Sweeping weakens 2-way Transducers even with a unary output alphabet

Bruno Guillon1,2

1LIAFA — Université Paris-Diderot, Paris 7
2Dipartimento di Informatica — Università degli studi di Milano

August 31, 2015

Non-Classical Models of Automata and Applications
Porto 2015
1-way automaton over Σ

A

(Q, q, F, δ)

transition set: $Q \times \Sigma \times Q$

```plaintext
Automaton
```

```plaintext
READ
```
2-way automaton over Σ

A

$(Q, q, F, \delta) \leftarrow$

transition set: $Q \times \Sigma_{\triangleright, \triangleleft} \times \{-1, 0, 1\} \times Q$

left endmarker

right endmarker

Automaton

left endmarker

right endmarker
2-way transducer over Σ, Γ

$$(A, \phi)$$

$$(Q, q_-, F, \delta) \quad \text{production function: } \delta \rightarrow \text{Rat}(\Gamma^*)$$

transition set: $Q \times \Sigma_{\triangleright, \triangleleft} \times \{-1, 0, 1\} \times Q$

Automaton

```
▷ the input word ◁
```

```
READ
```

```
WRITE
```

```
t the e  o u t p u t
```

```
▷ the output word ◁
```

```
t the e  o u t p u t
```

```
```
A simple example: $SQUARE = \{(w, ww) \mid w \in \Sigma^*\}$
A simple example: $SQUARE = \{(w, ww) \mid w \in \Sigma^*\}$

- ▶ copy the input word
- ▶ rewind the input tape
- ▶ append a copy of the input word
A simple example: $SQUARE = \{(w, ww) \mid w \in \Sigma^*\}$

- copy the input word
- rewind the input tape
A simple example: $SQUARE = \{(w, ww) \mid w \in \Sigma^*\}$

- copy the input word
- rewind the input tape
- append a copy of the input word
A simple example: $SQUARE = \{ (w, ww) \mid w \in \Sigma^* \}$

- copy the input word
- rewind the input tape
- append a copy of the input word
Another example: \(UnaryMult = \{ (a^n, a^{kn}) \mid k, n \in \mathbb{N} \} \)
Another example: \(UnaryMult = \{(a^n, a^{kn}) \mid k, n \in \mathbb{N}\} \)
Another example: \(UnaryMult = \{(a^n, a^{kn}) \mid k, n \in \mathbb{N}\} \)
Another example: \(UnaryMult = \{(a^n, a^{kn}) \mid k, n \in \mathbb{N}\} \)
Another example: $\textit{UnaryMult} = \{(a^n, a^{kn}) \mid k, n \in \mathbb{N}\}$
Another example: \(UnaryMult = \{(a^n, a^{kn}) \mid k, n \in \mathbb{N}\} \)
Another example: $UnaryMult = \{(a^n, a^{kn}) \mid k, n \in \mathbb{N}\}$

- Copy the input word
- Rewind the input tape
- Accept and halt with nondeterminism
Rational operations

- Union

- Componentwise concatenation

\[R_1 \cdot R_2 = \{ (u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2 \} \]

- Kleene star

\[R^* = \{ (u_1 u_2 \cdots u_k, v_1 v_2 \cdots v_k) \mid \forall \, i \, (u_i, v_i) \in R \} \]
Rational operations

- **Union**

- **Componentwise concatenation**

\[R_1 \cdot R_2 = \{(u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\}\]

- **Kleene star**

\[R^* = \{(u_1 u_2 \cdots u_k, v_1 v_2 \cdots v_k) \mid \forall i \ (u_i, v_i) \in R\}\]

Definition (\(Rat(\Sigma^* \times \Gamma^*)\))

The class of **rational relations** is the smallest class:

- that contains finite relations
- and which is closed under rational operations
Rational operations

- Union
 \[R_1 \cup R_2 \]

- Componentwise concatenation
 \[R_1 \cdot R_2 = \{(u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\} \]

