
Communicating Finite Automata System
and Tally Languages

M2 - Internship report

Bruno Guillona,
internship supervised by Christian Choffrutb

aUniversité Nice-Sophia Antipolis and École Normale Supérieure de Lyon, France
bL.I.A.F.A (Laboratoire d’Informatique Algorithmique, Fondements et Applications),

Université Paris VII, 2 pl. Jussieu, 75251 Paris, France

Acknoledgements: Many thanks to Christian Choffrut to having directed my
work during this internship. Many thanks also to Noëlle Delgado and

Brigitte Bloise for bureaucratic work. Thanks to Timo Jolivet for having
encouraged me to participate to EJCIM 2012 and simplified my registration.

Many thanks to all persons I encountered in LIAFA during my stage.

Contents

1 Introduction 2

2 Definitions, notations and first results 4
2.1 Generalities . 4

2.1.1 Words and languages . 4
2.1.2 Finite automata . 4
2.1.3 Known results . 5

2.2 Finite Automata System . 6
2.2.1 General definitions . 6
2.2.2 One-way Unary Finite Automata System 7

2.3 Tri-phase Sweeping Unary Finite Automata System 7
2.3.1 Tri-phase Sweeping Unary Deterministic Finite Automata 8
2.3.2 Tri-phase Sweeping Unary Deterministic Finite Automata

Systems . 10

3 Main Result 11
3.1 TSUDFAS with a constant number of communications 11
3.2 2DFAS simulation by TSUDFAS 14

4 Conclusion 16

Bibliography 17

1. Introduction

Finite Automaton (FA) is one of the simplest computing model in computer
science. For a long time, researcher have studied it and its derivated forms: de-
terministic/nondeterministic, one-way/two-way, pushdown, self-verifying, multi-
head, probabilistic. . . However, despite the simplicity of the model, a lot of
relevant questions remain open.

During the 6-months intership I did in LIAFA, under direction of profes-
sor C. Choffrut, I worked on Communicating Finite Automata System (FAS
for short), which is a parallel improvement of the classical FA. (In particular,
FASs accept at least the class of regular languages.) This computing model
was introduced by T. Jurdzinski at the end of the XX-th century [32]. FASs

2

are synchronized1 parallel automata working on a shared read-only input, which
are allowed to communicate each other, thanks to their transition functions. As
for the classical FA, one may consider deterministic/nondeterministic or one-
way/two-way versions of the model. Another point of view is to see FASs as
multi-head automata, but with separate finite controls and transition functions
for each head, then communications are not done by sharing state information
rather by sending (broadcasting) messages. The goal of having introduced such
a difference to multi-head automaton, is to save a control on the the number of
communications in order to limit it: clearly, if this communication number is
unbounded, then FASs are equivalent to multi-head FAs. It is well known that
in parallel computing, the cost of communications is much more relevant than
that of the local computing. Therefore parallel devices with bounded commu-
nication raise interesting questions in Complexity Theory: what problems can
solve a FAS if it mays exchange at most a fixed number of messages?

T. Jurdzinski proved that there exists a gap betweenO (1) andO (logn) mes-
sages (resp. O (log log logn)) where n is the size of the input, for the one-way
(resp. two-way) FAS [32, 33]. He also exhibates an example of one-way deter-
ministic FAS, with only two automata and with communication bounded by
1 (i.e. at most one message is sent in each computation) that accepts a non-
regular language. However its witness language (which is in fact the well known
anbn language) is define over two-letters alphabet. In the litteratur we may find
several interesting differences between result on unary (also called Tally) lan-
guages (i.e. languages defined over a one-letter alphabet) and that on languages
defined over bigger alphabet. The probably most famous example of such a
difference is the collapse between regular and context-free language classes in
unary case [20]. Starting with these observations in mind, one may raise the
question of what may accept unary FASs with bounded communications. I
started the internship with the following quadruple conjecture:

Conjecture 1. If a Tally language L is accepted by a one-way/two-way de-
terministic/nondeterministic FAS with communication bounded by a constant,
then L is regular.

In fact, the one-way case turn out to be already solved by M. Harrisson &
O. Ibarra [24]. They proved a more general result: one-way nondeterministic
multi-head automata over unary alphabet accept exactly the class of regular lan-
guages. Hence in that case (one-way), the number of communications exchanged
by the automata surprisely does not affect the power of the computing model.
In contrast, for the two-way case, we proved that log(n) communications suffies
to deterministically accept a non-regular Tally language (see Section ??). The
problem turn out to be more difficult than expected. We find a positive answer
to the Conjecture 1 for the case of two-way deterministic FAS. Nevertheless,

1T. Jurdzinski studied non-synchronized systems too [34], but these models turn out to
be more complicated to describe and not so interesting. In this report we only consider
synchronized systems.

3

the problem for the two-way nondeterministic case remains open.
I start by giving some formal definitions and basic remarks in automata

theory in Section 2, introducing also a new variant of the model, which will
be usefull for our proof. Then I will prove our main result (positive answer
to Conjecture 1 for the two-way deterministic case) in two time in Section 3.
Finally I will give others remarks and research experience I had during this
internship, raising some other questions in relation with the topic, in Section 4.

2. Definitions, notations and first results

2.1. Generalities
2.1.1. Words and languages

We suppose the reader is familiar with Language Theory, in particular we
do not do any recalls on definitions of context-free or regular languages classes.
Our notations are usual: ε is the empty word; |u| is the length of word u; u[i]
is the i-th letter of word u; uv is the concatenation of words u and v; ui is
the i-th iterate of self concatenetion of word u (u0 = ε); the language L · L′ is
the set {uv / u ∈ L, v ∈ L′}; the language Li is the set {u1u2 . . . ui, ∀j uj ∈ L}
(L0 = {ε}); L∗ is the union for i ∈ N of Li.

We say that a word (resp. language) is unary (we also speak about Tally
languages), if it is defined on a one-letter alphabet. The only interesting thing
for a unary word is its length. Hence we will assimilate unary language with
integer set (i.e., the set of lenght of words from the unary language).

