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Two-way finite transducers
A

(A, φ)

(Q,Σ, I,F , δ)

transition set: ⊆ Q × Σ× {−1, 0,+1} × Q
production function: δ → Γ ∪ {ε}Γ∗Rat(Γ∗)

t h e i n p u t w o r d ∈ Σ∗a

left endmarker

`

right endmarker

Automaton

READ

← →

t h e o u t p ∈ Γ∗

WRITE

→

2 / 14



Two-way finite transducers
A

(A, φ)

(Q,Σ, I,F , δ)

transition set: ⊆ Q × Σ× {−1, 0,+1} × Q

production function: δ → Γ ∪ {ε}Γ∗Rat(Γ∗)

t h e i n p u t w o r d ∈ Σ∗a

left endmarker

`

right endmarker

Automaton

READ

← →

t h e o u t p ∈ Γ∗

WRITE

→

2 / 14



Two-way finite transducers

A

(A, φ)

(Q,Σ, I,F , δ)

transition set: ⊆ Q × Σ× {−1, 0,+1} × Q

production function: δ → Γ ∪ {ε}Γ∗Rat(Γ∗)

t h e i n p u t w o r d ∈ Σ∗a

left endmarker

`

right endmarker

Automaton

READ

← →

t h e o u t p ∈ Γ∗

WRITE

→

2 / 14



Two-way finite transducers

A

(A, φ)

(Q,Σ, I,F , δ)

transition set: ⊆ Q × Σ× {−1, 0,+1} × Q
production function: δ → Γ ∪ {ε}

Γ∗Rat(Γ∗)

t h e i n p u t w o r d ∈ Σ∗a

left endmarker

`

right endmarker

Automaton

READ

← →

t h e o u t p ∈ Γ∗

WRITE

→

2 / 14



Two-way finite transducers

A

(A, φ)

(Q,Σ, I,F , δ)

transition set: ⊆ Q × Σ× {−1, 0,+1} × Q
production function: δ → Γ ∪ {ε}Γ∗

Rat(Γ∗)

t h e i n p u t w o r d ∈ Σ∗a

left endmarker

`

right endmarker

Automaton

READ

← →

t h e o u t p ∈ Γ∗

WRITE

→

2 / 14



Two-way finite transducers

A

(A, φ)

(Q,Σ, I,F , δ)

transition set: ⊆ Q × Σ× {−1, 0,+1} × Q
production function: δ → Γ ∪ {ε}Γ∗Rat(Γ∗)

t h e i n p u t w o r d ∈ Σ∗a

left endmarker

`

right endmarker

Automaton

READ

← →

t h e o u t p ∈ Γ∗

WRITE

→

2 / 14



Example
Σ = Γ = {a}
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Non-rational accepted relation: R =
{

(an, a(2k+1)n), n, k ∈ N
}
.
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Formal series

Two-way transducers define binary relations (subsets of Σ∗ × Γ∗).

Given such a relation R, we represent it as a formal serie:

τ =
∑

w∈Σ∗
αw · w τ(w) = αw = {v ∈ Γ∗ | (w , v) ∈ R}

R =
{

(an, a(2k+1)n), n, k ∈ N
}
→ τR(an) =

〈
an (a2n)∗〉
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Rational series

∑
w∈Σ∗

α(w) · w

Rational series of K〈〈M〉〉:

I contains polynomial,
I closed under sum,
I Cauchy product
I and Kleene star.

2Γ∗
〈〈Σ∗〉〉

Theorem
One-way transducers accept exactly RAT (Γ∗) 〈〈Σ∗〉〉.
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Two-way Transducers: known results

Theorem (Engelfriet, Hoogeboom, 2001)

I deterministic case: two-way transducers accept exactly the
class of MSO-definable functions.

I nondeterministic case: the class of MSO-definable
transductions and the class of relations accepted by two-way
transducers are incomparable.

