On relations accepted by two-way unary nondeterministic finite transducers

Christian Choffrut¹, Bruno Guillon^{1,2}, Giovanni Pighizzini²

¹LIAFA, Université Paris Diderot, Paris 7
²Dipartimento di Informatica, Università degli Studi di Milano

October 11, 2013

Two-way finite transducers

Two-way finite transducers

$$\Sigma = \Gamma = \{a\}$$

$$a : +1 : a \xrightarrow{q_{+}} a : -1 : a$$

qaccept

$$\Sigma = \Gamma = \{a\}$$

$$\Sigma = \Gamma = \{a\}$$

Non-rational accepted relation: $\mathcal{R} = \left\{ (a^n, a^{(2k+1)n}), \ n, k \in \mathbb{N} \right\}.$

Relations

Two-way transducers define binary relations (subsets of $\Sigma^* \times \Gamma^*$).

Relations

Two-way transducers define binary relations (subsets of $\Sigma^* \times \Gamma^*$).

Given such a relation \mathcal{R} , we represent it as a formal serie:

$$\tau = \sum_{w \in \Sigma^*} \alpha_w \cdot w$$
 $\tau(w) = \alpha_w = \{v \in \Gamma^* \mid (w, v) \in \mathcal{R}\}$

Rational series of $\mathbb{K}\langle\langle M \rangle\rangle$:

$$\sum_{w \in \Sigma^*} \alpha(w) \cdot w$$

Rational series of
$$\mathbb{K}\langle\langle M\rangle\rangle$$
:

$$2^{\Gamma^*}\langle\langle\Sigma^*\rangle\rangle$$

$$\sum_{w \in \Sigma^*} \alpha(w) \cdot w$$

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

$$2^{\Gamma^*}\langle\langle\Sigma^*\rangle\rangle$$

contains polynomial,

$$\sum_{w \in \Sigma^*} \alpha(w) \cdot w$$

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

$$2^{\Gamma^*}\langle\langle\Sigma^*\rangle\rangle$$

- contains polynomial,
- closed under sum,

$$(\sigma + \tau)(w) = \sigma(w) + \tau(w)$$

$$\sum_{w \in \Sigma^*} \alpha(w) \cdot w$$

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

$$2^{\Gamma^*}\langle\langle\Sigma^*\rangle\rangle$$

- contains polynomial,
- closed under sum,
- Cauchy product

$$\sum_{w \in \Sigma^*} \alpha(w) \cdot w$$

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

$$2^{\Gamma^*}\langle\langle\Sigma^*\rangle\rangle$$

- contains polynomial,
- closed under sum,
- Cauchy product
- and Kleene star.

$$(\sigma^*)(w) = \sum_{w=w_1 \cdot w_2 \cdot \cdots \cdot w_r} \sigma(w_1)\sigma(w_2) \cdot \cdot \cdot \sigma(w_r)$$

$$\sum_{w \in \Sigma^*} \alpha(w) \cdot w$$

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

$$2^{\Gamma^*}\langle\langle\Sigma^*\rangle\rangle$$

- contains polynomial,
- closed under sum,
- Cauchy product
- and Kleene star.

Theorem

One-way transducers

accept exactly

 $RAT \left(\Gamma^* \right) \left\langle \left\langle \Sigma^* \right\rangle \right\rangle.$

Theorem (Engelfriet, Hoogeboom, 2001)

▶ deterministic case: two-way transducers accept exactly the class of MSO-definable functions.

Theorem (Engelfriet, Hoogeboom, 2001)

deterministic case: two-way transducers accept exactly the class of MSO-definable functions.

$$\mathcal{T} = \{(w, w \cdot w) \mid w \in \Sigma^*\}$$

Theorem (Engelfriet, Hoogeboom, 2001)

- deterministic case: two-way transducers accept exactly the class of MSO-definable functions.
- ► nondeterministic case: the class of MSO-definable transductions and the class of relations accepted by two-way transducers are incomparable.

Theorem (Filiot, Gauwin, Reynier, Servais, 2013)

It is **decidable** whether some relation accepted by two-way transducer is accepted by some one-way transducer.

ightarrow construction of equivalent one-way transducer, whenever one exists.

