
Université Paris Diderot (Paris 7) � Sorbonne Paris Cité
École doctorale 386 � Science Mathématiques de Paris Centre

Institut de Recherche en Informatique Fondamentale

and

Università degli studi di Milano

Dipartimento di Informatica

Bruno Guillon

Two-wayness: Automata and Transducers

PhD Thesis

supervised by Christian Cho�rut and Giovanni Pighizzini,

defended on May 30, 2016,
in front of the jury composed of

Alessandra Cherubini examinator
Christian Cho�rut supervisor
Martin Kutrib reviewer
Sylvain Lombardy reviewer
Giovanni Pighizzini supervisor
Jean-Marc Talbot reviewer

i

Remerciements � Ringraziamenti

Il est clair qu'arriver au bout d'une thèse de plus de trois ans ne peut se faire sans
un soutien appréciable quotidiennement. Cette période touchant à sa �n, je prends ici
quelques lignes pour évoquer ce soutien et remercier ses di�érents acteurs.

Supervision. Tout d'abord je tiens à remercier mes directeurs de thèse. Je remercie
Christian pour sa patience et sa disponibilité pendant ces années, et spécialement au
moment di�cile de la rédaction de ma thèse. À ses côtés, j'ai beaucoup appris en terme
de méthodologie tout en enrichissant considérablement mes connaissances scienti�ques
en théorie des langages et des automates. Les nombreuses discussions scienti�ques que
nous avons eues ensemble ont débouché sur des résultats intéressants recueillis dans cette
thèse. Quelques questions que Christian m'a proposées demeurent ouvertes et je compte
bien les garder en tête pour mon travail futur.

Ringrazio Giovanni per avermi accompagnato attraverso questi anni di ricerca. Anche
se ho passato solo un anno all'Università degli studi di Milano, è sempre stato disponibile
e attento alle mie domande. È lui che per primo mi ha introdotto allo studio degli
automi bidirezionali e alla teoria della complessità descrizionale. Con lui e Viliam Ge�ert
abbiamo ottenuto risultati che fanno parte della mia tesi. Devo a loro la scelta della
mia area di ricerca che continua sempre ad interessarmi. Spero veramente che la nostra
collaborazione continuerà in futuro. Lo ringrazio particolarmente per ogni volta che ha
dovuto ottemperare alle mie omissioni amministrative nel lato italiano.

Jury. Je remercie chaleureusement Martin Kutrib, Syvain Lombardy et Jean-Marc
Talbot d'avoir accepté de relire mon mémoire. Je les remercie pour les di�érentes remarques,
toutes bien pensées, qu'ils m'ont transmises et pour leur application dans le travail
de relecture. Je leur suis également reconnaissant d'être présents aujourd'hui pour ma
soutenance. Merci aussi plus spéci�quement à Sylvain, croisé l'été dernier en conférence
à Porto, qui m'a fait prendre du recul sur mon travail et m'a permis de l'étendre à
des contextes plus généraux. Je remercie également Alessandra Cherubini, que je ne
connais pas encore, d'avoir accepté de faire partie de mon jury et donc pour sa présence
aujourd'hui.

Aide. Je voudrais aussi remercier l'équipe administrative du LIAFA, Houy, Laifa, Nadia,
Nathalie, Noëlle, sans qui le labo aurait du mal à tourner. J'ampli�e ces remerciements
en reconnaissant la patience qu'il faut m'accorder lorsqu'il s'agit de remplir des documents
administratifs, tels les retours de missions. Pour des raisons similaires et pour sa disponibilité,

ii

je tiens également à remercier Élise Delos. Ringrazio anche Lorena Sala e Matilde Gallea
per la pazienza e l'aiuto che mi hanno dato.

Un bon environnement est la source d'un bon travail. Mes trois années et demi de
thèse ont été mouvementées, mais elles ont toujours trouvé des collègues et des amis sur
qui s'appuyer.

LIAFA devenu IRIF. J'ai eu deux périodes au LIAFA, de 2012 à 2013 et de 2015 à
2016. J'ai ainsi commencé mon doctorat dans les locaux de la rue du Chevaleret, où j'ai été
accueilli par les doctorants plus anciens. Ils m'ont appris le fonctionnement du laboratoire
et, par le partage de repas, de café voire de jeux de cartes (le Poulpe, qui sera plus tard
remplacé par le Pigeon), ils m'ont proposé une sympathie édi�ante. Je les nomme et les
remercie : Adeline, Antoine, Antoine, Charles, Denis, Élie, Irène, Jad, Jehanne, Jérémie,
Laure, Luc, Nathanaël, Nathanaël, Pierre, Sandrine, Timo, Tomasz, Vincent, Virginie,
Xavier et probablement d'autres. Non loin, d'autres amis qu'également je remercie :
Florent et Ioana, dont on reparlera, mais aussi Jakub, Lourdes, Shahin. À mon retour
de Milan, début 2015, j'ai retrouvé avec joie quelques amis sus-cités et j'en ai découvert
d'autres. Ainsi j'ai rencontré et me suis rapproché d'Alex, Alexandre, Bruno, Fabian,
François, Guillaume, Laurent, Raphaël, Simon, Thibault, Victor, que rejoindront par la
suite une bande d'italiens : Alkida, Dennis, Lorenzo, Luca, Maria Rita sans oublier Anna
Carla sans trait d'union, que je remercie tout spéci�quement pour son soutien moral, son
attention particulière et sa proximité. Au-dessus il y a toujours Florent, en dessous revient
Étienne d'Uruguay. Je remercie aussi les membres du laboratoire et plus spéci�quement
les membres de l'équipe Automates et Applications pour les divers rencontres et échanges
avec eux. Merci en particulier à Olivier pour avoir soutenu mes demandes tardives de
missions et aussi à Olivier pour les conseils très bien sentis sur les présentations orales et
son soutien malgré lui dans les enseignements.

Dipartimento di Informatica a l'Università degli studi di Milano. A Milano,
l'anno 2014, ho ritrovato persone che conoscevo dal mio stage precedente e ho incontrato
anche nuovi colleghi e amici. Tutti hanno contribuito alla simpatia generale dell'u�cio. Li
ringrazio qui: Aktar, Andrea, Angelo, Antonio, Giovanna, Luca, Marco, Marco, Maryam,
Matteo, Paola, Pietro, Pierlauro. Mi ricorderò sempre dei pranzi insieme alle discussioni
di musica, di lingua francese e di automi. Li ringrazio anche perché è con loro che
ho imparato l'italiano. Ringrazio anche i ricercatori del laboratorio che ho incontrato,
particolarmente Carlo e Beatrice per l'interesse che hanno mostrato per il mio lavoro.

En dehors du laboratoire, ma vie a été soutenue et enrichie pendant ces années par
de grandes amitiés et par de multiples rencontres enrichissantes.

iii

Racines. Je remercie ma famille toujours présente malgré mes longues absences. Ce
contact rare mais sûr a été un véritable appui pour me construire pendant les dernières
années. Je remercie en particulier ma famille parisienne, qui est si proche mais si loin
en même temps et que j'aurais aimé voir plus. Je remercie spécialement François et
Katarzyna et je leur dis à très bientôt. Je remercie Grand-Mère, Grand-Père, Mamylène,
Maman, Papa, quelques oncles, tantes et cousins d'être aujourd'hui présents pour me
soutenir dans ma soutenance et fêter mon probable doctorat. Merci à la famille Bondaz
de m'avoir accueilli à mon arrivée à Paris, et de me prêter encore aujourd'hui la table
de ma salle à manger. En�n, merci à mon frère Pierre, qui est toujours attentif à mes
questionnements et qui par sa propre expérience, me guide et me conseille dans ma carrière
naissante.

Humain. Je remercie spécialement la communauté Sant'Egidio que j'ai découverte à
Paris puis retrouvée à Milan. Elle propose une approche très humaine des problèmes
actuels de société, basée sur la rencontre avec des personnes laissées en marge de nos
vies, pour leur origine, leur pauvreté, leur âge. . . Ces rencontres hebdomadaires sont
une bou�ée d'air, me faisant ré-atterrir, de la théorie à l'Humain. Je remercie donc :
Anna Carla, Danuts et sa famille, David, Denis, Didier, Elena, Ivan, Jérémie, Jérôme,
Karine, Lionella (avec Alex et Armando), Marie-Luce, Mickaël, Mireille, Paul-Shérif,
Philippe, Sara, s÷ur Stéphanie, Valentine, Valérie, Vincent, Zvetan et j'oublie sûrement
beaucoup de personnes. Les rencontres avec vous ont élargi mes pensées et ouvert mon
esprit. Ringrazio anche gli amici del gruppo di Sant'Egidio di Milano: Andrea, Clau-
dio, Francesca, Francone, Giovanni, Liliana, Luca, Marco, Mohammed, Teresa, Ulderico,
Yassine e altri (dimentico i nomi, ma non dimentico i visi). Sono stato fortunato ad
incontrarvi e spero davvero di rivedervi presto.

Maison sucrée maison. Mon chez moi est un lieu vivant peuplé de chouettes et
sympathiques personnes, éventuellement nomades, qui le transforment ainsi en un chez
nous. La présence de cette population accueillante a été une vraie source de bonheur
mais aussi un réconfort réel et un conseil attentif tout au long de ces années. Ainsi je
remercie profondément Gibet, coloc primitif, pour le temps qu'on a passé ensemble, les
vacances extérieures, les crozi�ettes délectables, etc. . . À Ioana, coloc primitive, je dis
mulµumesc pour les discussions passionnantes, pour les questionnements éthiques, pour
la µuicá, pour les vacances en Roumanie (mulµumesc itou, en passant, à ses parents et
ses amis pour leur joyeux accueil), pour ses énervements à Catane pour les rudiments
de langue roumaine qu'elle m'a enseignés et, plus généralement, pour son amitié. Je
remercie maintenant Aline, notre dictatrice éclairée, pour sa patience, pour les kilos de
riz, pour les discussions spirituelles sur nos futurs respectifs, pour les sorties culturelles

iv

ou sportives. Merci Hugo, pour son calme et ses ré�exions politiques, pour les foots et
verres de diabolo devant le tour de France, pour sa cuisine e�cace et bonne (dont les
kilos de riz nourrissant des régiments biélorusses). Merci et bravo à tous les deux, Aline &
Hugo, pour vos engagements, pour les parties de cash & guns et de mölkky et pour avoir
supporté mes absences et m'avoir soutenu lorsque les temps étaient plus di�ciles. Merci
à tous les squatteurs d'une nuit ou de plus, qui ont pimenté la vie de la maisonnée : Alice
& Camille, Anna Carla, Charlotte & Gibet, Éloïse & Robin, Lola, Pierre, Simon, Sorana,
et j'en oublie des tonnes ! Je remercie aussi les amis de la coloc pour leur présence et les
moments partagés : Clémence, Clotilde, Emmanuel, Vianney. Ringrazio anche i coinquili-
ni di Milano: Alessandro, Chiara & Luigi, e Marco, per l'accoglienza e l'aiuto. Grazie
anche alle persone encontrate il primo mese nel ostello Burigozzo: Atila, Marko, Michel. . .

Accordéon & Matofono. J'ajoute une note musicale en remerciant ceux qui l'ont
partagée : Chico, Laurent, Pierre, Fabian, François. Merci à mon fournisseur de matofonos
uruguayens, j'ai nommé Étienne, qui sera peut-être un des déclencheurs de la fondation
du futur fameux Orchestro de matofono numéro zéro.

La vita a Milano sarebbe stata molto piu triste senza la presenza del coro alpino
della Bicocca! Ringrazio Alberto per avermi portato lì e ringrazio tutto il coro per
l'accoglienza: Alberto (di nuovo), Alexis, Allesandro, Andrea, Andrea, Davide, Davide,
Gabriele, Giacomo, Luca, Lorenzo, Mario, Michele, Nicola, Ottavio, Paolo, Pietro, Pietro,
Simone, Stefano, Vittorio e anche Francesco, Letizia, Maria, Rabah e altri amici del coro.

Ballon rond et grand guidon. Je remercie les coéquipiers de la porte d'Orléans, qui
le samedi bravaient la pluie et le vent pour venir jouer au football. Merci donc Ahmed-
Amine, Bruno, Camille, Étienne (dans tous les bons coups celui-là), Helmy, Pavel, Pierre,
Simon et les autres. Dal lato italiano ringrazio tutta la banda peruviana con cui ho
giocato a calcio il sabato. Merci à Vianney pour les cours d'escalade. Merci à Florent,
Paul, Una et toute la cyclo�cine d'Ivry-sur-Seine pour leur patience face à mon vélo
malmené, également remercié.

Merci à toi lecteur, qui arrive au bout de ces longs remerciements, pour ton courage
et ton abnégation. J'oublie probablement plein de monde, comme par exemple les amis
rencontrés aux EJCIM (que je n'oublie ainsi pas complètement), et je pourrais continuer
longtemps mais il faut bien s'arrêter. Merci.

Contents

1 Introduction 1
1.1 Computational model . 1
1.2 From Turing machines to �nite automata . 3

1.2.1 Turing machines . 3
1.2.2 Finite automata . 3

1.3 Variants of �nite automata . 4
1.3.1 Descriptional complexity . 5
1.3.2 Finite automata with outputs . 7

1.4 Iteration of binary relations on words . 10
1.5 Outline . 11

2 Preliminaries 15
2.1 Basic de�nitions and notations . 15

2.1.1 Sets and monoids . 15
2.1.2 Alphabets, words and languages . 16
2.1.3 Relations and functions . 17

2.2 Formal power series . 18
2.2.1 General de�nitions . 19
2.2.2 Rational operations on series . 19
2.2.3 Rational series . 21
2.2.4 Restriction to a recognizable language 22

2.3 Finite automata . 22
2.3.1 Classical �nite automaton . 22
2.3.2 Two-way �nite automata . 25
2.3.3 Two-way weighted-automata . 35
2.3.4 Two-way transducers . 37

3 Outer-nondeterministic Finite Automata 45
3.1 Introduction . 45

v

vi Contents

3.2 Preliminaries . 47
3.2.1 Normal form for 2onfas . 47
3.2.2 Computational segments . 48
3.2.3 Self-verifying automata . 48

3.3 The subroutine Reach . 49
3.3.1 Description of the subroutine Reach 49
3.3.2 Implementation details for the subroutine Reach 51

3.4 Simulation by halting self-verifying automata 58
3.4.1 Implementation details for the subroutine nReach 62

3.5 Subexponential deterministic simulation . 64
3.6 Conditional and unambiguous simulations . 65
3.7 The alternating case . 68
3.8 Concluding remarks . 71

4 Super- and sub-classes of rational series 73
4.1 Further operations on series . 73

4.1.1 Hadamard operations . 73
4.1.2 Mirror operation . 77
4.1.3 On the scalar product . 85
4.1.4 Restriction to a recognizable support 85

4.2 Hierarchy . 86
4.2.1 Recognizable series . 86
4.2.2 Comparison of families . 88

4.3 Relations on Σ∗ . 92
4.3.1 Symmetry of relations . 93
4.3.2 Bi-mirror of relations . 94
4.3.3 Morphism . 96
4.3.4 Both ways rational relations . 97

5 Two-way transducers 99
5.1 Introduction . 99
5.2 Unary two-way transductions . 100

5.2.1 Hadamard relation with unary output 100
5.2.2 Main result . 102
5.2.3 One-way simulation of hits . 103
5.2.4 Unlimited number hits . 110
5.2.5 Conclusion . 110

5.3 Sweeping weakens two-way transducers . 111

Contents vii

5.3.1 Revisiting the family Rat(a∗) . 111
5.3.2 The unary output case . 116
5.3.3 The unary input case . 121
5.3.4 Conclusion . 125

6 Iteration of arity 2 relations on words 127
6.1 Preliminaries . 127

6.1.1 Composition and iteration of relations 127
6.1.2 Decidability problems . 128
6.1.3 Length-preserving relations, padding and completion 130
6.1.4 One-way two-tape �nite automata . 130
6.1.5 Classes of relations and hierarchy . 134

6.2 Iteration . 138
6.2.1 Iteration of synchronous relations . 139
6.2.2 The unary case . 140

Bibliography 145

Index 153

viii Contents

Chapter 1

Introduction

1.1 Computational model

Computer science is born from the question: what does �compute� mean? The �rst
researchers who have mathematically formalized the concept shared the same natural
idea (still shared by the entire community of Computer scientists): a computation is the
execution of a sequence of successive �elementary operations�. What are the elementary
operations? A well-established fact is that the complexity of computations does not
come from the choice of the elementary operations, but rather from the entire sequence
of these operations. In other words, a set of very simple operations su�ces to build
complex computations. Programmers can con�rm this assertion. Indeed, though a single
line of code could easily be understood, the meaning of the entire program is signi�cantly
harder to catch.

Let us give a simple example due to the mathematician Lothar Collatz. Choose a
positive integer and compute the following: if it is even, divide it by 2 (applying the
elementary function x ↦ x

2), otherwise multiply it by 3 and add 1 (thus applying the
simple function x ↦ 3x + 1). Repeat the preceding operation, but each time starting
from the resulting integer, until you reach the value 1. Will you eventually halts no
matter which integer you initially chose? In spite of the very simplicity of the operations
used, the answer to this question raised almost one century ago, remains one of the
most challenging open problem in discrete mathematics. This perfectly illustrate how
the simplicity of the elementary operations may contrast with the high complexity of
computations they can generate.

Informally, a computational model is the choice of a set of elementary operations.
Fixing them de�nes a notion of computability, i.e., which problems could be solved using
the elementary operations. As said before, for very small sets of very simple operations

1

2 Chapter 1. Introduction

(e.g., addition and multiplication), the model reaches the universal computability level,
i.e., those speci�ed by Alan Turing in the 20's which corresponds to the level reached by
the majority of the programming languages when ignoring the space and time constraints.
This high level of computability has a cost. Indeed, the dynamics of the models (i.e.,
the sequences of operations) are di�cult to grasp and major problems are open (e.g.,
the Collatz problem detailed above), undecidable (i.e., there is no method for solving
these problems), or untractable (that is, the methods which can solve the problem are
unrealizable in practice).

During this PhD, we have studied lower (i.e., non-universal) computational models,
where the elementary operations are very restricted. This approach has two objectives.
On one hand, choosing weak models that are restrictions of some universal one (mainly,
they are restrictions of the well-known Turing machine) allows us to prove properties on
their computations which are more involved in the general model. This kind of results
shades some light on the general model and on the natural complexity of some problems.
On the other hand, such models are more realistic than the universal one and hence their
concrete applications are usable in practice.

De�ning a computational model raises questions. What kind of problems can be
solved or computed, i.e., which notion of computability is de�ned by the model? Does it
specify a known sub-family of problems? Can we characterize it logically or algebraically?
Is the model equivalent to another, i.e., can they mutually simulate? What is the �cost�
of such an equivalence? Which problems are �simpler� to solve with a certain model than
with another?

In this manuscript we study di�erent computational models which we consider under
three distinct motivations. First, when the models are equivalent or at least comparable,
we examine the cost of the simulations between them. More precisely, we ask the question
of the optimal size of a program (i.e., the description of a method) expressed in the �rst
model relative to the size expressed in the second model. This is a typical concern of the
theory of descriptional complexity. Second, we generalize some known models and we try
to specify the computational power so reached. This kind of considerations is connected to
the �elds of algorithmic complexity and descriptive complexity. The former aims to give
the best algorithms (i.e., methods) solving a given problem, for some meaning of �best�
(time complexity, space complexity etc. . .). The latter attempt to characterize some
families of problems by de�ning a computational model which captures exactly the family.
Third, starting from a given model, we consider the iteration of the operations it de�nes.
In other words, we study the meta-model obtained by taking each operation computable in
the original model as elementary operations. This approach quickly reaches the frontier of
decidability. However, by drastically restricting the original model, we obtain interesting

1.2. From Turing machines to �nite automata 3

results that limit the computational power of the meta-model so-obtained. Thus, a wide
gap between low-level computational model is exhibited.

1.2 From Turing machines to �nite automata

1.2.1 Turing machines

In the early 20th century, pioneers of Computer science such as Alan Turing and Alonzo
Church started to formalize the notion of computation. They de�ned an abstract model,
namely the Turing Machine (tm), which captures the notion of computation. Therefore,
a problem is said computable (or solvable) if and only if it may be solved by a tm. This
universality has a cost: tms may use an in�nite amount of memory. Indeed, a tm has
a �nite set of control states which guide its behavior according to a table of rules (the
transitions), but it has access, through a read & write (rw) head, to an in�nite tape.
This model has two unsatisfactory aspects. The �rst one concerns its applications: tms
are unrealizable in practice. The second one is theoretical: due to the unboundedness of
the space, the dynamics of tms are of high complexity and therefore many problems are
unsolvable (e.g., the halting problem) or untractable (e.g., the famous P

?= NP question).
The theoretical limitation leads two families of questions. The �rst is on the dichotomy

solvable versus unsolvable. Some questions of this type are treated in Chapter 6, when
considering the iteration, i.e., the transitive closure, of binary word relations. The second
is the famous opposition: determinism versus nondeterminism. This kind of question
is explicitly studied in Chapter 3. Also, the results in Chapter 5 shows a gap between
the nondeterministic (our results) and the deterministic (known results) cases, when
considering a particular computational model, namely the unary two-way transducers.

1.2.2 Finite automata

The high complexity of tms has led researchers to consider restrictions of the model. The
probably most known but also most drastic such restriction is that of Finite Automata
(fa)1 which was intensively studied since the 50's. In a fa, the tape is bounded by the
length of the input, the head is made read-only (ro) and its moves are restricted to one
direction only, say from left to right. The model so obtained is much less powerful than
the general tm. In particular since no output can be written, fas are acceptors, i.e., the
output is reduced to the binary accepted/rejected. However, thanks to these restrictions,

1The terminology chosen in Chapter 2 refers to the model by Classical Finite Automata (cfa), in
order to save the name fa for a more general variant, namely the two-way nondeterministic fa.

4 Chapter 1. Introduction

the two limitations of tms vanish in the case of fas. On the one hand fas can be and are
really implemented in the industry (e.g., in electronic circuits, in parser speci�cations,
in treatment of natural languages). On the other hand their dynamics are much more
simple to study.

Actually, many properties have been investigated at the beginning of the theory (e.g.,
by Stephen Cole Kleene, Michael Rabin, Dana Scott). Ever since, the theory has de-
veloped tremendously and many connections with other �elds have been established. In
language theory, the sets accepted by fas happen to be exactly the languages generated
by left (or right) linear grammar introduced by Noam Chomsky. The well-celebrated
algebraic characterization of Kleene states that these languages are precisely the rational
subsets of a free monoid. Furthermore, the Büchi-Elgot-Trakhtenbrot Theorem shows
their equivalence with the sets de�nable in Monadic Second Order (mso) Logic. Also
fas enjoy a large amount of properties (e.g., the e�ective closure under Boolean opera-
tions) and powerful mathematical tools (e.g., the determinization procedure for fas, the
pumping Lemma).

1.3 Variants of �nite automata

In this manuscript we study other abstract computational models which can be seen both
as restrictions of tms and as extensions of fas. These variants are obtained by controlling
four parameters: (1) the two-wayness (e.g., one-way, rotating, sweeping and two-way
devices), (2) the nondetermism (e.g., deterministic, unambiguous, outer-nondeterministic
and nondeterministic devices), (3) the size of the alphabets (unary (i.e., single-letter)
alphabet or not) and (4) the output production ability (e.g., recognizers (fa), transducers,
weighted fas, etc. . .).

We are particularly interested in the two-way extension of fas (2fas), i.e., in devices
obtained from classical fas by enabling the head to move to the left, to the right or to
stay in position at each step, according to the transition applied. In other words, these
2fas are read-only Turing Machines. Actually they were considered at the very beginning
of the Theory by Michael Rabin and Dana Scott in [63]. The authors proved that even
the nondeterministic variant (2nfa) is equivalent to one-way deterministic fas (1dfa)
as long as recognition power is considered. However, when considering the size of the
equivalent devices, an exponential blow up can be observed. Technically, there exists a
two-way deterministic fa (2dfa) with n states that has no equivalent 1dfa with less
than 2n states. This typically falls within the area of descriptional complexity.

1.3. Variants of �nite automata 5

1.3.1 Descriptional complexity

The descriptional complexity area aims to detail the reductions between computational
models. Given a problem which is solvable in two computational models, the question
is to determine what is the relative size of the best algorithm in each of these models.
In particular we are interested in the case where the two models are equivalent or where
one is a restriction of the other. The results are mainly of two kinds: upper and lower
bounds. Upper bounds are obtained by controlling the cost of simulation algorithms
between models, while lower bounds are obtained by exhibiting families of instances
which require a minimum size in one model relatively to the other. The second kind of
problems is often more di�cult to obtain since proving that a certain size is required
could be tricky. Combining the two kinds of results, we may obtain tight simulations
which are thus optimal.

Starting from the work of Albert R. Meyer and Michael J. Fischer [57], the domain
has been intensively studied in the context of automata and language theories. Indeed,
the simulations between di�erent variants of fas, mainly involving the two-wayness and
the nondeterminism, has been a particular source of interest in the 70's and 80's and
more recently from the beginning of the century. The two main questions, raised in 1978
by William J. Sakoda and Michael Sipser [68], are the following.

1. What is the minimal size, in terms of states, of a 2dfa equivalent to a one-way
nondeterministic fa (1nfa)?

2. What is the minimal size of a 2dfa equivalent to a nondeterministic 2fa (2nfa)?
The authors conjectured an exponential blow up for both questions. They can be re-
formulated as asking the relative contribution of two-wayness and nondeterminism. For
example, in the �rst case nondeterminism is traded for two-wayness.

Let us focus on this second question which we study in Chapter 3. Despite all e�orts,
exponential gaps were proved only between 2nfas and some restricted weaker versions
of 2dfas . In 1980, Micheal Sipser proved that if the resulting machine is required to be
sweeping (reversing the direction of its input head only at the endmarkers, two special
symbols used to mark the left and right ends of the input), the simulation of a 2nfa is
indeed exponential [74]. However, Piotr Berman and Silvio Micali [6, 58] proved indepen-
dently that this does not solve the general problem: in fact the simulation of unrestricted
2dfas by sweeping 2dfas also requires an exponential number of states. Sipser's result
was generalized by Juraj Hromkovi£ and Georg Schnitger [39], who considered oblivious
machines (following the same trajectory of input head movements along all inputs of
equal length) and by Christos A. Kapoutsis [45], considering 2dfas with the number of
input head reversals that is sublinear in the length of the input. However, even the last
condition gives a machine provably less succinct than unrestricted 2dfas, and hence the

6 Chapter 1. Introduction

general problem remains open.

Starting from 2003 with a paper by Viliam Ge�ert et. al. [32], a di�erent kind of
restriction has been investigated in this context: the subclass or regular languages using
a single-letter input alphabet . Even under this restriction, the problem of Sakoda and
Sipser looks di�cult, since it is connected with L

?= NL, an open question in complexity
theory. (L and NL denote the respective classes of languages accepted in deterministic and
nondeterministic logarithmic space.) In [32], a new normal form was obtained for unary
automata, i.e., for automata with a single-letter input alphabet. In this form all nondeter-
ministic choices and input head reversals take place at the endmarkers only. Moreover,
the state-size cost of the conversion into this normal form is only linear . This normal form
is a starting point for several other properties of unary 2nfas. First, in the same paper,
each n-state unary 2nfa is simulated by an equivalent 2dfa with O(n⌈log2(n+1)+3⌉) states,
which gives a subexponential but still superpolynomial upper bound. It is not known
whether this simulation is tight. However, a positive answer would imply the separation
between the classes L and NL. In fact, under assumption that L = NL, each unary 2nfa
with n states can be simulated by a 2dfa with a number of states polynomial in n [34].
A minor modi�cation of the proof (without the necessity of assuming L = NL) gives that
each unary 2nfa can be made unambiguous, keeping the number of states polynomial.
(For further connections between two-way automata and logarithmic space, we address
the reader to [7, 44, 46].)

Along these lines of investigation, in [33], the problem of the complementation for
unary 2nfas has been considered, by proving that for each n-state 2nfa accepting a
unary language L there exists a 2nfa with O(n8) states accepting the complement of L.
The proof combines the above normal form for unary 2nfas with inductive counting
arguments.

Christos A. Kapoutsis [42] considered the complementation in the case of general
input alphabets, but restricting the input head reversals. He showed that the comple-
mentation of sweeping 2nfas requires exponentially many states, thus emphasizing a
relevant di�erence with the unary case.

In this present work, we use a di�erent approach. Instead of restricting the power of
2dfas to the degree for which it is already possible to derive an exponential gap between
the weaker model and the standard 2nfas, we increase the power of 2dfas, towards
2nfas, to the degree for which it is still possible to obtain a subexponential conversion
from the stronger model to the standard 2dfas. Such new stronger model then clearly
shows that, in order to prove an exponential gap between 2nfas and 2dfas, one must
use capabilities not allowed in the proposed new model.

1.3. Variants of �nite automata 7

1.3.2 Finite automata with outputs

Though the main limitation of �nite automata is the �niteness of their memory, another
is that fas are recognizers while tms are computing machines. Indeed, the former model
is limited to accept or reject an element (hence has a binary output), while the latter
may generate an output depending on the run on the input. Extending the model of
fa in order to compute more general objects, such as relations or functions on words or
formal series on a semiring, is hence a natural progression in the theory of computational
complexity.

In 1959 Michael Rabin and Dana Scott introduced the model of multitape �nite au-
tomata [63]. In this model, the device is provided with several tapes scanned from left
to right by independent heads, one for each tape, that may move at di�erent speeds.
The device hence recognizes tuples of words, in which each component plays the same
role. In fact, the model remains a recognizer because no output is produced, but it may
accept more general mathematical objects (namely the n-ary relations on words, for a
n-tape fa) than classical fas.

Another idea was followed by George H. Mealy in 1955 [56] and, independently, by
Edward F. Moore in 1956 [59]. They both provided the deterministic fas with a pro-
duction function, respectively mapping the transitions used or the state visited in a run
into a �nite output alphabet, hence producing an output word of the same length as the
input. Later, the models were generalized by Calvin C. Elgot and Jorge E. Mezei leading
to the model of transducer [23]. A transducer is a nfa which may perform stationary
moves on the input and produces at each step a word which is appended on an additional
write-only output tape. In this way it de�nes a binary word relation which is called a
transduction. Transducers are equivalent to 2-tape fas, as far as recognition power of
the nondeterministic version is taken into consideration. Technically, the only di�erence
between transducers and 2-tape fas is that in the latter case the �output� preexists the
computation.

Some results on fas extend to transducers. The probably most typical one is the
well-known characterization of transductions as rational subsets of the Cartesian product
of two free monoids (see for instance [9, Theorem III 6.1]). However, a lot of other results
on fas do not extend: e.g., transductions are not closed under complementation hence
not under intersection, the deterministic and nondeterministic variants are not equivalent
and the equivalence of transducers is undecidable.

It is convenient to view transductions as special cases of formal power series with
coe�cients in a semiring K, i.e., of functions of the free monoid Σ∗ into K or equivalently
of formal sums of words in Σ∗ with coe�cients in K [11, 67]. We now quickly justify
this viewpoint. To begin, some formalism is required (it may help the reader to have

8 Chapter 1. Introduction

the nonnegative integers in mind when reading the next lines). A semiring is a domain
along with two operations + and ⋅, call them �addition� and �multiplication� to �x ideas,
which satisfy simple properties: + is commutative and associative and possesses a unit 0,⋅ is associative, distributes over + and possesses a unit 1 and 0 is an absorbing element
for ⋅. The operations may be interpreted in many di�erent domains. For example, with
the family of subsets of the free monoid Σ∗, the addition may be interpreted as the set
union and the multiplication as the set concatenation and under this interpretation the
properties are clearly satis�ed. The same observation holds for the family Rat(Σ∗) of
rational languages in Σ∗. Polynomials are formal series which have only �nitely many
nonzero coe�cients.