2.1.2. Finite automata
We give here some basic definitions in Automata Theory. We recall that a

finite automaton (in its more general form) is a 5-tuple (Q,Σ, q0, F, δ) where Σ
is the input alphabet, Q is the finite set of states containing the initial state q0
and the subset of accepting states F , and δ is the transition function. At each
step, the automaton reads the symbol scanned by the input head, and thanks to
its current state, it moves its input-head backward, forward or keep it in place,
and change its state according to its transition function. For computation on an
input word w ∈ Σ∗, the input tape contains a w `, where a and ` (not belonging
to Σ) are respectively the left and right endmarkers. We forbid the transition
function to move the input head right (resp. left) from the right (resp. left)
endmarker, hence the input head is not allowed to move out the input word.

A configuration (of an automaton on a word) is a couple (q, x) of Q ∗
{0, . . . , n+ 1} where n is the length of the input word, q is the current state
and x is the current head position (x = 0 (resp. n+ 1) holds for the left (resp.
right) endmarker). The initial configuration is (q0, 0), a border configuration is
a configuration (q, p) where p is either 0 or (n+ 1). An accepting configuration
is a configuration (q, n + 1) with q ∈ F . From the transition function, we can
define the relation → on configurations (note that the relation depends on the
input word). →∗ denote the transitive closure of →. The automaton accepts
a word w of size n if and only if (q0, 0) →∗ (qf , n + 1) for some qf ∈ F . The

4

accepted language is the set of all accepted words. A computation is a maximal2
sequence of (→)-successive configurations. A computation is said accepting if it
contains an accepting configuration.

We distinguish several particular cases of automata:

• deterministic/nondeterministic: whether maxq,c |δ(q, c)| ≤ 1

• one-way/two-way: whether backward moves of the input head are allowed

• sweeping: if the input head can change directions (forward/backward)
only at the endmarkers. In that case we call traversal a computation path
that starts from and ends by border configurations without encountring
border between them.

• unary: if |Σ| = 1

In name of machines, we will use conventional letters or numbers: 1 (resp. 2) for
one-way (resp. two-way), U for unary, D (resp. N) for deterministic (resp. non-
deterministic), S for sweeping. The order is chosen by the author in order to
make pronunciation easier, however 1-or-2 takes the first place while D-or-N
are placed just before FA which is naturally always at the end, in order to
save known structures on short names. For example, a 2SUNFA is a two-way
sweeping unary nondeterministic finite automaton.

2.1.3. Known results
We give now some classical results. The first theorem is an old result (prob-

ably the oldest one) in Automata Theory. It answers the question of what is the
computational power of FA model, while it caracterizes regular language class.

Theorem 1. Finite Automata accepts exactly the class of regular languages.

From this, it is easy to prove the famous Pumping Lemma:

Theorem 2 (Pumping Lemma). If a language L is regular, then there exists a
constant N such that for every word w in L of length at least N , we can write
w = xyz (i.e., w can be divided into three substrings), satisfying the following
conditions:

• |y| ≥ 1

• |xy| ≤ N

• for all i, xyiz is in L.

In the general case the converse of the lemma is not true, however, as said in
introduction, the unary case has big differences. In fact for unary language, the
converse turn out to be true.

2 This sequence may be infinite, however one may force accepting computation to be finite
by set transition from accepting configurations (position n+ 1 is ensured by `) to ∅.

5

Theorem 3. A unary language L is regular if and only if it satisfies the Pump-
ing Lemma.

Another result on unary languages is the collapse between regular and context-
free classes. It can be proved from the previous Theorem and an analog form
of Pumping Lemma, for context-free languages.

Theorem 4. Over one-letter alphabet, regular and context-free languages coin-
cide.

2.2. Finite Automata System
2.2.1. General definitions

We now present a parallel improvement on FAs. Several automata A[1], . . . ,A[k]
work on a same input tape. We want to give the possibility to each automaton
to send and receive informations (i.e., state). Suppose M is the message vector
set (common for every automata), that we will describe below. For m ∈ M ,
each coordinate m[i] corresponds to message sent by automaton A[i] (Nil, if no
message is sent). A = (Q,Σ,M, q0, δ, ν) is a k-communicating finite automaton
(k is the size of vectors of M) if δ is a function from M ∗Q ∗ (Σ ∪ {a,`}) into
P (Q ∗ {−1, 0,+1}) and ν is a function from Q ∗ (Σ ∪ {a,`}) into3 {0, 1}. If
the communicating finite automaton is in state q with its input head scanning
symbol c, then in a first time it decide using ν whether it sends a message or
not: if ν return 1 then it sends message q, else it do not send message (i.e.,
Nil). In a second time it receives message vector (of size k), and use δ to decide
what state it enters and how it moves the input head.

We are now able to define k-Communicating Finite Automata System (FASk).
A FASk is couple (A, F) where A = (A[1], . . . ,A[k]) is a family of k k-
communicating finite automata, and F ⊂ Q[1] is the set of accetping states
(Q[1] is the state set of A[1], and more generally we use the notation X[i] for
component X of A[i]).

The message vector set M is equal to Πi(Q[i] ∪ {Nil}) i.e., its coordinates
are either a state of the corresponding automaton or Nil. We designate by Nil
the message vector where every coordinates are Nil.

A global configuration of a FASk on a word w of length n is a couple of
vectors of size k (q,p), where q is the vector of state and p is the vector
of positions (integers from {0, . . . , n+ 1}). The initial global configuration is
c0 = (q0,0). (q,p) is said accepting if q[1] ∈ F and p[1] = (n + 1). As for
simply case, we are able to deduce from a FAS a relation →, depending on the
word, such that c→c′ if the system reaches global configuration c′ from c in one
step. →∗ is the transitive closure of →. The system accepts a word if c0→∗c
for some accepting global configuration c. Global computation is defined as for

3Here we force ν to be deterministic, for more clarity. It is easy to see that, nondeterminism
of δ may simulate nondeterminism of ν. Hence we make our assumption without loss of
generality. A good question about the converse case (δ deterministic and ν nondeterministic)
is raised in Section 4.

6

simply automaton i.e., it is a sequence of (→)-successive global configurations,
starting from the initial one.

