2dfa, we first implement it
with a pushdown automaton. At each recursive call, the pushdown automaton
save on the top of its pushdown the pair of states s, t and the integer k ≤ |Q|.

In fact, if we allow the automaton to read all the pushdown7, only one state
has to been saved (one don’t change) with a binary information (prefix or suffix),
and the integer can be recover from the size of the pushdown.

The maximal push down high is dlog2(n − 1)e, not counting the activation
of the “main program”, i.e., the predicate reachable(qstart, qaccept, n − 1). And
because, unlike in classical divide-and-conquer technique, the problem of size
k is not divided into two subproblems of size bk/2c and dk/2e, but, rather,
both the outer and inner if statements (line 24 and 25) use the same parameter

7Such a device, which is less restrictive than a pushdown, is sometimes denoted by the
term stack in the literature.

15

dk/2e. This ensures that, whenever a bottom level of the recursion is reached,the
pushdown is of the same height.

To implement it with a 2dfa, we store the stack information into the state.
Because of the logarithmic maximal pushdown high, we obtain a subexponential
size:
Theorem 2

For each n-state 2rnfa A, there exists an equivalent 2dfa A′, which needs
only O(ndlog2(n−1)e−1) states.

So we have prove here an upper bound for the reduction 2rnfa → 2dfa,
which is subexponential but not polynomial.

2.4 Polynomial reduction from 2rnfa to 2dfa, under hy-
pothesis L= NL

First we define computation graphs. Recall that A is a 2rnfa (in normal form),
and w is a word of Σ∗. Let G(w) = (V,E) be an oriented graph with:

• V = Q

• E = {(p, q)\REACHp,q accepts w}

In other words, (p, q) is an edge of G if we can reach q from p in exactly one
segment.
Remark 1

The size of the graph is independent on the length of the input word w. This
size is always n2 (size of the adjacency matrix).

By definition, the word w is accepted by A if and only if there exists an
accepting computation of A on w. That means that there exists a sequence of
connected segments, which starts with state qstart and ends with state qaccept.
So, in other words (G(w), qstart, qaccept) is an instance of the well known graph
accessibility problem (GAP).

Assuming that L= NL, there exists DGAP a deterministic logarithmic space
bounded Turing machine accepting GAP. We can assume that DGAP has a
two-way read-only input tape which contains a representation of a graph with
N vertices, given by its adjacency matrix.

Now, our goal is to simulate this Turing machine on all graphs G(w), by a
2dfa A′ with a polynomial number of states. The unique difference between a
2dfa and a deterministic Turing machine, is that the first model is not allowed
to write on a tape.

The deterministic Turing machine DGAP uses only logarithmic space. So
our main idea is to simulate this logarithmic space in the finite control of our
automaton. So assuming that the size of the output alphabet of DGAP is m
and the size of the input graph is k, our automaton needs O(mlog2(k)) states to
simulate this output tape.

16

In our case, with G(w) as input graph, Remark 1 claims that, this number
does not depend on the size of the input word w, but only of n. Thus this
number is mlog2(n2) = n2 log2(m) < nK , for a constant K.

Now our automaton has also to keep in its finite control the state of DGAP ,
which is also a constant.

With all this previous remark, we are able to simulate DGAP with a 2dfa
which has a number of state polynomial in n, on input G(w). Let us now explain
how obtain this input from w.

Recall that we have supposed that the input graph is given by its adjacency
matrix. So each cell of the input correspond to a couple p, q of states of Q (i.e., p
and q are respectively the indices of row and column of the cell of the adjacency
matrix of G(w), that DGAP is currently reading), and its value is a boolean
depending on whether (p, q) is an edge of G. This question is, by definition,
equivalent to the question of whether we can reach q from p in exactly one
segment.

We can answer these questions deterministically, using O(n) states for each
pair p, q, by using the (REACHs,t)s,t∈Q×Q automata family, presented in Sec-
tion 2.1. So our automaton is now able, reading w, to simulate DGAP on G(w):
at each step, the automaton instead of reading the read tape, perform the subau-
tomaton REACHp,q, supposing that (p, q) informations are saved in its current
state. The return of this subautomaton give it the value of the corresponding
cell of the adjacency matrix of G(w).