The semiring structure of K can be extended to the formal series. Two series σ, τ can
be added σ + τ and multiplied στ applying the same rules as for polynomials (i.e., the
Cauchy product). The set of rational series Rat(K ⟨⟨Σ∗⟩⟩) is the family of series obtained
from the polynomials by applying the operations of sum, product and the so-called Kleene
star an arbitrary number of times.

In order to study e�ective families of series, the notion of weighted automata (K-fa)
was introduced. They are de�ned in the same way as transducers except that the output
associated with a transition belongs to K [70, 71, 10, 21]. They specify a formal power
series which associates to every input w in Σ∗ an element of K, which is the sum over
all successful runs labeled by w of the product along the run of the outputs associated
to the transitions. The fundamental theorem of Kleene-Schützenberger claims that they
are precisely the rational series.

Weighted automata have been studied in many di�erent contexts. For instance, on
the tropical semiring ⟨N ∪ {∞},min,+⟩ they have led to the notion of distance automata,
a topic that was intensively studied [37, 53, 50, 54, 48]. Though they are not considered
in these terms, probabilistic automata may be viewed as particular K-fas (at each step
the weights of the possible transitions sum up to 1) on the semiring of nonnegative real
numbers (R+), see [61, 62]. In this manuscript, we will be more particularly interested
in the case where we can identify power series with transductions, i.e., K = Rat(Σ∗).
However, for the sake of generality, many preliminary results are proved for more general
semirings (Chapters 2 and 4).

Two-way K-fas and two-way transducers

Unlike the case where K is the Boolean semiring with two values 0 and 1, the properties
of the automaton underlying a K-fa for a general K impact the output produced. Hence
it is no longer super�uous to assume that the automaton is one- or two-way, deterministic
or nondeterministic etc. . . This is the reason why we investigate which of the restrictions

1.3. Variants of �nite automata 9

are equivalent and which are di�erent. Though the literature on (one-way) transducer
and K-fas is quite rich, it is no longer the case when considering the two-way variants.
As far as we can reconstruct the history, the �rst indirect approach was in the context
of probabilistic devices. Indeed, two-way probabilistic automata work in R+ and in that
respect, the works of Janis Kaneps and Rusins Freivalds [41, 27], or Marcella Anselmo
and Alberto Bertoni [3], fall into the category of two-way weighted automata but they
were not investigated as such. With the only exception of [2], it is only recently that
they were considered as a �eld of its own, see [12, 13, 55]. Concerning the special case
of two-way transducers, the research dates back to the seventies but focused on the
functional case [20, 18]. As a major result, Joost Engelfriet and Hendrik Hoogeboom
proved that two-way functional transductions can be recognized by deterministic two-
way tansducers. Furthermore they characterized them in terms of mso logic [24]. With
the result of Eitan M. Gurari this implies that the equivalence of two-way functional
transducers is decidable [36]. Let us also mention that it is decidable whether a two-
way [26] or sweeping [5] functional transducer admits an equivalent one-way transducer.

In this manuscript we follow another idea. Instead of restricting the capabilities of
the transducer, we choose to restrict the input and/or output alphabets which allows
us to obtain an algebraic characterization for the general case. This characterization is
obtained by introducing new algebraic operators on formal series, that better capture the
behavior of two-way K-fas than the traditional rational operations.

Indeed, given to series σ and τ accepted by two one-way K-fas, it is a simple exercise
to build K-fas accepting σ+τ , στ or σ∗. This is no longer the case for the two-way K-fas.
However, we exhibit three possible abilities of two-way K-fas: (1) the ability to perform
two successive computations on the same input separated by a rewind of the input head;
(2) the ability to repeat an arbitrary number of times a computation on the same input;
(3) the ability to scan the input word from right to left. These three abilities can be
described by algebraic operations: (1) corresponds to the Hadamard product of series (K-
fa) where the coe�cients associated to the same input in two series are multiplied (see
for instance [66, De�nition III 1.2]); (2) can be described by a new operator of arity 1,
called Hadamard star, where the coe�cient associated to an input in the Hadamard star
of a series σ is the in�nite sum of the successive powers of the corresponding coe�cient
in σ; (3) is captured by the mirror operation, consisting of reversing the input.

It happens that these three operations characterize precisely the series realized by
sweeping K-fas (the head may change direction at the two boundaries of the input tape
only). Indeed, these series are exactly the Mirror-Hadamard series (MHad), i.e., the
series which can be obtained from rational series by applying the operations of sum,
Hadamard product, Hadamard star and mirror an arbitrary number of times (observe
the analogy with the family of rational series). In the case of transducers and under

10 Chapter 1. Introduction

the assumption that both the input and output alphabets are reduced to a single letter,
we prove that the characterization extends to unrestricted two-way transducers (Theo-
rem 16), showing in particular that unary two-way transducers can be made sweeping.
This no longer holds when at least one alphabet is non-unary (Theorems 19 and 20).

These results contrast with the deterministic (or functional) case. Indeed, it can be
deduced from [2] (and recovered in our construction, see Corollary 19) that functional
two-way transducer with a unary output alphabets are equivalent to one-way transducer.
Because the family of Mirror-Hadamard series strictly extends those of rational series even
in the unary case, our results show how two-wayness and nondeterminism are crucial.

1.4 Iteration of binary relations on words

Since the rational relations considered in this manuscript are binary, there remains to
study a natural operation, namely the composition of relations with the usual meaning
of the word. It is well-known that composing two rational relations yields a rational
relation. We consider the transitive closure of rational relations under composition, i.e.,
R∪R○R∪R○R○R∪. . . for some rational relation R. Since, by the high complexity of this
�operation� we are led to study subfamilies of rational relations, it is more convenient to
use the equivalent de�nition of rational relations as subsets of pairs of words recognized
by 2-tape 1fa. This �eld has been studied either directly ([75, 52]) or indirectly ([17, 51]).
A transition of a Turing machine, i.e., one step computation, de�nes a binary relation
on the set of con�gurations. Properly encoded this is a rational relation over a �nite
alphabet. Actually since two successive con�gurations di�er only locally, the relation
thus de�ned belongs to the subfamily of synchronous relations, i.e., relations accepted
by 2-tape 1fa with both heads moving at the same speed until one arrives at the right
border of the corresponding tape. The reachability problem of Turing machines can
thus be viewed as a problem on iteration of a rational relation. Consequently, the in�nite
iterate of a rational relation can be a nonrecursive set. We focus on low levels of relations,
because even with the simple subfamily of synchronous relations, the transitive closure
is Turing complete. Also on one-letter alphabets, undecidability can be obtained by
iterating rational relations. This result is due to John H. Conway by elaborating on
the famous Collatz problem. Instead of arbitrary linear functions on the integers such
as in Collatz problem, we consider unary synchronous relations on a unary alphabet.
These relations, when viewed as relations on N in the natural identi�cation of the free
monoid generated by unique generator with the set of nonnegative integers, are simple
binary relations one form of which is the set of pairs (Mn + i,Mm + j) for some �xed
integers 0 ≤ i, j <M where n ≤m are arbitrary integers. In that case, not only the in�nite
iterate of such relations is a recursive set, but the family of unary synchronous relations

1.5. Outline 11

is closed under transitive closure of the composition of relations. Intuitively this is due to
the fact that we cannot multiply or divide an integer by some integer greater than 1 and
thus the model cannot simulate a Minsky machine as done in Conway's construction.

1.5 Outline

We now brie�y present the contents of the di�erent chapters of the manuscript in the
order of appearance, and highlight the main contributions.

Preliminaries (Chapter 2)

We gather all prerequisites of the investigations of this manuscript. The di�erent versions
of �nite automata are recalled, starting from the simplest one and proceeding to the more
general ones. We show several ways of providing automata with di�erent types of outputs
in order to convert an accepting into a producing device. We �rst de�ne the weighted
automaton model and then, as a particular case, the model of transducers. For the
convenience of the reader we the basics and elementary properties are recall but we refer
to di�erent textbooks on the topic for further details, e.g. [8, 21, 66].

Outer-nondeterministic �nite automata (Chapter 3)

Di�erent issues of descriptional complexity on two-way nondeterministic �nite automata
(2nfas) are addressed. We consider the famous problem of the cost, in terms of size, of
the simulation of a 2nfa by its deterministic counterpart (2dfa). The question raised
in 1978 by Sakoda and Sipser [68] who conjectured that it is exponential, remains open
in spite of all attempts to solve it.

We focus on a weaker question: the simulation by 2dfas, of two-way outer-nondeter-
ministic �nite automata (2onfa), that are de�ned as 2nfas with nondeterministic choices
restricted to the endmarkers [31]. The approach is quite new since we do not restrict the
simulating machine but rather the simulated one, contrary to numerous works in this area
(e.g., [74, 39, 45]). We prove several results, including the complementation of 2onfa
with polynomial cost (Theorem 8) and a subexponential simulation between the two
devices (Theorem 9), which turns out to be polynomial under the assumption L = NL
(Theorem 10). Hence, a superpolynomial lower bound for the simulation of 2onfa by
2dfa would imply the separation of the two classes. This last result can be adapted in
order to convert a 2onfa into an unambiguous one, with still a polynomial cost (The-
orem 11). Finally, the alternating case is considered (see [43, 30]). We de�ne two-way
outer-alternating �nite automata (2oafas) similarly as 2onfas, thus restricting both

12 Chapter 1. Introduction

universal and existential choices to occur at the endmarkers only. Under the assump-
tion L = P (resp. NL = P) (where P denote the class of languages accepted in deter-
ministic polynomial time), we prove that each 2oafa is equivalent to some 2dfa (resp.
2onfa) with a polynomial number of states (Theorems 12 and 13). These results involve
techniques developed in [73] and adapted to sweeping 2onfa in [33] when considering
the Sakoda and Sipser's problem restricted to the unary case, i.e., when the alphabet is
restricted to a single letter.

Super- and sub-classes of rational series (Chapter 4)

We introduced in Chapter 2 the basics on formal series on a semiring K. Here we study
further operations on these objects. With the identi�cation of a relation in Σ∗ ×∆∗ with
a function of Σ∗ into the powerset of ∆∗, i.e., with a series in the semiring K = 2∆∗ , these
operations make sense for relations in Σ∗ ×∆∗.

As seen in the preliminaries, the notion of rational relations or series requires the use of
union (or sum), product and Kleene star. We introduced in a previous publication [15] a
new operation which we called Hadamard star because it shares with the usual Hadamard
product the fact that it is de�ned pointwise on power series. Provided the coe�cients
in K have a Kleene star, the coe�cient of the Hadamard star of a series is the Kleene star
of the coe�cient of the series (the in�nite sum 1+k+k2+ . . . where k ∈ K is well-de�ned).

Some operations are speci�c to word relations while some others are meaningful for
general semirings. E.g., exchanging the two components of a binary relation does not
make sense for all semirings. On the contrary the mirror operation is essentially mean-
ingful for series seen as a function of the free monoid into a semiring since it takes the
mirror image of the argument. For binary relations the mirror image can be taken in-
dependently or simultaneously for both components. Some closure issues under these
operations are solved and others are left as interesting themes to be investigated. By
doing this, we reveal the contribution of some operations. For instance, we show in
Proposition 12 that the mirror of a rational relation cannot be obtained from rational
relations using the Hadamard operations and the sum only, thus showing that the mirror
is crucial for the study of two-way transducers. We also give some clue on the problem
of rational relations whose mirror are also rational.

The purpose of introducing new operators is to possibly capture certain aspects of
the behavior of a two-way transducer. Intuitively, the Hadamard star re�ects the fact
that the transducer can repeatedly execute several computations on the same input but
always in the same direction. The possibility for a two-way transducer to read backwards
is re�ected in the mirror operator. Is there a collection of operators that de�ne two-way
transductions the way the rational operators de�ne the rational relations? All we can say

1.5. Outline 13

is that in the case of sweeping transducers the operations of sum, Hadamard product,
Hadamard star and mirror are precisely those operations that simulate their dynamics
(Corollary 4).

Unary two-way transducers (Chapter 5)

We focus on relations in Σ∗ ×∆∗ de�ned by two-way transducers where Σ or ∆ or both
are unary. We obtain a complete algebraical characterization when both alphabets are
unary (Theorem 16): they are precisely what we call Hadamard relations which are the
closure of the rational relations under �nite union, Hadamard product and Hadamard
star (operations de�ned in Chapter 4). By passing we show that these relations have
a very simple expression in which Hadamard product and Hadamard star have depth
less than or equal to 1 (Proposition 32). This is reminiscent of the rational relations
in N × N which have very simple rational expressions (technically they are semilinear
subsets). This implies in particular that any two-way transducer with unary input and
output alphabets is equivalent to a sweeping two-way transducer that can be e�ectively
constructed. A natural question is to ask whether or not the result applies to relations
de�ned by more general two-way transducers. A careful consideration on the images of
each input allows us to prove that when the input alphabet is no longer unary, even
in the case of a unary output alphabet, the Hadamard relations are strictly included in
the two-way transductions (Theorem 19). An adhoc argument shows that even when
assuming the input alphabet is unary, general two-way transductions strictly include the
relations de�ned by sweeping transducers (Theorem 20).

The central construction developed for the characterization of Theorem 16 allows us
to prove additional results in the case where the output alphabet only is unary. Firstly, if
the initial two-way transducer is loop-free, i.e., if every successful run is linearly bounded
in the length of the input2, we can recover Anselmo's result [2] stating in a more gen-
eral framework the e�ective equivalence between such transducers and one-way trans-
ducer. Hence, in that case (e.g., functional or unambiguous), the transductions accepted
are rational (Corollary 19). This has to be confronted with Theorem 19 mentioned
above, which shows that nonfunctional transductions with unary outputs are not even
Mirror-Hadamard (the closure of rational transductions under sum, Hadamard product,
Hadamard star and mirror). Secondly, by simply ignoring the possible loops, we may
tackle the uniformization problem of two-way transductions. Given a two-way trans-
duction, the problem consists of asking whether or not it contains a functional two-way
transduction of the same domain. Indeed, we prove a strong positive answer: two-way

2In fact, it su�ces to ask the device to have no �useful� loops, where �useful� means reachable in a
successful run and producing a nonempty output.

14 Chapter 1. Introduction

transductions with unary outputs can be e�ectively uniformized by one-way (not only
two-way) transducers (Corollary 20).

Iteration of binary relations on words (Chapter 6)

We study the composition of binary word relations. More precisely, we consider the iter-
ated, i.e., transitive closure, of these relations. For some subfamilies of rational relations
we recover the known fact that these transitive closures are non-recursive. In particular,
since the computational steps of a Turing machine can be encoded in a synchronous re-
lation, such a relation could have a non-recursive iterated. Moreover, it follows from the
work of John H. Conway that the same holds for rational unary functions (Theorem 29).

Working on weaker subfamilies we prove after David Simplot and Alain Terlutte [75]
that the iterated of length-preserving rational relations is NL-complete, i.e., it can be
nondeterministically recognized in logarithmic space (Theorem 26) and conversely it cap-
tures any computations of a logarithmic space bounded Turing machine (Theorem 27).
Considering the unary case, by stating a normal form for unary synchronous relations
(Theorem 24), we are able to prove that this family is closed under iteration (Theo-
rem 28). This last contribution contrasts with the previously mentioned result where
unary rational functions were proved to have a non-recursive transitive closure.

Chapter 2

Preliminaries

In this chapter we collect all the material necessary for the exposition of the rest of the
manuscript. With very few exceptions, we adopt the well-established de�nitions in the
literature and we recall the most important results. Some constructions can be considered
as routine, but we detail them for the convenience of the reader.

The �rst section is standard. In the second section, we consistently adopt the for-
malism of power series in order to study binary relations on the product of free monoids.
Finally, in the third section, we introduce di�erent kind of �nite state machines, from the
most famous one to the more general one. Some basics or known results are given.

2.1 Basic de�nitions and notations

2.1.1 Sets and monoids

We denote sets by capital letters and the empty set is denoted ∅. The powerset of a X
is denoted 2X . The cardinality of X, denoted ∣X ∣, is the number of elements in X if it is
�nite, and ∞ otherwise. If ∣X ∣ is equal to 1, then X is a singleton.

A monoid is a structure ⟨M, ⋅,1⟩ where M is a set and ⋅ is an associative binary
operation on M , admitting a neutral element 1. When the context is clear, we may
simply denote it by M . The closure of a subset X of M by ⋅ is the smallest monoid
containing X denoted X∗. Equivalently, it is the smallest set Y such that:

� X ∪ {1} ⊆ Y and

� x,x′ ∈ Y Ô⇒ x ⋅ x′ ∈ Y
15

16 Chapter 2. Preliminaries

If ⟨M, ⋅⟩ is equal to X∗ for some X ⊂M , then M is generated by X. We are particularly
interested in �nitely generated monoids, i.e.monoidX∗ withX �nite. When the elements
of M = X∗ are the �nite sequences of symbols in X, that is, when the ⋅ operation is the
string concatenation, we say that M is the free monoid on (or generated by) X.

When M is a commutative monoid, we prefer to use the symbol + instead of ⋅ and 0
instead of 1.

This document deals mainly with families of subsets of monoids, essentially free
monoids and direct product of free monoids. We give the two most famous families.

De�nition 1 (Rational subsets). Given a monoid M , the family Rat(M) of ratio-
nal subsets of M is the least family which contains the singletons and closed under
set union, set product ((X,Y) ↦ X ⋅ Y ∶= {x ⋅ y ∣ x ∈X, y ∈ Y }) and Kleene star
(X ↦X∗ ∶= {x1 ⋅ . . . ⋅ xn ∣ n ≥ 0 and xi ∈X}, with the convention x1 ⋅ . . . ⋅ xn = 1 if n = 0).

De�nition 2 (Recognizable subsets). Given a monoid M , the family Rec(M) of rec-
ognizable subsets of M is the family of subsets X ⊆ M for which there exists a mor-
phism φ ∶M → F where F is a �nite monoid, such that X = φ−1(φ(X)).

The family of recognizable subsets of direct product of two monoidsM×N has a simple
characterization in terms of the recognizable subsets of each monoids. This important
result will be applied where M and N are two free monoids. It extends also to direct
product of �nitely many monoids, but we will not need this extension.

Theorem 1 (Elgot and Mezei [23]). A subset of the direct product of two monoids M
and N is recognizable if and only if it is a �nite union of the direct product of a recognizable
subset of M and a recognizable subset of N .

2.1.2 Alphabets, words and languages

An alphabet Σ is, in our context, a �nite set whose elements are the symbols. We denote
by Σ∗ the free monoid generated by Σ. An element u of Σ∗ is a word. Its length is
denoted ∣u∣. The empty word, denoted ε, has length 0. The concatenation of two words u,
v in Σ∗ is denoted uv. The element ε is the unit of the concatenation.

A word u is a factor of a word v if there exist u′, u′′ ∈ Σ∗, such that v = u′uu′′. If
moreover u′ = ε (resp. u′′ = ε) then u is a pre�x (resp. a su�x) of v. A factor u of v is
proper if u ≠ v.

2.1. Basic de�nitions and notations 17

A language on Σ is a set of �nite words on Σ i.e., a subset of Σ∗. The concatenation
operator extends to languages as follows:

L ⋅L′ ∶={uu′ ∣ u ∈ L and u′ ∈ L′}
When L = {u} (resp. L′ = {v}), we simply write u⋅L′ (resp. L′⋅v). The structure ⟨2Σ∗

, ⋅,{ε}⟩
is a monoid. Observe that ∅ is an absorbing element for the language concatenation.

From language concatenation, it is possible to inductively de�ne the powers of a
language:

L(0) ∶={ε}
L(i+1) ∶=L(i) ⋅L

For a word u and an integer k, we denote uk the unique element of the singleton {u}k.
The Kleene star of a language is de�ned as:

L∗ ∶= ⋃
i≥0

L(i)

In other words, L∗ is the closure by ⋅ of the subset L ∪ {ε}. We denote by u∗ the
language {u}∗ for any word u. Observe that, considering Σ as the language of all words
of length 1, the language Σ∗ is the set of all �nite words. Hence the notation ∗ makes
sense.

In the present document, we mainly deal with �nite words. However, because it is
convenient to view runs in a computation as words, we are led, further in this manuscript,
to consider in�nite words in order to describe non halting computations. In particular,
given a �nite word u, we denote uω the in�nite sequence composed of in�nitely many
successive occurrences of u.

The mirror of a word u = u1⋯un, where the ui's are symbols, is the word u = un⋯u1.
We pose ε = ε. The mirror is an involution, i.e., u = u for any u. We may extend the
mirror to the mirror of a language L, denoted L, which is the language L = {u ∣ u ∈ L}.
By involution, for any L we have L = L.
2.1.3 Relations and functions

We denote X × Y the Cartesian product of X and Y , i.e., the set {(x, y) ∣ x ∈X, y ∈ Y }.
A subset R ⊆ X × Y is a relation on X × Y . The domain of R, denoted Dom(R), is the
set:

Dom(R) ∶={x ∣ ∃y ∈ Y, (x, y) ∈ R}

18 Chapter 2. Preliminaries

It is empty if and only if R is empty. If Dom(R) = X, the relation R is total, otherwise
it is partial. Given an element x ∈X, the image of x by R is the set:

R(x) ∶={y ∣ (x, y) ∈ R}
and it is empty if and only if x ∉ Dom(R). The image of R, denoted Img(R), is the
union over X of all images by R, i.e.,

Img(R) ∶= ⋃
x∈XR(x) = {y ∣ ∃x ∈X, (x, y) ∈ R}

It is empty if and only if R is empty. If Img(R) = Y , the relation R is said surjective.
Given an element y ∈ Img(R), the pre-image of y by R, denoted R−1(y), is the set:

R−1(y) ∶={x ∣ y ∈ R(x)} = {x ∣ (x, y) ∈ R}
The relation R is injective if for each y ∈ Img(R), the pre-image of y by R is a singleton.
It is bijective if it is both injective and surjective.

If for each x ∈ Dom(R), R(x) is a singleton, R is functional. In this case, it is
convenient to identify R(x) with its unique element, when the context is clear. Observe
that, with our conventions, there are non-functional bijective relations.

Let R be a relation on X × Y . Then, R may be seen as the functional relation R̃
on X × 2Y de�ned by R̃(x) ∶= {R(x)} for each x ∈ X. Observe that there exists non-
injective relations whose associated functional relation is injective.

Restrictions: Given X ′ ⊆X and Y ′ ⊆ Y , the restriction of R to X ′×Y ′, denoted R∣X′×Y ′ ,
is the intersection of R with X ′ × Y ′, i.e.,

R∣X′×Y ′ ∶=R ∩X ′ × Y ′
In particular, the restriction of R to Dom(R) × Img(R) is a total surjective relation.
When Y ′ = Y , we simply write R∣X′ rather than R∣X′×Y .

2.2 Formal power series

A semiring is a structure ⟨K,+, ⋅,1,0⟩ where + and ⋅ are two operations usually called
addition and multiplication. The addition provides K with a structure of a commutative
monoid with 0 as neutral element, and the multiplication provides K with a structure of
a monoid with 1 as neutral element. The element 0 is absorbing for the multiplication.
Furthermore, the multiplication distributes over the addition. A typical example is the
set of non-negative integers N with the usual operations of addition and multiplication.
A ∗-semiring is a semiring provided with an internal operator star of arity 1.

2.2. Formal power series 19

2.2.1 General de�nitions

Let ⟨K,+, ⋅,1,0⟩ be a semiring and let Σ be an alphabet. A formal power series σ on Σ∗
with coe�cient in K is a mapping from Σ∗ to K. Formally, we denote σ as an in�nite
sum:

σ = ∑
w∈Σ∗

⟨σ,w⟩w
where ⟨σ,w⟩ is the image of w, also called the coe�cient of w, in σ. The series is constant
if all its images are equal. The support of σ, denoted Supp(σ), is the language of words
with non-zero image in σ, i.e.:

Supp(σ) ∶= {w ∈ Σ∗ ∣ ⟨σ,w⟩ ≠ 0}
The set of all series on K with coe�cient in Σ∗ is denoted K ⟨⟨Σ∗⟩⟩.
De�nition 3. A polynomial is a series with �nite support. The family of polynomials
is usually denoted K ⟨Σ∗⟩, but we prefer the more suggestive notation Pol(K ⟨⟨Σ∗⟩⟩), or
simply Pol when K and Σ are understood.

De�nition 4. A series is proper if the coe�cient associated to the empty word (the con-
stant term) is 0 i.e., if ⟨σ, ε⟩ = 0. The family of proper series is denoted Prop(K ⟨⟨Σ∗⟩⟩)
or simply Prop when K and Σ are understood.

2.2.2 Rational operations on series

Now, we recall the main operations on series, namely the rational operations.

The sum

The sum over K extends in a natural way to the sum of series as:

σ + τ ∶= ∑
w∈Σ∗

(⟨σ,w⟩ + ⟨τ,w⟩)w
Trivially, the zero series 0+ ∶= ∑w∈Σ∗ 0w is the neutral element for the sum. Observe that
the sum of two polynomials (resp. a proper series) is a polynomial (resp. proper series).
Hence, both Pol and Prop are closed under sum.

20 Chapter 2. Preliminaries

The Cauchy product of series

We de�ne the Cauchy product of σ and τ as:

σ ⋅ τ ∶= ∑
w∈Σ∗

(∑
uv=w ⟨σ,u⟩ ⋅ ⟨σ, v⟩w)

The Cauchy product admits a neutral element, the polynomial 1 ⋅ which maps the empty
word ε to 1 and other words to 0, i.e., the series de�ned by:

⟨1 ⋅ ,w⟩ ∶= { 1 if w = ε;
0 otherwise.

The families Pol and Prop are closed under Cauchy product.

We can inductively de�ne the powers of σ under the Cauchy product :

σk ∶= { 1 ⋅ if k = 0;
σ ⋅ σk−1 otherwise.

In particular, for any σ we have σ0 = 1 ⋅ and σ1 = σ.
The Kleene star of a series

The Kleene star of σ is:

σ∗ ∶= ∑
k∈Nσ

k = ∑
w∈Σ∗

⎛⎜⎝ ∑
u1⋯uk=w

k∈N

⟨σ,u1⟩⋯⟨σ,uk⟩⎞⎟⎠w
when the in�nite sum of coe�cients inside the parenthesis is well-de�ned.

Observe that when σ is proper, σ∗ is always de�ned since every word has �nitely many
decompositions. In that case, the coe�cient of w in σ∗ is equal to:

⟨σ∗,w⟩ = ⟨⎛⎝ ∑
0≤k≤∣w∣σ

k
⎞⎠ ,w⟩

Notice that the resulting σ∗ is not proper since ⟨σ∗, ε⟩ = 1.

2.2. Formal power series 21

Rationally additive semirings

The Kleene star in K ⟨⟨Σ∗⟩⟩ is only a partial operator because it is not always de�ned for
non-proper series (for example, consider the semiring of non-negative integers). There
exist di�erent assumptions under which it is de�ned. Such a condition is that K satis�es
di�erent properties that make it a so-called rationally additive semiring. We refer to [25,
p.3] for a precise de�nition. Su�ce it to say that for every x, the in�nite sum 1+x+x2+. . .,
denoted x∗, is well-de�ned and that further axioms, such as distributivity over in�nite
sums and associativity extended to in�nite sums, are satis�ed.

A �rst consequence is that the Kleene star in K ⟨⟨Σ∗⟩⟩ is always de�ned. A second
one is that the star operator can be extended to square matrices X in Kn×n, in such a
way that X∗ is the in�nite sum of the successive powers of X (the product of matrices is
the usual product with the two operations of K, and the (i, j)-entry of X∗ is the in�nite
sum of the (i, j)-entries of the successive powers of X). Formally,

Theorem 2 ([25, Theorem 9]). If K is rationally additive, then so is Kn×n for n > 0.

Scalar product

Given an element k of K and a series σ in K ⟨⟨Σ∗⟩⟩, we de�ne the left (resp. right) scalar
product of σ by k as follows:

(left) k ⋅ σ ∶= ∑
w∈Σ∗

(k ⋅ ⟨σ,w⟩)w (right) σ ⋅ k ∶= ∑
w∈Σ∗

(⟨σ,w⟩ ⋅ k)w
Considering the series kε, which associates k to the empty word and 0 to the other

words, we have: kε = k ⋅1 ⋅ where 1 ⋅ corresponds to the series 1ε as de�ned in Section 2.2.2.
Trivially, for any k and any σ we have k ⋅ σ = (kε) ⋅ σ and σ ⋅ k = σ ⋅ (kε). Thus, the scalar
product may be considered as syntactic sugar referring to a particular Cauchy product.

2.2.3 Rational series

The sum, the Cauchy product and the Kleene star are called rational operations. Provided
that the semiring K has the property that the series σ∗ is well de�ned for every σ, we
have:

De�nition 5. The family of rational series, denoted Rat(K ⟨⟨Σ∗⟩⟩) or simply Rat, is
the closure of Pol(K ⟨⟨Σ∗⟩⟩) under rational operations.

Precisely, it is the least family F of series containing Pol and satisfying the three
following conditions:

σ, τ ∈ F ⇒ σ + τ ∈ F σ, τ ∈ F ⇒ σ ⋅ τ ∈ F σ ∈ F ⇒ σ∗ ∈ F

22 Chapter 2. Preliminaries

2.2.4 Restriction to a recognizable language

We introduce a special operation, which consists in restricting the support of a series to
a given language. Given a language L and series σ, the restriction of σ to L is the series:

σ∣L ∶= ∑
w∈L ⟨σ,w⟩

We are mainly interested in the case where the language L is recognizable (see De�-
nition 2).

Proposition 1 (Support restriction to recognizable language). Let σ be a series in K ⟨⟨Σ∗⟩⟩
and let L be a recognizable language on Σ. If σ belongs to Pol, Prop or Rat, then so
does σ∣L.
Proof. We anticipate on the presentation of K-fas (see De�nition 11). The Theorem of
Kleene-Schützenberger (see, for instance [66, Theorem III.3.5]) establishes the equality
between Rat(K ⟨⟨Σ∗⟩⟩) and the set of series recognized by 1-way K-fa (see Section 5).
It su�ces to observe that σ∣L is accepted by the product of the K-fa accepting σ with
the ordinary �nite automaton recognizing L.

2.3 Finite automata

2.3.1 Classical �nite automaton

In the case of M = Σ∗, the well-celebrated Theorem of Kleene gives an alternative de�-
nition of the family Rat(M) (see De�nition 1), in terms of �nite automata. We brie�y
recall the de�nition in this paragraph.

There are di�erent versions of �nite automata in the literature. We start with the
most basic one, to which we refer as the classical �nite automaton or simply the classical
automaton, in order to distinguish it from the more general one given later on (see De�-
nition 7). This device is composed in one read-only tape scanned in one direction by an
input head, and a �nite control, storing at each instant a current state.

De�nition 6. A Classical �nite automaton (cfa) is a tuple A = (Q,Σ, I, F, δ) where:

� Q is a �nite set, whose elements are states;

� Σ is the input alphabet;

� I and F are two subsets of Q, whose elements are respectively the initial and the
accepting states;

2.3. Finite automata 23

� δ is a subset of Q×(Σ ∪ {ε})×Q, whose elements are the transitions of the classical
automaton. We assume that δ ∩ (F × {ε} ×Q) is empty.

The behavior of a cfa A is as expected: an input word u = u1u2⋯un ∈ Σ∗ is written on
the tape, one symbol per cell. Initially, the input head is positioned on the leftmost cell,
i.e., scanning u1, and the �nite control is in a state in I. At each step, the automaton
chooses a transition (q, c, q′) in δ such that q is the current state and c is either ε or the
symbol currently scanned by the input head. Then the automaton enters the state q′,
and if c ≠ ε, the input head is moved one cell to the right. The automaton accepts the
word u if it eventually enters some state in F with the input head positioned on the �rst
empty cell to the right of the input word. Observe that, due to the restriction on δ, no
more transition can be applied, and hence the automaton halts. The set of all words
accepted by a A is the language accepted, denoted ∣∣A∣∣. Two automata are equivalent if
they accept the same language.