- Kleene star
 \[R^* = \{(u_1 u_2 \cdots u_k, v_1 v_2 \cdots v_k) \mid \forall i \ (u_i, v_i) \in R\} \]

Definition (\(\text{Rat}(\Sigma^* \times \Gamma^*) \))

The class of rational relations is the smallest class:
- that contains finite relations
- and which is closed under rational operations

Theorem (Elgot, Mezei - 1965)

\(1\text{-way transducers} \equiv \text{the class of rational relations.} \)
Hadamard operations

- H-product

\[R_1 \otimes R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\} \]
Hadamard operations

- H-product

\[R_1 \oplus R_2 = \{ (u, \nu_1 \nu_2) \mid (u, \nu_1) \in R_1 \text{ and } (u, \nu_2) \in R_2 \} \]

Example: \(SQUARE = \{ (w, \text{w} \text{w}) \mid w \in \sum^* \} = \text{Identity} \oplus \text{Identity} \)

- copy the input word
- rewind the input tape
- append a copy of the input word
Hadamard operations

- **H-product**
 \[R_1 \oplus R_2 = \{(u, \nu_1 \nu_2) \mid (u, \nu_1) \in R_1 \text{ and } (u, \nu_2) \in R_2\} \]

- **H-star**
 \[R^{H*} = \{(u, \nu_1 \nu_2 \cdots \nu_k) \mid \forall i \ (u, \nu_i) \in R\} \]
Hadamard operations

- **H-product**
 \[R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2 \} \]

- **H-star**
 \[R^{H \star} = \{(u, v_1 v_2 \cdots v_k) \mid \forall i \ (u, v_i) \in R \} \]

Example: \(UnaryMult = \{(a^n, a^{kn}) \mid k, n \in \mathbb{N} \} = Identity^{H \star} \)
Hadamard operations

- H-product
 \[R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\} \]

- H-star
 \[R^{H*} = \{(u, v_1 v_2 \cdots v_k) \mid \forall i \ (u, v_i) \in R\} \]

Property

two-way transducers are closed under H-operations.
H-Rat relations

Definition

A relation R is in H-$\text{Rat}(\Sigma^* \times \Gamma^*)$ if

$$R = \bigcup_{0 \leq i \leq n} A_i \oplus B_i^{\text{H*}}$$

where for each i, A_i and B_i are rational relations.
H-Rat relations

Definition
A relation R is in H-$Rat(\Sigma^* \times \Gamma^*)$ if

$$R = \bigcup_{0 \leq i \leq n} A_i \oplus B_i^{H*}$$

where for each i, A_i and B_i are rational relations.

Theorem (Choffrut, G. - 2014)
When $\Sigma = \{a\}$ and $\Gamma = \{a\}$:

2-way transducers \iff H-Rat relations
Main result

Theorem (Choffrut, G. - 2014)

When $\Sigma = \{a\}$ and $\Gamma = \{a\}$:

\[
\text{2-way transducers} \not\subseteq H-\text{Rat}
\]
Main result

Theorem (Choffrut, G. - 2014)

When $\Sigma = \{a\}$ and $\Gamma = \{a\}$:

- 2-way transducers $\overset{?}{=} H$-Rat $\overset{\equiv}{=} \text{sweeping transducers}$
Main result

Theorem (Choffrut, G. - 2014)

When $\Sigma = \{a\}$ and $\Gamma = \{a\}$:

2-way transducers \neq H-Rat \subseteq sweeping transducers

This talk

8/16
Main result

Theorem (Choffrut, G. - 2014)

When $\Sigma = \{a\}$ and $\Gamma = \{a\}$:

- 2-way transducers $\not= H$-Rat \equiv sweeping transducers
- H-Rat \subsetneq 2-way transducers

This talk
Known results on 2-way transducers

- Functional \equiv Deterministic \equiv MSO definable functions
- General incomparable MSO definable relations

[Engelfriet, Hoogeboom – 2001]
Known results on 2-way transducers

- functional \iff deterministic \iff MSO definable functions
- general incomparable MSO definable relations
 [Engelfriet, Hoogeboom - 2001]