Observe that the current configuration (input head position and state) of
DGAP is completely stored in state informations of our automaton, using the
previous pair of states p, q to encode the position of the input head and a state
r of DGAP to encode itself. So the input head of our automaton moves only
when subautomata REACHs are called. The move of the DGAP input head are
replaced, in our simulation, by changing the p, q components of the state, not
changing the position of our input head. That ensure us to not have problems to
start and stop REACHs subautomata with the input head at the good position
(it always starts and halts, both at the left endmarker).

Our automaton uses so less than n2 × j × nK states, where j is the number
of states of DGAP . So this is less than nK′ for a constant K ′. This conclude
the proof of the following theorem.
Theorem 3

If L = NL, for each n-state 2rnfa, there exists an equivalent 2dfa with a
number of states polynomial in n.

In other words, under hypothesis L = NL, the class 2RN and 2D are equal.
This result may be seen in its counterpart form: we can prove that L 6= NL, by
finding a language L in 2RN which is not in 2D. Observe that, unlike to the
relation with L = NL problem presented in [1], this relation does not depend
on the size of the input word.

17

2.5 Other results
With analog proofs, we became able to prove polynomial reduction from 2rnfa
to unambiguous 2nfa(2ufa). Compared with Theorem 3, 2ufas are more pow-
erful devices than 2dfas, but this simulation does not require any additional
assumptions, such as L= NL.

Reinhardt and Allender [22] proved that, in the context of nonuniform com-
plexity, nondeterministic logarithmic space bounded computations can be made
unambiguous. Our simulation combines this result with the reduction from a
2rnfa language to GAP.

Given a complexity class C , let us denote [16] by C/poly the class of lan-
guages L for which there exist a sequence of binary “advice” strings {α(n)|n ≥ 0}
of polynomial length and a language B ∈ C such that L = {x|(x, α(|x|)) ∈ B}.
Theorem 4 (see [22])

NL ⊆ UL/poly

As a consequence of this theorem, there exists a nondeterministic Turing
machine UGAP such that:

• UGAP works in logarithmic space and has at most one accepting path on
each input string,

• there exists a sequence of binary strings {α(n) | n ≥ 0} and a polynomial q,
such that |α(n)| ≤ q(n) for each n ≥ 0, and

• for each graph G with N vertices, encoded in the form of the binary
adjacency matrix, UGAP accepts the string G]α(N2) if and only if G ∈
GAP. Here] /∈ {0, 1} denotes a new separator symbol.

We are now ready to prove this following theorem:
Theorem 5

Every n-state 2rnfa can be simulated by a 2ufa which has a number of
states polynomial in n.

Proof : The idea of this proof is the same as the proof of Theorem 3. We will
also simulate the given Turing machine (now we use UGAP instead of DGAP),
by an automaton (now this automaton is just unambiguous and not necessary
deterministic).

The unique difference with the previous construction is that UGAP can use
α(size(G(w)) information. But, by Remark 1, this size of G(w) is n2, and so
does not depend on the length of the input word w. Hence the value of α(n2)
is the same for all input word, it can be calculated before the construction of
our automaton and encoded in its transition function.

In fact, the proof of Theorem 3 give us a general method to simulate a
Turing machine. So using other known results about GAP or its variants, we

18

can obtain by this method new theorem to simulate 2rnfa by automata with
the some properties of the simulated Turing machine.

We also find a family of language which is complete for the class 2RN , which
is a restriction of complete language family of Sakoda & Sipser for 2N .

Conclusion
This internship give me the motivation to research, by showing me all main
aspects of researcher work:

• Readings: in the first part I discover the area by many readings, from
generalities to details

• Presentation: then I presented these readings, using slides

• Research and proof: in a second time, I start to search (and find), alone
or by exchange with G. Pighizzini

• Explanation and writing: in the third time, I also write (still a draft) of
article, in aim of publication (and also this report)

• Attend conferences: I was allowed to assist at the NCMA workshop, and
so discover the community of researchers and other subjects of research
about automata.

It also give me the interest of descriptional complexity. I probably will
continue to work on the article, by e-mail exchange.

This internship was also the occasion to discover Italian research, and meet
(particularly at the NCMA workshop) others researchers. More generally, I
discover another (close) culture, by learning Italian and by meeting Italians.

References
[1] J. Berman and A. Lingas. On the complexity of regular languages in terms

of finite automata. Technical Report 304, Polish Academy of Sciences, 1977.

