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Formal series

Two-way transducers define binary relations (subsets of >* x [*).

Given such a relation R, we represent it as a formal serie:

r= % awew r(w) = o = {v €T | (w,v) € R}
wexr*

R — {(an’ a(2k+1)”), n ke N} — 7r(a") = <a” (32”)*>
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Rational series of K({M)):

» contains polynomial,

» closed under sum,

(0 +7)(w) = a(w) + 7(w)
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Rational series of K({M)):

» contains polynomial,
» closed under sum,
» Cauchy product

» and Kleene star.

Theorem
One-way transducers

accept exactly

RAT (') ((X7)).

5/14



Two-way Transducers: known results
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Two-way Transducers: known results

Theorem (Engelfriet, Hoogeboom, 2001)

» deterministic case: two-way transducers accept exactly the
class of MSO-definable functions.

» nondeterministic case: the class of MSO-definable
transductions and the class of relations accepted by two-way
transducers are incomparable.
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Two-way transducers: known results

Theorem (Filiot, Gauwin, Reynier, Servais, 2013)

It is decidable whether some function accepted by two-way
transducer is accepted by some one-way transducer.

— construction of equivalent one-way transducer, whenever one exists.
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Unary case - our result
Theorem

YN 2™ s accepted by a two-way transducer
if and only if

there exists finitely many rational series o; and (; such that
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Definition
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Analogy with Probabilistic Automata

Theorem (Anselmo,Bertoni, 1994)

Acceptation probability of two-way finite automata is of the form:

T(w) = a(w) X ﬁ

where o and [ are rational series of Q((¥X*)).
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HRAT relations
Definition
A relation is HRAT if and only if its serie is equal to
Z 04;@5}‘_’*
i
for some finite family of rational series «; and (5;.

Properties

» RAT is include in HRAT .

» HRAT s closed under sum.
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HRAT relations
Definition
A relation is HRAT if and only if its serie is equal to

Z 04;@5}‘_’*
i

for some finite family of rational series «; and (5;.

Properties

» RAT is include in HRAT .
» HRAT s closed under sum.
» In unary case, RAT is closed under H-product.

» In unary case, HRAT is closed under H-product and H-star.
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» one traversal TRAV(q, p,),(q.,b,): rational relation

v

» composition of traversals

Matrix TRAV of size (|Q| x 2)*: TRAV(q, b,),(¢2,52)-
TRAV™* is the composition of traversals.
TRAV* € HRAT2|Q‘X2‘Q|.
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application to communicating automata systems?

Do you have any questions?
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