T = {(w ,w · w) | w ∈ Σ∗}
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Two-way transducers: known results

Theorem (Filiot, Gauwin, Reynier, Servais, 2013)
It is decidable whether some function accepted by two-way
transducer is accepted by some one-way transducer.
→ construction of equivalent one-way transducer, whenever one exists.
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Unary case - our result

Σ = Γ = {a}

Theorem

τ : ΣN → 2ΓN is accepted by a two-way transducer
if and only if

there exists finitely many rational series αi and βi such that

∀n τ(an) =
⋃

i (αi (an) · βi (an)∗)

8 / 14



Unary case - our result

Σ = Γ = {a}

Theorem

τ : ΣN → 2ΓN is accepted by a two-way transducer
if and only if

there exists finitely many rational series αi and βi such that

∀n τ(an) =
⋃

i (αi (an) · βi (an)∗)

8 / 14



Example
R =

{
(an, a(2k+1)n), n ∈ N

}

qR

qL

qaccept

` ;
−1

; ε

` ; 0 ; ε

a ; +1 ; a

a ; −1 ; a

a ;
+
1 ;

a

a a a a a `

time

qL

qRqR

qRqR

qRqR

qRqR

qRqR

qLqL

qLqL

qLqL

qLqL

qLqL

qRqR

qRqR

qRqR

qRqR

qRqR

qacceptqaccept

τR(an) = 〈an ·
(
a2n)∗〉

α β
qα qβ

a;+1;a a;+1;aa

9 / 14



Example
R =

{
(an, a(2k+1)n), n ∈ N

}

qR

qL

qaccept

` ;
−1

; ε

` ; 0 ; ε

a ; +1 ; a

a ; −1 ; a

a ;
+
1 ;

a

a a a a a `

time

qL

qRqR

qRqR

qRqR

qRqR

qRqR

qLqL

qLqL

qLqL

qLqL

qLqL

qRqR

qRqR

qRqR

qRqR

qRqR

qacceptqaccept

τR(an) = 〈an ·
(
a2n)∗〉

α β
qα qβ

a;+1;a a;+1;aa

9 / 14



Example
R =

{
(an, a(2k+1)n), n ∈ N

}

qR

qL

qaccept

` ;
−1

; ε

` ; 0 ; ε

a ; +1 ; a

a ; −1 ; a

a ;
+
1 ;

a

a a a a a `

time

qL

qRqR

qRqR

qRqR

qRqR

qRqR

qLqL

qLqL

qLqL

qLqL

qLqL

qRqR

qRqR

qRqR

qRqR

qRqR

qacceptqaccept

τR(an) = 〈an ·
(
a2n)∗〉

α β

qα qβ

a;+1;a a;+1;aa

9 / 14



Example
R =

{
(an, a(2k+1)n), n ∈ N

}

qR

qL

qaccept

` ;
−1

; ε

` ; 0 ; ε

a ; +1 ; a

a ; −1 ; a

a ;
+
1 ;

a

a a a a a `

time

qL

qRqR

qRqR

qRqR

qRqR

qRqR

qLqL

qLqL

qLqL

qLqL

qLqL

qRqR

qRqR

qRqR

qRqR

qRqR

qacceptqaccept

τR(an) = 〈an ·
(
a2n)∗〉

α β
qα qβ

a;+1;a a;+1;aa

9 / 14



Unary case - our result
Theorem

τ : ΣN → 2ΓN is accepted by a two-way transducer
if and only if

there exists finitely many rational series αi and βi such that

∀n τ(an) =
⋃

i (αi (an) · βi (an)∗)

10 / 14



Unary case - our result
Theorem

τ : ΣN → 2ΓN is accepted by a two-way transducer
if and only if

there exists finitely many rational series αi and βi such that

∀n τ(an) =
⋃

i (αi (an) · βi (an)∗)

qα qβ

a;+1;a a;+1;aa

q←qα qβ

`;−1;ε

a;−1;ε
a;0;ε

a;0;ε

Tαi Tβi

start a;0;εa;0;ε

←−qi

`;−1;ε

a;−1;ε a;0;ε

a;0;ε

a;
0;
ε

10 / 14



Unary case - our result
Theorem

τ : ΣN → 2ΓN is accepted by a two-way transducer
if and only if

there exists finitely many rational series αi and βi such that

∀n τ(an) =
⋃

i (αi (an) · βi (an)∗)

qα qβ

a;+1;a a;+1;aa

q←qα qβ

`;−1;ε

a;−1;ε
a;0;ε

a;0;ε

Tαi Tβi

start a;0;εa;0;ε

←−qi

`;−1;ε

a;−1;ε a;0;ε

a;0;ε

a;
0;
ε

10 / 14



Unary case - our result
Theorem

τ : ΣN → 2ΓN is accepted by a two-way transducer
if and only if

there exists finitely many rational series αi and βi such that

∀n τ(an) =
⋃

i (αi (an) · βi (an)∗)