Graph representation

The graph representation of a classical �nite automaton (Q,Σ, I, F) is the edge-labeled
graph (Q,E, `) where E is the set of edges e = (q, q′) labelled by `(e) = c ∈ Σ ∪ {ε}
such that (q, c, q′) belongs to δ. Observe that multi-edges are allowed, since two tran-
sitions (q, a, q′) and (q, b, q′) with a ≠ b are possible. A computation of the automaton
corresponds to a path in the graph. The label of a path is the concatenation of the labels
of the edges traversed by the path. In particular, a word is accepted by the automaton
if it is the label of a path starting from a vertex in I and ending in a vertex in F .

Matrix representation

Another representation of classical �nite automata is algebraic. Consider the Q × Q-
matrixM whose coe�cientMq,q′ is equal to {c ∈ Σ ∪ {ε} ∣ (q, c, q′) ∈ δ}. Then, considering
the matrix product over the semiring ⟨2Σ∗

,∪, ⋅⟩ allows us to de�ne the successive powers
of M . The Kleene star of the matrix M is then de�ned as

M∗ ∶= ⋃
i≥0

M i

with the convention that M0 is the Q ×Q matrix with all the coe�cients equal to {ε}
on the diagonal and ∅ otherwise. The language accepted by the automaton is the �nite
union:

L ∶= ⋃
q∈I,q′∈FM

∗
q,q′

24 Chapter 2. Preliminaries

Example 1. The automaton ({0,1,2,3,4,5},{a, b},{0,3},{5}, δ) with:

δ ∶= { (0, a,0) (1, a,1) (2, a,2) (3, a,4) (4, a,5)(0, b,5) (0, b,1) (1, b,2) (2, b,0) (3, b,3) (4, b,3) }
accepts the language of words which either have 3k + 1 occurrences of b for some k ∈ N,
or admits a unique factor aa which is a su�x.

0

1

2

5

3

4

a

b

a

b

a

b

b

b

ab

a

M ∶=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

{a} {b} {ε} {ε} {ε} {ε}{ε} {a} {b} {ε} {ε} {ε}{b} {ε} {a} {ε} {ε} {ε}{ε} {ε} {ε} {b} {a} {ε}{ε} {ε} {ε} {b} {ε} {a}{ε} {ε} {ε} {ε} {ε} {ε}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Restrictions

A transition in Q × {ε} ×Q is called an ε-transition. If δ ⊆ Q × Σ ×Q, i.e., if δ contains
no ε-transition, the automaton is said ε-free. If I is a singleton, the automaton is said
initial. It is deterministic if it is initial and for each q ∈ Q and each c ∈ Σ, there exists
at most one transition in {q} × {c, ε} ×Q. It is complete if it is ε-free and for each q ∈ Q
and c ∈ Σ, there exists at least one q′ such that (q, c, q′) ∈ δ. The following results are
well-known and we omit the proofs.

Proposition 2.

� Every n-state cfa is equivalent to an initial ε-free (n + 1)-state cfa.

� Every n-state ε-free cfa is equivalent to a complete (n+1)-state cfa. The construc-
tion preserves determinism and the property of being initial.

� Every n-state cfa is equivalent to a deterministic cfa with at most 2n-state.

The bounds are tight and each statement is e�ective.

Characterization

As mentioned above, the family of languages accepted by cfas is exactly the fam-
ily Rat(M). This is the famous Theorem of Kleene.

Theorem 3 (Kleene). A language is accepted by a cfa if and only if, it is rational.

2.3. Finite automata 25

2.3.2 Two-way �nite automata

Here we introduce the computational model which is the basis of the investigations in
this manuscript. The de�nition we choose for �nite automaton is general, in the sense
that it refers to the largest commonly agreed extension of cfa that does not increase
the computational power of the device. More precisely, �nite automaton refers to the
model known as �two-way nondeterministic �nite automaton� (see for example [38]).
Other simpler versions, such as �one-way deterministic �nite automaton�, are obtained
by restricting this general model.

Model

The notion of 2-way �nite automaton was introduced at the very beginning of the Theory.
Rabin and Scott [63], and independently Shepherdson [72], proved it to be equivalent to
the cfa model. The main di�erence with cfas is that the head may move in both
directions or stay in place. Two special symbols are required to mark the left and right
borders of the input and to prevent the computation to leave the input space.

De�nition 7. A �nite automaton (fa) is a tuple A = (Q,Σ,▷,◁, I, F, δ) where:

� Q is a �nite set, whose elements are the states of the �nite automaton;

� I ⊆ Q is the set of initial states;

� F ⊆ Q is the set of accepting states;

� ▷ and ◁ are two special symbols not belonging to Σ, respectively called left and
right endmarkers. The set Σ ∪ {▷,◁} is denoted Σ▷◁.

� δ is a subset of Q ×Σ▷◁ × {−1,0,1} ×Q whose elements are the transitions of the
automaton. It satis�es the following three restrictions:

1. (q,▷, d, q′) ∈ δ⇒ d ∈ {0,+1};
2. (q,◁, d, q′) ∈ δ⇒ d ∈ {−1,0};
3. (q,◁, d, q′) ∈ δ⇒ q ∉ F ;

The direction of a transition is its {−1,0,1}-component. A transition is stationary
if d = 0, it is restless otherwise.

We informally describe the dynamics of the device. Given an input word u = u1⋯un
on Σ we augment it to ũ = u0 ⋅ u1⋯un ⋅ un+1 where u0 = ▷ and un+1 = ◁. The automaton
starts the computation with the word ũ written on the tape, the input head positioned on

26 Chapter 2. Preliminaries

0

1

2

3

4 5 6 7 8

▷,+1
a,
+1

b,+1

a,+1

b,−1

a,
+1 b,0

b,+1

a,+1

b,+1

◁,−1 a,−1

b,−1

a,−1

b,−1

a,+1

a,−1

a,+1

b,+1

Figure 2.1 � The graphical representation of the fa A given in Example 2. The state
of the fa are the vertices while each transition (q, a, d, q′) is depicted as an edge from q
to q′ labelled by a, d. The initial and accepting states are denoted by an incoming and
an outgoing arrow respectively.

the leftmost cell scanning u0, and in some state q− ∈ I. At each step, the automaton reads
the input symbol a ∈ Σ▷◁ scanned by the head, and according to its current state q chooses
a direction d and a state q′ with (q, a, d, q′) ∈ δ. Then it enters the state q′ and moves
its head one cell to the left or to the right, according to whether or not d is equal to −1
or +1. If d = 0 the head does not move. The fa accepts the input word u if it eventually
enters an accepting state at the rightmost position, un+1. Observe that the purpose of
the restriction 3 is to enforce the computation to halt in this case. Moreover, because of
the restrictions 1 and 2, the input head cannot move out of ũ during the computation.
The set of all words accepted by a fa A is the language accepted, denoted ∣∣A∣∣. Two fas
are equivalent if they accept the same language.

Example 2. We give a non-trivial example of a 2-way �nite automaton A, which is de-
picted in Figure 2.1. Formally A = (Q,Σ,▷,◁, I, F, δ), where Q = {0,1,2,3,4,5,6,7,8},
Σ = {a, b}, I = {0}, F = {8} and the transition set δ is:

δ =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0,▷,+1,0)(0, a,+1,1)(0, b,+1,4)
(2, a,+1,3)

(1, a,+1,1)(1, b,−1,2)
(3, b,0,0)(3, b,+1,0)

(4,◁,−1,5)(4, a,+1,4)(4, b,+1,4)

(5, a,−1,6)(5, b,−1,6)
(6, a,−1,7)(6, b,−1,7)

(7, a,+1,8)(7, a,−1,4)
(8, a,+1,8)(8, b,+1,8)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The automaton accepts a word w if and only if it contains at least one occurrence of b and
has an occurrence of a in position ∣w∣ − 2 (in particular, ∣w∣ ≥ 3). The language accepted
is thus ∣∣A∣∣ = Σ∗aΣ2 ∩Σ∗bΣ∗.

2.3. Finite automata 27

Con�gurations, runs, traces

Time, when dealing with cfa, is an implicit variable. With 2-way automata, some caution
is required, since it has to be explicitly incorporated in the proofs. The notions of
con�guration and run are standard, since they are adaptations to automata of the same
notions for Turing Machines. The concept of trace is more speci�c and will prove useful
when extending fas to 2-way K-fas (see Section 2.3.3) or to 2-way transducers (see
Section 2.3.4).

The description of the system at a �xed time is given by the current state and the
input head position: a con�guration of A on u = u1⋯un is a pair (q, p) where q is a state
and p is a position of ũ, i.e., an integer such that 0 ≤ p ≤ n + 1. A con�guration is initial
(resp. accepting) if it is of the form (q,0) with q ∈ I (resp. (q, n + 1) with q ∈ F). We call
border con�guration, any con�guration whose position is equal to 0 (left border) or n + 1
(right border). A non-border con�guration is central.

The successor relation on con�gurations can be de�ned from the transition set. A pair
of con�gurations ((q, p), (q′, p′)) belongs to the successor relation, written (q, p) → (q′, p′),
if the automaton may enter (q′, p′) from (q, p) in one step, that is if (q, up, (p′ − p), q′)
belongs to δ. In particular (p′−p) has to be equal to −1, 0 or 1. Observe that the relation
depends on the input word u. A con�guration that has no successor is said halting. For
instance, the con�guration (2,2) of the automaton given in Example 2 on the word abbaaa
is halting, since no transition can be performed from state 2 when reading the symbol b.
The restriction 3 on δ in De�nition 7 enforces every accepting con�guration to be halting.

With a �xed input u ∈ Σ∗ of length n, the set Q×{0, . . . , n + 1} is �nite. It is convenient
to consider it as an alphabet and sequences of con�gurations as possibly in�nite words.

De�nition 8. A run of A on u is a possibly in�nite and non-empty word r = c0c1⋯ on(Q × {0, . . . , ∣u∣ + 1}) such that each consecutive symbols in r are successive con�gurations,
i.e., for each i, we have ci → ci+1.

A run is:

� trivial if it is reduced to a single con�guration, i.e., ∣r∣ = 1;
� initial if its �rst con�guration is initial;
� halting if it is �nite and its last con�guration is halting;
� successful if it is initial, �nite and its last con�guration is accepting.

Example 3. We consider the automaton A given in Example 2 and depicted in Figure 2.1.

28 Chapter 2. Preliminaries

On the input word abbaab, it admits the following four runs:

r1 ∶= (0,0)(0,1)(1,2)(2,1)(3,2)(0,2) (in black on Figure 2.2a and 2.2b)
r2 ∶= (4,3)(4,4)(4,5)(4,6)(4,7)(5,6)(6,5)(7,4) (in blue on Figure 2.2b)
r3 ∶= (8,5)(8,6)(8,7) (in green on Figure 2.2a)
r4 ∶= (0,0)(0,1)(1,2)(2,1)(3,2)(1,3)(2,2) (in red on Figure 2.2c)

Observe that r1 ⋅ r2 ⋅ r3 is a successful run (see Figure 2.2a). Obviously, r1 ⋅ rω2 is an
initial in�nite run (Figure 2.2b) and r1 ⋅ r4 is a non-successful halting run, since the
con�guration (2,2) is halting but not accepting (Figure 2.2c).

▷ a b b a a a ◁
0 0 1

2 3

0 4 4 4 4 4
567

8 8 8

(a)

▷ a b b a a a ◁
0 0 1

2 3

0 4 4 4 4 4
567

(b)

▷ a b b a a a ◁
0 0 1

2 3 1
2

(c)

Figure 2.2 � The three examples of runs given in Example 2.2 (see the automaton in
Figure 2.1): (a) is the successful run r1 ⋅ r2 ⋅ r3, (b) is the initial in�nite run r1 ⋅ rω2 and
(c) is the non-successful halting run r4. The run r1 is in black, r2 is in blue, r3 is in
green and r4 is in red. (Initial and accepting con�gurations are indicated by incoming
and outgoing arrows respectively.)

2.3. Finite automata 29

By de�nition, an input word u is accepted by an automaton A if there exists a
successful run of A on u.

Trace: The following notion is probably super�uous when dealing with automata but it
is instrumental when working with transducers (see Section 2.3.4) or K-automata (see
Section 2.3.3). In the de�nition below, we identify the transition set δ with an alphabet.

De�nition 9. The trace of a run r = (q0, p0)(q1, p1)⋯ of A on u is the (possibly in�nite)
word tr = t1t2⋯ in δ∗ such that for each 0 < i < ∣r∣, ti is the witness of (qi−1, pi−1) → (qi, pi)
i.e., ti = (qi−1, upi−1 , pi − pi−1, qi).
Example 4. The trace of the run r4 introduced in Example 3 and depicted in Figure 2.2c,
is the word:

(0,▷,+1,0)(0, a,+1,1)(1, b,−1,2)(2, a,+1,3)(3, b,+1,1)(1, b,−1,2)

Notations: Considering runs as words allows us to reuse the classic tools, introduced in
Section 2.1.2, such as language, factor, concatenation. However, runs are really particular
words: they are non-empty and locally consistent, i.e., two consecutive letters represent
two successive con�gurations. For convenience and in order to better specify the context,
we change the notation introduced in Section 2.1.2 when speaking of runs. We denote
runs (words) with bold letters, and we index their con�gurations (symbols) from 0 on,
e.g. r = c0c1⋯. So r0 refers to the �rst con�guration of the run r. Observe that if r is
�nite of length n, its last con�guration is cn−1, and its trace has length n − 1.

Run composition: Since the concatenation of two runs is not necessarily a run, we
introduce a new controlled concatenation operator, called run composition and denoted @.
This operator is partial. For two runs r and s with r �nite of length n, the (controlled)
composition of r and s is de�ned when rn−1 = s0 by r@s = r0⋯rn−1s1⋯. It is left unde�ned
otherwise. Run composition di�ers from concatenation, since one common symbol (s0) at
the interface of both factors is deleted. When r@s is de�ned, r is said to be composable
with s.

Loops: A �nite run r = r0⋯rn−1 is a loop if r0 = rn−1 i.e., if it is self-composable. Moreover,
if none of its proper factors is a loop, r is a simple loop. When r0 = rn−1 = c is known, we
say that r is a c-loop. Trivially, if r and s are two c-loops for some con�guration c, r@s
exists and is a c-loop. In particular, for any c-loop r, r@r is a c-loop. This leads to the
inductive de�nition of powers of a c-loop: r@0 = c and r@k+1 = r@k@r. The set of all r@k

30 Chapter 2. Preliminaries

is denoted r@∗. The run r@r@⋯ is denoted r@ω and is in�nite if r is non-trivial. A run
is said loop-free if none of its factor is a non-trivial loop, i.e., none of its con�gurations
occurs twice.

Example 5. We consider the runs introduced in Example 3. The run r2 ⋅ (4,3) (see the
blue and purple path in Figure 2.2b) is a loop. However, each run r1, r2, r3, and r4 is
loop-free. The run r1 ⋅ r2 ⋅ r3 (see Figure 2.2a) is a successful loop-free run on u = abbaaa.
Since r2 ⋅ (4,3) is a loop, we may generate an in�nite family of successful run (sk)0<k as
follows:

sk = r1 ⋅ (r2 ⋅ (4,3))@k ⋅ r2 ⋅ r3

Due to the existence of loops, �nite automata may admit in�nite and unbounded �nite
runs. The following lemma states the more or less trivial fact that eliminating loops in a
�nite run leads to a loop-free run. Of course, there are many di�erent ways of eliminating
these loops, resulting in di�erent loop-free runs (see Figure 2.3).

Lemma 1. For every u ∈ Σ∗ and every �nite run r on u, r can be factored into:

r = λ(c0)λ(c1)⋯λ(c`)
such that c0c1⋯c` is a loop-free run on u and each λ(ci) is a ci-loop.

Proof. Given r = r0⋯rn−1, we proceed by induction on n. If n = 1, then we choose c0 = r0

and we set λ(c0) to be the trivial c0-loop c0. Let n > 1. By induction, there exists
a loop-free run c1⋯c`−1 and for each 1 ≤ i < `, there exists a ci-loop λ(ci) such that
r1⋯r`−1 = λ(c1)⋯λ(c`−1). Furthermore, we have r0 = λ(c0) as in the case n = 1.

Thus we can write r = λ(c0)λ(c1)⋯λ(c`−1). If c0 is di�erent from all the cis with i > 0,
then we are done. Otherwise, for some i, c0 = ci. We set λ′(c0) = λ(c0)λ(c1)⋯λ(ci) which
is a c0-loop. Then we get r = λ′(c0)λ(ci+1)⋯λ(c`−1).

A direct consequence is that every accepted word is accepted through a loop-free run.

Corollary 1. If u is accepted by A, then there exists a loop-free successful run of A on u.

Border and central runs, hits: We now de�ne other particular types of runs. A run
is border if its �rst con�guration is border and if its last con�guration, when it exists,
is border too. A run is central if all its con�gurations are central. In particular, these
de�nitions apply to loops. Observe that there exist runs which are neither border nor
central.

2.3. Finite automata 31

▷ i n p u t - w o r d ◁

q q′

q

q′

(a)

▷ i n p u t - w o r d ◁

q
q′

(b)

▷ i n p u t - w o r d ◁

q q′

(c)

Figure 2.3 � Two loop-free runs (b) and (c) obtained from a run (a). The run (a) has
two loops: a q-loop (red@orange) and a q′-loop (orange@green). Cutting one or the
other leads to two di�erent loop-free runs (b) and (c).

32 Chapter 2. Preliminaries

A run on u is a hit, if it is border, �nite and if its only border con�gurations are
its �rst and last con�gurations. We may also determine a hit by a pair of border points
which are of the form (q,▷) or (q,◁) for some q ∈ Q with the natural meaning. For two
border points b0 and b1, we speak of a b0 to b1 hit on u. A border con�guration (q, p)
satis�es a border point (q′, b) if q = q′ and up = b.

Because initial and accepting con�gurations are border, every successful run is a �nite
composition of hits.

Lemma 2. Any successful run r can be uniquely factored as:

r = h1@h2@ . . .@h`

where each hi is an non-trivial hit.

This factorization is called the hit factorization of the successful run.

Example 6. For example, the successful run r1 ⋅ r2 ⋅ r3 (see Figure 2.2a and Example 3)
contains two hits:

h1 ∶= r1 ⋅ (4,3)(4,4)(4,5)(4,6)(4,7) and h2 ∶= (4,7)(5,6)(6,5)(7,4) ⋅ r3

More precisely, h1 is a (0,▷) to (4,◁) hit and h2 is a (4,◁) to (8,◁) hit. The hit
factorization of r1 ⋅ r2 ⋅ r3 is h1@h2.

One-directed runs: A run r is one-directed if the successive positions of its con�gura-
tions are monotone. Formally, this holds if its trace either belongs to δ∣{0,1}∗ or to δ∣{−1,0}∗.
Since every step is one-directed, every run may be factored into one-directed factors.

The number of reversals of a run is the minimal number of factors in a decomposition
into one-directed factors minus 1.

For instance, the number of reversals of the run r1 ⋅r2 ⋅r3 of Example 3 (see Figure 2.2a)
is equal to 4. A successful run has an even number of reversals.

Restricted fas

As for cfas, the model admits restricted versions. Some of them are de�ned by a property
that the structure of the automaton has to satisfy, while others are properties of the
dynamic of the device i.e., properties on the runs. We recall below that every variant is
in fact equivalent to the most constrained one. This known result leads to some normal
forms of fas or to some restrictions. We consider a �xed fa A = (Q,Σ,▷,◁, I, F, δ).

2.3. Finite automata 33

Structural restrictions: The fa A is said initial (resp. �nal) if I (resp. F) is a singleton.
It is deterministic if it is initial and for any state q and any symbol c in Σ▷◁, there exists
at most one q′ ∈ Q and d ∈ {−1,0,1}, such that (q, c, d, q′) ∈ δ. It is complete if for each
pair (q, c), there exists at least one pair (q′, d) such that (q, c, d, q′) ∈ δ. It is outer-
nondeterministic if nondeterministic choices may happen at the endmarkers only i.e., if
for each q and c ∉ {▷,◁}, there exists at most one pair (q′, d) such that (q, c, d, q′) ∈ δ.

We say that A is 1-way (resp. restless) if (q, c, d, q′) ∈ δ implies d ≠ −1 (resp. d ≠ 0).
It is sweeping if the input head may change its direction when scanning an endmarker
only and it is rotating if moreover it does not change state on its way back to the left
endmarker. Formally:

De�nition 10. An automaton (Q,Σ,▷,◁, I, F, δ) is sweeping if there exists a parti-
tion Q−1 ∪Q+1 of Q, such that δ is included in the union of the following sets:

� Q × {▷} × {0,1} ×Q+1

� Q × {◁} × {−1,0} ×Q−1

� Qd ×Σ × {0, d} ×Qd for each d = −1,1.

If moreover each transition in Q−1 ×Σ × {0, d} ×Q−1 is of the form (q, a,−1, q), then
the automaton is said rotating.

The automaton A is unary if Σ is unary.

Dynamical restrictions: We say that A if unambiguous, if for every input u there
exists at most one successful run of A on u. If every successful (resp. initial) run of A
is loop-free, then A is said loop-free (resp. halting). In particular, observe that halting
implies loop-free. If the number of reversals is bounded by k in every successful run, the
automaton is said k-reversal bounded.

Summary of the restrictions: We have split the restrictions of fas in two categories:
structural and dynamical, but we can classify them based on their logical implications. In-
deed, some of the restrictions act on the determinism of the device (outer-nondeterminism,
unambiguousity and determinism). Others act on the head moves (k-reversal bounded-
ness, sweepingness, rotatingness, one-wayness and restlessness). The third type acts on
the time (loop-freeness and haltingness). The three classes of restriction are depicted in
Figure 2.4, where a edge means that the lower implies the upper one.

34 Chapter 2. Preliminaries

nondeterministic

outer-
nondeterministic unambiguous

deterministic

(a) Restriction on determinism

2-way

sweeping
k-reversal
bounded

restless

rotating

1-way

(b) Restriction on head moves

loop-free

halting

(c) Restriction on time

Figure 2.4 � The main restrictions of fas, by type. An edge stands for implication of
the upper restriction by the lower one.

Equivalences and normal forms

All restricted versions of fa are known to be equivalent to the most constrained one,
namely the 1-way restless deterministic fa, which is itself equivalent to cfa. In this sec-
tion, we present some classical constructions that detail the simulation between di�erent
variants. Some kind of normal forms for restricted fas follows from these constructions.
Additionally, we estimate the cost, in terms of states, of each construction.

In the same way as for cfas (Proposition 2), every fa can be made initial.

Proposition 3. Every n-state fa is e�ectively equivalent to an initial (n + 1)-state fa.
Moreover, the construction preserves all the restrictions introduced in the previous para-
graph.

Proof. Let A = (Q,Σ,▷,◁, I, F, δ) be a fa and let q− be a fresh state i.e., q− ∉ Q. We
de�ne the set δ− ∶= {(q−,▷, d, q′) ∣ (q,▷, d, q′) ∈ δ and q ∈ I}. Observe that the automatonA− ∶= ((Q ∪ {q−}),Σ,▷,◁,{q−}, F, (δ− ∪ δ)) is equivalent to A. Moreover, the construc-
tion cannot alter the structural and dynamical restrictions.

It is well-known that the most restricted variant of fa is equivalent to the most general
one (see for instance [38]).

Theorem 4. Every fa is e�ectively equivalent to a 1-way restless deterministic fa.

2.3. Finite automata 35

2.3.3 Two-way weighted-automata

A 2-way �nite automaton accepts a language. That is, it scans an input word and either
accept or reject (by halting in a non-accepting state, or by never halting). The �output� of
a 2-way �nite automaton is thus a Boolean value. We now introduce weighted automata
(K-automata), as an extension of fas, which is provided with the ability to associate
with each run, an output. The de�nition is generic, since the output space is an arbitrary
semiring K.

De�nition 11 (K-automaton). Given a semiring K, a K-Automaton (K-fa) is a pairK = (A, φ) where A is a �nite automaton with transition set δ, and φ, called production
function, is a mapping of δ into K. The image of a transition by φ is called the multiplicity
of the transition.

A pair (u, k) ∈ Σ∗ ×K is recognized by K if there exists a successful run of A on u,
with trace t1⋯tn such that k = φ(t1) ⋅ . . . ⋅ φ(tn). The image of u by K, denoted ⟨K, u⟩,
is the sum of such k, if it is de�ned and 0 otherwise. In particular, if u is not accepted
by A, ⟨K, u⟩ = 0. The series recognized by K is the series:

∣∣K∣∣ ∶= ∑
u∈Σ∗

⟨K, u⟩u
Two K-automata are equivalent if they accept the same series. Since a K-fa has an

underlying fa, we extend in a natural way, the notions of con�gurations, runs and traces
to K-fa. We may hence speak of hits, loops or successful runs of a K-fa.

Two-way K-fa on the Boolean semiring

If K = ⟨B,∨,∧,true,false⟩, a K-fa K = (A, φ) is no more than an fa. Indeed, sup-
posing its production function never maps a transition to 0, its recognized series is the
characteristic series of the language accepted by its underlying automaton, i.e.,

∣∣K∣∣ = ∑
w∈∣∣A∣∣true w (2.1)

The support of a K-fa is the support of its recognized series. The following trivial
result shows that we can always suppose that φ maps δ into K ∖ {0}.
Proposition 4. Given a semiring K of zero 0, every K-fa is equivalent to another K-fa(A, φ) such that φ(t) ≠ 0 for any transition t of A.
Proof. Observe that if for some transition t we have φ(t) = 0, then, every run which uses
the t are mapped to 0, by absorption. Hence, restricting φ and δ to the set of transition
which have non-0 images leads to an equivalent K-fa.

36 Chapter 2. Preliminaries

Restricted version

As for fa, we de�ne a few restricted variants. Most of them are simply a restriction on
the underlying automaton.

Given a K-fa K = (A, φ), we say that it is respectively deterministic, outer-nondeter-
ministic, 1-way, restless, sweeping, loop-free, halting, k-reversal bounded for some k > 0,
depending on which properties are satis�ed by A. It is rotating if A is rotating and φ
maps every backward transition, i.e., in Q ×Σ▷◁ × {−1} × 1 to 1.

It is well-known that the family of series recognized by 1-way K-fa is the family of
rational series in K ⟨⟨Σ∗⟩⟩, e.g., [21, Theorem VII.5.1].

Theorem 5 (Kleene-Schützenberger Theorem). One-way K-fa's recognize exactly the
family of rational series.

Basic equivalences

When studying the dynamic of a 2-way device, we often require it to be restless. This
restriction does not alter the computational power. The following result states the above
mentioned equivalence, taking into consideration the size of the equivalent device.

Proposition 5. Given an n-state K-fa K, we can e�ectively build a 3n-state restless
K-fa K′, preserving determinism, outer-nondeterminism, unambiguity, loop-freeness and
haltingness.

Proof. Let K = (A, φ) be a �xed K-fa of transition set δ.

The construction is based on a really simple idea: we build a K-fa K′ which simulates
each step (q, p)(q′, p′) of K either directly, if the step is restless (that is ∣p′ − p∣ = 1), or,
if p = p′, by a two-step restless run (q, p)(q′, p + d)(q′, p), where q′ is a fresh copy of q′
storing some d ∈ {−1,1}. Due to the restriction when scanning the endmarkers, we need
to use both d = −1 and d = 1. Formally, we create two fresh copies of Q:

←Ð
Q and

Ð→
Q and

we de�ne the sets:

δzig ∶= {(q, c,1,←Ðq′) ∣ (q, c,0, q′) ∈ δ and c ≠ ◁} ∪ {(q,◁,−1,
Ð→
q′) ∣ (q,◁,0, q′) ∈ δ}

and:
δzag ∶= {(←Ðq , c,−1, q) ∣ c ∈ Σ▷◁} ∪ {(Ð→q , c,1, q) ∣ c ∈ Σ▷◁}

Denoting δ∣{−1,1} the set of restless transitions of A, we de�ne the �nite automaton:

A′ ∶= ((Q ∪←ÐQ ∪Ð→Q),Σ,▷,◁, I, F, (δ∣{−1,1} ∪ δzig ∪ δzag))

2.3. Finite automata 37

By construction it is restless. Moreover, there is a simple one-to-one correspondence that
maps the trace of each run of A into the trace of a run of A′. Thus, the construction pre-
serves determinism, outer-nondeterminism, unambiguity, loop-freeness and haltingness.
This strong correlation between the simulated and simulating runs also allows us to de�ne
the production function φ′ of K′ as follows:

for each transition t′ of A′ φ′(t′) ∶=
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ(t′) if t′ belongs to δ∣{−1,+1}
φ((q, a,0, q′)) if t′ = (q, a,1,←Ðq′)
φ((q,◁,0, q′)) if t′ = (q,◁,−1,

Ð→
q′)

1 if t′ ∈ δzag
Hence, K′ = (A′, φ′) is equivalent to K.
2.3.4 Two-way transducers

We now introduce the model of transducers. In the same spirit as in De�nition 7 and
De�nition 11, we de�ne it as the most general version, i.e., the version known as �two-
way nondeterministic transducer� (see [35]). Moreover, our transducers may produce any
word of a recognizable language at each step.

Informally, a transducer is a �nite automaton provided with a second tape, on which
a write-only head, called output head, may append some words at each step. This second
head is 1-way, that is, a written symbol is written forever. However, the underlying
�nite automaton may reject the computation (either by entering a non-accepting halting
con�guration, or by never halt), rejecting at the same time the current output produced.

A pair of words (u, v) is accepted if the automaton may perform a successful computa-
tion u in which v is written on the output tape in the meaning time. Hence, transducers
accept relations in Σ∗ × ∆∗, where Σ and ∆ are respectively the input and the output
alphabet. Without loss of generality, we may suppose Σ and ∆ disjoint (as in Chapter 5)
or equal (as in Chapter 6), depending on what is studied. A relation accepted by a
transducer is called a transduction.

Now, we formally introduce the model of transducer as an extension of fa, but we
immediately observe that it is a particular K-fa, in which K is the semiring of rational
languages on ∆.

De�nition 12. A transducer is a pair T = (A, φ) where A is a fa with transition set δ
and where φ is a production function mapping δ into the set of nonempty rational subsets
of ∆.

Let u be a word in Σ∗ and let r be a run on u of trace t1⋯t`. The word v ∈ ∆∗ is an
output word produced by r if it belongs to the subset φ(t1)⋯φ(t`). We will also use the
notation ΦT (r) = φ(t1)⋯φ(t`) or simply Φ(r) when the transducer T is understood.

38 Chapter 2. Preliminaries

A pair (u, v) ∈ Σ∗ ×∆∗ is accepted by the transducer if v is produced by an accepting
run on u. The relation accepted by T is the set of all such (u, v), denoted ∣∣T ∣∣.

In other words, T is a K-fa K, with K = ⟨Rat(∆∗),∪, ⋅,{ε},∅⟩. The relation ∣∣T ∣∣
corresponds to the series ∣∣K∣∣.
Restricted versions and equivalences

We adapt the restrictions of K-fa to transducers. Observe the similarity with the re-
strictions introduced in Section 2.3.3. However, when considering the restrictions on
nondeterminism, some important di�erences appears.

A transducer (A, φ) is respectively 1-way, restless, sweeping, loop-free, halting, k-
reversal bounded for some k > 0, if A is. It is rotating if it is a rotating K-fa with K =
Rat(∆∗). This holds if A is rotating and each backward transition, i.e., the transitions
in the set Q−1 as de�ned in Section 2.3.2, is mapped to {ε} by φ.