A communicating step (resp., border step) is a step c→ c′ where the message
vector m is different from Nil (resp., at least one head is positionned on an
endmarker). The number of message of a global computation is the sum over
each step of the computation of the number of coordinates unequal to Nil, in
exchanged message vectors. We say that a system has communication complexity
Φ if for each accepted word w there exists an accepting computation which uses
at most Φ(|w|) messages. In particular, we will study system with constant
communication complexity.

2.2.2. One-way Unary Finite Automata System
Over one-letter alphabet, if each automaton component of a system is one-

way (i.e., the system is a 1UFAS), then the communication complexity does
not influence the computational power of the model. This holds even in both
deterministic and nondeterministic cases.

This result follows a general result on unary multi-head FAs, proved by
Ibarra and Harrison.

Corollary 1. If a language is accepted by a 1UFAS, then it is regular.

So our subconjecture 1 on one-way systems is already solved. From now, we
work only on two-way systems (omitting number “2” in short names).

2.3. Tri-phase Sweeping Unary Finite Automata System
Let us now focus on the deterministic case. First, observe behaviors of

deterministic finite simple automata over unary input (i.e., UDFA). Because
the input alphabet contains only one letter, the input head can not observe
differences between positions inside the word. Hence the most relevant steps in
a computation are those that reach or leave a border configuration. Suppose
we start computation from a border configuration (qb, pb) on a large enough4

input w, and observer the 2 ∗ |Q| following steps. There are three main cases:

1. either the input head is moved again to the border position pb in less than
2 ∗ |Q| steps,

2. or, it enters a deterministic loop in less than |Q| steps i.e., (pb, pb)→≤|Q|
cl →s cl for some non-border configuration cl and some constant s.

3. or the automaton enters a state-loop i.e., the automaton reaches in less
than |Q| steps a configuration (ql, pl) such that (ql, pl)→s (ql, p′l), for some
s and p′l 6= pl.

Behavior (2) may be seen as a particular case of Behavior (3) with pl = p′l.
However it is interesting to separate this behaviors, because behavior (2) does
not allow the automaton to ever reach a border configuration again.

4By large enough, we mean that the length of the input is greater than |Q| + 1.

7

Between two border configurations (so behavior (2) cannot happen) beha-
vior (1) gives an information of the form |w| > m for some constant m bounded
by |Q|, while behavior (3) gives an information on congruence of |w| modulo
the speed (also bounded by |Q|).

2.3.1. Tri-phase Sweeping Unary Deterministic Finite Automata
As describe above, the behavior of simple UDFAs may be easily described.

Hence the work of such an automaton is well known. In the litterature we find
simplification and normal forms for this model (see for example [?]). However in
order to study UDFA systems, we have to preserve the “speed of computation”,
because of synchronism. That is why we introduce here a new model, which can
be seen as a normal form for UDFAs.

We define Tri-phase Sweeping Unary Finite Automata (TSUDFA for short),
which are deterministic sweeping automata over one-letter alphabet, that works
for each traversal in three successive phases over large enough input:

• Prefix phase: during this phase, the automaton move its input head in
the same direction (d ∈ {−1, 0,+1}) at each step

• Wait phase: during this phase, the automaton does not move its input
head

• Loop phase: the automaton enters a state-loop, in which using d- (the
same d as in Prefix phase) and 0-moves, it moves at a “constant speed”.

Formally such an automaton is defined using several state sets and a move
function, as follow:

Definition 1. (P,W,L1, L2,m,Σ, q0, F, δ) is a TSUDFA if and only if:

• P , W , L1 and L2 are disjoint finite state sets (let be Q = P ∪W ∪L1∪L2)
and Σ is a single-letter alphabet (let us denote by ‘a’ its only symbol)

• ((Q ∗ {−1, 0,+1}),Σ, (q0,−1), F, δ) is a unary 2DFA (we call direction
the {−1, 0,+1} state component)

• for each q ∈ Q, if δ((q,−1),a) (resp. δ((q,+1),`)) is equal to ((q′, d′), d)
then d′ = d = +1 (resp. −1) and q′ ∈ P .

• for each q ∈ P (resp. q ∈W) there exists a finite state sequence {q1, . . . , qπ+1}
such that:

– q1 = q

– ∀ 1 ≤ i ≤ π, qi ∈ P (resp. qi ∈W)
– qπ+1 ∈W (resp. qπ+1 ∈ L1)
– ∀ 1 ≤ i ≤ π, ∀ d ∈ {−1, 0,+1}, δ((qi, d), a) = ((qi+1, d), d′) with
d′ = d (resp. d′ = 0).

8

• Let be L = L1 ∪ L2. m is a function from L into {0, 1} and for each q in
L there exists a finite state sequence {q1, . . . , qω+1} in L such that:

– q1 = qω+1 = q

– ∀ 1 ≤ i ≤ ω, ∀ d ∈ {−1, 0,+1}, δ((qi, d), a) = ((qi+1, d), d ∗m(qi))
– ∃ 1 ≤ i ≤ ω, qi ∈ L1

– if q ∈ L1, then for each 1 ≤ t ≤ ω,
∑t
i=1m(qi) =

⌈
t ∗
∑ω

i=1
m(qi)
ω

⌉
.

In computation of such a model, the input head works in a sweeping manier,
because of the direction component and reversals at the endmarkers. Remark
first that the assumption about endmarkers transition enforces the input head
to leave an endmarker in at most one step. Observe also that deterministic loops
are not forbidden (just see the case m(qi) = 0 for each i in a state sequence of
L, as in Definition). Hence the automaton, starting from a configuration, has
two types of behavior:

1. either it does a (possibly partial) traversal of the input word, until it
reaches an endmarker (with all move of the input head in the same direc-
tion, given by the direction component)

2. or, after a constant number of steps, it loops inside the input word, without
moving its input head.

More precisely, from each configuration, after at most |P | + |W | steps, if
the input head has not reached an endmarker, the automaton enters a state-
loop of fixed period size (at most |L|). In Definition, the last condition on
state sequence starting from q ∈ L1, ensure us to have some kind of constant
speed (see variable t as a number of steps since 1

ω ∗
∑ω
i=1m(qi) is the speed

average over one state-period). This speed may be equal to 0, in case of real-
loop (behavior (2) described above). The goal of the following Lemma is to
describe these behaviors (and define the notion of speed).