- general uniformizable by deterministic
 [de Souza - 2013]
Known results on 2-way transducers

- Functional ▀ deterministic ▀ MSO definable functions
- General incomparable MSO definable relations
 [Engelfriet, Hoogeboom - 2001]

- General uniformizable by deterministic
 [de Souza - 2013]

- 1-way simulation of 2-way functional transducer:
 decidable and constructible
 [Filiot et al. - 2013]
Known results on 2-way transducers with unary output

When $\Gamma = \{a\}$:
Known results on 2-way transducers with unary output

When $\Gamma = \{a\}$:

- unambiguous \rightarrow 1-way

 [Anselmo - 1990]

- unambiguous \Rightarrow deterministic

 [Carnino, Lombardy - 2014]
Known results on 2-way transducers with unary output

When \(\Gamma = \{a\} \):

- unambiguous \(\rightarrow\) 1-way

 [Anselmo - 1990]

- unambiguous \(\equiv\) deterministic

 [Carnino, Lombardy - 2014]

- general uniformizable by 1-way

 [Choffrut, G. - 2014]
Known results on 2-way transducers with unary output

When $\Gamma = \{a\}$:

- unambiguous \rightarrow 1-way

 [Anselmo - 1990]

- unambiguous $=$ deterministic

 [Carnino, Lombardy - 2014]

- general uniformizable by 1-way

 [Choffrut, G. - 2014]

- tropical $=$ 1-way

 [Carnino, Lombardy - 2014]

production function $\Phi : \delta \rightarrow \{a^n a^* | n \in \mathbb{N}\}$

rational of period 1
Sketch of the proof

Theorem

When $\Gamma = \{a\}$.

\[
\begin{array}{c}
\text{two-way transducer} \neq H\text{-Rat} \\
(U_i A_i \oplus B_i^{\text{H*}})
\end{array}
\]
Sketch of the proof

Theorem

When $\Gamma = \{a\}$.

two-way transducer \neq H-Rat

$(\bigcup_i A_i \oplus B_i^{H\star})$

- Establish a non-trivial property satisfied by rational relations;
Sketch of the proof

Theorem

When \(\Gamma = \{a\} \).

\[
\text{two-way transducer} \neq H-\text{Rat}
\]

\[
(U_i A_i \oplus B_i^{H\ast})
\]

- Establish a non-trivial property satisfied by rational relations;
- Extend it to \(H-\text{Rat} \) relations;
Sketch of the proof

Theorem

When $\Gamma = \{ a \}$.

- Establish a non-trivial property satisfied by rational relations;
- Extend it to H-Rat relations;
- Find a relation accepted by a two-way transducer which does not satisfy the previous property.
Revisiting the family $Rat(a^*)$

The family $Rat(a^*)$ is isomorphic to the rational subsets of \mathbb{N} by the canonical mapping $a^n \mapsto n$.

\[L = A \cup (t + M + pN) \]

where:
- $t, p \in \mathbb{N}$
- $A \subseteq J_0$
- tJ and $M \subseteq J_0$
- pJ

t is a threshold for L

p is a period for L
Revisiting the family $Rat(a^*)$

the family $Rat(a^*)$ is isomorphic to the rational subsets of \mathbb{N} by the canonical mapping $a^n \mapsto n$
Revisiting the family $Rat(a^*)$

The family $Rat(a^*)$ is isomorphic to the rational subsets of \mathbb{N} by the canonical mapping $a^n \mapsto n$.
Revisiting the family $Rat(a^*)$

the family $Rat(a^*)$ is isomorphic to the rational subsets of \mathbb{N} by the canonical mapping $a^n \mapsto n$.
Revisiting the family $Rat(a^*)$

The family $Rat(a^*)$ is isomorphic to the rational subsets of \mathbb{N} by the canonical mapping $a^n \mapsto n$.
Revisiting the family \(\text{Rat}(a^*) \)