Unary case - our result

$$\Sigma = \Gamma = \{a\}$$

Unary case - our result

$$\Sigma = \Gamma = \{a\}$$

Theorem

 $au: \Sigma^{\mathbb{N}} o 2^{\Gamma^{\mathbb{N}}}$ is accepted by a two-way transducer if and only if there exists finitely many rational series α_i and β_i such that

$$\forall n \ \tau(a^n) = \bigcup_i (\alpha_i(a^n) \cdot \beta_i(a^n)^*)$$

Analogy with Probabilistic Automata

Theorem (Anselmo, Bertoni, 1994)

Acceptation probability of two-way finite automata is of the form:

$$\tau(w) = \alpha(w) \times \frac{1}{\beta(w)}$$

where α and β are rational series of $\mathbb{Q}\langle\langle \Sigma^* \rangle\rangle$.

Unary case - our result

$$\Sigma = \Gamma = \{a\}$$

Theorem

 $au: \Sigma^{\mathbb{N}} o 2^{\Gamma^{\mathbb{N}}}$ is accepted by a two-way transducer if and only if there exists finitely many rational series α_i and β_i such that

$$\forall n \ \tau(a^n) = \bigcup_i (\alpha_i(a^n) \cdot \beta_i(a^n)^*)$$

$$\mathcal{R} = \left\{ (a^n, a^{(2k+1)n}), \ n \in \mathbb{N} \right\}$$

$$\mathcal{R} = \left\{ (a^n, a^{(2k+1)n}), \ n \in \mathbb{N} \right\}$$

$$\tau_{\mathcal{R}}(a^n) = a^n \cdot (a^{2n})^*$$

$$\mathcal{R} = \left\{ (a^n, a^{(2k+1)n}), \ n \in \mathbb{N} \right\}$$

$$\mathcal{R} = \left\{ (a^n, a^{(2k+1)n}), \ n \in \mathbb{N} \right\}$$

decompose computation into traversals

- decompose computation into traversals
- elimination of central nondeterministic loops

- decompose computation into traversals
- elimination of central nondeterministic loops

- decompose computation into traversals
- elimination of central nondeterministic loops

- decompose computation into traversals
- elimination of central nondeterministic loops

- decompose computation into traversals
- elimination of central nondeterministic loops

- decompose computation into traversals
- elimination of central nondeterministic loops

 							 	_
а	а	а	а	а	а	а		
				3 ^k	2 2 2 2	(a) (1) (1)		
				3	2 1	(q ₁)		

- decompose computation into traversals
- elimination of central nondeterministic loops

а	а	a	а	а	а	а		
			3	3* 10	2 × 1 · 2 × 1 · 1 · 1	1		
				3	2	(q) 1		

- decompose computation into traversals
- elimination of central nondeterministic loops
- one-way simulation of each traversal

- decompose computation into traversals
- elimination of central nondeterministic loops
- one-way simulation of each traversal
 - one traversal: rational relation

- decompose computation into traversals
- elimination of central nondeterministic loops
- one-way simulation of each traversal
 - one traversal: rational relation
- composition of traversals

- decompose computation into traversals
- elimination of central nondeterministic loops
- one-way simulation of each traversal
 - one traversal: rational relation
- composition of traversals
- ▶ conversely, from α_i and β_i we build a two-way nondeterministic transducer that accepts the relation

- decompose computation into traversals
- elimination of central nondeterministic loops
- one-way simulation of each traversal
 - one traversal: rational relation
- composition of traversals
- ightharpoonup conversely, from α_i and β_i we build a two-way nondeterministic transducer that accepts the relation

- decompose computation into traversals
- elimination of central nondeterministic loops
- one-way simulation of each traversal
 - one traversal: rational relation
- composition of traversals
- ightharpoonup conversely, from α_i and β_i we build a two-way nondeterministic transducer that accepts the relation

 formal series accepted by two-way nondeterministic unary transducers are not rational

- formal series accepted by two-way nondeterministic unary transducers are not rational
- characterization:

$$\tau(w) = \bigcup_{i} \alpha_{i}(w) \cdot (\beta_{i}(w))^{*}$$

- formal series accepted by two-way nondeterministic unary transducers are not rational
- characterization:

$$\tau(w) = \bigcup_{i} \alpha_{i}(w) \cdot (\beta_{i}(w))^{*}$$

application to communicating automata systems?

- formal series accepted by two-way nondeterministic unary transducers are not rational
- characterization:

$$\tau(w) = \bigcup_{i} \alpha_{i}(w) \cdot (\beta_{i}(w))^{*}$$

application to communicating automata systems?

- formal series accepted by two-way nondeterministic unary transducers are not rational
- characterization:

$$\tau(w) = \bigcup_{i} \alpha_{i}(w) \cdot (\beta_{i}(w))^{*}$$

application to communicating automata systems?

Do you have any questions?