Lemma 1. Let (P,W,L1, L2,Σ, q0, F, δ) be a TSUDFA and let w be a word
of length n. For each state (q, d), there exist positive integers π1 < π2 and
ω > ∆ such that for every head position p on w (0 ≤ p ≤ (n + 1)) and for all
s ∈ N, if A performs s steps from Configuration ((q, d), p) without encountring
an endmarker then

• if s < π1 then the input head is in position p+ s ∗ d.

• if π1 ≤ s < π2 then the input head is in position p+ π1 ∗ d.

• if π2 ≤ s then the input head is in position p+ (π1 +
⌈
(s− π2) ∗ ∆

ω

⌉
) ∗ d.

We call speed the rational ∆
ω , and for each x ∈ {π1, π2,∆, ω} and q ∈ Q

and d ∈ {−1, 0,+1}, we use the notation x(q, d) to refer the corresponding
parameter.

9

Proof. The Lemma statements directly result from Definition 1. See π1 as the
length of the Prefix phase sequence, in fact exactly the “π” for sequence start-
ing in q ∈ P from Definition (0 if q /∈ P) and π2 as the length of both Prefix and
Wait phase sequences, that is the sum of two “πs”, as in Definition, for two con-
nected (Prefix and Wait) sequences starting in q (0 if q /∈ P ∪W). Consider
ω as the period of the state-loop sequence (the minimal “ω” in Definition) and
∆ as the number of move (in direction d) in exactly one such period (that is
“
∑ω
i=1m(qi)” in Definition).
Therefore depending on which phase the automaton is performing after

s steps (and supposing it does not reach an endmarker during these steps),
we obtain respectively the three statements of the Lemma.

From this Lemma, we are now able to compute from each configuration
c = ((q, d), p) the number nextborder(c) of steps needed by the automaton in
order to reach the next endmarker (in case of deterministic loop, we set it to
+∞). In fact, in the case where p + π1 ∗ d ≤ 0 (resp., p + π1 ∗ d ≥ n + 1) it
is easy to see that nextborder(c) is equal to the minimal s in {1, . . . , π1} such
that p+ s ∗ d is equal to 0 (resp., n+ 1). In the other case, it can be found by
solving the following equation:

p+ (π1 +
⌈

(s− π2) ∗ ∆
ω

⌉
) ∗ d =

{
0 if d = −1

n+ 1 if d = +1

Thus we obtain the following corollary.

Corollary 2. For each state (q, d), one can find a rational α and an integer β
such that for each head position p, supposing d = +1 (resp. −1) if (n−p) (resp.
p) is larger than π1(q, d), then nextborder((q, d), p) is equal to α ∗ (n − p) + β
(resp. α ∗ p+ β).

Proof. The proof is a simply solve of the previous equation.

The following remark is a particular case of this corollary (and first case,
where p+ π1 ∗ d is smaller than 0 or greater than (n+ 1)):

Remark 1. If p is an affine function of n, then nextborder(q, d) may also be
exprimed as an affine expression of n.

2.3.2. Tri-phase Sweeping Unary Deterministic Finite Automata Systems
We now define TSUDFA System, in which each automaton component is a

TSUDFA (with transition function δ[i] considered with communication vector
Nil). In particular, each component may change its direction only if its heads
is reading an endmarker or if a message is sent (M 6= Nil). Without loss of
generality, we suppose that for each automaton A[i], each state q of Q[i], each
input symbol x and each communication vector M 6= Nil, δ[i](q,M, x) = (q′, d′)
implies that q′ ∈ P[i] (this can be done by adding two copies of each state not
in P[i], in P[i] and W[i]).

10

Let us fix a TSUDFAS S accepting a language L. On computation over
a input word w, we consider communication events and border events, that
designate respectively when communication or border step occur. Between two
successive such events, the behavior of each TSUDFA component is determinis-
tic and described previously. Hence we search now to describe the configuration
of the system at a particular event (i.e., communication or border event), in
function of the configuration of the system at the previous one.

Lemma 2. In each computation, the number of steps between two successive
communication events is bounded by some function affine in n.

Proof. Using the fact that at least one automaton does not loop between two
successive particular event (at least one automaton will send a message in the
next communication event), this result is a direct consequence of Corollary 2.

From this Lemma, one may easily prove the following corollary:

Corollary 3. In every computation, between two successive communication
events, there are a bounded number of border events.

As a particular case of this result, the following corollary is one of the key
point used in Section 3.

Corollary 4. If the system has a constant communication complexity, then the
total number of particular events is also bounded by a constant.

3. Main Result

Our goal is now to prove, in a first time, that TSUDFA system with a
constant number of communication accepts only regular languages. In a second
time we will prove that every 2UDFAS can be simulated by a TSUDFAS with
a linear increase in the number of communication. These two points directly
imply the following theorem:

Theorem 5. Every language accepted by a 2UDFAS with a constant number
of communication is regular.

3.1. TSUDFAS with a constant number of communications
Theorem 6. If a language L is accepted by a TSUDFAS with a constant
communication complexity, then L is regular.

Proof. Let (A, F) be a TSUDFASk accepting a language L. Suppose (A, F)
has constant communication complexity i.e., there exists a constant C such
that for each input word, computation (recall TSUDFASs are deterministic
machines) uses at most C messages (one may suppose that a counter of messages
is saved in state information, in order to force every computation to use exactly
C messages).

11

We will find a finite regular partition R of Σ∗ such that knowing that a
word w belongs to some regular language L of R, one can find a Presburger
Formula depending only on the size n of w (the only free variable), such that
the formula is true if and only if w is accepted by (A, F) i.e., w ∈ L. By
Theorem ??, this implies that L ∩ L is regular. Hence, because regular class is
closed under finite union,

⋃
L∈R(L ∩ L) is regular. Finally, this will be implies

that L is regular, because R is a partition of Σ∗.

By Corollary 4, there is a finite number T ≥ C such that in each accepting
computation there are at most T particular events. Without loss of generality
suppose that there are exactly T particular events in every accepting compu-
tations (one may enforce this property by sending message at each particular
event, counting them and add some messages at the end if necessary).