Given a relation, we speak of 1-way, rotating, sweeping or 2-way transductions, de-
pending on by which variant it is accepted.

It is well-known that the family of relations accepted by 1-way transducers is the
family of rational relations, e.g., [8, Theorem III. 6.1] [21, 66].

Theorem 6. One-way transducers accept exactly the family of rational relations.

Example 7. We �x Σ = {a, b} and ∆ = {c, d} and we consider the following relation
in Σ∗ ×∆∗, whose domain is Σ∗b and which for all maximal factors w of the form a∗b,
substitutes cn to w if w = a2nb and dn if w = a2n+1b:

R ∶= ((a2, c)∗(b, ε) ∪ (a2, d)∗(ab, ε))∗
A 1-way transducer accepting R is depicted in Figure 2.5.

The notion of deterministic transducer is di�erent from the corresponding notion for
K-fa, that is, a deterministic K-fa with K = Rat(∆∗) is not necessary a deterministic
transducer. Indeed, since at each step a transducer may produce an entire word from
a recognizable language associated to the transition, some kind of nondeterminism is
hidden in the production function. In order to detail the complexity of the production
function, we put some restrictions on the productions.

A transition t is single-valued if ∣φ(t)∣ = 1. The transducer T is single-valued if all
its transitions are single-valued. If moreover A is deterministic, then (A, φ) is deter-
ministic. It is outer-nondeterministic if A is outer-nondeterministic and each transi-
tion t = (q, c, d, q′) with c ∉ {▷,◁} is single-valued. If for each transition t of A, and each
production w ∈ φ(t) we have ∣w∣ ≤ 1, the transducer is said elementary.

2.3. Finite automata 39

0

even1

even2odd1odd2

a ∣ ε
a ∣ ε
▷ ∣ ε ◁ ∣ ε a ∣ c

a ∣ ε

b ∣ ε

a ∣ ε

b ∣ εa ∣ d

Figure 2.5 � A 1-way transducer accepting the relation R de�ned in Example 7. An
edge from q to q′ is labeled by x ∣ y, if the transducer has a transition (q, x,+1, q′) with
associated output {y}. In particular, the transducer is single-valued and elementary.

Making single-valued and elementary: Each transducer admits an equivalent trans-
ducer which is single-valued and elementary, i.e., with production function φ mapping δ
into ∆ ∪ {ε}1.
Proposition 6. Every transducer T is e�ectively equivalent to an elementary single-
valued transducer T ′. Moreover, if T is deterministic, outer-nondeterministic, rotating,
sweeping, k-reversal bounded, or 1-way, so is T ′.

However, restlessness, loop-freeness and halting property are not preserved.

Proof. Let T = (A, φ) be a transducer. We �rst construct a transducer T ′ which is
elementary, but not necessarily single-valued. An easy second step will make it single-
valued.

For each transition t of A, φ(t) is rational. Hence, by Theorem 3, it is accepted
by a cfa At of state set Qt, that we suppose initial by Proposition 2. Without loss of
generality, we suppose that all di�erent Qts are pairwise disjoint and disjoint from Q.

We build a simulating transducer T ′ = (A′, φ′) which works as follows: it simulates
one step of T of trace t = (q, a, d, q′) by entering three consecutive phases. All along the
simulation, the transducer makes no move except at the last step.

initializing it enters the initial state s of At without moving, producing an empty output, i.e.,
it performs a transition (q, a,0, s) with associated output ε.

1This is actually an abusive formulation, since φ is a mapping from δ into 2∆
∗

. The correct formulation
should be, the production of a single-valued elementary transducer is a mapping from δ into the singletons
of 2∆∪{ε}.

40 Chapter 2. Preliminaries

simulating it simulates the automaton At by nondeterministically choosing a symbol in ∆,
writing it on the output tape and entering the next state in Qt. That is, T ′ performs
a transition of the form (s, a,0, s′) with associated output b such that (s, b, s′) is
a transition of At. This mode is repeated until some nondeterministically chosen
point, where the current state is accepting.

finalizing �nally, from this accepting state s′, it enters the state q′ and moves its head ac-
cording to d producing an empty output, i.e., it performs a transition (s′, a, d, q′)
with associated output ε.

Observe that nondeterministic choices may occur in the simulating procedure at three
points only: (1) in the choice of t, (2) in the simulating procedure when choosing the
simulated transition in δt (including the choice of the symbol b) and (3) when halting
the simulating mode in some accepting state q+t . Obviously if A is deterministic, the
�rst choice is deterministic. Moreover, if φ is single-valued, then we may suppose that,
for each state qt of At there exists at most one symbol b ∈ ∆ and one state q′t such
that (qt, b, q′t) is a transition of At. Thus, the choices (2) becomes deterministic. Finally,
by halting the simulating at the �rst occurrence of an accepting state, the choice (3) is
made deterministic. Hence, if T is deterministic, so is the resulting T ′ implementing the
procedure.

We built an elementary transducer T ′ equivalent to T . It is now easy to make it
single-valued. Indeed, it su�ces to store in the �nite control, the last output set, which
can be done because there are at most ∣∆∣ + 1 possible outputs.

Making restless: Observe that thanks to Proposition 5, every transducer can be made
restless. Moreover, it is straightforward to see that the constructions preserve the restric-
tions on the production function, namely single-valuation and elementarity. However,
as observed before, the construction does not preserve some important properties of the
device, such as 1-way, rotating or sweeping. We give here two other constructions, in
the case of transducers. These constructions are generalizable for the case of K-fa with
a rationally additive semiring K (see Section 2.2.2), but we are essentially interested in
the case where K = Rat(∆∗), i.e., the case of transducers. The two new constructions,
which are essentially based on a same idea, do not preserve the two restrictions on the
production function.

Proposition 7. Given an n-state transducer, we can e�ectively build

1. a 3n-state restless transducer, preserving determinism, outer-nondeterminism, un-
ambiguity, loop-freeness, haltingness, single-valuation and elementarity;

2.3. Finite automata 41

2. a (n + 2)-state restless transducer, preserving determinism, outer-nondeterminism,
unambiguity, loop-freeness, haltingness, sweepingness and rotatingness.

3. a (n + 1)-state restless transducer, preserving unambiguity, loop-freeness, halting-
ness, one-wayness, sweepingness and rotatingness;

Proof. The �rst statement is a direct consequence of Proposition 5, observing that single-
valuation and elementarity are preserved.

The two other statements are obtained by two constructions, which share the same
basic idea but di�er on a �nal part. Thus we start by detail the shared part of the
construction, which is usual. We �x a transducer T = (A, φ) of transition set δ.

We say that a run is 1-move-at-end if it is of the form (q0, p)(q1, p)⋯(q`, p)(q`+1, p+d)
for some ` ≥ 0 and some direction d ∈ {−1,+1}. The main idea of the proof is to simulate
every such 1-move-at-end run by a single restless step (q0, p)(q`+1, p+d). The question of
the output generated by this single step is treated in as follows.

We consider 0-move runs, i.e. runs whose con�gurations have all the same position
component. Because only one input tape cell is visited, the run does not really depend
on the input nor the position but on the current scanned symbol only. The set of 0-move
runs which start in state q scanning symbol a and end in state q′ (still scanning a) is
denoted Rq,q′,a. The language Lq,q′,a is de�ned as the union of the production associated
to the runs in Rq,q′,a, i.e.,

Lq,q′,a = ⋃
r∈Rq,q′,a

Φ(r)
We prove that Lq,q′,a is rational. Observe that we can easily obtain a 1-way transducerTq,q′,a from T such that Tq,q′,a accepts the relation {(a, v) ∣ v ∈ Lq,q′,a}. By Theorem 6, the

relation is rational and hence, the language Lq,q′,a is rational by projection.
We now de�ne a new set of transitions δ1 and its associated production function φ1

(see Figure 2.6a). A transition t = (q, a, d, q′′) belongs to δ1 if and only if d ≠ 0 and there
exists a state q′ such that Rq,q′,a is not empty and (q′, a, d, q′′) belongs to δ. The rational
image of t by φ1 is given by:

φ1(t) = ⋃
q′

(Lq,q′,a ⋅ φ(q′, a, d, q′′))
Observe that a restless transition t of A belongs to δ1 and φ(t) is a subset of φ1(t).

Every accepting run r of T can be factorized in

r = r0@r1@ . . .@rk−1@rk (2.2)

42 Chapter 2. Preliminaries

where ri is a 1-move-at-end run for each 0 ≤ i < k and rk is a 0-move run occurring at the
rightmost position (scanning the right endmarker). Using δ1 and φ1, we may simulate
r0@, . . . ,@rk−1 by a restless run r′.

The last factor rk is problematic since it may be a non trivial 0-move run, which is
not followed by a restless step. We propose two ways to deal with this factor, leading to
the two last statements of the Proposition.

The simplest idea is to avoid such non-trivial factors, that is, to enforce an accepting
state to be entered with non-stationary transitions only. This can be easily done by a
slight pre-modi�cation of (A, φ), that preserves rotatingness but not one-wayness. Sup-
pose A = (Q,Σ,▷,◁, I, F, δ). Using two fresh states ← and →, we de�ne a transition
set
←→
δ that enforces A to perform a right-to-left followed by a left-to-right traversal of the

input before accepting. Formally:

←→
δ ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(←, a,−1,←) ∣ a ∈ Σ(→, a,+1,→) ∣ a ∈ Σ(←,▷,+1,→)(q,◁,−1,←) ∣ q ∈ F

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
Then we de�ne the associated production function

←→
φ as the function which maps every

transition in
←→
δ to {ε}. Finally, we claim that T is equivalent to T ′ = (A′, φ′), where:

A′ = ((Q ∪ {←,→}),Σ,▷,◁, I,{→}, δ ∪←→δ) and φ′ = φ ∪←→φ
By construction, no run of A′ admits a decomposition as Equation (2.2) with a non-
trivial rk. Thus, the transducer T ′′ = (A′′, φ′ ∪ φ1), where

A′′ = ((Q ∪ {←,→}),Σ,▷,◁, I,{→}, (δ1 ∪←→δ)) and φ′′ = φ1 ∪←→φ
is a restless transducer equivalent to T . Observe that if T is rotating or sweeping, so
is T ′′. This concludes the proof of the statement (2).

The second way of dealing with non trivial factor rk in Equation (2.2), is to nonde-
terministically guess the right boundary one position to the left of the endmarker and to
produce the outputs in Lq,q′,◁ for any accepting state q′.

To this end, we �x a fresh halting state q◁ and we de�ne a transition set δ◁ and its
associated production function φ◁ (see Figure 2.6b). A transition t = (q, a, d, q◁) belongs
to δ◁ if and only if d = +1 and there exist two states q′ and q′′ such that Rq′,q′′,◁ is not

2.3. Finite automata 43

empty, q′′ is an accepting state of T and (q, a, d, q′) belongs to δ1. The image of t by φ◁
is given by:

φ◁(q, a, d, q◁) = ⋃
q′,q′′

q′′ is accepting

(φ1(q, a, d, q′) ⋅Lq′,q′′,◁)
which is rational.

Our restless transducer simulating T = (A, φ) is de�ned as T ′ = (A′, φ1 ∪ φ◁) whereA′ = (Q∪ {q◁},Σ,▷,◁, I,{q◁}, δ1 ∪ δ◁), where Q and I denote respectively the state set
and the initial state set of A. From any run of T ′ producing a word v, we can �nd a
run of T producing v and reciprocally. Since the transitions of δ1 and δ◁ have the same
directions as the corresponding transitions (or 1-move-at-end runs) of T , the construction
preserves one-wayness and sweepingness. This concludes the proof of Statement (3).

Functional transducers: A transducer T is functional (resp. k-functional) if ∣∣T ∣∣ is a
function (resp. a k-function), i.e., if for each input u there exists at most 1 output (resp. k
outputs) v such that (u, v) is accepted by T . By characterizing the family of functions
accepted by 2-way transducers, Engelfriet and Hoogeboom proved that they are exactly
the relations accepted by deterministic (2-way) transducers [24].

Theorem 7 (Engelfriet and Hoogeboom � 2001). A relation R accepted by a (2-way)
transducer is a function, if and only if it is accepted by some deterministic (2-way) trans-
ducer.

44 Chapter 2. Preliminaries

a ?

q

q′

q′′

t1

(a)

a ◁?

q

q′

q′′ q◁

t1

t◁

≡

(b)

▷ a a ◁?

q

q←
q←

q←
q→

q→
q′q→

t↔
t↔

t↔

t↔
t↔

t↔ ≡

(c)

Figure 2.6 � Transition in δ1 (a), δ◁ (b) and δ↔ (c), for restless simulation of 2-way
transducers.

Chapter 3

Outer-nondeterministic Finite

Automata

3.1 Introduction

In this chapter, we investigate the question of cost of the simulation of 2nfas by 2dfas.
This known open problem were raised in 1978 by Sakoda and Sipser who conjectured
an exponential cost [68]. Contrary to various contributions to the problem (e.g., [74,
39, 45]), we do not attack the problem by restricting the simulating machine but rather
the simulated one. Indeed, we consider the weaker problem of simulating 2onfas by
2dfas. We also consider the alternating version of 2onfas, namely the 2afas, in which
both universal and existential choices may occur at the endmarker only (see the details
in Section 3.7). Our work extends some of the results obtained in the case of unary
alphabets [32, 33, 34] to the case of 2onfas and 2oafas on arbitrary alphabets. In
particular, we prove the following:

� Each n-state 2onfa can be simulated by a halting 2-way self-verifying �nite au-
tomaton (2svfa) [19] with O(n8) many states. (Self-verifying automata are non-
deterministic automata with a restricted kind of nondeterminism�symmetric with
respect to accepted languages and their complements. A more detailed description
is given in Section 3.2.3.) This fact has two important implications:

� The complementation of 2onfas can be done by using a polynomial number
of states. Note the contrast with the above mentioned case of sweeping 2nfas,
studied in [42].

� Each 2onfa can be simulated by a halting 2onfa using a polynomial number
of states.

45

46 Chapter 3. Outer-nondeterministic Finite Automata

� Each n-state 2onfa can be simulated by a 2dfa with O(nlog2(n)+7) states.
� If L = NL, then each n-state 2onfa can be simulated by a 2dfa with a number of
states polynomial in n. Hence, a superpolynomial lower bound for the simulation
of 2onfas by 2dfas would imply L ≠ NL. (Unlike in [7], there are no restrictions
on the length of potential witness inputs.)

� Each n-state 2onfa can be simulated by an unambiguous 2onfa with a polynomial
number of states.

� If L = P, then each n-state 2oafa can be simulated by a 2dfa with a number of
states polynomial in n, with the same consequences as presented for L

?= NL.

� Similarly, if NL = P, we get the corresponding polynomial conversion from 2oafas
to 2nfas.

These results are obtained by generalizing the constructions given originally for the
unary case. However, here we do not have a normal form that simpli�es automata by
restricting input head reversals to the endmarkers. Our generalization relies on a di�erent
tool, presented in the �rst part of the chapter. Basically, we extend some techniques
developed originally for deterministic devices [73, 33] to machines with nondeterminism
at the endmarkers. This permits us to check the existence of certain computation paths,
including in�nite loops, by the use of a linear number of states.

The chapter is organized as follows. In Section 3.2, we recall basic de�nitions and
preliminary results required later. In Section 3.3, we develop a fundamental tool that
will be used several times, namely, a deterministic procedure that allows us to check the
existence of computation paths between two given states in the given 2onfa, starting and
ending at the left endmarker and not visiting the left endmarker in the meantime. This
procedure is also useful to make all computations halting. The next sections are devoted
to our main results. In Section 3.4, we present the polynomial simulation of 2onfas by
2svfas and its consequences. In Section 3.5, we show the subexponential simulation of
2onfas by 2dfas. Then, in Section 3.6, under the assumption L = NL, such simulation is
made polynomial in the number of states. Moreover, we show how to simulate a 2onfa
by an unambiguous 2nfa using a polynomial number of states. Finally, in Section 3.7,
we present the corresponding results for the alternating case. Some concluding remarks
are brie�y discussed in Section 3.8.

3.2. Preliminaries 47

3.2 Preliminaries

In this section we establish some preliminary results concerning the computational model,
namely the 2-way outer-nondeterministic �nite automata, investigated in the chapter. We
provide a simpli�cation of 2onfa with respect to the de�nition. This lead us to introduce
the computational segments, which are particular compositions of hit. After that, we
introduce a new kind of 2-way nondeterministic automaton, namely the self-verifying
automaton, which has the ability to recognize either a language or its complement.

3.2.1 Normal form for 2onfas

Recall that a 2onfa is a 2nfa A = (Q,Σ,▷,◁, δ, q−, F) that can take nondeterministic
decisions only when the input head is scanning one of the two endmarkers, i.e., for each
q ∈ Q and a ∉ {▷,◁}, we have at most one d and one p such that (q, a, d, p) belongs to δ
(see de�nition in Section 2.3.2). Actually, with a linear increase in the number of states,
we can restrict the use of the nondeterminism to the left endmarker only. We also obtain
some other restrictions, such as restlessness, which will be useful to simplify several other
proofs. All these improvements are given the next lemma.

Lemma 3. For each 2onfa A = (Q,Σ,▷,◁, δ, I, F) with n states, there exists an equiv-
alent 2onfa A′ with no more than 3n + 3 states that satis�es the following properties:

1. A′ is initial and restless (let us call q− its unique initial state);

2. nondeterministic choices are taken only when the input head is scanning the left
endmarker;

3. there is a special state q+ which is the unique accepting state assumed for the �rst
time when the head is positioned on the left endmarker. From then on, the au-
tomaton does not change state and performs right move until it reaches the right
endmarker.

Proof. Points 1 and 3. Making A initial is simply done by Proposition 3, using a new
initial state q−. By adapting Proposition 7 Statement 2 to fas, we can transform A into
a restless and still outer-nondeterministic fa. Moreover, as described in the proof, the
resulting automaton uses two special states ← and →, where → is as in the third statement
of the Lemma. Hence, we set q+ =→.

Point 2. Assuming that A satis�es Points 1 and 3, we build an automaton A′ mak-
ing nondeterministic choices only on the left endmarker. The only point to settle is to
eliminate the nondeterministic choice at the right endmarker. Each time A is about to

48 Chapter 3. Outer-nondeterministic Finite Automata

make a nondeterministic choice at the right endmarker, in a state q, A′ traverses the
input from right to left, using ←Ðq , a copy of q, to reach the left endmarker, where it
simulates a single transition from q at the right endmarker, i.e., it chooses a state p such
that (q,◁,−1, p) ∈ δ. To do that, A′ enters a state Ð→p , a copy of p, and, remaining in
this state, traverses the input back to the right endmarker. Then A′ moves its head one
position to the left entering the original state p. From this con�guration, A′ resumes the
ordinary simulation of A.

Consequently, it can be easily seen that the resulting automaton A′ is equivalent to
the original 2onfa A and satis�es the properties listed in the statement of the lemma.
The set of states consists of three copies of the set Q, plus the states q−, ← and q+ =→.
Thus the total number of states of A′ does not exceed 3n + 3.

3.2.2 Computational segments

In Section 2.3.2, we introduced the hits, as being particular runs that start and end
in some border con�gurations, without visiting any other border con�guration in the
meaning time. These particular runs are natural when dealing with unary inputs al-
phabets. However, in the case of outer-nondeterministic fas and due to Lemma 3, it
is more convenient to work with another kind of run, that starts from and ends to the
left endmarker, without visiting it in the meaning time. A (computational) segment is
a run r = (q0, p0)⋯(q`, p`) such that p0 = p` = 0 and for each 0 < i < `, we have pi > 0.
When q0 and q` are given, r is a (computational) segment connecting q0 and q`. The
de�nition is analog to that of hit, however, there are not directly connected: a segment
may contain an unbounded number of hits, because the head might rebound several times
on the right endmarker before returning back to the left endmarker. A sequence of seg-
ments connecting some states q0, q1, . . . , qt (that is, the ith segment is from pi−1 to pi, for
i = 1, . . . , t, with t ≥ 0) is called a sequence of t segments from q0 to qt.

Since we are working with fa, i.e., acceptors, we are mainly interested in loop-free
runs, as shown with Lemma 4. It is easy to see that every loop-free segment is a �nite
composition of loop-free hits. The following is routine:

Lemma 4. Let A be a 2nfa with n states. Then, for each w ∈ ∣∣A∣∣, A has at least one
accepting computation path that does not visit the left (right) endmarker more than n
times.

3.2.3 Self-verifying automata

Here we introduce a variant of nondeterministic �nite automata, which is able to recognize
both its accepted language and its complement.

3.3. The subroutine Reach 49

A 2-way self-verifying automaton (2svfa) A is a 2nfa which, besides the set of
accepting states F ⊆ Q, is equipped also with a disjoint set of rejecting states F r ⊆ Q.
Any rejecting state is supposed to be halting and an initial �nite run which halts in a
rejecting state is said rejecting (see Section 2.3.2). For each input w ∈ ∣∣A∣∣, there exists
at least one successful run, and no rejecting run. Conversely, for w ∉ ∣∣A∣∣, there exists at
least one rejecting run and no successful run. Note that some runs of a 2svfa may end
with a �don't know� answer, by halting in a state not belonging to F ∪ F r, or executing
an in�nite loop.

3.3 The subroutine Reach

This section is devoted to develop a tool which will be fundamental in the proof of our
results. Let A be a 2onfa with n states, in normal form given by Lemma 3. Then,
for a �xed input string w, we shall test reachability by computational segments, among
con�gurations scanning the left endmarker. (Clearly, w is accepted if and only if there
exists a sequence of computational segments connecting the unique initial con�guration(q−,0) with the unique �nal con�guration (q+,0).) Note that the size of a reachability
graph, in which edges represent computational segments, does not grow in the length of
the input, but rather in n, the number of states in A.
3.3.1 Description of the subroutine Reach

We are now ready to design a subroutine Reach(qS, qT) that receives two states qS, qT
of A as parameters and, by examining the string w on the input tape, decides whetherA has a computational segment from qS to qT on w. Depending on the outcome, the
procedure returns the corresponding Boolean value true or false. We will show that
this subroutine can be implemented by the use of a 2dfa with O(n) �internal� states and
with a �read-only� access to qS and qT.

A �rst idea would be to try to compute Reach(qS, qT) by initializing the automaton A
in the state qS with the input head at the left endmarker and by stopping its computation
as soon as it reaches the left endmarker again, then testing whether the state so reached
is qT. However, this approach runs into two problems: �rst, the original automaton A
could get into an in�nite loop, never coming back to the left endmarker; second, the �rst
move from the state qS on the left endmarker could be nondeterministic.

To solve these problems, we adapt the construction given in [33] (where it was used
for di�erent purposes, to make a 2dfa halting, with 4n states) which, in turn, was a
re�nement of the corresponding Sipser's construction [73] for space bounded Turing ma-
chines. Here we give a brief outline of this construction. For each w ∈ Σ∗, a deterministic

50 Chapter 3. Outer-nondeterministic Finite Automata

machine accepts w if and only if there is a �backward� path, tracing back the history
of the computation, from the unique accepting con�guration c+ to the unique initial
con�guration c−.

Consider the graph in which nodes represent con�gurations and edges single com-
putation steps. If the machine under consideration is deterministic, the component of
the graph containing the accepting con�guration c+ is a tree rooted at this con�gura-
tion, with backward paths branching to all possible predecessors of c+. In addition, since
the accepting con�guration is also halting, no backward path starting from c+ can cycle
(hence, it is of �nite length). Thus, it is su�cient to perform a depth-�rst search of this
tree in order to detect whether the initial con�guration c− belongs to the predecessors
of c+. If this is the case, the simulator accepts. On the other hand, if the entire tree
is examined without reaching c−, there is no path from c− to c+ and so w is not in the
language. Hence, the simulator rejects.

We adapt this procedure by choosing c− = (qS,0) and c+ = (qT,0), where qS and qT
are the two parameters, since we are interested in detecting the existence of just one
computational segment, from qS to qT. This is possible, because our machineA is in normal
form given by Lemma 3, and hence it does not make nondeterministic decisions when the
input head is not scanning the left endmarker, i.e., ∣δ ∩ ({q} × {a} × {−1,+1} ×Q)∣ ≤ 1 for
each q ∈ Q and a ≠ ▷.

The only problem is that both qS and qT are located at the left endmarker, where non-
deterministic branching is allowed. This is resolved as follows. For the purposes of walking
along the tree of the backward depth-�rst search, we ignore the transitions on the left
endmarker, as if such transitions did not exist, i.e., as if δ ∩ (Q × {▷} × {−1,+1} ×Q) = ∅.
Hence, the backward search starts from c+ = (qT,0), which now behaves as a root of a tree
with backward paths leaving the left endmarker and branching to possible predecessors
of qT. However, the transitions at the left endmarker are missing. Therefore, a backward
path can never reach the left endmarker again. Instead, such path ends up one backward
step earlier, in a con�guration c = (q,1), with the input head placed one position to the
right of the left endmarker, even though, in reality, using a transition (p,▷,+1, q) ∈ δ,
the original machine could get to c from a con�guration c′ = (p,0). Hence, there exists
a computational segment connecting c− = (qS,0) with c+ = (qT,0) if and only if, for some
con�guration c = (q,1) placed one position to the right of the left endmarker, there ex-
ists a backward path from c+ to c visiting the left endmarker only in c+ and, moreover,(qS,▷,+1, q) ∈ δ.

Thus, we stop the depth-�rst search and return true at the moment when we reach
a con�guration c with the above properties. If the entire tree has been visited without
reaching any such c, we stop and return false.

In the course of the depth-�rst search, our procedure needs to detect when the input

3.3. The subroutine Reach 51

head of the original 2onfa A is placed exactly one position to the right of the left
endmarker. By a closer look to the simulation in [33], one can observe that, for each
con�guration c = (q, i), all the �left� predecessors c′ = (p, i−1) are examined in q↖, a copy
of the state q, with the input head shifted one position to the left of the actual input head
position, i.e., in the position i−1, while the �right� predecessors c′ = (p, i+1) are examined
in q↗, another copy of q, with the input head shifted one position to the right.1 (For
completeness, the simulation uses two more copies for each state q, namely, q↓1 and q↓2,
with the input head placed exactly at the actual input head position i, at the moment
when, respectively, all the left, or both all the left and all the right predecessors have
already been visited.) Hence, when the procedure reaches a state q↖ with the input head
scanning the left endmarker and, moreover, (qS,▷,+1, q) ∈ δ, we can stop the computation
and return true.

There are only three points which depend on the states qS and qT: the choice of the
root for the depth-�rst search, i.e., of the con�guration c+ = (qT,0), the detection of exit
nodes in this tree, depending on transitions in δ ∩ ({qS} × {▷} × {+1} ×Q), and �nally
handling some trivial cases, namely, if qS = qT or if qT = q+.

More details are presented in Section 3.3.2. Hence, with this strategy, we obtain the
following result, required later:

Lemma 5. Let A be a 2onfa with a state set Q, in the form of Lemma 3, and let
Reach(qS, qT) be a procedure returning true or false depending on whether A has a
computational segment connecting two states qS, qT on a given input w. Then the truth of
Reach(qS, qT) can be computed by a 2dfa A′′ using two read-only variables containing
qS, qT ∈ Q and one working variable to store one of O(∣Q∣) internal states.

More precisely, there exists a 2dfa A′′ such that, starting at the left endmarker of
the input w in a state [q

START
, qS, qT], A′′ will stop in [q

TRUE
, qS, qT] or [q

FALSE
, qS, qT],

depending on the truth of the statement Reach(qS, qT). This holds for each qS, qT ∈ Q
and each input w. The state set of A′′ is Q′′ = Q′×Q×Q, with ∣Q′∣ ≤ 4⋅∣Q∣−1. Thus, A′′ uses
4⋅∣Q∣−1 internal states; the second and third components in Q′′, containing qS, qT ∈ Q, are
never modi�ed and hence used in a read-only way.

3.3.2 Implementation details for the subroutine Reach

Here we present a more detailed description of the subroutine Reach, introduced in
Section 3.3.1. A reader not interested in such low-level implementation details may skip
the rest of this section.

1There are no predecessors of type c′ = (p, i), since the machine A does not use stationary moves,
except for transitions used to halt and accept.

52 Chapter 3. Outer-nondeterministic Finite Automata

Recall that, for the given 2onfa A = (Q,Σ, δ, q−, F) with n states, in the form of
Lemma 3, we need a 2dfa A′′ capable of testing, for any given pair of states qS, qT ∈ Q
(passed to A′′ as two read-only parameters, in the �nite state control) and any given w
(presented on the 2-way read-only input tape), whether A has a computational segment
from qS to qT on the input w. This implements the Boolean procedure Reach(qS, qT),
speci�ed in Lemma 5.

Consider �rst the standard case, in which qS ≠ qT and qT ≠ q+. Basically, the standard
case uses the depth-�rst search described already in Section 3.3, obtained by modifying
the construction given in [33]. For these reasons, the presentation will be given along the
same lines as in [33], keeping, as much as possible, the same notation.

As already told in Section 3.3, we ignore the transitions on the left endmarker in the
course of the depth-�rst search, which completely excludes the �nal state q+ from further
considerations, as an isolated singleton. (Recall that, by Lemma 3, q+ is a halting state
that can be reached only from the left endmarker. We shall return to such special cases
later.)

Second, before proceeding further, we need to �x a linear order on Q, the state set of
the original automaton A. As usual, the symbols �<� and �>� will denote the ordering
relation.

Now, in the course of the depth-�rst search, our implementation examines each visited
con�guration c = (q, i) in two modes:

Mode 1: Examination of the �left� predecessors of c = (q, i). A left predecessor of c is a
con�guration in the form (p, i−1), such that (p,wi−1,+1, q) ∈ δ. (Here wi denotes
the ith symbol on the input tape.)

Mode 2: Examination of the �right� predecessors, namely, con�gurations in the form(p, i+1), such that (p,wi+1,−1, q) ∈ δ.
For each q ∈ Q and both modes, we introduce a starting and a �nishing state. Taking

into account that the computation depends also on the parameters qS and qT, we thus
de�ne the state set Q′′ for our 2dfa A′′ as follows:

Q′ = {q↖, q↓1, q↗, q↓2, q ∶ q ∈ Q ∖ {q+}} ∪ (3.1){q
START

, q
TRUE

, q
FALSE

} , (3.2)

Q′′ = Q′ ×Q ×Q. (3.3)

However, the transition function δ′′ ∶ Q′′× (Σ∪{▷,◁}) → Q′′× {−1,0,+1} never modi�es
the parameters qS, qT. That is, for each [r, qS, qT] ∈ Q′× Q × Q and a ∈ Σ ∪ {▷,◁}, we
always have δ′′([r, qS, qT], a) = ([r′, qS, qT], d), for some r′ ∈ Q′ and d ∈ {−1,0,+1}. Thus,

3.3. The subroutine Reach 53

qS, qT are always used in a �read only� way. For this reason, qS, qT do not contribute to
the total number of states used by the subroutine Reach. (They only contribute to the
number of states used by any other routine calling Reach.) Moreover, the only parts
of the computation that actually depend on qS and qT are transitions starting in q

START

or stopping in q
TRUE

. Therefore, for simplicity, we describe the behavior of A′′ by �lling
the entries in the transition table for a function δ′ ∶ Q′× (Σ∪{▷,◁}) → Q′× {−1,0,+1},
but indicating explicitly where the next move does really depend on qS or qT (very few
cases). A �nal expansion of the transition table for δ′ to a table for δ′′ will be then quite
straightforward.