The family \(\text{Rat}(a^*) \) is isomorphic to the rational subsets of \(\mathbb{N} \) by the canonical mapping \(a^n \mapsto n \)

\[
L = A \cup (t + M + p\mathbb{N})
\]

where: \(t, p \in \mathbb{N} \), \(A \subseteq [0, t] \) and \(M \subseteq [0, p] \)

- \(t \) is a threshold for \(L \)
- \(p \) is a period for \(L \)
Periods of images

\[R \subseteq \Sigma^* \times \Gamma^* \]. The image of \(u \in \Sigma^* \) is:

\[R(u) = \{ v \mid (u, v) \in R \} \in 2^{\Gamma^*} \]
Periods of images

\(R \subseteq \Sigma^* \times \Gamma^* \). The image of \(u \in \Sigma^* \) is:

\[
R(u) = \{ v \mid (u, v) \in R \} \in 2^{\Gamma^*}
\]

Theorem

\(R \) is rational \(\Rightarrow \exists t, p \) such that \(\forall u \)

- \(t (|u| + 1) \) is a threshold and
- \(p \) is a period

of \(R(u) \).
Periods of images

\(R \subseteq \Sigma^* \times \Gamma^* \). The image of \(u \in \Sigma^* \) is:

\[
R(u) = \{ v \mid (u, v) \in R \} \in 2\Gamma^*
\]

Theorem

\(R \) is **rational** \(\Rightarrow \exists t, p \) such that \(\forall u \)

- \(t (|u| + 1) \) is a threshold and
- \(p \) is a period

of \(R(u) \).

Theorem

\(R \) is **H-Rat** \(\Rightarrow \exists k \) such that \(\forall u \), \(R(u) \) has a period \(p \in O\left(|u|^k\right) \).
The counter example

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R = \left\{ (u, a^{kn}) \mid k, n \in \mathbb{N}, \text{ #}a^k\# \text{ is a factor of } u \right\} \]
The counter example

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R = \left\{ \left(u, a^{kn} \right) \mid k, n \in \mathbb{N}, \text{ \#} a^k \text{\# is a factor of } u \right\} \]
The counter example

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R = \left\{ (u, a^{kn}) \mid k, n \in \mathbb{N}, \text{ \#}a^k\text{\# is a factor of } u \right\} \]

start \rightarrow \text{choose block}
The counter example

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R = \left\{ (u, a^{kn}) \mid k, n \in \mathbb{N}, \, \#a^k\# \text{ is a factor of } u \right\} \]
The counter example

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R = \{(u, a^{kn}) \mid k, n \in \mathbb{N}, \# a^k \# \text{ is a factor of } u\} \]
The counter example

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$

$$R = \{ (u, a^{kn}) \mid k, n \in \mathbb{N}, \text{ \#}a^k\text{\# is a factor of } u \}$$
The counter example

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R = \{ (u, a^{kn}) \mid k, n \in \mathbb{N}, \text{ \#}a^k\# \text{ is a factor of } u \} \]
The counter example

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R = \left\{ (u, a^{kn}) \mid k, n \in \mathbb{N}, \text{ \#a}^k\text{\# is a factor of } u \right\} \]
The counter example

\[\Sigma = \{ \#, a \} \text{ and } \Gamma = \{ a \} \]

\[R = \left\{ (u, a^{kn}) \mid k, n \in \mathbb{N}, \text{ } \#a^k\# \text{ is a factor of } u \right\} \]
The counter example

\[\Sigma = \{ \#, a \} \text{ and } \Gamma = \{ a \} \]

\[R = \left\{ (u, a^{kn}) \mid k, n \in \mathbb{N}, \#a^k\# \text{ is a factor of } u \right\} \]

\[u = \#a^{n_1}\#a^{n_2}\# \cdots \#a^{n_r}\# \]

\[R(u) = \bigcup_{0 < i \leq r} \{ a^{kn_i} \} \text{ has minimal period } \text{lcm}_{0 < i \leq r}(n_i) \]