First, we prove the following lemma:

Lemma 3. There exists a regular partition {L1, L2, . . . , LΦ} of Σ∗ such that,
for each i ∈ {1, . . . , k} and t ∈ {1, . . . , T} there are computable functions:

• αt[i] from {1, . . . ,Φ} to Q ∩ [0, 1]

• βt[i] from {1, . . . ,Φ} to Z ∩ [(|Q| ∗ t) , (|Q| ∗ t)]

• γt[i] from {1, . . . ,Φ} to Q

such that for each w ∈ L of size n, w ∈ Lj implies that when the t-th particular
event occurs automaton A[i] is in state γt[i](j) with its input head reading the
(pt[i](j) = αt[i](j) ∗ (n+ 1) + βt[i](j))-th symbol of the input (so in particular
pt[i](j) has to be an integer of the interval [0;n+ 1]).

Proof. In order to prove this Lemma, we prove by induction on 1 ≤ τ ≤ T that
there are Φτ , Rτ = {Lτ1 , . . . , LτΦτ } and functions (ατ [i])1≤i≤k, (βτ [i])1≤i≤k and
(γτ [i])1≤i≤k satisfying the Lemma statement.

If τ = 1, we just have to look at the initial configuration, which is the first
particular event. So, according to the definition, we can set Φ1 = 1, R1 = {Σ∗},
and for each i: α[i]1(1) = β[i]1(1) = 0 and γ[i]1(1) = q0[i]. Trivialy these
partition and functions satisify the Lemma statement.

Suppose now that for 1 ≤ τ < T , we have Φτ , Rτ = {Lτ1 , . . . , LτΦτ } and
functions (ατ [i])1≤i≤k, (βτ [i])1≤i≤k and (γτ [i])1≤i≤k satisfying the statement
of the lemma. Let be w ∈ L of size n. Let j be such that w ∈ Lτj . Let cτ be the
configuration of the system when the τ -th event occurs. Positions (resp. states)
of the automata in cτ are given by (pτ [i](j) = ατ [i](j) ∗ n + βτ [i](j))1≤i≤k
(resp. (γτ [i](j))1≤i≤k).

Without loss of generality, we suppose that n is large enough to ensure that
for each i, pτ [i](j) (resp. n − pτ [i](j)) is less than |Q| implie that ατ [i](j) is
equal to 0 (resp. 1).

Now we look at the successor configuration of cτ , called cs(τ). Observe first
that we can compute it from (pτ [i])i and (γτ [i])i, and we can find γs(τ)[i] and

12

βs(τ)[i] (αs(τ)[i] = ατ [i]) such that ps(τ [i] = αs(τ)[i] ∗ (n + 1) + βs(τ)[i] is the
position of automaton A[i] in configuration cs(τ) and γs(τ)[i] is its state. There
are two possible cases:

• If cs(τ) is a border or communicating configuration, so we have already
reached the next particular event, then we can conserve the same regular
partition (Lτ+1

i = Lτi), and set Xτ+1
i to Xs(τ)

i for X ∈ {α, β, γ}.

• Else, from this configuration each automaton works independently until
the next particular event. (This first step (from cτ to cs(τ)) ensure that
each automaton already took into account the possible messages of the
τ -th particular event.)
Let be E ⊂ {1, . . . , k} ∗ N such that (i, x) is in E if and only if for every
large enough input word w ∈ Lj of size n, starting with head positionned
in αs(τ)[i]∗ (n+ 1) + βs(τ)[i] and state γs(τ)[i], supposing no messages are
sent by others automata, automaton A[i], reaches in x steps a border or
communicating configuration for the first time. Observe that x has to be
the same for every large enough input word of Lj (so it depends only on
j).
The set E is the set of indices of automata of the system, which, starting
in configuration cs(τ) may provocate a particular event in a number of
steps non depending on n. This set is trivially computable from (ατ [i])i,
(βτ [i])i and (γτ [i])i by a simple simulation of local machines.
Suppose E 6= ∅. Then we can find the minimal x, such that there is i0 (non
necessary unique) such that (i0, x) is in E. This means that, over large
enough input, starting from cτ , the system, after having performed exactly
(x + 1) steps enters the (τ + 1)-th particular event, which is provocated
by (at least) Automaton A[i0].
We can find for each automaton A[i], the state qi it enters after x local
steps starting from cs(τ), and the length ∆i and direction di of the cor-
responding head move. Both values are independent on n, because x is a
constant.
Hence, we can set:

– Φτ+1 = Φτ

– Rτ+1 = Rτ

– ∀ i ατ+1[i] = ατ [i]
– ∀ i βτ+1[i] = βτ [i] + ∆i ∗ di
– ∀ i γτ+1[i] = qi

which satisfies the statement at rank τ + 1.
In the last case (E = ∅), the (τ+1)-th particular event happens after more
than |Q| steps. So, each automaton enters in a state-loop. Hence according
to Remark ??, there exist for each i, two constant of same sign: σi and

13

µi, such that if the automaton A[i] don’t receive messages, it reaches the
next endmarker in exactly σi∗(n+1)+µi steps. Hence, there exists j such
that, for large enough n, Aj is (one of) the first automaton to reach the
endmarker. Hence we know sτ = σi ∗ (n+ 1) +µi+ 1, the number of steps
required to perform computation part between particular events τ and (τ+
1). Then, according to Lemma 1, for each automaton A[i] the position
pτ+1[i] of the input head can be computed from three constants π1 <
π2 < |Q| ∈ N and v ∈ Q ∩ [0, 1] by pτ+1[i] = pτ [i] + π1 + bv ∗ (sτ − π2)c
and the state depends only on the sτ mod l, for some known constant l.
So, using the linear expression of sτ , one can find a regular finite partition
which give us the required information to compute position and state of
automata at (τ + 1)− th particular event. Thus, by doing intersection of
this partition and Rτ , we obtain a new finite regular partition Rτ+1 =
{L1, . . . , LΦτ+1} for which we can compute functions (ατ+1[i])1≤i≤k, (βτ+1[i])1≤i≤k
and (γτ+1[i])1≤i≤k such that:

w ∈ L ∩ Lj ⇒


∀ 1 ≤ i ≤ k,

when the (τ + 1)− th particular event occurs,
A[i] has its input head in position :

ατ+1[i](j) ∗ (n+ 1) + βτ+1[i](j)
and its state is γτ+1[i](j)

This concludes our induction and therefore the proof of Lemma 3.