Now, the states r ∈ Q′ are interpreted as follows:

q↖ Starting state for the Mode 1: examination of left predecessors for the con�guration(q, i). Left predecessors will be examined one after another, according to the linear
order induced by the relation �<�. To inspect the content of the input square i−1,
the simulator (if it is in the state q↖) has its input head shifted one position to the
left of the actual position of the original machine A.

q↓1 Finishing state for the Mode 1. All the left predecessors of (q, i) have been exam-
ined, but we still have to examine the right predecessors of (q, i). In the state q↓1,
the input head of the simulator is in the actual position i.

q↗ Starting state for the Mode 2: examination of right predecessors for (q, i), when the
left predecessors have been �nished. The right predecessors will also be examined
in the linear order induced by �<�. In the state q↗, the simulator has its input head
shifted one position to the right of the actual position, to inspect the content in the
input square i+1.

q↓2 Finishing state for the Mode 2. Both the left and the right predecessors of (q, i)
have been examined. In the state q↓2, the input head of the simulator is in the
actual position, i.e., the position i.

q Actually not utilized by the procedure Reach, reserved for future use, by variable r
in Algorithm 5 of Section 3.4, and in the subroutine nReach of Section 3.4.1. (Here
we list the complete set of values in Q′, as used also by other subroutines that will
be considered later.)

q
START

, q
TRUE

, q
FALSE

The respective starting and halting states for the depth-�rst search,
viewed also as entry and exit points to/from the Boolean procedure Reach.

Let us now describe the transition function δ′ implementing this strategy. For each
(type of) nonhalting state r ∈ Q′ and each symbol a ∈ Σ∪{▷,◁}, we display a procedure

54 Chapter 3. Outer-nondeterministic Finite Automata

that assigns a value of δ′(r, a) ∈ Q′ × {−1,0,+1} to the transition table and present an
explanation for this procedure. Note that A′′ will use stationary moves. The reader
should also keep in mind that the procedures (called macros here) displayed below are
not executed by the machine A′′ but, rather, they are used to �ll in the entries in the
transition table for A′′.

Let us begin with the transition table of A′′ for a state q↖, which is presented as
Macro 1. (This case is most di�erent from the corresponding one in [33].) Recall that

1 if a = ◁ then

2 δ′(q↖, a) ∶= unde�ned

3 else if a = ▷ then

4 if (qS,▷,+1, q) ∈ δ then (q↖, a,0, q
TRUE

) ∈ δ′ // � return true

5 else δ′(q↖, a) ∶= (q↓1,+1)
6 else if there is no p ∈ Q ∶ δ(p, a) = {(q,+1)} then

7 δ′(q↖, a) ∶= (q↓1,+1)
8 else

9 p̃ ∶=min{p ∈ Q ∶ δ(p, a) = {(q,+1)} }
10 δ′(q↖, a) ∶= (p̃↖,−1)

Macro 1: Transition of Type δ′(q↖, a)
A′′ gets to the state q↖ when, for some i, it starts the examination of the left predecessors
of the con�guration c = (q, i). By de�nition of q↖, A′′ has its input head already at the
position i−1. The procedure considers four cases:

� a = ◁ (line 1): actually this case is unreachable, it is given just for completeness,
to �ll in all entries in the transition table for δ′.

� a = ▷ (from line 3): in this case, the input head of the original 2onfa A is
placed exactly one position to the right of the left endmarker. Depending on the
�rst parameter qS, there are two possibilities. If (qS,▷,+1, q) ∈ δ, the backward
simulation has been successfully completed, the remaining part of the backward
tree can be ignored. Hence, the machine stops immediately in the state q

TRUE

(line 4). Otherwise, the con�guration c = (q,1) has no left predecessors, since there
are no transitions in the depth-�rst search tree at the left endmarker. Hence, the
machine terminates Mode 1 and moves its head to the real input position (line 5).

� In the middle of the input, and there are no left predecessors of (q, i) (line 6): the
machine ends Mode 1 and moves its head to the real input position. (Recall also
that all transitions in the middle of the input are deterministic.)

3.3. The subroutine Reach 55

� In the middle of the input, and the con�guration (q, i) has at least one left prede-
cessor (lines 8�9). We select the �rst left predecessor in the linear order and start
to examine this con�guration with the same method. To this aim, we switch the
state to p̃↖, and move the head one position to the left of i−1.

Consider now transitions for a state q↓1, presented as Macro 2. (This case is exactly the
same as in [33].) In this state, the examination of the left predecessors of (q, i) has been
11 if a ≠ ◁ then δ′(q↓1, a) ∶= (q↗,+1)
12 else δ′(q↓1, a) ∶= (q↓2,0)

Macro 2: Transition of Type δ′(q↓1, a)
completed. Hence, the search continues with the examination of the right predecessors in
Mode 2 (line 11), by switching to the state q↗ and moving the head to the position i+1.
However, if the input head is on the right endmarker, i.e., a = ◁, then the con�guration(q, i) does not have any right predecessors (line 12). Hence, by switching to q↓2, we �nish
Mode 2 immediately, as if all predecessors to the right had been searched.

Next, consider transitions for q↗, displayed as Macro 3. (Even this case is the same
as in [33].) In the state q↗, A′′ starts to examine the right predecessors of (q, i). A′′ has
13 if a = ▷ then δ′(q↗, a) ∶= unde�ned

14 else if there is no p ∈ Q ∶ δ(p, a) = {(q,−1)} then δ′(q↗, a) ∶= (q↓2,−1)
15 else

16 p̃ ∶=min{p ∈ Q ∶ δ(p, a) = {(q,−1)} }
17 δ′(q↗, a) ∶= (p̃↖,−1)

Macro 3: Transition of Type δ′(q↗, a)
its head already at the position i+1. In a right predecessor of a con�guration, the head
cannot scan the left endmarker, and hence all transitions from the right predecessors are
deterministic. There are three main cases:

� a = ▷ (line 13): unreachable case, given for completeness.

� There are no right predecessors (line 14): we �nish Mode 2 immediately, which
completes the search for (q, i).

� Otherwise (lines 16�17) we select (p̃, i+1), the �rst right predecessor of (q, i), and
start to examine it with the same method. (Among others, the left predecessors of(p̃, i+1) are going to be examined.) To this aim, we switch to p̃↖, and move the
head one position to the left of i+1.

56 Chapter 3. Outer-nondeterministic Finite Automata

18 if a = ▷ then δ′(q↓2, a) ∶= (q
FALSE

,0) // � return false

19 else if δ(q, a) = ∅ then δ′(q↓2, a) ∶= unde�ned

20 else

21 (q̃, d) ∶= unique element of δ(q, a)
22 if there is no p ∈ Q ∶ p > q and δ(p, a) = {(q̃, d)} then

23 if d = +1 then δ′(q↓2, a) ∶= (q̃↓1,+1)
24 else δ′(q↓2, a) ∶= (q̃↓2,−1)
25 else

26 p̃ ∶=min{p ∈ Q ∶ p > q and δ(p, a) = {(q̃, d)} }
27 δ′(q↓2, a) ∶= (p̃↖,−1)

Macro 4 Transition of Type δ′(q↓2, a)
Finally, consider transitions for a state q↓2, displayed as Macro 4. This state concludes

the examination of the con�guration (q, i), and all con�gurations in the subtree rooted
at (q, i). The machine A′′ has its head at the position i, the actual position of the head
of the simulated machine A. There are three main cases:

� The head is scanning the left endmarker (line 18): since our backward depth-�rst
search ignores the transitions from the left endmarker (see line 5 in Macro 1), the
only con�guration of the form (q,0) that can be reached is c+ = (qT,0), the root for
the depth-�rst search. This means that we have examined the entire tree rooted
at (qT,0) and hence a computational segment from (qS,0) to (qT,0) on the given
input w does not exist. Therefore, A′′ stops the computation in the state q

FALSE
.

� The con�guration does not have any successor (line 19): such con�guration is never
reached in the backward search. This case is included only for completeness.

� Otherwise (from line 20): since the input head is away from the left endmarker,
the con�guration (q, i) has as a unique successor, which can be obtained by the use
of the transition function of A (line 21). Namely, if δ(q, a) = {(q̃, d)}, the unique
successor is (q̃, i+d). Depending on the value of d, we have to consider either left
predecessors (d = +1) or right predecessors (d = −1) of (q̃, i+d). (We call them
here �d-predecessors�, for short.) First, we try to �nd a state p greater than q such
that (p, i) is a d-predecessor. If such state does not exist, then (q, i) is the last
d-predecessor of (q̃, i+d). Hence, depending on d, we complete Mode 1 or Mode 2
for (q̃, i+d) (lines 23�24). Otherwise (lines 26�27), we start to examine, in Mode 1
and with the same method, the next d-predecessor of (q̃, i+d).

To complete the description, we have to specify how to start the depth-�rst search.
This initialization depends on the state qT. Recall that we want to �nd a segment from

3.3. The subroutine Reach 57

(qS,0) to (qT,0) on the input w. Taking into account that the con�guration (qT,0) does
not have left predecessors, we can start the depth-�rst search in the state qT↓1 with the
head at the left endmarker. If there exists the segment we are looking for, then the
computation stops, as explained above, in the state q

TRUE
(Macro 1, line 4). Otherwise,

it stops in q
FALSE

(Macro 4, line 18) after traversing the entire subtree rooted at (qT,0).
Finally, let us examine some trivial cases, dependent on the states qS, qT:

� If qS = qT, then A′′ stops immediately in q
TRUE

, not starting the depth-�rst search
at all.

� If (qS,▷,0, qT) ∈ δ, then A′′ stops immediately in q
TRUE

. (For machines in the normal
form of Lemma 3, this condition ensures, automatically, that qT = q+.)

� If qS ≠ qT, (qS,▷,0, qT) ∉ δ, but qT = q+, then A′′ stops immediately in q
FALSE

.

We are now ready to expand the transition table for δ′, manipulating with the states
in Q′, to a table for δ′′, manipulating with Q′′ = Q′×Q×Q. Basically, if δ′(r, a) = (r′, d), we
de�ne δ′′([r, qS, qT], a) = ([r′, qS, qT], d), for each qS, qT ∈ Q, with the following exceptions:

Handling trivial cases: δ′′([q
START

, qS, qT],▷) = ([q
TRUE

, qS, qT],0), for each qS, qT satisfy-
ing qS = qT or (qS,▷,0, qT) ∈ δ, but
δ′′([q

START
, qS, qT],▷) = ([q

FALSE
, qS, qT],0), for each qS, qT satisfying qS ≠ qT,

δ(qS,▷) S (qT,0), and qT = q+.
Initialization: δ′′([q

START
, qS, qT],▷) = ([qT↓1, qS, qT],0), for each qS, qT satisfying qS ≠ qT,(qS,▷,0, qT) ∉ δ, and qT ≠ q+.

Transitions returning true : δ′′([q↖, qS, qT],▷) = ([q
TRUE

, qS, qT],0), for each q, qS, qT
satisfying (qS,▷,+1, q) ∈ δ, but
δ′′([q↖, qS, qT],▷) = ([q↓1, qS, qT],+1), for each q, qS, qT not satisfying this condition.

(This situation has already appeared in Macro 1, lines 4�5.)

On the other hand, transitions returning false (Macro 4, line 18) are handled in the
standard way: δ′′([q↓2, qS, qT],▷) = ([q

FALSE
, qS, qT],0), for each qS, qT ∈ Q. The same holds

for stopping states: both δ′′([q
TRUE

, qS, qT],▷) and δ′′([q
FALSE

, qS, qT],▷) are left unde�ned
here, for each qS, qT. (Actually, the control returns to the main program.)

Summing up, we have shown that, for a given n-state 2onfaA in the form of Lemma 3,
there exists a 2dfa A′′ such that, starting in the state [q

START
, qS, qT] at the left endmarker

of the input w, A′′ will stop in [q
TRUE

, qS, qT] or [q
FALSE

, qS, qT], depending on whether

58 Chapter 3. Outer-nondeterministic Finite Automata

the automaton A has a computational segment from qS to qT on w. This holds for
each qS, qT ∈ Q and each input w. The state set of A′′ is Q′′ = Q′× Q × Q, in which∣Q′∣ ≤ 4n−1.2 Thus, A′′ uses 4n−1 internal states; the second and third components,
containing qS, qT ∈ Q, are used in a read-only way. Clearly, this gives an implementation
for the Boolean procedure Reach(qS, qT) of Lemma 5.

3.4 Simulation by halting self-verifying automata

In this section we prove that each n-state 2onfa A accepting a language L can be
replaced by an equivalent halting 2svfa with a polynomial number of states and making
nondeterministic choices only when the input head is scanning the left endmarker. As a
consequence, we can derive halting 2onfas with polynomial many states that accept L
and the complement of L.

Our starting point is the construction given in [33] for the unary case, based on the
well known inductive counting . The simulation inductively counts, for t = 0,1,2, . . . , how
many states are reachable at the endmarkers from the initial state in t hits along the
input tape. As a side e�ect, this generates also a list of such states. When all such
states have been listed, we can decide whether the original machine accepts the input.
However, there are deep di�erences from our case. In particular, [33] uses a normal form
for unary 2nfas in which, besides all nondeterministic decisions, also all reversals in the
input head movement must take place at the endmarkers. Consequently, a computation
cannot make a U-turn that starts and ends at the same endmarker without visiting the
opposite one in the meantime, or execute an in�nite loop in the middle of the input.

In our case, we do not have a normal form of this kind. Hence, besides hits across
the entire input, a computation can present U -turns, or run into an in�nite loop not
visiting the endmarkers any more. To overcome the �rst problem, our procedure considers
computational segments instead of hits: for t = 0,1,2, . . . , we count how many states are
reachable from the initial state by computations consisting of t segments, i.e., visiting
the left endmarker t+1 times. At the same time, we generate the complete list of these
states. As a direct consequence of Corollary 1, each accepted input admits an accepting
run visiting the left endmarker at most n times, and hence it is enough to consider
runs consisting of at most n−1 segments. This also avoids in�nite loops involving the
endmarkers. We shall later discuss how to deal with in�nite loops taking place in the
middle of the input.

2Here we count only the states used to implement the procedure Reach. In (3.1), among the states
of Q′, we introduced an unmarked copy of each q ∈ Q ∖ {q+}, not used by the procedure Reach, but
reserved for future use. These copies will be counted later, when they will be used.

3.4. Simulation by halting self-verifying automata 59

In some situations, our simulation can end up in a �don't know� state, denoted here
by q?. This new state is halting: when it is reached, even in the code of a subroutine, the
entire simulation will be aborted.

To simulate individual computational segments, we make use of the subroutine
Reach(qS, qT), with parameters qS, qT ∈ Q, discussed in Lemma 5. Recall that Reach
uses also a global working variable r ∈ Q′, where it temporarily stores one of ∣Q′∣ ≤ 4⋅∣Q∣−1
internal states in the course of the computation. (More details can be found in Sec-
tion 3.3.)

We shall also need another Boolean subroutine tReach(t, qS), with t ∈ {0, . . . , ∣Q∣−2}
and the same parameter qS ∈ Q as in Reach, which veri�es whether there exists a se-
quence of t segments starting from the initial state q− and leading to qS, on the input
under consideration. In the positive case, the Boolean subroutine tReach returns true
in a standard way, i.e., nothing �special� happens. (Both t and qS are used in a read-only
way. However, as a side e�ect, tReach can temporarily store some internal state in
the variable r, used as a temporary storage also by Reach, so the original value of r is
�lost�.) Conversely, if such a sequence does not exist, the subroutine tReach aborts the
computation in the state q?. As will be seen later, this subroutine is nondeterministic.
Hence, it may abort the computation in q? also due to a wrong sequence of nondetermi-
nistic guesses. However, tReach can never get into an in�nite cycle. We are now ready
for a more detailed implementation, displayed as Algorithm 5.

28 m̃ ∶= 1
29 for t ∶= 0 to ∣Q∣−2 do

30 m ∶= m̃; m̃ ∶= 0
31 foreach qT ∈ Q do

32 for i ∶= 1 to m do

33 r ∶= a nondeterministically chosen state, from Q ∖ {q+}
34 if i > 1 and r ≤ qS then halt in q?
35 qS ∶= r
36 if tReach(t, qS) and Reach(qS, qT) then

// � side e�ects: both tReach and Reach modify r
// � tReach may abort by halting in q?

37 if qT = q+ then halt in q
ACCEPT

38 m̃ ∶= m̃+1
39 break i // � start the next iteration for qT
40 halt in q

REJECT

Algorithm 5: Simulation of 2onfas by Halting 2svfas

The algorithm proceeds by counting, for t = 0, . . . , ∣Q∣−2, the exact number of all states

60 Chapter 3. Outer-nondeterministic Finite Automata

reachable by A at the left endmarker by all computation paths starting from the initial
con�guration and consisting of exactly t+1 segments (loop from line 29). During this
process, the algorithm also generates all such states, and hence it can correctly decide
whether to accept or reject the given input.

At the beginning of the t-th iteration of this loop (line 29), a variable m̃ contains the
number of states reachable at the left endmarker by all computation paths with exactly t
segments. (In line 28, we prepare m̃ = 1 for t = 0, the only state reachable by zero segments
is the initial state q−.) In line 30, we save the �old� value of m̃ in the variable m, and
clear m̃ for counting the number of states reachable upon completing one more segment,
i.e., with exactly t+1 segments.

The value of m̃ is computed in the loop from line 31: for each state qT ∈ Q, we test
whether or not it is reachable by a path with exactly t+1 segments. If it is, we shall
increment the value of m̃ (line 38).

To decide whether qT can be reached by exactly t+1 segments, we generate in a
nondeterministic way, one after another, using the variable qS, all m states that are
reachable at the left endmarker by all computation paths with exactly t segments and we
verify if qT can be reached from any of these states by a single segment. This is carried
out by the innermost loop (from line 32).

Within this loop, running for i = 1, . . . ,m, we verify that (i) the sequence of m
nondeterministically chosen states is generated in increasing order, and that (ii) each of
them is indeed reachable with exactly t segments. (This ensures that we are using only
the �proper� states in qS, and that we obtain the complete sequence: such m states are
all di�erent and hence none of the m �proper� states is skipped.)

The �rst condition is veri�ed by temporarily storing each generated state in a separate
variable r (line 33) and by comparing this state with the old value of qS, saved in the
previous iteration of the loop. If the nondeterministically generated sequence does not
respect the �xed order on Q, the computation is aborted in q? (line 34). If the state in r
passes this test, it is saved in qS (line 35). Note also that the temporary variable r will
not be required until the subsequent iteration of the loop, and hence it is now free for
any other purposes.

The second condition is veri�ed by calling the procedure tReach(t, qS). As a side
e�ect of this call (line 36), the computation is aborted in q? if at least one of the m
states generated in qS is not reachable from the initial state by a computation path with
exactly t segments. Hence, the only computation which �survives� testing for these two
conditions is the one generating, in the sorted order, all m states reachable in exactly t
segments.3

3The subroutine tReach modi�es the variable r, using it as a temporary storage. Besides that,
tReach uses another temporary variable t̃ ∈ {0, . . . , ∣Q∣−2}. Further details about this subroutine, which

3.4. Simulation by halting self-verifying automata 61

Now, for each qS among these m states, the algorithm tests whether, by using one
more computational segment starting from qS, it can reach the state qT under examination.
This is carried out by calling Reach(qS, qT) on line 36.4

If the result of this test is positive, the variable m̃ is incremented (line 38). At this
point (line 39), we must abort the innermost loop, iterated for i = 1, . . . ,m, in order to
avoid counting the state qT twice, in case it is reachable from the initial state by several
di�erent paths. Thus, we continue with the next iteration, if any, of the loop examining
all states qT ∈ Q.

However, before doing so (line 37), we halt the entire computation in the accepting
state q

ACCEPT
, if we discover that the �nal state was reached at the left endmarker.

On the other hand, if the iteration of the outermost loop has been completed for each
t = 0, . . . , ∣Q∣−2, never reaching q+ at the left endmarker, then the input is not accepted by
the original automaton. (Otherwise, the search would have stopped already, in line 37.)
Therefore, in line 40, we stop in the rejecting state q

REJECT
.

It is not hard to see that: (i) if the input is accepted by A, at least one computation
path halts in the state q

ACCEPT
and no path halts in q

REJECT
, (ii) if the input is rejected, at

least one path halts in q
REJECT

and no path halts in q
ACCEPT

. (iii) Due to wrong sequences
of nondeterministic guesses, some computation paths halt in q?, but no path can get into
an in�nite loop.

It only remains to present a possible implementation of the subroutine tReach. First,
we can modify the backward search described in Section 3.3, to obtain an auxiliary
subroutine nReach which works with the same global variable r as does the subroutine
Reach, but does not use any parameters. Starting with the head at the left endmarker
and an initial value q′↓1 stored in the variable r, for some q′ ∈ Q ∖ {q+}, the subroutine
stops at the left endmarker after leaving, in the same variable r, a nondeterministically
chosen state q ∈ Q ∖ {q+} such that A has a computational segment from q to q′ on
the given input w. If the subroutine is not able to �nd such a state q, it aborts the
entire computation by halting in the state q?. (However, it can never get into an in�nite
cycle.) That is, nReach simulates nondeterministically A one segment backward. In the
course of the computation, the variable r contains one of 4n−4 internal states, of type
q↖, q↓1, q↗, q↓2 (the same values were used also by the subroutine Reach) but, upon exit,
one of n−1 states q ∈ Q ∖ {q+}. (For further details, see Section 3.4.1.)

Now, the implementation of tReach(t, qS) is simple, as shown in Algorithm 6. Ini-
tially, it assigns qS↓1 to the variable r and then it runs t iterations of nReach, properly

is also nondeterministic, are given below.
4Also the subroutine Reach uses r as a temporary storage, keeping there one of the values from Q′ in

the course of the backward depth-�rst search starting from qT. See Section 3.3 and (3.1) in Section 3.3.

62 Chapter 3. Outer-nondeterministic Finite Automata

re-initializing r in between each two iterations, by the execution of r ∶= r↓1. Hence, at
the end, if r contains the initial state then the search was successful and the Boolean
subroutine tReach(t, qS) returns true. Otherwise it aborts the entire computation by
halting in q?. For t = 0, the subroutine nReach is not called at all, and tReach(0, qS)
returns true only if qS = q−.5
41 r ∶= qS; t̃ ∶= t
42 while t̃ > 0 do

43 r ∶= r↓1; t̃ ∶= t̃−1
44 nReach // � step variable r one segment backward

45 if r ≠ q− then halt in q?
46 return true

Algorithm 6: Boolean Function tReach(t, qS)
Finally, consider the cost of our implementation, in the number of states. The number

of possible values for each one of the 8 variables m,m̃, t, t̃, i, qS, qT, r is bounded by n+1,
except for r, storing one of 5n−2 possible values. (Cf. de�nition of Q′, presented by (3.1)
in Section 3.3.) Hence, our simulation can be carried out by using O(n8) states.

Observe also that, in the main algorithm and in the subroutines, all nondeterministic
choices are taken when the input head is scanning the left endmarker.

By summarizing, we have proved the following:

Theorem 8. Each n-state 2onfa A can be replaced by an equivalent halting 2svfa A′
with O(n8) states making nondeterministic choices only when the input head is scanning
the left endmarker.

Corollary 2. For each n-state 2onfa A, there exist an equivalent halting 2onfa A′ with
O(n8) states and a 2onfa A′′ with O(n8) states accepting the complement of ∣∣A∣∣.
3.4.1 Implementation details for the subroutine nReach

This section is devoted to low-level details in the implementation of the subroutine
nReach, obtained by a slight modi�cation of Reach, described in Section 3.3. The
reader not interested in such details may safely skip this section.

5Instead of this approach, we could generate all states reachable in exactly t segments by a direct
nondeterministic simulation of A, as in [33, subroutine simulation]. This will also produce a correct
inductive counting algorithm. However, since A can run into in�nite loops not visiting the endmarkers,
the resulting algorithm could also enter some loops. As shown here, our implementation produces halting
automata with the same upper bound on the number of states as given� for the unary case only� in [33].

3.4. Simulation by halting self-verifying automata 63

Recall that, starting with the head at the left endmarker and an initial value q′↓1
stored in the variable r, for some q′ ∈ Q∖{q+}, the subroutine nReach should stop at the
left endmarker again, after leaving, in r, a nondeterministically chosen state q ∈ Q∖ {q+}
such that there exists a computational segment from q to q′ on the given input string. If
the subroutine does not �nd a segment connecting some q with the initially given q′, due
to the fact that such a state q does not exist or due to wrong nondeterministic guessing,
the subroutine will halt in the state q?, aborting the entire computation.

This task can be carried out by a modi�ed version of Reach. In particular, nReach
uses the same backward search, described in Section 3.3, starting with r containing the ini-
tially given q′↓1 at the left endmarker, corresponding to the root con�guration c+ = (q′,0).
When, in the course of the backward search, we reach some state q̃↖ with the input head
scanning the left endmarker again, corresponding to a con�guration c = (q̃,1) with the
input head placed exactly one position to the right of the left endmarker, the subroutine
nReach proceeds as follows (cf. Macro 1, lines 4 and 5):

� First, the old value q̃↖ is replaced in the variable r with a nondeterministically
chosen value from the set {q ∈ Q ∶ δ(q,▷) ∋ (q̃,+1)} ∪ {q̃↓1}.

� Now, if the chosen value is a state q such that (q,▷,+1, q̃) ∈ δ, we stop the backward
search, leaving the head at the left endmarker. This means that, in the variable r,
the subroutine returns a state q such that (q,0) is a left predecessor of (q̃,1) and
so there is a computational segment from (q,0) to the starting root con�guration
c+ = (q′,0).

� If the chosen value is q̃↓1, we move the head to the right, ignore the left predecessors
of (q̃,1), and carry on the backward search. Hence, the machine tries to �nd another
segment, corresponding to another path in the search tree rooted at c+.

Thus, the actions implemented on lines 4 and 5 in Macro 1 now correspond to
δ′(q̃↖, a) ∶= {(q,0) ∶ (q,▷,+1, q̃) ∈ δ} ∪ {(q̃↓1,+1)}.

The computation can also traverse the entire subtree rooted at c+ without returning
any state q. This can happen either because a segment ending in c+ does not exist at all
or, because of a wrong sequence of nondeterministic choices along the backward search,
we have ignored all suitable candidates. In this case we have to halt in the state q? and
abort the entire computation. (Cf. Macro 4, line 18.) Such implementation of nReach
uses the same state variable r as does Reach.

64 Chapter 3. Outer-nondeterministic Finite Automata

3.5 Subexponential deterministic simulation

In this section, we prove that each 2onfa with n states can be simulated by an equivalent
2dfa with O(nlog2(n)+7) states, i.e., with a subexponential, but still superpolynomial,
number of states. In the authors' knowledge this is the �rst case of a model using
nondeterminism, an unrestricted alphabet, and having a subexponential simulation by
2dfas.

This result generalizes a result proved for the unary case in [32]. Actually, even
the proof is very similar: the new �ingredient� in our version is the subroutine Reach
presented in Section 3.3. So we give a very short presentation, addressing the reader
to [32] for further details.

Let A be a 2onfa with n states in the form of Lemma 3. The 2dfa simulating A
implements a recursive function, called Reachable(q, p, t), with parameters q, p ∈ Q
and t ∈ {0, . . . , ∣Q∣−1}. For these parameters, the function returns a Boolean value true
or false, depending on whether A has a sequence of at most t segments from the state
q to the state p, on the input w under consideration. The function is based on the well
known divide-and-conquer technique, presented here as Algorithm 7.

47 if t ≤ 1 then return Reach(q, p)
48 else

49 foreach r ∈ Q do

50 if Reachable(q, r, ⌊t/2⌋) then

51 if Reachable(r, p, ⌈t/2⌉) then return true

52 return false

Algorithm 7: Recursive Boolean Function Reachable(q, p, t)
Hence, according to Corollary 1, to decide whether w is accepted by the machine A,

we call Reachable(q−, q+, ∣Q∣−1). We point out that for the base of the recursion, t ≤ 1,
we have to verify the existence of a sequence of at most one segment from q to p, by the
use of the subroutine Reach. (A sequence with zero segments is possible only if q = p.)
Now, we can prove the following.

Theorem 9. Each n-state 2onfa A can be replaced by an equivalent 2dfa A′ with
O(nlog2(n)+7) states.

Proof. The implementation of Reachable and its complexity analysis are very close to
those given in [32] for the unary case. We just outline a rough estimation of the state
upper bound.

3.6. Conditional and unambiguous simulations 65

First, we suppose that the given 2onfa A is in the form given in Lemma 3. The
implementation of the function Reachable can be done using a constant height stack,
as in [32], with few di�erences.

� The height of the stack is ⌈log2(n−1)⌉ ≤ log2(n)+1. For each level of the recursion,
we remember one of 2n possible values, namely, the state r plus one bit, indicating
which of the two recursive calls of Reachable was activated� line 50/51. (In [32],
the stack height was ⌈log2(n+1)⌉.)

� At the base level of the recursion, the subroutine Reach uses 4n−1 < 4n states.
(The corresponding subroutine in [32] was implemented with n2+3 states.)

This gives that the number of di�erent stack con�gurations can be bounded by
4n⋅(2n)log2(n)+1. If the automaton A is not in the form of Lemma 3, we need to con-
vert it, using 3n states. Hence, by replacing n by 3n in the formula, we obtain the
following rough upper bound:

4⋅3n ⋅ (2⋅3n)log2(3n)+1 = 12n ⋅ (6n)log2(6n) = 12n ⋅ 6log2(6n) ⋅ nlog2(6n)= 12 ⋅ n ⋅ (6n)log2 6 ⋅ nlog2(n)+log2 6= 12 ⋅ 6log2 6 ⋅ nlog2(n)+1+2⋅log2 6.

One can easily verify that 1 + 2⋅log2 6 < 7.

3.6 Conditional and unambiguous simulations

It is quite natural to doubt whether the upper bound for making 2onfas deterministic,
presented in Theorem 9, is optimal. We remind the reader that, so far, the best known
gap between a 2nfa and an equivalent 2dfa is only n versus Ω(n2) states [16]. In this
section we shall show that the optimality of the upper bound in Theorem 9, or any other
superpolynomial state lower bound for converting 2onfas to 2dfas, would imply the
separation between deterministic and nondeterministic logarithmic space, hence solving
a longstanding open problem in structural complexity.

This is a direct consequence of the following statement: if L = NL, then each n-state
2onfa can be simulated by a 2dfa with a number of states polynomial in n. After a
slight modi�cation, without using such additional assumptions, we shall also prove that
each 2onfa can be made unambiguous with a polynomial increase in the number of the
states. An extension of these results to alternating 2-way automata will be discussed in
Section 3.7.

The key to these results is a reduction of a language accepted by any given 2onfa

to the graph accessibility problem (GAP), i.e., to the problem of deciding whether a

66 Chapter 3. Outer-nondeterministic Finite Automata

given directed graph G = (V,E) contains a path connecting two designated vertices.
This problem is well known to be complete for NL, the class of languages accepted by
nondeterministic O(logn) space bounded machines [69].

Let us present our reduction. As for the results in Sections 3.4 and 3.5, it is ob-
tained by combining a technique developed for the unary case [34] with the use of the
subroutine Reach presented in Section 3.3.

Consider now an arbitrary 2onfa A with n states, in the �normal� form of Lemma 3.
In this machine, let us �x the state set to Q = {q1, . . . , qn}, with q− = q1 and q+ = qn.
Now, with each input string w ∈ Σ∗, we can associate a directed graph G(w) = (Q,E(w)),
where

E(w) = {(qi, qj) ∈ Q×Q ∶ Reach(qi, qj) = true} .
That is, E(w) is the set of state pairs (qi, qj) such that A has a segment from qi to qj
on input w. These edges can be presented on an input tape of a Turing machine in the
form of a binary adjacency matrix, written row by row, in which the bit at the position(i−1)⋅n + j is equal to 0 or 1 depending on whether (qi, qj) ∈ E(w). Clearly, the length
of this representation is n × n = n2 bits.