qα qβ

a;+1;a a;+1;aa

q←

qα qβ

`;−1;ε

a;−1;ε
a;0;ε

a;0;ε

Tαi Tβi

start a;0;εa;0;ε

←−qi

`;−1;ε

a;−1;ε a;0;ε

a;0;ε

a;
0;
ε

10 / 14



Unary case - our result
Theorem

τ : ΣN → 2ΓN is accepted by a two-way transducer
if and only if

there exists finitely many rational series αi and βi such that

∀n τ(an) =
⋃

i (αi (an) · βi (an)∗)

qα qβ

a;+1;a a;+1;aa

q←

qα qβ

`;−1;ε

a;−1;ε
a;0;ε

a;0;ε

Tαi Tβi

start

a;
0;
ε

a;0;εa;0;ε

←−qi

`;−1;ε

a;−1;ε a;0;ε

a;0;ε

a;
0;
ε

10 / 14



Unary case - our result
Theorem

τ : ΣN → 2ΓN is accepted by a two-way transducer
if and only if

there exists finitely many rational series αi and βi such that

∀n τ(an) =
⋃

i (αi (an) · βi (an)∗)

qα qβ

a;+1;a a;+1;aa

q←

qα qβ

`;−1;ε

a;−1;ε
a;0;ε

a;0;ε

Tαi Tβi

start a;0;εa;0;ε

←−qi

`;−1;ε

a;−1;ε a;0;ε

a;0;ε
a;
0;
ε

10 / 14



Unary case - our result
Theorem

τ : ΣN → 2ΓN is accepted by a two-way transducer
if and only if

there exists finitely many rational series αi and βi such that

∀n τ(an) =
⋃

i (αi (an) · βi (an)∗)

10 / 14



Unary case - our result
Theorem

τ : ΣN → 2ΓN is accepted by a two-way transducer
if and only if

there exists finitely many rational series αi and βi such that

∀n τ(an) =
⋃

i (αi (an) · βi (an)∗)

Definition
I Hadamard Product: ∀n (α Hβ)(w) = α(w) · β(w)

I Hadamard Star: ∀n (αH?)(w) = (α(w))∗

10 / 14



Unary case - our result
Theorem

τ : ΣN → 2ΓN is accepted by a two-way transducer
if and only if

there exists finitely many rational series αi and βi such that

Definition
I Hadamard Product: ∀n (α Hβ)(w) = α(w) · β(w)

I Hadamard Star: ∀n (αH?)(w) = (α(w))∗

10 / 14



Unary case - our result
Theorem

τ : ΣN → 2ΓN is accepted by a two-way transducer
if and only if

there exists finitely many rational series αi and βi such that

τ =
∑

i (αi H βH?
i )

Definition
I Hadamard Product: ∀n (α Hβ)(w) = α(w) · β(w)

I Hadamard Star: ∀n (αH?)(w) = (α(w))∗

10 / 14



Analogy with Probabilistic Automata

Theorem (Anselmo,Bertoni,1994)

Acceptation probability of two-way finite automata is of the form:

τ(w) = α(w)× 1
β(w)

where α and β are rational series of Q〈〈Σ∗〉〉.
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HRAT relations

Definition

A relation is HRAT if and only if its serie is equal to∑
i
αi HβH?

i

for some finite family of rational series αi and βi .

Properties
I RAT is include in HRAT.
I HRAT is closed under sum.

I In unary case, RAT is closed under H-product.
I In unary case, HRAT is closed under H-product and H-star.
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Sketch of the proof

I decompose computation into traversals
I elimination of central nondeterministic loops
I one-way simulation of each traversal

I one traversal TRAV(q1,b1),(q2,b2): rational relation

I composition of traversals
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Conclusion

I formal series accepted by two-way nondeterministic unary
transducers are not rational

I characterization:
τ =

∑
i
αi HβH?

i

I Deterministic case: two-way ⇔ one-way
I two-way → sweeping

I non-unary transducers?
I Is HRAT closed under Cauchy-product (unary case)?
I application to communicating automata systems?

Do you have any questions?
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