So, now we have from previous lemma, a regular partition R (of size Φ), and
functions (Xt[i]) 1≤i≤k

1≤t≤T
for each X ∈ {α, β, γ}, which describe every particular

configurations in accepting computation.
Observe that because R is finite and T is constant, we have a finite number

of parameters. So we can compute and save them in a three dimensional matrix.
By multipliying each parameters by a constant, we may work only with integers.

Suppose w (of size n) belongs to some regular language L of partition R. w
is accepted by (A, F) if and only if αT [1] ∗ n + βT [1] = n + 1 and γT [1] ∈ F .
Finally L is equal to the union of languages Lj from R, such that αT [1](j) = 1,
βT [1](j) = 1 and γT [1](j) ∈ F . Thus L is a finite union of regular languages,
so L is regular.

3.2. 2DFAS simulation by TSUDFAS
In order to prove Theorem ??, we have to prove that each 2UDFAS with

constant communication complexity may be simulated by an equivalent TSUDFAS
with constant communication complexity. This is directly implied by the fol-
lowing theorem.

Theorem 7. For each 2UDFASk with communication complexity f(n) there
is an equivalent TSUDFASk with communication complexity g(n), f(n) =
O (g(n)).

14

To avoid technical details, we give here only main ideas of the proof ; please
look at figures.

Proof. Let us fix a 2UDFASk (A, F). Suppose it has constant communication
complexity. Recall that, because the alphabet has only one letter, the local be-
haviors over large enough input words are simple (see description in Section ??).

We have to transform locally each component in order to make it sweeping
and three-phase.

Observe behavior (3) (from description of Section ??). There already exists
two phases, one prefix and one state-loop (if prefix does not exist, we can dupli-
cate states of the loop to simulate prefix phase, whitout changing information
and computational speed).

• First we change the move order in prefix phase (see Figure 1). We start
traversal with all steps which move the input head. Then we stay in place,
waiting for the time of the end of prefix phase. Thus the input head
is always in advance compared with original computation, and it never
perform backward moves. We have created our Prefix and Wait phases,
like in TSUDFA definition (see Definition 1). At each step, the original
state information is saved in state (i.e., we just change moves).

• In a second time we modify the state-loop, in order to eliminate backward
moves. See on Figure 1 the asymptotic line to the head move. We want to
follow this line, with same rate, approaching the original moves by excess,
in order to have the simulating head always in advance according to the
original one. This will create the Loop phase of TSUDFAs.

Behavior (2) may be simulated with the same method. For this case, the
loop has to be in place, at the extremal position of the head (see Figure 2).

The last behavior (i.e., Behavior (1)), has to be recursively simulated. In
less than 2∗|Q| steps, the head is reading the initial endmarker again. Hence we
study the Hence, in at most 2 ∗ |Q| ∗ |Q|, the automaton has entered a different
behavior (i.e., (3) or (2)), or it has entering a deterministic loop, which rebounds
on the endmarker. These two cases are treated separately.

For the first case, we can simulate the new behavior, inserting in wait phase
a lot (but a constant number) of states, which will give us the possibility to
wait for the good time for start state-loop (see Figure 3). For the second case,
because we want to forbid to visits to many times an endmarker (see Lemma ??),
we have to loop, on place (because of sweeping), inside the word (see Figure 4).

After all these transformations, at each step, the each simulating component
knows the state of the simulated component, and its input head is positionned
at a constant distance of the simulated head. Hence in a constant bounded
number of steps, each component is able to retrieve the configuration of the
original machine.

Now, we have to take into account the messages. This can be done by
the same method, however if message are received in midle of input (not at

15

endmarkers), backward moves may be important, because they can test that an
endmarker is far enough from the current position (see Figure ??).

That is why we simulate this part of computation in two times, sending
another message after performed a constant number of steps after each com-
municating event. (So here, we add some steps, and we multiply by two the
number of messages.)

By construction, the simulating machine accepts the same language as the
initial UDFAS. This concludes our proof.

4. Conclusion

In this 6-months internship, I solved a part of our initial conjecture: Two-way
Communicating Unary Deterministic Finite Automata Systems accepts only
regular languages. The nondeterministic case remains unsolved. We have tried
several approaches to solve the problem, like generalisation or particular case.

The proof of Section ??, comes from the second approach (i.e., we look first
at pseudo-sweeping deterministic finite automata systems, and then we find the
second part of the proof (Section ??) that finished the proof of Theorem ??).

Generalisation turn out to be very difficult, because the work area is very
tight: we know that for non unary alphabet the conjecture is false5. If we try
to increase the number of messages, we know that there is a 2UDFAS2 which
accepts nonregular language

{
12n / n ∈ N

}
. We conjecture that there exists a

gap between constant and logarithmic communication complexity.
In order to solve the conjecture in nondeterministic case, we will try to limit

nondeterminism to communication function ν. Thus, between two messages,
each automaton component of the system will have a pseudo-deterministic be-
havior (in fact, if an automaton does not receive a message, it “knows” how
others are working). This is an interesting question, but we do not have any
result about this particular case for the moment.

This internship has increased my experience in Automata Theory, and more
generally in Research Work. I had the chance to participate to the french École
Jeunes Chercheurs en Informatique et Mathématiques where I presented results
from the previous internship (so I did my first presentation in an official work
shop).

I knew to kind of difficulties during the internship. I had difficulties to find
ideas to approach our main problem. That is why I read (or take a look) at many
papers (see Bibliography). I had also a lot of difficulties to formally write proof
and to write this report, because of abondance of technical details, particular
cases and because of time.

5Even with only one occurence of a different symbol in each word of a language, 2UFASs
will accept nonregular languages (see for example {1n#1m} which is analog to anbn). I
studied this kind of languages during my internship. Other more strange languages may be
accepted, for example {1n#1m / gcd(n,m) = 1}.

16

I will continue to work in the subject, and try to solve the Conjecture 1 in
its general form.

Bibliography

[1]

[2] Proceedings of the 15th International Parallel & Distributed Processing
Symposium (IPDPS-01), San Francisco, CA, April 23-27, 2001. IEEE
Computer Society, 2001.