It should also be clear that w is accepted by A if and only if the graph G(w) contains
a path from vertex q− = q1, the initial state, to vertex q+ = qn, the accepting state.
Hence, the mapping G ∶ w → G(w) de�nes a reduction from the language accepted by A
to GAP. As mentioned already, GAP is a complete language for NL under logarithmic
space reductions [69]. Hence, GAP ∈ L if and only if L = NL. This permits us to prove
the following:6

Theorem 10. If L = NL, then each 2onfa A with n states can be replaced by an equiv-
alent 2dfa A′ with a number of states polynomial in n.

Proof. Let DGAP be a deterministic Turing machine which solves GAP in logarithmic
space. Under the hypothesis that L = NL, such a machine must exist.

Now, by composing the above reduction G ∶ w → G(w) with the machine DGAP, (see
Figure 3.1), we can build a 2dfa A′ deciding membership in ∣∣A∣∣ as follows.

For the given input w, the machine A′ simulates DGAP, pretending that the input
is E(w), written on the tape as the corresponding adjacency matrix. Since the length
of this representation is n2 bits, DGAP uses O(logn) space on its worktape. Recall that

6For the restricted case of unary input alphabet, a result similar to Theorem 10 was shown in [34,
Lem. 4.1]. The following stronger result (without the unary restriction) is presented in [46] in a di�erent
context: if L/poly ⊇ NL then each 2onfa A with n states can be replaced by an equivalent 2dfa A′ with
a number of states polynomial in n. L/poly denotes the class of languages accepted by deterministic
Turing machines in logarithmic space, with the additional help of an advice of polynomial length.

3.6. Conditional and unambiguous simulations 67

G DGap
w

yes

no

E(w)

(a)

G UGap

advice

w

yes

no

E(w)

(b)

Figure 3.1 � The machines A′ (a) of Theorem 10 and A′′ (b) of Theorem 11.

the automaton A is �xed, and hence n does not depend on ∣w∣, the length of the real
input. Therefore, a worktape of size O(logn) can be represented in a �nite state control,
with a number of states polynomial in n. The same holds for the �nite state control
of DGAP, as well as for the position of its virtual input head, with values ranging between
0 and n2+1. Depending on whether DGAP accepts or rejects E(w), the machine A′ accepts
or rejects w, respectively.

The only problem is that the adjacency matrix for E(w) cannot be stored in the
�nite control of A′, because this would require at least 2n⋅n states. Hence, each time
DGAP needs to access one symbol from its input, such a symbol is computed �on the �y�.
More precisely, if the bit at a position (i−1)⋅n+j is required, for some i, j ∈ {1, . . . , n}, the
simulation of DGAP is temporarily interrupted and A′ calls the subroutine Reach(qi, qj),
presented in Section 3.3, to test whether the original machine A has a segment from qi
to qj on the original input w. This subroutine uses 4n−1 internal states. After obtaining
this bit of information, A′ can resume the simulation of DGAP. Each time the virtual
input head of DGAP reaches the position 0 or n2+1, A′ imitates the presence of the left
or right endmarker, respectively, without calling Reach.

While the deterministic simulation in Theorem 10 stays polynomial under the as-
sumption that L = NL, the next simulation by unambiguous machines does not require
any extra assumption:

Theorem 11. Each 2onfa A with n states can be replaced by an equivalent unambiguous
2onfa A′′ with a number of states polynomial in n.

Proof. The simulation of A presented here7 is similar to that in Theorem 10 but, instead
of the (unproven) assumption L = NL, we shall utilize the following (consequence8 of a)

7In [34, Thm. 5.2], an unambiguous simulation was presented for the restricted case of unary input
alphabet.

8Actually, the corresponding statement in [65] is much more general: with an additional help of an
advice of polynomial length, any O(logn) space bounded nondeterministic Turing machine (not only a
machine for GAP) can be made unambiguous and still working in logarithmic space.

68 Chapter 3. Outer-nondeterministic Finite Automata

result published in [65]: There exists UGAP, a nondeterministic Turing machine working
in logarithmic space and never using more than one accepting path on any input, and{αn}n≥0, a �xed sequence of binary strings with lengths bounded by a polynomial in n,
such that, for any graph G = (V,E) with n vertices, G ∈ GAP if and only if UGAP accepts
the input E ♯ αn2 . That is, using {αn}n≥0 as an assisting advice of polynomial length [47],
we can accept GAP by an unambiguous machine UGAP in logarithmic space.

Now, for the given a 2onfa A with n states, we apply the construction used in
Theorem 10 but, instead of the machine DGAP on the virtual input E(w), we simulate
the unambiguous machine UGAP, pretending that the input tape contains E(w) ♯ αn2 .
(See also Figure 3.1.) Clearly, w ∈ ∣∣A∣∣ if and only if G(w) ∈ GAP, which in turn holds if
and only if UGAP accepts E(w) ♯ αn2 .

Note that the length of E(w) ♯ αn2 is polynomial in n, and does not depend on ∣w∣.
Thus, by the same reasoning as in Theorem 10, UGAP uses O(logn) space on its worktape,
and hence all data required during the simulation can be represented in a �nite state
control, with a number of states polynomial in n.

However, there are few di�erences. First, the position of the virtual input head is now
in the range 0, . . . , n2+1+∣αn2 ∣+1. Second, the n2 bits of E(w) are computed �on the �y�,
by calling the subroutine Reach(qi, qj), but we cannot access this way the second part
of the virtual input�the advice string αn2 . However, the advice depends only on the
size of the graph G(w) (but not on the graph G(w) itself), which in turn depends only
on the number of states in A (but not on the real input w). So, for the given 2onfa A
with n states, the advice αn2 is �xed, and hence it can be encoded in the �hardware�, i.e.,
in the transition table for our new machine A′′.

Finally, observe that A′′ accesses its input tape only to compute the bits of the
adjacency matrix E(w), by calling the subroutine Reach. This deterministic subroutine
starts and ends its computation with the head at the left endmarker. Thus, A′′ takes
all nondeterministic decisions with the head scanning the left endmarker, to simulate the
unambiguous machine UGAP. Hence, A′′ is an unambiguous 2onfa.

3.7 The alternating case

In this section we brie�y discuss an extension of the techniques used in Section 3.6, to the
case of automata with alternations [14], considered in [43, 30]. Such automata combine
the power of nondeterminism with parallelism.

A 2-way alternating automaton (2afa, for short) is de�ned in the same way as a
2nfa, but now the set of states Q is partitioned in two disjoint sets Q∃ and Q∀, the sets
of existential and universal states, respectively.

3.7. The alternating case 69

The acceptance of an input string w by a 2afa A is witnessed as follows. Consider
the tree of all possible computation paths, starting from the initial con�guration c−.
In this tree, a con�guration c = (q, i) is declared to be successful, if (i) the state q is
accepting, or (ii) q is existential and at least one successor of c = (q, i) is successful, or
(iii) q is universal and all successors of c = (q, i) are successful. The input w is accepted, if
the initial con�guration c− becomes successful in this way. Notice that nondeterministic
automata are just alternating automata without universal states.

Even for 2afas, we can restrict the use of (both existential and universal) choices as
we did for 2nfas, considering 2-way outer-alternating �nite automata (2oafas). In this
model, the choices can be taken only when the head is scanning one of the endmarkers;
a con�guration positioned away from the endmarkers can have at most one successor.

Actually, using arguments very similar to those of Lemma 3, we can restrict the use
of choices to the left endmarker:9

Lemma 6. For each 2oafa A = (Q∃,Q∀,Σ, δ, q−, F) with n states, there exists an equiv-
alent 2oafa A′ with no more than 3n states that satis�es the following properties:

� both existential and universal choices are taken only when the input head is scanning
the left endmarker,

� there is a unique accepting state q+ and this state is also halting,

� q+ is reachable only at the left endmarker, by stationary moves,

� stationary moves are used only at the left endmarker.

Now, consider the alternating graph accessibility problem (AGAP, for short), an al-
ternating version of GAP. The instance of the problem is an alternating directed graph,
i.e., a graph G = (V∃, V∀,E) with a partition of V = {v1, . . . , vn} in two disjoint sets V∃
and V∀. The question is if the predicate APath(v1, vn) is true, where, for vi, vk ∈ V ,
APath(vi, vk) = true if and only if:

� vi = vk, or
� vi ∈ V∃ and, for some edge (vi, vj) ∈ E, APath(vj, vk) = true, or
� vi ∈ V∀ and, for each edge (vi, vj) ∈ E, APath(vj, vk) = true.

9Notice a small di�erence with respect to Lemma 3, in which the stationary moves were allowed only
to halt in q+ at the left endmarker. However, here they can be used also for other purposes, but still
only at the left endmarker. Due to the presence of both universal and existential states, a complete
removal of stationary moves would require a more complicated argument than the simple one used to
prove Lemma 3. However, this is not necessary for our purposes.

70 Chapter 3. Outer-nondeterministic Finite Automata

This problem is known to be complete for the class P, with respect to logarithmic space
reductions [40].

As is Section 3.6, the edges in E can be represented by a binary adjacency matrix,
of length n × n = n2 bits, but here we also need to specify partitioning of vertices into
V∃ and V∀. This can be given as a string consisting of n additional bits, denoted here
by V∃/∀, in which the bit at the position i is equal to 0 or 1 depending on whether vi ∈ V∃
or vi ∈ V∀. Therefore, a binary represented instance of the problem is in the form E ♯ V∃/∀,
using n2+n bits.

Now we can reduce the language accepted by a given 2oafa A, in normal form
of Lemma 6, to AGAP: with each input string w, we associate the alternating graph
G(w) = (Q∃,Q∀,E(w)), binary encoded by E(w) ♯ Q∃/∀. Here we assume, without loss
of generality, that q− = q1 and q+ = qn. The edges are de�ned in the usual way: (qi, qj) ∈
E(w) if and only if A has a computational segment from qi to qj on the input w. (The
extension of the notion of computational segments to 2afa is obvious.) Since A makes
both existential and universal choices only at the left endmarker, w ∈ ∣∣A∣∣ if and only if
G(w) ∈ AGAP.

Since the deterministic subroutine Reach presented in Section 3.3 depends only on
the transition function of the given automaton A but not on the acceptance condition,
we can use it to detect segments even in the case of outer 2afas.10 This permits us to
prove the following result:

Theorem 12. If L = P, then each 2oafa A with n states can be replaced by an equivalent
2dfa A′ with a polynomial number of states.

Proof. First, without loss of generality, we can assume that A is in normal form given
by Lemma 6. Second, under the assumption that L = P, using also the fact that AGAP
is complete for P, there must exist a deterministic Turing machine DAGAP that solves
AGAP in logarithmic space.

Now, for the given n-state 2oafa A, we apply the construction of Theorem 10 but,
instead of the machineDGAP on the virtual input E(w), we simulateDAGAP on the virtual
input E(w) ♯ Q∃/∀. Clearly, for each input string w, w ∈ ∣∣A∣∣ if and only if G(w) ∈ AGAP,
that is, if and only if DAGAP accepts E(w) ♯ Q∃/∀.

During the simulation, the �rst n2 bits forming the string E(w) are tested by calling
the subroutine Reach with appropriate parameters, in the same way as used in the proof
of Theorem 10. On the other hand, the last n bits that represent Q∃/∀, partitioning Q

10As mentioned in the previous footnote, we can have stationary moves at the left endmarker. The
subroutine Reach(qS, qT) has been implemented considering this possibility. In particular, it returns
true for each qS, qT satisfying qS = qT or (qS,▷,0, qT) ∈ δ. (See item �Handling trivial cases� in the
implementation of 2dfa A′′, at the end of Section 3.3.)

3.8. Concluding remarks 71

into existential and universal nodes, do not depend on w, but only on Q∃ and Q∀. So,
for the given 2oafa A, this information is �xed, and hence it can be encoded in the
transition table for our new machine A′. (In the proof of Theorem 11, we encoded this
way the advice string αn2 .)

By the same reasoning as in the proof of Theorem 10, we also get that the new
machine A′ is a �nite-state device, namely, a 2dfa with a polynomial number of states,
accepting the same language as does A.

In a similar way, we can prove the following:

Theorem 13. If NL = P, then each 2oafa A with n states can be replaced by an equiv-
alent 2onfa A′ with a polynomial number of states.

Proof. Under the hypothesis NL = P, there exists a nondeterministic Turing machine
NAGAP that solves AGAP in logarithmic space.

The rest of the argument is the same as in the proof of Theorem 12, replacing the
machine DAGAP by the machine NAGAP. The only di�erence from Theorem 12 is that
now the resulting 2-way machine A′ is nondeterministic.

Note also that nondeterministic choices are always made with the input head at the
left endmarker, since A′ accesses its input tape only by calling the deterministic subrou-
tine Reach. Hence, A′ is actually 2onfa.
3.8 Concluding remarks

In a uni�ed framework, we have generalized some results from unary 2nfas to machines
with arbitrary input alphabets, but making nondeterministic choices only at the input
tape endmarkers. Among others, we have shown that any superpolynomial lower bound
for the conversion of such machines to standard 2dfas would imply L ≠ NL. (Unlike
in [7], there are no restrictions on the length of potential witness inputs.) In Section 3.7,
we also related the alternating version of such machines to L

?= NL
?= P, the classical

computational complexity open problems.
Comparing our results with those obtained for other restricted models of 2-way au-

tomata, we observe that:

� Actually, unary 2nfas can use only a restricted form of nondeterminism. In fact, we
can restrict their nondeterminism to the endmarkers without increasing signi�cantly
their size [32]. (A similar phenomenon has been observed by Chrobak in the case
of unary 1-way automata [16].)

72 Chapter 3. Outer-nondeterministic Finite Automata

� In the general case, the possibility of reversing the input head movement at any
input position does not seem as powerful as the possibility of making nondetermi-
nistic decisions at any input position. (Compare our polynomial upper bound for
the complementation of 2onfas with the exponential lower bound for the comple-
mentation of sweeping 2nfas in [42].)

� However, in the deterministic case, the possibility of reversing the input head at any
input position can make automata exponentially smaller than machines reversing
the input head only at the endmarkers [6, 58].

It would be interesting to see if the results proved in this chapter could not be extended
to a model using nondeterminism in a less restricted way than the one considered here.

Chapter 4

Super- and sub-classes of rational series

We recall that we made the convention of identifying binary relations of the direct prod-
uct Σ∗ ×∆∗ as formal series in K ⟨⟨Σ∗⟩⟩ where K = 2∆∗ . We pursue our study of formal
power series over an arbitrary semiring (see Section 2.2), by introducing some new oper-
ations with a view to applying our results to 2-way transductions (see Section 2.3.4).

4.1 Further operations on series

We introduce the Hadamard product and the Hadamard star of series. Their relevance
to 2-way K automata, and more precisely, with sweeping and rotating K automata, is
highlighted. The Hadamard product is usual, while the Hadamard star appears to be
a new operation, which will make sense for rationally additive semirings such as the
semiring Rat(∆∗) (see Section 2.2.2 in Chapter 2).

Notation Given a sequence of operators ω1, ω2 . . . in K ⟨⟨Σ∗⟩⟩ and a family F of K-
series we denote by [F,ω1, ω2, . . .] the least family, when it exists, containing F and
closed under ω1, ω2, . . . For example, the family of rational series is [Pol,+, ⋅,∗].
4.1.1 Hadamard operations

The Hadamard product of two series σ and τ is de�ned as:

σ H τ ∶= ∑
w∈Σ∗

⟨σ,w⟩ ⋅ ⟨τ,w⟩w
In particular, the support of σ H τ is the intersection of both supports of σ and τ . Hence,
if one of σ or τ is a polynomial (resp. a proper series), so is σ H τ . The Hadamard product

73

74 Chapter 4. Super- and sub-classes of rational series

admits a neutral element: the series 1H that maps any word to 1 i.e., the series de�ned
as:

1H ∶= ∑
w∈Σ∗

1w

Example 8. We �x Σ and K = Rat(Σ∗). Consider the series Id, which maps every
word to (the singleton containing) itself, i.e.,

Id ∶= ∑
w∈Σ∗

{w}w
It is rational because it is equal to the polynomial series mapping each one-symbol word
on Σ into itself. Now, consider the Hadamard product of Id by itself:

Square ∶= ∑
w∈Σ∗

{ww}w
By the projection on the second component of Square is not rational, providing that Σ
has at least two symbols.

Observe that when K is commutative, the Hadamard product commutes, i.e.,
σ H τ = τ H σ. Furthermore, it is proved in [66, Theorem III. 3.1] that in this case, the
family Rat is closed under Hadamard product.

Theorem 14. If K is commutative then the family Rat is closed under Hadamard prod-
uct.

As usual, we de�ne the successive powers of a series under Hadamard product:

σ Hk ∶= { 1H if k = 0;
σ H σ H (k−1) otherwise.

As expected, for any σ we have σ H 0 = 1H and σ H 1 = σ. Then, we can de�ne the Hadamard
star of σ as:

σ⋆ ∶= ∑
k∈Nσ

Hk = ∑
w∈Σ∗

(∑
k∈N ⟨σ Hk,w⟩w)

when the in�nite sum is de�ned.

Over rationally additive semirings (Section 2.2.2) the Hadamard star is always de�ned
and it takes a simpler expression.

Proposition 8. If K is a rationally additive semiring and Σ is an alphabet, then for
every series σ in K ⟨⟨Σ∗⟩⟩ we have:

σ⋆ = ∑
w∈Σ∗

⟨σ,w⟩∗w

4.1. Further operations on series 75

The families Pol and Prop are not closed under Hadamard star as 0⋆ = 1H . The

Hadamard star is idempotent, i.e., (σ⋆)⋆ = σ⋆.
Example 9. Working on series in Rat(a∗) ⟨⟨a∗⟩⟩, we de�ne the series uMult as being
the Hadamard star of Id (see Example 8):

uMult ∶= Id⋆ = ∑
n∈N{akn ∣ k ∈ N}an

By identifying the monoids a∗×a∗ with N×N, this series de�nes the relation �being a mul-
tiple of�. However rational series of N are �rst-order de�nable in Presburger arithmetics,
i.e., arithmetics with addition only. Hence, uMult is not rational. That implies that the
family of rational series is not closed under Hadamard star, even in the K commutative
and Σ unary case (observe the contrast with Theorem 14).

The Hadamard operations were introduced because they are well-suited to the behav-
ior of 2-way K-fas. Indeed, this family of series is closed under Hadamard operations.

Proposition 9. If σ and τ are series respectively accepted by 2-way, sweeping, rotating
K-fas, so are the series the σ H τ and σ⋆. Moreover, if the K-fas are deterministic, so
is the resulting K-fa accepting σ H τ .

Proof. The formal proof of the construction is left to the reader. The ideas are given in
Figure 4.1, where Kσ and Kτ boxes stand for direct simulations of the K-fa accepting σ
and τ respectively and where − and + are new states that are used to cross the entire
input up to the left and the right endmarker respectively. Observe that sweepingness and
rotatingness are preserved. For the Hadamard product, even determinism is preserved.

Example 10. A direct application of the previous proposition, is that the series uMult

de�ned in Example 9 is accepted by a rotating transducer. We give one in Figure 4.2
(observe the similarity with the construction presented in Figure 4.1b).

The Hadamard product and the Hadamard star are called Hadamard operations. As
shown in Example 8 and Example 9, the following de�nes a super family of the rational
series.

De�nition 13. The family of Hadamard series, denoted Had(K ⟨⟨Σ∗⟩⟩) or simply Had
if K and Σ are understood, is the closure of Rat(K ⟨⟨Σ∗⟩⟩) under Hadamard operations
and sum, i.e.:

Had = [Rat,+, H ,⋆]
Natural examples of Hadamard relations are Square (Example 8) and uMult (Ex-

ample 9).

76 Chapter 4. Super- and sub-classes of rational series

Kσ

Kτ
− ◁,−1

∶ 1K
▷,0 ∶ 1K

a,−1 ∶ 1K

(a)

Kσ

− +

▷,0
∶ 1 K ◁

,−1 ∶ 1K

a,−1 ∶ 1K
▷,+1 ∶ 1K

a,+1 ∶ 1K

(b)

Figure 4.1 � Construction of transducers accepting σ H τ (a) and σ⋆ (b) respectively.

←ÐqÐ→q q+
▷,+1 ∣ ε ▷,+1 ∣ ε

a,−1 ∣ ε◁,−1 ∣ εa,+1 ∣ a a,+1 ∣ ε

Figure 4.2 � A rotating transducer accepting the relation uMult (an edge (q, q′) is
labeled (s, d ∣ w) if φ maps the transition (q, s, d, q′) to w).

We are able to prove that, under the assumption that K is rationally additive (see
Section 2.2.2), the family Had with sum, Hadamard product and Hadamard star, is also
a rationally additive semiring.

Proposition 10. If K is rationally additive, then ⟨Had(K ⟨⟨Σ∗⟩⟩),+, H ,⋆ ,0,1H ⟩ is a
rationally additive semiring.

Proof. This is a direct consequence of the general following observation: consider a class Γ
of functions from a set X to a set Y provided with a some internal operations ω1, ω2, . . . of
any arity. Extend each operation ω of arity r to Γ by setting, for f1, . . . fr ∈ Γ and x ∈X,
Ω(f1, . . . , fr)(x) = ω(f1(x), . . . , fr(x)). Every identity on X transfers to Γ.

Since ⟨Had,+, H ,0,1H ⟩ is a semiring, we can de�ne the matrix product with the
speci�c operations of sum and Hadamard product. Therefore we can inductively de�ne
the successive powers of a matrix M , by setting M H 0 is equal to the matrix which has
coe�cients 1H on the diagonal and 0 elsewhere, and M H i+1 =M H M H i for each i ≥ 0.

4.1. Further operations on series 77

The transitive closure can be interpreted in the present case: let σi,j the coe�cient
in position (i, j) of the matrix M , the entry (k, `) of M∗ is the power series σ de�ned as
follows:

⟨σ,w⟩ = {⟨σi1,i2 ,w⟩ ⋅ ⟨σi2,i3 ,w⟩ ⋅ . . . ⋅ ⟨σir−1,ir ,w⟩ ∣ i1, . . . , ir ∈ {1, . . . , n}, i1 = k, ir = `, r ≥ 0}
The following extends the Kleene-Scützenberger Theorem (Theorem 5) to rotating

K-fas.

Corollary 3. The family of series recognized by rotating K-fas is equal to Had.

Proof. The inclusion of Had in the family of series accepted by rotating K-fas is a
consequence of Theorem 5 and Proposition 9.

Now we prove the opposite direction. Let (A, φ) be a rotating K-fa withA = (Q,Σ,▷,◁, I, F, δ). With the notation of De�nition 10, let δ+1 be the intersection
δ ∩ (Q ×Σ▷◁ × {0,1} ×Q+1). Observe that, for q, q′ ∈ Q the K-fa

Kq,q′ = ((Q,Σ,▷,◁,{q},{q′}, δ+1), φ)
recognizes a rational series thanks to Theorem 5.

Now, we de�ne for each pair (q, q′′) the rational series σq,q′′ as the sum of the se-
ries ∣∣Kq,q′ ∣∣ such that (q′,◁,−1, q′′) ∈ δ.

Consider the matrix M ∈ RatQ×Q whose (q, q′)-entry is the series σq,q′ . It describes
the behavior of (A, φ) between two visits of the left endmarker. Since the semiring is
rationally additive, we may consider the matrix M∗, which describes the behavior of the
automaton in an arbitrary number of hits, starting and ending at the left endmarker.
The series recognized by (A, φ) is thus

σ = ⋃
q∈I, q′∈Q, q′′∈F (M∗

q,q′ H ∣∣Kq′,q′′ ∣∣)

4.1.2 Mirror operation

The last operator on series introduced here is the mirror, denoted mir. The mirror of a
series σ, is the series σ de�ned as:

σ ∶= ∑
w∈Σ∗

⟨σ,w⟩w

78 Chapter 4. Super- and sub-classes of rational series

Recall that w denotes the mirror of the word w as introduced in Section 2.1.2. Since the
mirror on words is an involution, so is the mirror of series, i.e., for any σ we have σ = σ.

By de�nition, we have: Supp(σ) = Supp(σ). Thus, the families Pol and Prop

are both closed under mirror. However, it can be shown that, in general, neither Rat
nor Had are closed under mirror. Thus, the next de�nitions introduce new families of
series.

De�nition 14. The family of Mirror-rational series, denoted MRat(K ⟨⟨Σ∗⟩⟩) or sim-
ply MRat when the context is clear, is the closure of Pol(K ⟨⟨Σ∗⟩⟩) under rational
operations and mirror i.e.:

MRat ∶= [Pol,mir,+, ⋅,∗]
The family of Mirror-Hadamard series, denoted MHad(K ⟨⟨Σ∗⟩⟩) or simply MHad

when the context is clear, is the closure of Rat(K ⟨⟨Σ∗⟩⟩) under Hadamard operations
and mirror i.e.:

MHad ∶= [Rat,mir,+, H ,⋆]
Example 11. Let Σ = {a, b} and K = Rat(Σ∗). From the series Id de�ned in Example 8,
we de�ne the series Rev which maps every word to its mirror, i.e.,

Rev ∶= Id = ∑
w∈Σ∗

{w}w
The series Id is rational and hence Rev is the mirror of a rational series.

The series Id ⋅Rev belongs to the family MRat. It maps every word w into the set
of words uv such that w = uv.

The series Id H Rev belongs to the family MHad. It maps every word w into the
singleton {ww}.

As said previously, the mirror operator is an involution on Σ∗. It is a really natural
operator, especially when considering 2-way or sweeping K-fa which may scan their input
word letter by letter from right to left.

In fact, as an extension of Corollary 3, the family MHad characterizes the series
accepted by sweeping K-fas.

Corollary 4. A series is accepted by a sweeping K-fa if and only if it belongs to MHad.

Proof. The �rst direction is a simple consequence of Theorem 5, Proposition 9 and Propo-
sition 13, that we prove later. Indeed, it is easy to recognize the mirror of a rational
series σ by a sweeping K-fa, by simply scanning the input from right to left, while
simulating a 1-way K-fa accepting σ.

4.1. Further operations on series 79

The other direction is proved similarly as for Corollary 3, considering left-to-right and
right-to-left hits. The formal adaptation of the former proof is left to the reader.

In the restricted case of unary alphabet, i.e. when Σ has cardinality 1, the mirror is
trivially the identity mapping: σ = σ. For more general cases, even when restricting the
input to some recognizable sets such as bounded languages, i.e., �nite concatenations of
powers of di�erent symbols, the mirror performs a new operation.

In other to better describe the contribution provided by the mirror operator, we
introduce new families of series. For a family X , we denote by X the family of series σ
with σ ∈ X . In particular:

Rat ∶= {σ ∣ σ ∈ Rat}
Had ∶= {σ ∣ σ ∈ Had}

The family Rat and Rat are incomparable.

Proposition 11. The families Rat and Rat are incomparable.

Proof. By involution, it su�ces to prove Rat ⊄ Rat. By Proposition 42 (later, in Chap-
ter 6), if σ ∈ Rat(Rat(Σ∗) ⟨⟨Σ∗⟩⟩) then the language Lσ = {w#⟨σ,w⟩ ∣ w ∈ Supp(σ)}
is context-free. The language LRev = {w#w} is not context-free. So Rev belongs to
Rat ∖Rat and hence Rat and Rat are incomparable.

We can even more prove a stronger result, separating the families Rat and Had.

Proposition 12. The families Rat (resp. Rat) and Had (resp. Had) are incompara-
ble. The relation Rev is a natural separator, in Rat ∖Had.
Proof.1 By involution and since Rev trivially belongs to Rat, it su�ces to prove that Rev
does not belong to Had or equivalently that it could not be accepted by a rotating
transducer. We proceed by contradiction. Suppose that there exists a rotating trans-
ducer T = (A, φ) accepting Rev and let s denote its number of states. By Proposition 6
we may suppose that the production function φ is elementary and single-valued, and that
the automaton A has a unique initial state q− and a unique accepting state q+. Because T
is rotating and functional we can also suppose that it is loop-free. Moreover, we suppose
without loss of generality that at each step exactly one of the two heads moves, i.e., for
each transition t = (q, a, d, q′), φ(t) = ε if and only if d ≠ 0.

1The main idea of this proof has been found with the help of Rémi De Joannis de Verclos during the
summer school EJC IM 2016 organized by the GDR IM. Many thanks to him.

80 Chapter 4. Super- and sub-classes of rational series

Let w be a word in Σ∗ and let m denote its length. We �x a successful run r of T
on w. Since T is rotating and loop-free, the hit factorization of r is composed in 2k + 1
hits h1, . . . ,h2k+1 for some k < s, i.e.,

r = h1@h2@ . . .@h2k+1 k < s (4.1)

where for each 1 ≤ i ≤ 2k + 1, depending on whether i is odd or even, hi is a left to right
hit or a right to left rewind. In particular, φ(r) = φ(h1)φ(h3)⋯φ(h2k+1).

Since the input and the output have the same length, we can imagine the two tapes
one on top of the other. For convenience, we suppose that the write head moves from
right to left, starting from the rightmost position. Due to the assumption made on
the transitions of T , at each step of a left to right hit, exactly one of the two heads
moves one cell to the right or to the left accordingly. Therefore, for each left to right
hit h2i−1 with 1 ≤ i ≤ k + 1, there exists exactly one position pi on which the two heads
coincide. Let qi be the state of the machine when this event occurs and observe that the
sequence of pi is decreasing. These k + 1 positions de�ne a factorization wk+1⋯w0 of the
input word, where, for each 0 ≤ i ≤ k + 1, the length of wi is equal to pi − pi+1 with the
convention p0 = m and pk+2 = 0 (see Figure 4.3). Based on this observation, we can �nd
a second decomposition of r into k + 2 runs: r = t0@ . . .@tk+1 where:

� t0 is the initial sub-run from the initial con�guration (q−,0) to the �rst time the
read and the write heads reach the same position, i.e., to the con�guration (q1, p1);

� for each 0 < i ≤ k, ti is the sub-run between the i-th and (i+1)-th time the positions
of the two heads coincide, i.e., from the con�guration (qi, pi) to the con�gura-
tion (qi+1, pi+1);

� tk+1 is the �nal sub-run from the last time this event occurs to the accepting con�gu-
ration, i.e., from the con�guration (qk+1, pk+1) to the �nal con�guration (q+,m + 1).

Let us enter into more details and consider one factor ti for some 0 < i ≤ k. During that
sub-run, the transducer performs a three step run rsu�x@rrewind@rpre�x (see Figure 4.4),
where:

1. rsu�x is a left to right run starting from the con�guration (qi, pi) and ending at the
right endmarker, thus scanning a su�x c ⋅ z of w where z ∶= wi−1wi−2⋯w0 and c is
the last letter of wi;

2. rrewind is a mute and blind one-way right to left rewind on w;

3. rpre�x is a left to right run starting from the left endmarker and ending in the
con�guration (qi+1, pi+1), thus scanning a pre�x x ∶= wk+1wk⋯wi+1 of w.

4.1. Further operations on series 81

▷ a b a a b b a b a b b b a b ◁

babbbababbaaba

w0w1w2w3w4

q−

q1q1

q2

q3

q4

q+

p0p5 p1p2p3p4

reading way

writing way

Figure 4.3 � The factorization of r according to the times at which the input and output
heads coincide. (The output tape should be considered from right to left.)

It remains to settle the other two cases: if i = 0 (resp. i = k + 1) then the run ti is
reduced to the third (resp. the �rst) step. Denote by (q, p) and (q′, p′) the �rst and
the last con�guration of ti respectively. In all cases the word produced, which is unique
since T is single-valued, is exactly the word y ∶= wi. Moreover, if there exists another
run starting from the con�guration (q, p) and ending in the con�guration (q′, p′), then
its associated image by φ should be equal to y because T is functional. Hence y depends
on four paramaters only: the states q and q′ and the factors x and c ⋅ z. Indeed, given q,
q′, x and c ⋅ z, it is easy to compute y by simply simulating the runs rsu�x and rpre�x.
Therefore, since w = x ⋅ y ⋅ z, we can recover w.