\[|u| = \sum_{0 < i \leq r} n_i + r + 1 \]
The counter example

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R = \left\{ (u, a^{kn}) \mid k, n \in \mathbb{N}, \#a^k\# \text{ is a factor of } u \right\} \]

\[u = \#a^{n_1}\#a^{n_2}\# \cdots \#a^{n_r}\# \]

\[R(u) = \bigcup_{0<i\leq r} \left\{ a^{kn_i} \right\} \text{ has minimal period } \text{lcm}_{0<i\leq r}(n_i) \]

\[|u| = \sum_{0<i\leq r} n_i + r + 1 \]

\[g(n) = \max \left(\{\text{lcm}(n_i) \mid \sum n_i = n\} \right) \quad \text{(Landau's function)} \]
The counter example

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R = \left\{ (u, a^{kn}) \mid k, n \in \mathbb{N}, \#a^k\# \text{ is a factor of } u \right\} \]

\[u = \#a^{n_1}\#a^{n_2}\# \cdots \#a^{n_r}\# \]

\[R(u) = \bigcup_{0<i\leq r} \left\{ a^{kn_i} \right\} \text{ has minimal period } \text{lcm}_{0<i\leq r}(n_i) \]

\[|u| = \sum_{0<i\leq r} n_i + r + 1 \]

\[g(n) = \max \left(\{\text{lcm}(n_i) \mid \sum n_i = n\} \right) \] (Landau’s function)

the period is super-polynomial in \(|u|\)
Example with polynomial period

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \left\{ \left(\# a^{k_1} \# a^{k_2} \# \cdots \# a^{k_r} \#, a^{k_i n}\right) \mid n \in \mathbb{N} \right\} \]
Example with polynomial period

\[
\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}
\]

\[
R_r = \left\{ \left(\# a^{k_1} \# a^{k_2} \# \cdots \# a^{k_r} \#, a^{k_i n} \right) \mid n \in \mathbb{N} \right\}
\]
Example with polynomial period

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \left\{ \left(a^{k_1} a^{k_2} \# \cdots \# a^{k_r} \#, a^{k_i n} \right) \mid n \in \mathbb{N} \right\} \]
Example with polynomial period

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \left\{ \left(\# a^{k_1} \# a^{k_2} \# \cdots \# a^{k_r} \#, a^{kn} \right) \mid n \in \mathbb{N} \right\} \]
Example with polynomial period

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \left\{ \left(\#a^{k_1}\#a^{k_2}\# \cdots \#a^{k_r}\#, a^{k_i}n \right) \mid n \in \mathbb{N} \right\} \]
Example with polynomial period

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \left\{ \left(\# a^{k_1} \# a^{k_2} \# \cdots \# a^{k_r} \#, a^{k_i n} \right) \mid n \in \mathbb{N} \right\} \]
Example with polynomial period

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \left\{ (\# a^{k_1} \# a^{k_2} \# \cdots \# a^{k_r} \#, a^{k_i n}) \mid n \in \mathbb{N} \right\} \]
Example with polynomial period

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \left\{ \left(\# a^{k_1} \# a^{k_2} \# \cdots \# a^{k_r} \#, a^{k_in} \right) \mid n \in \mathbb{N} \right\} \]
Example with polynomial period

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \left\{ \left(\#a^{k_1}\#a^{k_2}\# \cdots \#a^{k_r}\#, a^{k_in}\right) \mid n \in \mathbb{N} \right\} \]
Example with polynomial period

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \left\{ \left(\# a^{k_1} \# a^{k_2} \# \cdots \# a^{k_r} \#, a^{k_i}n \right) \mid n \in \mathbb{N} \right\} \]
Example with polynomial period

\[\Sigma = \{ \#, a \} \text{ and } \Gamma = \{ a \} \]

\[R_r = \left\{ \left(\# a^{k_1} \# a^{k_2} \# \cdots \# a^{k_r} \#, a^{k_i n} \right) \mid n \in \mathbb{N} \right\} \]
Example with polynomial period