[2] Piotr Berman. A note on sweeping automata. In ICALP, pages 91–97,
1980.

[3] Pavol Duris, Juraj Hromkovic, José D. P. Rolim, and Georg Schnitger. Las
vegas versus determinism for one-way communication complexity, finite
automata, and polynomial-time computations. In Rüdiger Reischuk and
Michel Morvan, editors, STACS, volume 1200 of Lecture Notes in Computer
Science, pages 117–128. Springer, 1997.

[4] V. Geffert, C. Mereghetti, and G. Pighizzini. Converting two-way nondeter-
ministic automata into simpler automata. Theoret. Comput. Sci., 295:189–
203, 2003.

19

[5] Viliam Geffert, Carlo Mereghetti, and Giovanni Pighizzini. Complementing
two-way finite automata. Inf. Comput., 205(8):1173–1187, 2007.

[6] Viliam Geffert and Giovanni Pighizzini. Two-way unary automata versus
logarithmic space. Inf. Comput., 209(7):1016–1025, 2011.

[7] Jonathan Goldstine, Martin Kappes, Chandra M.R̃. Kintala, Hing Leung,
Andreas Malcher, and Detlef Wotschke. Descriptional complexity of ma-
chines with limited resources. J. UCS, 8(2):193–234, 2002.

[8] J. Hopcroft and J. Ullman. Introduction to automata theory, languages,
and computation. Addison-Wesley, Reading, MA, 1979.

[9] Juraj Hromkovic and Georg Schnitger. Nondeterminism versus determin-
ism for two-way finite automata: Generalizations of sipser’s separation.
In Jos C.M̃. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J.
Woeginger, editors, ICALP, volume 2719 of Lecture Notes in Computer
Science, pages 439–451. Springer, 2003.

[10] Christos A. Kapoutsis. Removing bidirectionality from nondeterministic
finite automata. In MFCS, pages 544–555, 2005.

[11] Christos A. Kapoutsis. Small sweeping 2nfas are not closed under com-
plement. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo
Wegener, editors, ICALP (1), volume 4051 of Lecture Notes in Computer
Science, pages 144–156. Springer, 2006.

[12] Christos A. Kapoutsis. Size complexity of two-way finite automata. In
Volker Diekert and Dirk Nowotka, editors, Developments in Language The-
ory, volume 5583 of Lecture Notes in Computer Science, pages 47–66.
Springer, 2009.

[13] Christos A. Kapoutsis. Nondeterminism is essential in small 2fas with few
reversals. In ICALP (2), pages 198–209, 2011.

[14] Christos A. Kapoutsis. Two-way automata versus logarithmic space. In
CSR, pages 359–372, 2011.

[15] Martin Kappes, Andreas Malcher, and Detlef Wotschke. Remembering
chandra kintala. In DCFS, pages 15–26, 2010.

[16] R. Karp and R. Lipton. Turing machines that take advice. Enseign. Math.,
28:191–209, 1982.

[17] Hing Leung. Separating exponentially ambiguous finite automata from
polynomially ambiguous finite automata. SIAM J. Comput., 27(4):1073–
1082, 1998.

[18] Hing Leung. Tight lower bounds on the size of sweeping automata. J.
Comput. Syst. Sci., 63(3):384–393, 2001.

20

[19] Albert R. Meyer and Michael J. Fischer. Economy of description by au-
tomata, grammars, and formal systems. In FOCS, pages 188–191. IEEE,
1971.

[20] Silvio Micali. Two-way deterministic finite automata are exponentially
more succinct than sweeping automata. Inf. Process. Lett., 12(2):103–105,
1981.

[21] M. Rabin and D. Scott. Finite automata and their decision problems. IBM
J. Res. Develop., 3:114–125, 1959.

[22] Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous.
SIAM J. Comput., 29(4):1118–1131, 2000.

[23] William J. Sakoda and Michael Sipser. Nondeterminism and the size of
two way finite automata. In STOC, pages 275–286. ACM, 1978.

[24] Michael Sipser. Halting space-bounded computations. Theor. Comput.
Sci., 10:335–338, 1980.

[25] Michael Sipser. Lower bounds on the size of sweeping automata. J. Comput.
Syst. Sci., 21(2):195–202, 1980.

21