[3] Manindra Agrawal and Anil Seth, editors. FST TCS 2002: Foundations of
Software Technology and Theoretical Computer Science, 22nd Conference
Kanpur, India, December 12-14, 2002, Proceedings, volume 2556 of Lecture
Notes in Computer Science. Springer, 2002.

[4] Giorgio Ausiello and Corrado Böhm, editors. Automata, Languages and
Programming, Fifth Colloquium, Udine, Italy, July 17-21, 1978, Proceed-
ings, volume 62 of Lecture Notes in Computer Science. Springer, 1978.

[5] Piotr Berman. Relationship between density and deterministic complexity
of np-complete languages. In ICALP, pages 63–71, 1978.

[6] Alberto Bertoni, Giancarlo Mauri, and Mauro Torelli. Some recursive un-
solvable problems relating to isolated cutpoints in probabilistic automata.
In ICALP, pages 87–94, 1977.

[7] Lothar Budach, editor. Fundamentals of Computation Theory, 8th Inter-
national Symposium, FCT ’91, Gosen, Germany, September 9-13, 1991,
Proceedings, volume 529 of Lecture Notes in Computer Science. Springer,
1991.

[8] Marek Chrobak. Finite automata and unary languages. Theor. Comput.
Sci., 47(3):149–158, 1986.

[9] Tyng-Ruey Chuang and Benjamin Goldberg. Real-time deques, multihead
thring machines, and purely functional programming. In FPCA, pages
289–298, 1993.

[10] Michal Chytil, Ladislav Janiga, and Václav Koubek, editors. Mathematical
Foundations of Computer Science 1988, MFCS’88, Carlsbad, Czechoslo-
vakia, August 29 - September 2, 1988, Proceedings, volume 324 of Lecture
Notes in Computer Science. Springer, 1988.

[11] Pavol Duris and Juraj Hromkovic. Multihead finite state automata and
concatenation. In ICALP, pages 176–186, 1982.

[12] Pavol Duris, Tomasz Jurdzinski, Miroslaw Kutylowski, and Krzysztof Lo-
rys. Power of cooperation and multihead finite systems. In ICALP, pages
896–907, 1998.

17

[13] Shimon Even and Oded Kariv, editors. Automata, Languages and Program-
ming, 8th Colloquium, Acre (Akko), Israel, July 13-17, 1981, Proceedings,
volume 115 of Lecture Notes in Computer Science. Springer, 1981.

[14] Alain Finkel and Jérôme Leroux. How to compose presburger-accelerations:
Applications to broadcast protocols. In FSTTCS, pages 145–156, 2002.

[15] Michael J. Fischer, Richard A. DeMillo, Nancy A. Lynch, Walter A.
Burkhard, and Alfred V. Aho, editors. Proceedings of the 11h Annual
ACM Symposium on Theory of Computing, April 30 - May 2, 1979, At-
lanta, Georgia, USA. ACM, 1979.

[16] Rusins Freivalds. Projections of languages recognizable by probabilistic and
alternating finite multitape automata. Inf. Process. Lett., 13(4/5):195–198,
1981.

[17] Laurent Fribourg and Hans Olsén. Proving safety properties of infinite
state systems by compilation into presburger arithmetic. In CONCUR,
pages 213–227, 1997.

[18] Thomas Gazagnaire. Langages de scénarios : Utiliser des ordres partiels
pour modéliser, vérifier et superviser des systèmes parallèles et répartis.
These, Université Rennes 1, 2008.

[19] Dainis Geidmanis. On possibilities of one-way synchronized and alternating
automata. In MFCS, pages 292–299, 1990.

[20] Seymour Ginsburg, H. Gordon Rice, and H. Gordon Rice. Two families of
languages related to algol. pages 350–371, 1962.

[21] Seymour Ginsburg and Edwin H. Spanier. Semigroups, presburger formu-
las, and languages. Pacific Journal of Mathematics, 16(2):285–296, 1966.

[22] Eitan M. Gurari and Oscar H. Ibarra. The complexity of the equivalence
problem for counter machines, semilinear sets, and simple programs. In
STOC, pages 142–152, 1979.

[23] Yo-Sub Han, Kai Salomaa, and Derick Wood. Prime decompositions of
regular languages. In Developments in Language Theory, pages 145–155,
2006.

[24] Michael A. Harrison and Oscar H. Ibarra. Multi-tape and multi-head push-
down automata. Information and Control, 13(5):433–470, 1968.

[25] J. Hartmanis. On non-determinacy in simple computing devices. Semi-
narberichte des Instituts für Theorie der Automaten und Schaltnetzwerke.
GMD, 1971.

[26] Markus Holzer, Martin Kutrib, and Andreas Malcher. Multi-head finite
automata: Characterizations, concepts and open problems. In CSP, pages
93–107, 2008.

18

[27] Markus Holzer, Martin Kutrib, and Giovanni Pighizzini, editors. Descrip-
tional Complexity of Formal Systems - 13th International Workshop, DCFS
2011, Gießen/Limburg, Germany, July 25-27, 2011. Proceedings, volume
6808 of Lecture Notes in Computer Science. Springer, 2011.

[28] Juraj Hromkovič and Georg Schnitger. Lower bounds on the size of sweep-
ing automata. J. Autom. Lang. Comb., 14(1):23–31, January 2009.

[29] Oscar H. Ibarra. Reversal-bounded multicounter machines and their deci-
sion problems. J. ACM, 25(1):116–133, 1978.

[30] Oscar H. Ibarra and Zhe Dang, editors. Developments in Language The-
ory, 10th International Conference, DLT 2006, Santa Barbara, CA, USA,
June 26-29, 2006, Proceedings, volume 4036 of Lecture Notes in Computer
Science. Springer, 2006.

[31] Katsushi Inoue, Itsuo Takanami, Akira Nakamura, and Tadashi Ae. One-
way simple multihead finite automata. Theor. Comput. Sci., 9:311–328,
1979.

[32] Tomasz Jurdzinski. Communication Aspects of Computation of Systems of
Finite Automata. PhD thesis, 1999.