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \left\{ \left(\# a^{k_1} \# a^{k_2} \# \cdots \# a^{k_r} \#, a^{k_i n} \right) \mid n \in \mathbb{N} \right\} \]
Example with polynomial period

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \left\{ \left(\# a^{k_1} \# a^{k_2} \# \cdots \# a^{k_r} \#, a^{k_i n} \right) \mid n \in \mathbb{N} \right\} \]
Example with polynomial period

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \left\{ \left(\#a^{k_1}\#a^{k_2}\# \cdots \#a^{k_r}\#, a^{k_i}n \right) \mid n \in \mathbb{N} \right\} \]

\[u = \#aaa\#aaaaa\#aaaaaaaa\# \quad |u| = 20 \]

the period of \(R(u) \) is \(\text{lcm}(3, 5, 7) = 105 \)
Example with polynomial period

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \left\{ \left(\# a^{k_1} \# a^{k_2} \# \cdots \# a^{k_r} \#, a^{k_i n} \right) \mid n \in \mathbb{N} \right\} \]

the period of \(R(u) \) is in \(O(|u|^r) \)
Conclusion

When $\Gamma = \{a\}$:

- two-way transducers:

<table>
<thead>
<tr>
<th>transducer</th>
<th>family</th>
</tr>
</thead>
<tbody>
<tr>
<td>deterministic</td>
<td>$= \text{rational}$</td>
</tr>
<tr>
<td>unambiguous functional</td>
<td>$= \text{rational}$</td>
</tr>
<tr>
<td>sweeping outer-nondeterm</td>
<td>$= H\text{-Rat}$</td>
</tr>
<tr>
<td>input unary</td>
<td></td>
</tr>
<tr>
<td>general</td>
<td>$\supseteq H\text{-Rat}$</td>
</tr>
</tbody>
</table>

Thank you for your attention.
Conclusion

When \(\Gamma = \{a\} \):

- two-way transducers:

 \[
 \begin{array}{|c|c|}
 \hline
 \text{transducer} & \text{family} \\
 \hline
 \text{deterministic} & \text{rational} \\
 \text{unambiguous} & \text{rational} \\
 \text{functional} & \text{rational} \\
 \hline
 \text{sweeping} & \text{H-Rat} \\
 \text{outer-nondeterm} & \text{H-Rat} \\
 \text{input unary} & \text{H-Rat} \\
 \hline
 \text{general} & \text{H-Rat} \\
 \hline
 \end{array}
 \]

- images of \(u \):

 \[
 \begin{array}{|c|c|c|}
 \hline
 \text{family} & \text{threshold} & \text{period} \\
 \hline
 \text{rational} & \text{linear} & \text{constant} \\
 \text{H-Rat} & \text{polynomial} & \text{polynomial} \\
 \hline
 \end{array}
 \]

Thank you for your attention.
Conclusion

When $\Gamma = \{a\}$:

- two-way transducers:

<table>
<thead>
<tr>
<th>transducer</th>
<th>family</th>
</tr>
</thead>
<tbody>
<tr>
<td>deterministic</td>
<td>rational</td>
</tr>
<tr>
<td>unambiguous</td>
<td></td>
</tr>
<tr>
<td>functional</td>
<td></td>
</tr>
<tr>
<td>sweeping</td>
<td></td>
</tr>
<tr>
<td>outer-nondeterm</td>
<td></td>
</tr>
<tr>
<td>input unary</td>
<td></td>
</tr>
<tr>
<td>general</td>
<td>$\not\supset H$-Rat</td>
</tr>
</tbody>
</table>

- images of u:

<table>
<thead>
<tr>
<th>family</th>
<th>threshold</th>
<th>period</th>
</tr>
</thead>
<tbody>
<tr>
<td>rational</td>
<td>linear</td>
<td>constant</td>
</tr>
<tr>
<td>H-Rat</td>
<td></td>
<td>polynomial</td>
</tr>
</tbody>
</table>

Thank you for your attention.