Now, we reconsider the choice of i. Indeed, because the output associated to the

82 Chapter 4. Super- and sub-classes of rational series

▷ a b a a b b a b a b b b a b ◁

rsuffix

rrewind

rprefix

(q, p)

(q′, p′)

x

y

zc

y

Figure 4.4 � Decomposition in three steps of a sub-run ti.

run r has length m = ∣w∣ and since we have decomposed w in at most s + 1 factors, there
exists an i such that φ(ti) = wi has length at least m

s+1 . In this way, the pre�x x and the
su�x c ⋅ z associated to the sub-run ti satisfy ∣x∣ + ∣c ⋅ z∣ = ∣x ⋅ c ⋅ z∣ ≤ sm

s+1 + 1.

Consequently, for each word w of length m there exists a quadruple (q, q′, x, z) such
that ∣xz∣ ≤ sm

s+1+1 and w is computable from (q, q′, x, z). So whenm is �xed, we can deduce
from the �rst statement an upper bound on the number of possible such quadruples:

s2 ×Card({(x, z) ∈ Σ∗ ×Σ∗ ∣ ∣xz∣ ≤ sm

s + 1
+ 1}) ≤ s2 ×m × ∣Σ∣ sms+1+2

The second statement shows that distinct words cannot be associated to the same quadru-
ple. Hence, because the accepted function is total, the number of such quadruples should
be at least equal to the number of words of length m. For su�ciently large enough m,
the previous upper bound is less than ∣Σ∣m. This is a contradiction.

Combining mirror and Hadamard operations

The mirror commutes with the Hadamard operations:

Proposition 13. The mirror commutes with the sum, the Hadamard product and the
Hadamard star.

4.1. Further operations on series 83

Proof.

� sum:

σ + τ = ∑
w∈Σ∗

⟨σ + τ,w⟩w = ∑
w∈Σ∗

(⟨σ,w⟩ + ⟨τ,w⟩)w
= (∑

w∈Σ∗
⟨σ,w⟩w) + (∑

w∈Σ∗
⟨τ,w⟩w) = σ + τ

� Hadamard product:

σ H τ = ∑
w∈Σ∗

⟨σ H τ,w⟩w = ∑
w∈Σ∗

(⟨σ,w⟩ ⋅ ⟨τ,w⟩)w
= (∑

w∈Σ∗
⟨σ,w⟩w) H (∑

w∈Σ∗
⟨τ,w⟩w) = σ H τ

� Hadamard star:

σ⋆ = ∑
w∈Σ∗

⟨σ⋆,w⟩w = ∑
w∈Σ∗

⟨σ,w⟩∗w = ∑
w∈Σ∗

⟨σ,w⟩∗w = ∑
w∈Σ∗

⟨σ,w⟩∗w = σ⋆

Hence, the family Had is the closure under Hadamard operation of the family Rat.

Corollary 5. Had = [Rat,+, H ,⋆]
Considering now the family MHad, by Proposition 13 we have:

Corollary 6. MHad = [Rat ∪Rat,+, H ,⋆]
There exists a series in MHad ∖ (Had ∪Had):

Example 12. We �x the alphabet Σ and we work in 2Σ∗ ⟨⟨Σ∗⟩⟩. Let Pal2 be the series
de�ned as: Pal2 ∶= Id H Rev. Observe that the set of images of Pal2 is exactly the set
of palindromes of even length. It belongs to MHad by de�nition, but it belongs neither
to Had nor to Had (see Proposition 21).

84 Chapter 4. Super- and sub-classes of rational series

Rat Rat

Had Had

MHad

Id

Square

Rev

Square

Pal2

Figure 4.5 � The families Rat, Rat, Had, Had and MHad.

Combining mirror and rational operations on commutative semirings

As seen before with the series Id and Rev, the mirror of a rational series is, in general,
not rational. That is, Rat and Rat are incomparable. However, this does not hold
anymore, when the semiring K is commutative. In this case we are able to prove some
properties of the mirror operation:

Proposition 14. If K is a commutative semiring, then the mirror anticommutes with
the Cauchy product and commutes with the Kleene star.

Proof. For w in Σ∗.
� Cauchy product:

⟨σ ⋅ τ ,w⟩ = ⟨σ ⋅ τ,w⟩
= ∑
uv=w ⟨σ,u⟩ ⋅ ⟨τ, v⟩

= ∑
v⋅u=w ⟨τ, v⟩ ⋅ ⟨σ,u⟩ � by commutativity of K

= ∑
v⋅u=w ⟨τ , v⟩ ⋅ ⟨σ,u⟩ � by idempotency of the mirror

= ⟨τ ⋅ σ,w⟩
� Kleene star:

⟨σ∗,w⟩ = ⟨σ∗,w⟩ = ∑
u0⋯uk=w

⟨σ,u0⟩⋯⟨σ,uk⟩ = ∑
uk⋯u0=w

⟨σ,uk⟩⋯⟨σ,u0⟩ = ⟨σ∗,w⟩

Thus, when K is commutative, the family Rat is closed under mirror.

4.1. Further operations on series 85

Corollary 7. If K is commutative, then MRat = Rat.
Proof. As claimed in Section 4.1.2, the mirror of a polynomial is trivially a polynomial.
Thus, it directly follows from Proposition 14 that the family of rational series over com-
mutative semiring is closed under mirror.

If K is commutative, the family MHad is equal to Had.

Corollary 8. If K is commutative then MHad = Had.
Proof. By Corollary 6, we have MHad = [Rat ∪Rat,+, H ,⋆]. It follows from Corol-
lary 7, that Rat = Rat. Hence, MHad = [Rat,+, H ,⋆] = Had.
4.1.3 On the scalar product

Observe that any constant series is of the form k ⋅ 1H , where 1H is the series with all the
coe�cients equal to 1, as de�ned in Section 4.1.1. We thus denote such a series by kH .

In fact, it is also possible to consider it as a particular Hadamard product. Indeed,
for each k and each σ we have k ⋅σ = kH H σ and σ ⋅k = σ H kH . Through these expressions
as Cauchy or Hadamard product, the scalar products inherits all the basic properties
satis�ed by the two former products. In particular, all the families of series de�ned until
now are closed under scalar product.

Proposition 15. The families Pol, Prop, Rat, Rat, Had, Had, MRat and MHad

are all closed under scalar product.

4.1.4 Restriction to a recognizable support

We show that the restriction to a recognizable support (see Section 2.2.4) enjoys nice
commutativity properties with all the Hadamard operations and the mirror.

Proposition 16. Given two series σ and τ in K ⟨⟨Σ∗⟩⟩ and a language L on Σ, we have:

(σ + τ)∣L = σ∣L + τ∣L (σ H τ)∣L = σ∣L H τ∣L (σ⋆)∣L = (σ∣L)⋆ σ∣L = σ∣L
Proof. The proofs are immediate.

A direct corollary of Proposition 1 and Proposition 16 is the stability of all the families
of series considered until now, by the operation of restriction to a recognizable language.

86 Chapter 4. Super- and sub-classes of rational series

Corollary 9 (Support restriction to recognizable language). Let σ be a series in K ⟨⟨Σ∗⟩⟩
and let L be a recognizable language on Σ. If σ belongs respectively to Pol, Prop, Rat,
Had, MRat, MHad, Rat, or Had, then so does σ∣L.
Proof. The case Pol, Prop or Rat is exactly Proposition 1. The other stabilities are
obtain by the commutations of Proposition 16.

4.2 Hierarchy

Here we compare a few families obtained via subsets of operations de�ned in Section 4.1
and in Section 2.2. Though restricted, we start by de�ning the following family, which is
very natural.

4.2.1 Recognizable series

A word of caution: Eilenberg uses a notion of recognizable series which is shown to be
equivalent to rational series [21]. Our de�nition is much more restrictive (see Proposi-
tion 19). It is an adaptation to arbitrary semirings, of the notion of recognizable subsets
of Σ∗ × Γ∗ when binary relations are viewed as series in 2Γ∗ ⟨⟨Σ∗⟩⟩ (see Section 2.1.3).

De�nition 15. A series σ is recognizable if there exists a �nite family of recognizable
languages L1, . . . , Ln on Σ, and constants k1, . . . , kn such that, denoting σi the character-
istic series of Li (that is, the series 1H ∣Li

),

σ ∶= ∑
0<i≤nkiσi = ∑

0<i≤n(∑w∈Li

kiw)
The family of recognizable series is denoted Rec(K ⟨⟨Σ∗⟩⟩) or simply Rec when K and Σ
are understood.

By re�ning the sets L1, . . . , Ln, we may suppose that they form a partition of Σ∗.
Proposition 17. Given a recognizable series σ, there exists a partition P1, . . . , Pn of Σ∗
with each Pi recognizable, and elements k1, . . . , kn in K such that, denoting σi the char-
acteristic series of Pi,

σ = ∑
0<i≤nkiσi = ∑

0<i≤n(∑w∈Pi

kiw)

4.2. Hierarchy 87

Proof. Suppose σ = ∑
0<i≤nkiσi as in De�nition 15. For every s ∈ 2{1,...,n} we de�ne a

language Ps and the element k′s as follows:
Ps ∶= {w ∈ Σ∗ ∣ ∀i ∈ {1, . . . , n}, w ∈ Li⇔ i ∈ s} k′s ∶= ∑

i∈s ki

The family (Ps)s⊆{1,...,n} is known as the coarsest re�nement of the family (Li)1≤i≤n, which
is a partition of Σ∗. Moreover, each Ps is a recognizable language, since it is a �nite
boolean combination of recognizable languages. We conclude the proof by observing
that, denoting τi the characteristic series of Pi:

σ = ∑
s⊆{1,...,n}k

′
sτi

The family Rec is closed under all operations de�ned until now, except the Kleene
star.

Proposition 18. The family Rec is closed under sum, Cauchy product, Hadamard op-
erations, mirror and restriction to a recognizable language.

It is not closed under Kleene star, even when Σ is unary and K is commutative.

Proof. Let σ = ∑
0<i≤n(∑w∈Ri

⟨σi,w⟩) and τ = ∑
0<j≤m(∑

w∈Sj

⟨τj,w⟩) be two recognizable series

decomposed as in De�nition 15, and let L be a recognizable language on Σ. Then:

σ + τ = ∑
0<i≤n
0<j≤m

⎛⎝ ∑
w∈Ri∩Sj

(⟨σi,w⟩ + ⟨τj,w⟩)w⎞⎠ σ H τ = ∑
0<i≤n
0<j≤m

⎛⎝ ∑
w∈Ri∩Sj

(⟨σi,w⟩ ⋅ ⟨τj,w⟩)w⎞⎠
σ⋆ = ∑

0<i≤n(∑w∈Ri

⟨σi,w⟩∗w) σ = ∑
0<i≤n

⎛⎝ ∑
w∈Ri

⟨σi,w⟩w⎞⎠ σ∣L = ∑
0<i≤n(∑

w∈Ri∩L
⟨σi,w⟩w)

Observe that each Ri ∩L is recognizable. Thus we proved that Rec is closed under sum,
Hadamard product, Hadamard star, mirror and restriction to a recognizable language.

We now prove that Rec is not closed under Kleene star. The series uUnit ∶= {ε}ε +{a}a in 2a
∗ ⟨⟨a∗⟩⟩ is trivially recognizable since it is a polynomial. However, its Kleene

star uId ∶= uUnit∗ = ∑
w∈a∗ {w}w is not recognizable, since it has an in�nite amount of

distinct coe�cients.

88 Chapter 4. Super- and sub-classes of rational series

4.2.2 Comparison of families

In this section, we prove the following hierarchy, which is depicted in Figure 4.6:

Pol ⊂ Rec ⊂ Rat ⊂ Had ⊂MHad

Rec ⊂ Rat ⊂ Had ⊂MHad

Rat ⊈ Had ⊈MRat

Rat ⊈ Had ⊈MRat

Rat ∪Rat ⊂MRat

MHad ⊈MRat ⊈MHad

The results are of two types: inclusion and separation. A majority of the inclusion

Figure 4.6 � The Hadamard hierarchy

Pol
Pol

MPol

Rat Rat MRat

Had Had MHad

Id Unit Occura Rev

Pal2 = Id H RevSquare = Rev H RevSort =Occura H OccurbSquare

Id ⋅Rev (conjectured)B132

presented above are direct consequences of the de�nitions. Some separating results have
already be presented in Examples 8 or in Example 12.

First of all, we consider the family Rec. Contrary to the families Rat, Had, MRat,
or MHad, it has not been introduced as the closure of some sub-family under some
operations. It can be shown that this family strictly includes Pol but is strictly included
in Rat ∩Rat.
Proposition 19. The following inclusions hold: Pol ⊂ Rec ⊂ (Rat ∩Rat).
Proof. The inclusion Pol ⊆ Rec is trivial and the series 1H is clearly a non-polynomial
recognizable series. Thus, Pol ⊂ Rec.

4.2. Hierarchy 89

We now prove Rec ⊆ Rat ∩ Rat. Since by de�nition Rat and Rat are closed
under sum, it is su�cient to prove that for any constant series kH and any recognizable
language L, the series kH /L belongs to Rat ∩Rat. Thanks to the observations made in
Section 4.1.3, this is a direct consequence of Proposition 18.

Finally, consider the series uId introduced in the proof of Proposition 18. It was
proved that it does not belong to Rec. However, it obviously belongs to Rat = Rat.
This concludes the proof.

We now focus on the family MRat. We introduce a new example of series, that
belongs to Had but not to MRat. This also implies that its mirror belongs to Had but
not to MRat, and hence Had ∪Had ⊈MRat.

We consider the series Square (Example 8). Observe that is is named after its image,
which is the language of all square words on Σ, i.e., words ww for w ∈ Σ∗. We �rst prove
an instrumental lemma, stating a property satis�ed by all the series in MRat when K is
the semiring of rational languages, i.e., K = Rat(Σ∗).
Lemma 7. Let Σ be an alphabet and let K = Rat(Σ∗). If σ belongs to MRat(K ⟨⟨Σ∗⟩⟩)
then Img(σ) is a rational language on Σ.

Proof. We proceed by structural induction. The result is trivially true for polynomials.
Observe that we have:

Img(σ + τ) = Img(σ) + Img(τ) Img(σ∗) = Img(σ)∗
Img(σ ⋅ τ) = Img(σ) ⋅ Img(τ) Img(σ) = Img(σ)

Thus, by induction and using the closure of the class of rational languages under mirror,
the image of a series in MRat is a rational language on Σ.

Proposition 20. Had ⊈MRat and Had ⊈MRat.

Proof. Observe �rst that the two statements above are equivalent, by involution of the
mirror. Hence, it is su�cient to prove Had ⊈ MRat. By de�nition, Square belongs
to Had. The image of Square is:

Img(Square) = {ww ∣ wΣ∗}
This language is known to be non-rational, which can be proved by a simple pumping
argument. We conclude with Lemma 7.

We can prove that Pal2 (see Example 12) belongs to none of MRat, Had and Had.
The result uses a proposition that will be proved later, in Section 4.3. This implies that:(Had ∪Had) ⊂MHad ⊈MRat.

90 Chapter 4. Super- and sub-classes of rational series

Corollary 10. MHad ⊈MRat

Proof. It is in fact a direct consequence of Proposition 20 together with the natural
inclusion Had ∪Had ⊆ MHad. Nevertheless, observe that the same argument, namely
Lemma 7, can be used in order to prove that Pal2 ∉MRat.

Proposition 21. (Had ∪Had) ⊂MHad

Proof. By de�nition, Pal2 belongs to MHad. It su�ces to prove that Pal2 does not
belong to Had ∪Had. To this aim, we consider a slightly di�erent series, using a sym-
bol # ∉ Σ:

σ ∶= Id H 1# H Rev with 1# ∶= ∑
w∈Σ∗

{#}w
In other words, σ is the series that maps every word w into the singleton {w#w}. Observe
that it still belongs toMHad. By contradiction, suppose σ ∈ Had. By Corollary 3, there
exists a rotating K-fa K, with K = 2Σ∗ , accepting it. It is easy to build a rotating K-fa K′
from K, which recognizes Rev. This is a contradiction to Proposition 12. Similarly σ
does not belong to Had.

Finally we suggest a series which we conjecture to belong to MRat ∖MHad:

Id ⋅Rev = ∑
w∈Σ∗

∑
u⋅v=w {u ⋅ v}w

We even more conjectures that this series could not be accepted by a K-fa. Moreover,
we may prove that Id ⋅Rev belongs neither to Rat nor to Rat.

Proposition 22. Rat ∪Rat ⊂MRat

Proof. Similarly to the proof of Proposition 21, we consider a slight modi�cation of the
series Id ⋅Rev:

σ ∶= Id ⋅ ({#}ε) ⋅Rev
It clearly belongs toMRat. We may restrict its support to the recognizable language #Σ∗
thanks to Corollary 9, still belonging to MRat. Hence, we conclude as in the proof of
Proposition 11. Similarly, we prove σ ∉ Rat.
Conjecture 1. We conjecture that the series Id ⋅Rev does not belong to MHad and that
no transducer could accept it.

Though the expressive power of the mirror and the Hadamard operations seems to
be of completely di�erent nature, it is possible to �nd nonrational examples in which the
former operation can be traded for the latters.

4.2. Hierarchy 91

Proposition 23. The family (MRat ∩Had) ∖ (Rat ∪Rat) is nonempty.

Proof. Let us start with the de�nition of three simple (thus rational) relations. Recall
that uId denote the identity relation over a unary alphabet, say {a}, and suppose # is
a symbol distinct from a. We de�ne:

Sep ∶= {(#,#)} Copy ∶= uId ⋅ Sep Ign ∶= {(an#, ε) ∣ n ∈ N}
Now, consider the following more complex relation:

B132 ∶= uId ⋅ Sep ⋅ uId ⋅ Sep ⋅ uId ⋅ Sep
It is in fact a function which maps every word an#am#a`# for some integers n, m and `,
into the singleton {an#a`#am#}. By de�nition it belongs to MRat. Using the same
argument as in the proof of Proposition 11, we can easily prove that it is neither rational
nor the mirror of a rational relation. Finally, observe that the following equality holds

B132 = (Copy ⋅ Ign ⋅ Ign) H (Ign ⋅ Ign ⋅Copy) H (Ign ⋅Copy ⋅ Ign)
Each factor is rational and thus B132 belongs to Had.

The unary and the commutative cases

When Σ is unary, the mirror operation is the identity i.e., σ = σ. Thus:
MHad = Had and MRat = Rat

We have proved in Corollaries 7 and 8 that the same equalities hold when K is a com-
mutative semiring.

By considering the series uId (the identity series over a unary alphabet) and
uMult ∶= uId⋆ in Rat(Σ∗) ⟨⟨Σ∗⟩⟩, we trivially obtain that in these cases too, the fol-
lowing hierarchy is strict:

Pol ⊂ Rat ⊂ Had
Both ways rational series

Here we are interested in the study of the family bwRat ∶= Rat∩Rat, called both ways
rational. By previous observations, it is a proper subfamily of Rat. In terms of K-fa, a
series belongs to bwRat, if there exists two K-fas recognizing it, one reading the input
from left to right and the other from right to left. This seems to strongly restrict the
family Rat. The family bwRat enjoys some general closure properties, that are detailed
in below.

A direct consequence of Proposition 13 is that it is closed under sum:

92 Chapter 4. Super- and sub-classes of rational series

Corollary 11. The family Rat ∩Rat is closed under sum.

The family of recognizable series (De�nition 15) is a very weak family of series. The
Cauchy product with recognizable series does not really increase the �power� of the series
in bwRat. This is the purpose of the following property:

Proposition 24. Let τ and τ ′ be two recognizable series, and let σ be a series in bwRat.
Then the series τ ⋅ σ ⋅ τ ′ belongs to bwRat.
Proof. Thanks to Corollary 11 and by distributivity, it is su�cient to prove that for any
recognizable language L ⊆ Σ∗, any k ∈ K and any σ in bwRat, the series τ ⋅ σ (resp.
σ ⋅ τ) with τ = kH /L (see Section 4.1.3 and Section 4.1.4) belongs to bwRat. By the
inclusion Rec ⊂ Rat, it trivially belongs to Rat. We prove now that τ ⋅ σ belongs
to Rat. For w ∈ Σ∗ we have:

⟨τ ⋅ σ,w⟩ = ⟨τ ⋅ σ,w⟩ = ∑
uv=w ⟨τ, u⟩ ⋅ ⟨σ, v⟩ = ∑

uv=w
u∈L

k ⋅ ⟨σ, v⟩ = k ∑
uv=w
u∈L

⟨σ, v⟩ ⋅ 1
= k ∑

uv=w ⟨σ, v⟩⟨1H /L, u⟩ = k ∑
v⋅u=w ⟨σ, v⟩⟨1H /L, u⟩ = k ⋅ ⟨σ ⋅ 1H /L,w⟩

Hence, observing that k ⋅σ ⋅1H /L is rational, we have τ ⋅ σ ∈ Rat. Similarly, we prove σ ⋅ τ
belongs to Rat.

The family bwRat is closed under restriction to a recognizable support. This is a
corollary of Proposition 9

Corollary 12. The family bwRat is closed under restriction to a recognizable language.

More results on the family bwRat are obtained in the particular case K = 2Σ∗ , i.e.,
relations on words (see Section 4.3.4).

4.3 Relations on Σ∗
In this section, we are interested in the particular case: of K = ⟨2Σ∗

,∪, ⋅,{ε},∅⟩. A relation
on Σ∗ is a subset of Σ∗ ×Σ∗. Given a relation R ⊆ Σ∗ ×Σ∗, the canonical formal series
associated to R is the series σR in 2Σ∗ ⟨⟨Σ∗⟩⟩ de�ned by:

for each u ∈ Σ∗, ⟨σR, u⟩ = {v ∣ (u, v) ∈ R}
This correspondence allows us to identify relations and associated series. In particular,
observe that the sum on 2Σ∗ ⟨⟨Σ∗⟩⟩ corresponds to the union on 2Σ∗×Σ∗ . We may also
speak of the mirror of the relation R: R ∶= {(u, v) ∣ (u, v) ∈ R} with, trivially, σR = σR.

4.3. Relations on Σ∗ 93

Caveat. In general, a rational series in 2Σ∗ ⟨⟨Σ∗⟩⟩ (De�nition 5) is not associated to
a rational relation in Σ∗ × Σ∗ (De�nition 1): this is due to the fact that the images of
polynomials are unrestricted. Also, a series in Rat(Σ∗) ⟨⟨Σ∗⟩⟩ is not necessarily rational:
consider for instance the characteristic series of any non-recursive set. What is true is
that, by Theorem 6, the rational relations are exactly the relations associated to rational
series in Rat(Σ∗) ⟨⟨Σ∗⟩⟩.

In the sequel, we are cautious to make the di�erence: Rat denotes the family of
relations associated to a rational series in 2Σ∗ ⟨⟨Σ∗⟩⟩. When speaking of rational relations,
we explicitly mention that the semiring Rat(Σ∗) is intended.
4.3.1 Symmetry of relations

On relations in Σ∗ ×Σ∗ the following operation is natural.

De�nition 16. The symmetric of R, denoted Sym(R), is the relation

Sym(R) ∶= {(v, u) ∣ (u, v) ∈ R}
Trivially, symmetry is an involution, i.e., Sym(Sym(R)) = R. The usual way to prove

that the rational relations are closed under symmetry is to work with the equivalent
representation as two-tape �nite automata (see Section 6.1.4). Here we follow the more
algebraic approach (see [8, 66]).

The symmetry operator enjoys nice commutativity properties with rational opera-
tions.

Proposition 25. The symmetry operator commutes with the sum (i.e., union), the
Cauchy product and the Kleene star.

Proof. Let R and R′ be two relations.

� sum:
Sym(R +R′) = {(v, u) ∣ (u, v) ∈ R +R′} = Sym(R) + Sym(R′)

� Cauchy product:

Sym(R ⋅R′) = {(v, u) ∣ (u, v) ∈ R ⋅R′}= {(v1v2, u1u2) ∣ (v1, u1) ∈ Sym(R) and (v2, u2) ∈ Sym(R′)}= Sym(R) ⋅ Sym(R′)

94 Chapter 4. Super- and sub-classes of rational series

� Kleene star:

Sym(R∗) = {(v, u) ∣ (u, v) ∈ R∗}= {(v1⋯vk, u1⋯uk) ∣ (ui, vi) ∈ R for each i}= {(v1⋯vk, u1⋯uk) ∣ (vi, ui) ∈ Sym(R) for each i}= Sym(R)∗

Contrary to the mirror operations, the symmetry operation does not preserves poly-
nomial neither proper relations. However, under some assumptions, we can prove that
the symmetric of a polynomial relation is a rational relation.

Lemma 8. In the semiring K′ = Rat(Σ∗), the symmetric of any polynomial is recogniz-
able.

Proof. Because the symmetry operator commutes with the sum (Proposition 25), it suf-
�ces to observe that the symmetric of any relation {(w,L)} is the recognizable rela-
tion L × {w}.

Using Proposition 25, it immediately follows that the family of rational relations is
closed under symmetry.

Corollary 13. For K′ = Rat(Σ∗), the family Rat(K′ ⟨⟨Σ∗⟩⟩) is closed under symmetry.
In other words the family of rational relations is closed under symmetry.

4.3.2 Bi-mirror of relations

We introduce a new operator on relation on words.

De�nition 17. Given a relation R in Σ∗ × Σ∗: The bi-mirror of R, denoted R̂, is the
relation:

R̂ ∶= {(u, v) ∣ (u, v) ∈ R}
As for the mirror, we have: ̂̂R = R. Observe that in general Sym(R) ≠ Sym(R).

However, for each R ⊆ Σ∗ ×Σ∗ we have:
R̂ = Sym(Sym(R)) = Sym(Sym(R)) (4.2)

From this expression, it can be deduced that the bi-mirror commutes with the mirror.
In fact, the bi-mirror operation admits commutative properties with all the operations
considered until now:

4.3. Relations on Σ∗ 95

Proposition 26. The bi-mirror commutes with the mirror, the sum, the Kleene star, the
Hadamard star and the symmetry operations. It anti-commutes with the Cauchy product
and the Hadamard product.

Proof. Let R and S be two relations

� mirror, sum, symmetry: a direct consequence of Equation 4.2

Observe that each single operator, mirror and symmetry, does not commute with the
Kleene and Hadamard stars.

� Kleene star:

R̂∗ = {(u, v) ∣ (u, v) ∈ R∗}= {(u1⋯un, v1⋯vn) ∣ n ∈ N and (ui, vi) ∈ R for each i}
= {(u1⋯un, v1⋯vn) ∣ n ∈ N and (ui, vi) ∈ R̂ for each i} = R̂∗

� Hadamard star:

R̂⋆ = {(u, v) ∣ (u, v) ∈ R⋆}
= {(u, v1⋯vn) ∣ n ∈ N and (u, vi) ∈ R for each i}
= {(u, v1⋯vn) ∣ n ∈ N and (u, vi) ∈ R̂ for each i} = R̂⋆

The Cauchy and Hadamard products anti-commutes with the bi-mirror.

� Cauchy product:

R̂ ⋅ S = {(u, v) ∣ (u, v) ∈ R ⋅ S}
= {(u′ ⋅ u′′, v′ ⋅ v′′) ∣ (u′′, v′′) ∈ R and (u′, v′) ∈ S}
= {(u′ ⋅ u′′, v′ ⋅ v′′) ∣ (u′′, v′′) ∈ R̂ and (u′, v′) ∈ Ŝ} = Ŝ ⋅ R̂

� Hadamard product:

R̂ H S = {(u, v) ∣ (u, v) ∈ R H S}= {(u, v′ ⋅ v′′) ∣ (u, v′′) ∈ R and (u, v′) ∈ S}
= {(u, v′ ⋅ v′′) ∣ (u, v′′) ∈ R and (u, v′) ∈ S} = Ŝ H R̂

96 Chapter 4. Super- and sub-classes of rational series

Since Supp(R̂) = Supp(R), both the families Pol(2Σ∗ ⟨⟨Σ∗⟩⟩) and Prop(2Σ∗ ⟨⟨Σ∗⟩⟩)
are closed under bi-mirror. As a corollary, all families de�ned in Section 2.2 are closed
under bi-mirror operation.

Corollary 14. Each family among Pol, Prop, Rat, Rat (and hence, bwRat),MRat,
Had, Had and MHad is closed under bi-mirror.

The family of recognizable relations, characterized in Theorem 1, is a very restricted
family of relations. Therefore, it is not surprising that it is stable by symmetry and
bi-mirror.

Proposition 27. The family of recognizable relations on Σ∗ is closed under bi-mirror
and symmetry.

Proof. Because union commutes with bi-mirror and symmetry, in virtue of Theorem 1 it
su�ces to consider the case R = A × B for some recognizable languages A and B. We
have: R̂ = A ×B and Sym(R) = B ×A which are both recognizable.

4.3.3 Morphism

A morphism µ of Σ∗ into Σ∗ is a mapping de�ned by a substitution rule that associates
a �xed word to each letter. This mapping is thus uniquely de�ned by the image of each
letter. The mirror of µ is the morphism µ de�ned by:

for each c in Σ, µ(c) = µ(c)
Clearly, it follows that morphisms commute with the mirror:

Proposition 28. For every word w ∈ Σ∗, we have µ(w) = µ(w).
Proof. µ(w) = µ(w1)⋯µ(wn) = µ(wn)⋯µ(w1) = µ(wn)⋯µ(w1) = µ(wn⋯w1) = µ(w)

We de�ne the left- and the right-application of a morphism µ to a relation R, de-
noted µl(R) and µr(R) respectively, as follows:

µl(R) ∶= (µ(u), v) ∣ (u, v) ∈ R µr(R) ∶= (u,µ(v)) ∣ (u, v) ∈ R
Trivially:

µr(µl(R)) = {(µ(u), µ(v)) ∣ (u, v) ∈ R} = µl(µr(R)) (4.3)

µr(R) = Sym(µl(Sym(R))) and µl(R) = Sym(µr(Sym(R))) (4.4)

4.3. Relations on Σ∗ 97

As a consequence of the previous proposition, the left- and right-applications of a mor-
phism admit a kind of commutativity property with the mirror, the bi-mirror and the
symmetry.

Proposition 29. The following holds:

µl(R) = µl(R) µ̂l(R) = µl(R̂) µ̂r(R) = µr(R̂) µr(R) = µr(R)
Proof. The proof is simple routine.
� µl(R)={(µ(u), v) ∣ (u, v) ∈ R}={(µ(u), v) ∣ (u, v) ∈ R}={(µ(u), v) ∣ (u, v) ∈ R}=µl(R)
� µ̂l(R)={(µ(u), v) ∣ (u, v) ∈ R}={(µ(u), v) ∣ (u, v) ∈ R}={(µ(u), v) ∣ (u, v) ∈ R̂}=µl(R̂)
� µ̂r(R)={(u,µ(v)) ∣ (u, c) ∈ R}={(u,µ(v)) ∣ (u, v) ∈ R}={(u,µ(v)) ∣ (u, v) ∈ R̂}=µr(R̂)
� µr(R)={(u,µ(v)) ∣ (u, v) ∈ R}={(u,µ(v)) ∣ (u, v) ∈ R}=µr(R)

In fact, the applications of a morphism commute with all operations de�ned until now
i.e., symmetry, rational operations, Hadamard operations.

Proposition 30. The (left- and right-) applications of morphisms to relations commute
with rational operations and Hadamard operations and anti-commute with symmetry.

Proof. The commutation with rational and Hadamard operations directly follows from the
de�nition of morphism. Considering the symmetry, we obtain µl(Sym(R)) = Sym(µr(R))
and µr(Sym(R)) = Sym(µl(R)) from Equation (4.4).

Since the application of a morphism to a polynomial is still a polynomial, the following
is a direct consequence of the preceding proposition.