[33] Tomasz Jurdzinski and Miroslaw Kutylowski. Communication gap for finite
memory devices. In ICALP, pages 1052–1064, 2001.

[34] Tomasz Jurdzinski, Miroslaw Kutylowski, and Jan Zatopianski. Commu-
nication complexity for asynchronous systems of finite devices. In IPDPS,
page 139, 2001.

[35] Janis Kaneps. Regularity of one-letter languages acceptable by 2-way finite
probabilistic automata. In FCT, pages 287–296, 1991.

[36] K. N. King. Alternating multihead finite automata (extended abstract). In
ICALP, pages 506–520, 1981.

[37] Richard E. Ladner, Richard J. Lipton, and Larry J. Stockmeyer. Alter-
nating pushdown and stack automata. SIAM J. Comput., 13(1):135–155,
1984.

[38] Kim Guldstrand Larsen, Sven Skyum, and Glynn Winskel, editors. Au-
tomata, Languages and Programming, 25th International Colloquium,
ICALP’98, Aalborg, Denmark, July 13-17, 1998, Proceedings, volume 1443
of Lecture Notes in Computer Science. Springer, 1998.

[39] Antoni W. Mazurkiewicz and Józef Winkowski, editors. CONCUR ’97:
Concurrency Theory, 8th International Conference, Warsaw, Poland, July
1-4, 1997, Proceedings, volume 1243 of Lecture Notes in Computer Science.
Springer, 1997.

19

[40] Carlo Mereghetti and Giovanni Pighizzini. Optimal simulations between
unary automata. In STACS, pages 139–149, 1998.

[41] Pascal Michel. An np-complete language accepted in linear time by a one-
tape turing machine. Theor. Comput. Sci., 85(1):205–212, August 1991.

[42] Burkhard Monien. Two-way multihead automata over a one-letter alpha-
bet. ITA, 14(1):67–82, 1980.

[43] Michel Morvan, Christoph Meinel, and Daniel Krob, editors. STACS
98, 15th Annual Symposium on Theoretical Aspects of Computer Science,
Paris, France, February 25-27, 1998, Proceedings, volume 1373 of Lecture
Notes in Computer Science. Springer, 1998.

[44] Turlough Neary, Damien Woods, Anthony Karel Seda, and Niall Murphy,
editors. Proceedings International Workshop on The Complexity of Simple
Programs, Cork, Ireland, 6-7th December 2008, volume 1 of EPTCS, 2009.

[45] Mogens Nielsen and Branislav Rovan, editors. Mathematical Foundations
of Computer Science 2000, 25th International Symposium, MFCS 2000,
Bratislava, Slovakia, August 28 - September 1, 2000, Proceedings, volume
1893 of Lecture Notes in Computer Science. Springer, 2000.

[46] Mogens Nielsen and Erik Meineche Schmidt, editors. Automata, Languages
and Programming, 9th Colloquium, Aarhus, Denmark, July 12-16, 1982,
Proceedings, volume 140 of Lecture Notes in Computer Science. Springer,
1982.

[47] Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors. Au-
tomata, Languages and Programming, 28th International Colloquium,
ICALP 2001, Crete, Greece, July 8-12, 2001, Proceedings, volume 2076
of Lecture Notes in Computer Science. Springer, 2001.

[48] Rohit Parikh. On context-free languages. pages 570–581, 1966.

[49] H. Petersen. Alternation in simple devices. In Proceedings of the 22nd Inter-
national Colloquium on Automata, Languages and Programming, ICALP
’95, pages 315–323, London, UK, UK, 1995. Springer-Verlag.

[50] Giovanni Pighizzini. Unary pushdown automata and auxiliary space lower
bounds. In MFCS, pages 599–608, 2000.

[51] Giovanni Pighizzini. Deterministic pushdown automata and unary lan-
guages. Int. J. Found. Comput. Sci., 20(4):629–645, 2009.

[52] Giovanni Pighizzini. Nondeterministic one-tape off-line turing machines
and their time complexity. CoRR, abs/0905.1271, 2009.

20

[53] Branislav Rovan, editor. Mathematical Foundations of Computer Science
1990, MFCS’90, Banská Bystrica, Czechoslovakia, August 27-31, 1990,
Proceedings, volume 452 of Lecture Notes in Computer Science. Springer,
1990.

[54] Arto Salomaa and Magnus Steinby, editors. Automata, Languages and
Programming, Fourth Colloquium, University of Turku, Finland, July 18-
22, 1977, Proceedings, volume 52 of Lecture Notes in Computer Science.
Springer, 1977.

[55] Joel I. Seiferas. Techniques for separating space complexity classes. J.
Comput. Syst. Sci., 14(1):73–99, 1977.

[56] Anna Slobodová. On the power of communication in alternating machines.
In MFCS, pages 518–528, 1988.

[57] K. Wagner and G. Wechsung. Computational Complexity. Mathematics
Application.

[58] Jirí Wiedermann. Complexity of nondeterministic multitape computations
based on crossing sequences. In DCFS, pages 314–327, 2011.

21

a a a a a a a a a aa . . .

position

time

Figure 1: Behavior (3) (from left endmarker) simulated in a sweeping manier
in gray: initial prefix phase,
in blue: initial state-loop phase,
in dashed dark green: simulating Prefix phase,
in dashed green: simulating Wait phase,
in dashed red: simulating Loop phase,
and in orange: asymptotic speed.

a a a a a a a a a aa . . .

position

time

Figure 2: Behavior (2) simulated in a sweeping three phase manier
in gray: initial prefix phase,
in blue: initial loop,
in dashed dark green: simulating Prefix phase,
in dashed green: simulating Wait phase
and in dashed red: simulating Loop phase.

22

a a a a a a a a a aa . . .

position

time

Figure 3: Simulation of Behavior (1)
in gray: initial Behavior (1) (two times),
in light blue: initial Behavior (3),
in dashed dark green: simulating Prefix phase,
in dashed green: simulating Wait phase,
in dashed red: simulating Loop phase.

a a a a a a a a a aa . . .

position

time

Figure 4: Simulation of Behavior (1)
in gray: initial Behavior (1) in a loop,
in dashed dark green: simulating Prefix phase,
in dashed green: simulating Wait phase,
in dashed red: simulating Loop phase.

23

