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A simple example: SQUARE = {(w,ww) | w e X*}
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Rational operations

» Union R U R,
» Componentwise concatenation
Ri- Ry ={(uiuz,viva) | (u1,v1) € Ry and (u2,v2) € R}

» Kleene star
R* = {(U1UQ"'U/<, V1V2---Vk) ‘ Vi (u,-, V,') € R}
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Rational operations

» Union R U R
» Componentwise concatenation
Ri- Ry ={(uiuz,viva) | (u1,v1) € Ry and (u2,v2) € R}

» Kleene star
R* = {(U1U2'“Uk, V1V2'--Vk) | Vi (U,', V,') € R}

Definition (Rat(X* x[*))
The class of rational relations is the smallest class:
» that contains finite relations

» and which is closed under rational operations

Theorem (Elgot, Mezei - 1965)
1-way transducers = the class of rational relations.

19



Hadamard operations

» H-product
R1®R2 = {(u, V1V2) | (U. Vl) € Rl and (U7 V2) € Rz}

/19



Hadamard operations

» H-product
R1®R2 = {(u, V1V2) | (U. V1) € Rl and (U7 V2) € RQ}

Example: SQUARE = {(w,ww) | w € £*} = Identity @ Identity
LT TT -]

/ / _

Clelelell-TelETel-T-T-T-Te0 |

» copy the input word
» rewind the input tape

» append a copy of the input word

/19



Hadamard operations

» H-product
R1®R2 = {(u, V1V2) | (U. V1) € Rl and (U7 V2) € RQ}

» H-star
RP* = {(u,viva---vk) | Vi (u,v;) e R}

/19



Hadamard operations

» H-product
R1®R2 = {(U, V1V2) | (U. V1) € Rl and (U7 V2) € RQ}

» H-star
RP* = {(u,viva---vk) | Vi (u,v;) e R}

Example: UnaryMult = {(a",a"") | k,n e N} = Identity"*

T
/

| — T copy the input word —— rewind the input tape
S p

accept and halt with nondeterminism

e llelel=lEE1E0E]
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H-Rat relations

Definition
A relation R is in H-Rat(X* x ") if
R= U AeB™
0<i<n

where for each i, A; and B; are rational relations.
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Main result

When ¥ = {a} and I' = {a}:

Theorem (Elgot, Mezei - 1965)

1-way transducers ‘= the class of rational relations .
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Main result

When ¥ = {a} and I' = {a}:

Theorem (©  This talk )

2-way transducerS (= the class of | H_Rat relations .

Proof
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Known results

» 2-way functional = MSO definable functions
[Engelfriet, Hoogeboom - 2001]
» 2-way general incomparable MSO definable relations
[Engelfriet, Hoogeboom - 2001]

19



Known results

» 2-way functional = MSO definable functions
[Engelfriet, Hoogeboom - 2001]
» 2-way general incomparable MSO definable relations
[Engelfriet, Hoogeboom - 2001]
» 1-way simulation of 2-way functional transducer:

decidable and constructible [Filiot et al. - 2013]

19



Known results

» 2-way functional = MSO definable functions
[Engelfriet, Hoogeboom - 2001]
» 2-way general incomparable MSO definable relations
[Engelfriet, Hoogeboom - 2001]
» 1-way simulation of 2-way functional transducer:
decidable and constructible [Filiot et al. - 2013]
When I = {a}:
» 2-way unambiguous — 1l-way
[Anselmo - 1990]

19



Known results

» 2-way functional = MSO definable functions
[Engelfriet, Hoogeboom - 2001]
» 2-way general incomparable MSO definable relations
[Engelfriet, Hoogeboom - 2001]
» 1-way simulation of 2-way functional transducer:
decidable and constructible [Filiot et al. - 2013]
When I = {a}:
» 2-way unambiguous — 1l-way
[Anselmo - 1990]
» 2-way unambiguous = 2-way deterministic
[Carnino, Lombardy - 2014]
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From H-Rat to 2-way transducers

Property
The family of relations accepted by 2-way transducers is

closed under v, & and Hx .
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From H-Rat to 2-way transducers

Property

The family of relations accepted by 2-way transducers is
closed under v, & and Hx .

Proof.
» R U Ry: » R"*:
» simulate 7, or T, » repeat an arbitrary
number of times:
> Rl ® R2:

» simulate T
> rewind the input tape
> reach the right endmarker
and accept

» simulate 77
> rewind the input tape
» simulate 75

O
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From 2-way transducers to H-Rat (unary case)

A first ingredient, a preliminary result:

Lemma
With arbitrary > and T = {a}:

H-Rat is closed under U, @& and H* .

Proof.

Tedious formal computations. .. O
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From 2-way transducers to H-Rat (unary case)

We fix a transducer T .

» Consider border to border run segments;
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From 2-way transducers to H-Rat (unary case)

We fix a transducer T .
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From 2-way transducers to H-Rat (unary case)
We fix a transducer T.

» Consider border to border run segments;

» Compose border to border segments;

» Conclude using the closure properties of H-Rat.

RieoR®

={(u,v1v

s Ry ={(u,v1)}
F—— Ry ={(u,v2)}

= {(u, )}

)}
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From 2-way transducers to H-Rat (unary case)
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From 2-way transducers to H-Rat (unary case)
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From 2-way transducers to H-Rat (unary case)
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From 2-way transducers to H-Rat (unary case)
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From 2-way transducers to H-Rat (unary case)
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From 2-way transducers to H-Rat (unary case)

>@>®

__o_u_t__p_u_t___s_o__m_e_t_h_.-__u
[ ©
Q | ©
o0 | ©
0o | ©
loe@ [ ©
© 0 ¢ ©
0 © 90
© Po©
© © oy
® 0o
© ©
® e
, ®

®
OO
53
5

time

15/19



From 2-way transducers to H-Rat (unary case)
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From 2-way transducers to H-Rat (unary case)

Second ingredient:
The behavior of T is given by the matrix HIT"* .
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The behavior of T is given by the matrix HIT"* .

Remark

The relation accepted by T is a union of entries of HIT"* .
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Generalizations?

Theorem
When ¥ = {a} and I = {a}:
2-way transducers accept exactly the H-Rat relations .

2-way transducers = sweeping transducers

Remember, with only I = {a}:

sweeping transducer = H-Rat
Question
Generalization to arbitrary 37
No. with = = {#, a}:

R = {(u, ak”) | k,neN, #a"# is a factor of u}
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The counter example
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Conclusion

Theorem
When I = {a} and ¥ = {a}:
sweeping transducer = H-Rat relations = 2-way transducers

With only I = {a}:
sweeping transducers = H-Rat | 2-way transducers

deterministic

» 2-way §{ unambiguous ; accept rational relations.
functional

» 2-way transducers are uniformizable by 1-way transducers.

Every thing is |constructible .

Thank you for your attention.
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