Corollary 15. The families Pol, Prop, Rat, Rat, MRat, Had, Had and MHad

are closed under left- and right-application of morphisms.

Proof. Observe that if R is proper (resp. a polynomial), then so are µl(R) and µr(R).
The other closure properties follow from Proposition 30.

4.3.4 Both ways rational relations

We are interested in the family of both ways rational series (bwRat) in K, i.e., the
relations belonging to Rat ∩Rat (see Section 4.2.2). Very simple rational relations do
not belong to this family, for example Id. From the de�nition we obtain:

98 Chapter 4. Super- and sub-classes of rational series

Corollary 16. The family bwRat is closed under mirror, bi-mirror, left- and right-
application of a morphism. On K′ = Rat(Σ∗) it is closed under symmetry.

Proof. The claims are direct consequences of: mirror (de�nition), bi-mirror (Corollary 14),
left- and right-application of morphism (Corollary 15) and symmetry (Corollary 13).

Here is a very simple subfamily of bwRat.

Corollary 17. Let R be in Rat. If for some c ∈ Σ, we have R ⊆ c∗×Σ∗ then R is rational
and thus R belongs to bwRat. When K = Rat(Σ∗), the same holds if R ⊆ Σ∗ × c∗.
Proof. If R ⊆ c∗ ×Σ∗, then R = R. Thus, R ∈ Rat implies R ∈ bwRat. By the closure of
bwRat under symmetry when K = Rat(Σ∗), the same holds for R ⊆ Σ∗ × c∗.

Since the mirror of a recognizable relation is recognizable, we trivially have that the
family Rec is included in bwRat. It is easy to �nd a relation in bwRat ∖Rec. For
example, the relationOccura ∶= {(w,an) ∣ w ∈ Σ∗ and n = ∣w∣a} is rational, and it is equal
to its own mirror, so it belongs to bwRat. But it does not belong to Rec. In fact, as
a consequence of Proposition 24, a relation in bwRat can be concatenated in di�erent
ways with recognizable relations, leading to relations still in bwRat.

Proposition 31. Let R be in bwRat and let S be recognizable. Then, both R ⋅S and S ⋅R
belong to bwRat.

Proof. It su�ces to observe that a recognizable relation has a recognizable associated
series. Then, the result follows from Proposition 24.

Chapter 5

Two-way transducers

5.1 Introduction

In the theory of words, two di�erent terms are more or less indi�erently used to describe
the same objects: transductions and binary relations. The former term distinguishes
an input and an output, even when the input does not uniquely determine the output.
In certain contexts it is a synonym for translation where one source and one target are
understood. The latter term is meant to suggest pairs of words playing a symmetric role.

Transducers and two-tape automata are the devices that implement the transductions
and relations respectively. The concept of multitape- and thus in particular two-tape
automata was introduced by Rabin and Scott [63] and also by Elgot and Mezei [23]
almost �fty years ago. Most closure and structural properties were published in the next
couple of years. As an alternative to a de�nition via automata it was shown that these
relations were exactly the rational subsets of the direct product of free monoids. On
the other hand, transductions, which are a generalization of (possibly partial) functions,
is a more suitable term when the intention is that the input preexist the output. The
present work deals with 2-way transducers which are such a model of machine using two
tapes. An input tape is read-only and is scanned in both directions. An output tape
is write-only, initially empty and is explored in one direction only. The �rst mention of
2-way transducers is traditionally credited to Shepherdson.

Our purpose is to de�ne a structural characterization of these relations in the same
way that the relations de�ned by multi-tape automata are precisely the rational relations.
However we limit our investigation to the case where the input and output are words
over a one letter alphabet, i.e., to the case where they both belong to the free monoid a∗
generated by the unique letter a. Our technique does not apply to non-unary alphabets.
An output is written on a second write-only tape.

99

100 Chapter 5. Two-way transducers

We are able to prove the following that every 2-way transductions in a∗ × a∗ (i.e.,
a relation accepted by a 2-way transducer as de�ned in Section 2.3.4) is an Hadamard
relation (see De�nition 13). By characterizing the Hadamard relations of a∗ × a∗, our
result can be reformulated as follows:

Theorem 15. A relation of the monoid a∗ × a∗ is de�ned by a 2-way transducer if and
only if it is Hadamard or, equivalently, it is a �nite union of relations R satisfying the
following condition: there exist two rational relations S,T ⊆ a∗×a∗ such that for all x ∈ a∗
we have

R(x) = S(x)T (x)∗
The relation {(an, akn) ∣ n, k ≥ 0} is a simple example. It is of the previous form,

however it is not rational. Indeed, identifying a∗ with the additive monoid of integers N
this relation de�nes the relation �being a multiple of�. However rational subsets of N are
�rst-order de�nable in Presburger arithmetics, i.e., arithmetics with addition only.

We quickly review the few results which to the best of our knowledge are published on
2-way transducers when considering them for their own sake. Engelfriet and Hoogeboom
showed that a function on the free monoid is de�ned by a deterministic 2-way transducer
if and only if it is the set of models of an MSO formula, [24]. In [26] the authors show that
given a transducer accepting a function, it is decidable whether or not it is equivalent to
a 1-way transducer, and when it is, an equivalent 1-way transducer is computable.

We now turn to a short presentation of the content of the chapter. In the next section
we show our main result: the characterization of 2-way transductions de�ned over unary
input and output alphabet as Hadamard relations. Then, in the second section, we prove
that the assumptions on the two alphabets of the above mentioned result is strongly
required. Indeed, we exhibit two natural relations, one with a unary input alphabet, the
second with a unary output alphabet, which are accepted by a 2-way transducer but by
no sweeping transducer.

5.2 Unary two-way transductions

5.2.1 Hadamard relation with unary output

We consider relations on Σ∗×∆∗. Whenever ∆ is unary, the family of Hadamard relations
(see De�nition 13) has a simpler characterization.

5.2. Unary two-way transductions 101

Proposition 32. A relation R belongs to Had(Σ∗ ×∆∗) with ∆ unary if and only if
there exists two �nite families of rational relations Ris and Sis, such that:

R =⋃
i

Ri H S
⋆
i

Proof. Denote by F the family of relations of the form given in the proposition. By de�-
nition, F is included in Had(Σ∗ ×∆∗). Since any rational relation R is equal to R H ∅⋆ ,
we have Rat(Σ∗ ×∆∗) ⊆ F . Thus it su�ces to prove that F is closed under Hadamard
operations and union.

The closure under union is trivially obtained from the de�nition of F . Let
T = ⋃

i∈IRi H S
⋆
i and T ′ = ⋃

j∈JR
′
j H S′⋆j be in F , and let u be a word in Σ∗. We consider the

image of u by the Hadamard product T H T ′:
(T H T ′) (u) = (⋃

i∈I Ri H S
⋆
i)(u) ⋅ (⋃

j∈JR
′
j H S′⋆j)(u)

= (⋃
i

Ri(u) ⋅ Si(u)∗) ⋅ (⋃
j

R′
j(u) ⋅ S′j(u)∗)

= ⋃
i,j

Ri(u) ⋅ Si(u)∗ ⋅R′
j(u) ⋅ S′j(u)∗

= ⋃
i,j

(Ri(u) ⋅R′
j(u)) ⋅ (Si(u)∗ ⋅ S′j(u)∗) � by commutativity

= ⋃
i,j

(Ri(u) ⋅R′
j(u)) ⋅ (Si(u) ∪ S′j(u))∗ � by commutativity

= ⋃
i,j

(Ri H R
′
j) (u) ⋅ (Si ∪ S′j)⋆ (u)

= (⋃
i,j

(Ri H R
′
j) H (Si ∪ S′j)⋆) (u)

By Theorem 14, each Ri H R′
j is rational and by de�nition, each Si ∪ S′j is also rational.

Hence, T H T ′ belongs to F .
We consider now the Hadamard star of T . We claims:

T
⋆ = (⋃

i∈I Ri H S
⋆
i)⋆ = ⋃

X⊆I (H
i∈XRi) H (⋃

i∈XRi ∪ Si)
⋆

(5.1)

Observe that there are �nitely manyX ⊆ I, and that for each suchX, both relations H
i∈XRi

(remember Theorem 14) and ⋃
i∈XRi ∪Si are rational. This implies that T⋆ belongs to F .

102 Chapter 5. Two-way transducers

We now prove the equality (5.1). Let (u, v) be in T
⋆ , i.e., v ∈ (⋃

i∈IRi H S
⋆
i) (u)∗.

Thus, v = v0v1⋯vn for some n ∈ N such that each vk belongs to ⋃
i∈IRi(u) ⋅ Si(u)∗. For

each k we �x an index ik ∈ I such that vk ∈ Rik(u) ⋅ Sik(u)∗, and we denote by X the
set {ik ∣ 0 ≤ k ≤ n}. Hence, v belongs to Ri0 ⋅ S∗i0⋯Rin ⋅ S∗in . By commutativity, v belongs

to (∏
i∈XRi(u)) ⋅ (⋃

i∈XRi(u) ∪ Si(u))∗ which is equal to
⎛⎝(H

i∈XRi) H (⋃
i∈XRi ∪ Si)⋆⎞⎠(u).

Conversely, let (u, v) belong to (H
i∈XRi) H (⋃

i∈XRi ∪ Si)⋆ for some X ⊆ I. For some x

and y, we have v = xy where x belongs to ∏
i∈XRi(u) and y belongs to (⋃

i∈XRi(u) ∪ Si(u))∗.
Using commutativity, we may decompose y into y0⋯yqyq+1⋯yq+p, where for each 0 ≤ h ≤ q
(resp. each q < h ≤ q + p), the word yh belongs to Rih (resp. Sih) for some ih ∈ X. For
each i ∈X we de�ne wi as the concatenation of each yh, with q < h ≤ q+p, such that ih = i,
i.e.,

wi = ∏
q<h≤q+p ∣ ih=i

yh

In particular, if for no q < h ≤ q+p the equality ih = i holds, then wi is equal to ε. We now
decompose the word x into ∏

i∈X xi with each xi ∈ Ri. Finally, we use commutativity to

obtain v = ∏
i∈X (xi ⋅wi) ⋅ ∏

0≤h≤q yh. Each xi ⋅wi belongs to (Ri H S
⋆
i) (u) and each yh belongs

to Rih and therefore to (Rih H S
⋆
ih
) (u). Hence, v belongs to T⋆(u) = (⋃

i∈IRi H S
⋆
i)⋆ (u).

5.2.2 Main result

From now on we concentrate on unary 2-way transducers, i.e., on those with input
and output alphabets reduced to the singleton {a}. We �x a transducer (A, φ), withA = (Q,{a},▷,◁, I, F, δ).

The following is a reformulation of Theorem 15 in terms of series (remember that
binary relations in a∗ × a∗ are identi�ed with formal series in 2a

∗ ⟨⟨a∗⟩⟩ as observed by
the convention of Section 4.3).

Theorem 16. Let K denote the semiring Rat(a∗). A series s ∈ 2a
∗ ⟨⟨a∗⟩⟩ is accepted

by some 2-way �nite transducer if and only if s ∈ Had(K ⟨⟨a∗⟩⟩), i.e., there exist a �nite

5.2. Unary two-way transductions 103

collection of rational series αi, βi ∈ Rat(K ⟨⟨a∗⟩⟩) such that:

s = ∑
i

αi H β
⋆
i

The fact that the condition is su�cient has already be proved in Corollary 4. The other
direction is more involved. We proceed as follows. We �rst show that if the transducer
performs a unique hit, i.e., it never visits endmarkers except at the beginning and at the
end of the computation, it de�nes a rational, and therefore Hadamard, relation. Then,
putting each such relation in a (Q × {▷,◁})×(Q × {▷,◁})-matrix as done in Corollary 3,
we conclude by Proposition 2.

5.2.3 One-way simulation of hits

We �x two border points b0 and b1 (see Section 2.3.2) and we consider the set of pairs(u, v) such that v is produced by some b0 to b1 hit on u. The idea of the proof can be
explained as follows where some technicalities are ignored.

We adapt Lemma 1 by saying that a b0 to b1 hit over an input u is of the form
c0λ(c1)⋯λ(c`−1)c` where c0c1⋯c` is a loop-free b0 to b1 hit and λ(ci) is a central ci-loop
for i = 1, . . . , `−1. Then the set produced on all possible b0 to b1 hits on u is the union over
all loop-free b0 to b1 hits c0c1⋯c` of the following subset (recall the notation of De�nition
12):

Φ(c0c1) ⋅Φ(λ(c1)) ⋅Φ(c1c2) ⋯ Φ(c`−2c`−1) ⋅Φ(λ(c`−1)) ⋅Φ(c`−1c`) (5.2)

Since the output alphabet is unary, the above terms commute and may be rewritten in
as many products as there are positions in u. For each position 0 ≤ p ≤ n + 1 we group
(1) the Φ(λ(ci)) around all the con�gurations in position p and (2) all Φ(cici+1) involving
a transition occurring at position p . The former product leads us to investigate all
outputs of central loops and the latter product leads us to adapt the notion of crossing
sequences for loop free runs.

Loop-free hits

We adapt the traditional notion of crossing sequences, e.g., [38, pages 36-42], to our
purpose.

Fix a position 0 ≤ p ≤ n on the input u. The crossing sequence of a run at position
p is the record, in the chronological order, of all the destination states in the transition
performed between positions p and p+1, i.e., the states at position p+1 in a left to right
move and the states at position p in a right to left move, see Figure 5.1. The following is
general and does not assume any condition on the run:

104 Chapter 5. Two-way transducers

Simulated transducer (2 runs)

a

?
x0

x1

?
x2

y0

?
y1

y2

output: φ1

φ(x0, a,−1, x1)φ(x2, a,+1, y0)φ(y1, a,+1, y2)

a

?
x0

y0

?
y1

x1

?
x2

y2

output: φ2

φ(x0, a,+1, y0)φ(y1, a,−1, x1)φ(x2, a,+1, y2)

Simulating transducer

a

•x0

•x1

•x2

•
y0

•
y1

•
y2

output: φ1 ∪ φ2

Figure 5.1 � Two di�erent runs producing the same crossing sequence

De�nition 18. Let r = ((qi, pi))0≤i≤` be a run over some input word u of length n and
let 0 ≤ p ≤ n be a position on u. The crossing sequence of r at p, denoted Xr(p), is the
ordered state sequence extracted from the sequence q0, . . . , q` as follows: for each 1 ≤ i ≤ `,
qi is selected if and only if:

(pi−1 = p and pi = p + 1) or (pi−1 = p + 1 and pi = p)
In the run r there exist two types of states, those which are entered from the left and

those which are entered from the right. These two types alternate. Which type occurs
�rst depends on whether the initial border is left or right. In particular, if r is a successful
run, then for each position p, the �rst and last state of Xr(p) correspond to left to right
moves. If r is loop-free, then for all crossing sequences q = q0, q1, . . . and for all integers
0 ≤ i < j of the same parity we have qi /= qj.

The following technical result implies that the set of all pairs (u, v) ∈ Σ∗ × ∆∗ such
that v is the output of a b0 to b1 loop-free hit on u is a rational relation. It works because
the output alphabet is unary1.

1In fact, the construction works for any K-fa with K commutative.

5.2. Unary two-way transductions 105

Lemma 9. Given a restless transducer T = (A, φ) and two border points b0 and b1 of A,
there exists a computable 1-way transducer T ′ = (A′, φ′) satisfying the following condition:

Let r = c0⋯c` be a b0 and b1 loop free hit on u in A, let v ∈ ΦT (r) and let
Xr(0),Xr(1) . . . ,Xr(∣u∣) be the associated crossing sequences. Then, the sequence
r′ = Xr(0) ⋅ Xr(1) ⋯ Xr(∣u∣) is a successful run2 in T ′ with v ∈ ΦT ′(r′).

Conversely, if r′ = r′0⋯r′∣u∣ ⋅ r′∣u∣+1 is a successful run on u in T ′ with v ∈ ΦT ′(r′), then
there exists a b0 and b1 loop free hit r on u in T with crossing sequences r′0⋯r′∣u∣ such that

v ∈ ΦT (r).
Proof. Without loss of generality we assume by Proposition 7 that we are given a 2-way
unary restless transducer T . We �x two border points b0 and b1. For clarity, we consider
left to right hits i.e., we suppose that b0 and b1 are respectively a left and a right border
point. The other three cases can be handled similarly.

In order to de�ne the 1-way transducer simulating all loop-free runs of T , we adapt
the classical technique of crossing sequences used for proving the equivalence between
1-way and 2-way �nite automata. We recall our convention: the states recorded between
position p and p + 1 are the state reached by the automaton in the destination position,
i.e., in position p + 1 in a left to right move and in position p in a right to left move
(in Figure 5.2, the crossing sequence at position labelled by b begins with y1, y2, y3, y4).
Because the run is loop-free all crossing sequences x = x0, x1, . . . , x2k satisfy the condition

for all integers of the same parity 0 ≤ i ≤ j ∶ xi = xj implies i = j (5.3)

Sequences satisfying the condition are called valid. There clearly is a �nite number of
such sequences. Thus they can be stored in the �nite control of our simulating transducer.

Given two valid sequences x and y and a letter a, we investigate under which condition
the tuple (x, a,+1,y) is a transition of the 1-way transducer T ′ simulating left to right
loop-free hits of T and we determine its value in the production function of T ′. Because
simulated runs are loop-free, the automaton may not enter a state twice at the same
position. Since this state may be entered when coming from the right or from the left,
for all i, j we require x2i /= y2j+1.

We do as in the case of the 1-way simulation of a 2-way automaton: the tuple(x, a,+1,y) is a transition of T ′ if there is a left to right hit of T over some input,
having crossing sequence x at the left border of cell labelled by the letter a and y at its

2Actually, this is not really a run as de�ned in Section 2.3.2, but since our simulating transducer is
restless and 1-way, we omit the position component which is equal to the index of the con�guration in
the run. We also omit the accepting con�guration at position ∣u∣ + 1 which can easily be added. Indeed,
we consider a kind of transducer (A′, φ′) where A is a cfa (see De�nition 6).

106 Chapter 5. Two-way transducers

a b c

t

t + 1
t + 2

t′
t′ + 1
t′ + 2

t′′
t′′ + 1
t′′ + 2

?
x1

y1

?
y2

y3

?
y4

x2

a b c

x1

y1

y2

y3

y4

x2

Figure 5.2 � The crossing sequence at position labelled by b begins with y1, y2, y3, y4.

right border, see Figure 5.2 (this is de�ned formally exactly as in the case of automata
and we omit the details).

In order to de�ne the image of such a transition by the production function φ′ of T ′, we
proceed as follows. We must distinguish the runs having x and y as consecutive crossing
sequences. We group the �rst two states in the run, then the next two states etc. As an
example, Figure 5.1 represents two di�erent runs de�ning the same consecutive crossing
sequences x = x0x1x2 and y = y0y1y2. In the left run we group (x0, x1), (x2, y0), (y1, y2)
and in the right run we group (x0, y0), (y1, x1), (x2, y2). We call matching such a sequence
of pairs of states belonging to either crossing sequences. Observe that a pair of states in
a matching satis�es one of the following predicates

� A(x2i, x2i+1) if x2i, x2i+1 is a U-turn of the run changing direction from right to left
(e.g., (x0, x1) in the left run of Figure 5.1).

� B(y2j−1, y2j) if y2j−1, y2j is a U-turn of the run changing direction from left to right
(e.g., (y1, y2) in the right run of Figure 5.1).

� C(x2i, y2j) if x2i, y2j is a progression of the run to the right (e.g., (x0, y0) to the left
of Figure 5.1).

� D(y2j−1, x2i−1) if y2j−1, x2i−1 is a progression of the run to the left (e.g., (y1, x1) to
the right of Figure 5.1).

5.2. Unary two-way transductions 107

We are now in a position to de�ne the production function φ′ of T ′. Consider �rst a �xed
matching (s1, s′1), . . . , (sh, s′h) of x and y set

(∏
A(si,s′i)∨D(si,s′i)

φ(si, a,−1, s′i))(∏
B(si,s′i)∨C(si,s′i)

φ(si, a,1, s′i))
Then we set φ′(x, a,+1,y) as the union of the above value for all matchings of x and y.

In order to justify this construction, we �x once and for all a sequence of crossing
sequences x0, . . . ,xn and compute

{Φ(r) ∣ r is a b0 to b1 hit ∣ Xr(0) = x0, . . . ,Xr(n) = xn}
We must take into account all possible transitions of all runs once and only once. To that
purpose we assign each transition to the cell to which its source belongs. In Figure 5.1
these are in the two di�erent cases the transitions with no question mark. Furthermore,
instead of considering over all runs the product of all images by Φ of its transitions and
taking the union, we proceed di�erently by inverting union and product: we consider for
each position the union of the images of all transitions assigned to that position and then
take their product. In the example of the �gure, we assume that there exist two runs at
the position in question. Then the contribution of this position to the image by Φ is the
subset consisting of the two elements

φ(q0, a,−1, q1)φ(q2, a,+1, r0)φ(r1, a,+1, r2)
and

φ(q0, a,+1, r0)φ(r1, a,−1, q1)φ(q2, a,+1, r2)

Computing the outputs of central loops.

As said previously we now turn to the investigation of central loops. We show that there
are only �nitely many di�erent sets of words produced by central loops. Intuitively for
an initial con�guration (q, p) the set of outputs does not depend on p provided it is
su�ciently far away from each endmarker.

Given a central loop r = (q0, p0), . . . , (qk, pk), and two elements ` and r in N ∪ {∞},
we say that r is (`, r)-limited if for all 0 ≤ i ≤ k we have p0 − ` ≤ pi ≤ p0 + r. Observe
that if `′ ≥ ` and r′ ≥ r, every (`, r)-limited loop is (`′, r′)-limited. Any central loop is(∞,∞)-limited.

We denote by O(q)
`,r the union of all Φ(r) where r is a (`, r)-limited central q-loop

(observe that it does not depend on the initial position since no endmarker is visited). In

108 Chapter 5. Two-way transducers

particular, for each `′ ≥ ` and each r′ ≥ r, O(q)
`,r is included in O(q)

`′,r′ . The language O(q)∞,∞
is the set of all outputs of central q-loops. For any `, r and q, O(q)

`,r contains in particular
the empty word ε, since for any central con�guration (q, p), the run reduced to (q, p) is a
trivial central-loop. The following shows that each language O(q)

`,r is rational via Parikh's
Theorem [60] and that there exist �nitely many di�erent such languages:

Lemma 10. Let (A, φ) be a transducer. For any ` and r in N ∪ {∞}, and any state q

of A there exists a computable 1-way automaton accepting the language O(q)
`,r . It follows

that the language is rational.
There exists a computable N , such that for each r ≥ N , each ` ≥ N and each state q,O(q)

`,r = O(q)
N,N = O(q)∞,∞.

Proof. Without loss of generality, by Proposition 6 and Proposition 7, we can suppose
that the simulated automaton is restless and single-valued. For ` and r �nite it su�ces
to construct a �nite automaton recognizing O(q)

`,r . The automaton has Q × [−`, r] as set
of states, (q,0) as initial and �nal states. The transitions are more general than the
transitions for ordinary automata since we allow triples in Q × [−`, r] × a∗ ×Q × [−`, r]
but it should be clear that this can be transformed into an ordinary automaton reading
a unique letter at the price of some technicalities. The transitions are of the form

((q, i), ak, (p, i + d)) if ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(q, a, d, p) ∈ δ−` ≤ i + d ≤ r
and φ(q, a, d, p) = ak

Now consider the case O(q)
`,∞ (the remaining cases O(q)∞,r and O(q)∞,∞ can be treated similarly).

We describe informally a nondeterministic one-counter pushdown automaton that accepts
all the possible outputs an of a central q-loop when the loop is prohibited the go further
than ` cells to the left of the initial position. The pushdown automaton accepts by empty
stack and accepting state. Before starting reading an the counter is set to `. Then the
automaton interprets each transition (q, a, d, p) ∈ δ and its image φ(q, a, d, p) = ak as
follows: it reads the next k occurrences of an, changes state accordingly and increments
the counter if d = 1 or decrements it if d = −1. When it �nishes reading the input, it
checks that the counter equals `.

Since O(q)
`,∞ is a language L over a one-letter alphabet, by Parikh Theorem [60] it is

recognized by some �nite automaton. Furthermore L is a submonoid of a∗ since loops
are composable thus it is �nitely generated. The minimum set generators is de�ned as(L∖ {ε}) ∖ (L∖ {ε})2 and is computable. Each generator is produced by a central q-loop
on some large enough input word. Hence, the least integer N such that each generator
belongs to O(q)

`,N exists and we can compute it by brute-force thanks to the automata

5.2. Unary two-way transductions 109

accepting each O(q)
`,k , de�ned at the beginning of the proof. Then for all integers r ≥ N

and all states q′ we have O(q′)
`,N = O(q′)

`,∞
Putting things together.

We are now able to simulate all hits:

Proposition 33. Given two border points b0 and b1, we can compute a 1-way transducer
accepting the set of pairs (u, v) such that v is produced by a b0 to b1 hit on u. The relation
accepted is thus rational.

Proof. Let T = (A, φ) be a transducer that we suppose thanks to Proposition 7 restless.
We denote by N + 1 the integer computed from Lemma 10.

We de�ne the following two 1-way restless automata which share the same state set
QB = {0,1, . . . ,N,∞}. The �rst one BL = (QB,0,QB, δL) counts the distance to the left
endmarker up to N . The second one BR = (QB,∞,{0}, δR) guesses whether the distance
to the right endmarker is greater than N or is equal to some integer less than or equal
to N and checks this guess by counting down until reaching the right endmarker. The
transition sets δL and δR are de�ned as follows with the convention N + 1 = ∞ + 1 = ∞
and ∞− 1 = ∞

� δL = {(q, s,+1, q + 1)} where s ∈ Σ▷◁
� δR = {(∞,▷,+1, i) ∣ i ∈ QB} ∪ {(∞, a,+1,N)} ∪ {(q, a,+1, q − 1) ∣ q ≠ 0}
We build a 1-way restless transducer (A′, φ′) from T as in Lemma 9. Because A′, BL

and BR are 1-way restless, we can take the product automaton A′′ = A′ × BL × BR. Let
us now consider a transition t = ((q, `, r), a,+1, (q′, `′, r′)) of A′′ performed at position p.
The states appearing in q (resp. q′) correspond to states entered by T in position p−1 or
p (resp. p or p+ 1). In any case, this di�erence can be determined from the initial border
point and the parity of the index of the state in the crossing sequence. In particular, we
may extract from both crossing sequences q and q′ the set St of states that are entered
by T in position p. Hence, we can add for each such state q, the possible output of(`, r)-limited central q-loops. Formally, the image of t by φ′′ is de�ned by:

φ′′(t) = φ′(t)(⋃
q∈St

O(q)
`,r)

By construction, the 1-way restless transducer (A′′, φ′′) simulates any b0 to b1 hit of T .
Hence, the relation of pairs (u, v) such that v is produced by some b0 to b1 hit of T on u
is rational.

110 Chapter 5. Two-way transducers

5.2.4 Unlimited number hits

We prove Theorem 16 by considering an unlimited number of hits. We show that the
series associated with the relation de�ned by a 2-way transducer can be expressed via
a transitive closure of a square matrix with entries in Had(K ⟨⟨Σ∗⟩⟩). More precisely,
by Lemma 2, if a run r is successful, then there exists a sequence of composable hits
r0, r1, . . . , rk such that r = r0@r1@ . . .@rk.

We �rst adapt the matrix multiplication to the Hadamard product. Given an inte-
ger N and two matrices X,Y ∈ (K ⟨⟨Σ∗⟩⟩)N×N we de�ne their H-product as the matrix
Z =X H Y ∈ (K ⟨⟨Σ∗⟩⟩)N×N where for each 1 ≤ i, j ≤ N

Zi,j = N∑
k=1

Xi,k H Yk,j

Also, the H-star of the matrix X is de�ned as the in�nite sum

(X)⋆ = ∞∑
k=0

k times³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
X H ⋯ H X

We proceed as in the proof of Corollary 3. Indeed, by applying Theorem 2 to the
semiring Had(Σ∗ ⟨⟨Σ∗⟩⟩) we obtain that the entries of the star of a matrix in
Had(Σ∗ ⟨⟨Σ∗⟩⟩)N×N are well-de�ned and belong Had(Σ∗ ⟨⟨Σ∗⟩⟩).
Corollary 18. If the matrix X is in (Had(K ⟨⟨Σ∗⟩⟩))N×N then so is (X)⋆.

We are now able to complete the proof of Theorem 16.

Proof of Theorem 16. In one direction this is an immediate consequence Corollary 4,
since the input alphabet is unary.

It remains to prove the converse. Let T be transducer. Consider a matrix X whose
rows and columns are indexed by the pairs Q × {▷,◁} of border points. For all pairs
of border points b0 and b1, its (b0, b1) entry is, by Proposition 33, the rational series
associated to b0 to b1 hits. The series accepted by T is the sum of the entries of X⋆ in
positions ((q−,▷), (q,◁)) for q ∈ Q+. Since all rational series are also Hadamard series,
we conclude by Proposition 18.

5.2.5 Conclusion

Our main result of Theorem 15 gives a characterization of relations (series) accepted
by 2-way unary transducers, i.e., general transductions (see Section 2.3.4), when both

5.3. Sweeping weakens two-way transducers 111

alphabets are unary. A key point is that crossing sequences of loop-free runs have bounded
size. Consequently, any loop-free run can be simulated by a 1-way transducer as done in
Lemma 9. We point out that this simulation does not require any hypothesis on the size
of the input alphabet.

We �x a transducer T = (A, φ) accepting a relation R ⊆ Σ∗ × ∆∗, with ∣∆∣ = 1. IfA is deterministic or unambiguous (i.e., for each input word u, there exists at most one
successful run of A on u), then every successful run is loop-free. Therefore, by Lemma 9,T is equivalent to some constructible 1-way transducer. Another interesting case is when
R is a function. Then for each u, all the successful runs on u produce the same output
word. Hence, considering only loop-free runs preserves the acceptance of T . We thus
recover the results of Anselmo [2].

Corollary 19. Let R ⊆ Σ × ∆ with ∣∆∣ = 1 be accepted by some 2-way transducerT = (A, φ). If A is unambiguous or if R is a function then R is rational. Moreover,
a 1-way transducer T ′ equivalent to T can be e�ectively build.

A rational uniformization of a relation R ⊆ Σ∗×∆∗, is a rational function F ⊆ R, such
that the domain of F is equal to the one of R. Under the hypothesis ∣∆∣ = 1, it is possible
to build, from Lemma 9, a 1-way transducer accepting such a F . Since the transducer
obtained from Lemma 9 is not necessarily functional, the construction involves a result
of Eilenberg [21, Prop. IX 8. 2] solving the rational uniformization problem for rational
relation.

Corollary 20. There exists a computable 1-way transducer accepting a rational uni-
formization of R.

Finally, observe that since outer-nondeterministic transducers (see Section 2.3.4) can-
not have a successful run admitting a central loop as factor, Lemma 9 can be applied on
every useful hits, and thus the same conclusion as that of Theorem 15 holds for outer-
nondeterministic transducers, provided the output alphabet is unary.

Corollary 21. Let R ⊆ Σ×∆ with ∣∆∣ = 1 be accepted by some 2-way outer-nondeterministic
transducer. Then R belongs to Had.

5.3 Sweeping weakens two-way transducers

5.3.1 Revisiting the family Rat(a∗)
Taking advantage of the observation that (a∗, ⋅, ε) is isomorphic with the additive monoid(N,+,0) in the mapping n↦ an, we prefer for notational reasons to work in N. With this

112 Chapter 5. Two-way transducers

identi�cation we may speak of the subset of N accepted by an automaton over a unary
alphabet. From now on instead of working in Σ∗ × a∗ we will work in the equivalent
structure Σ∗ ×N. All the terminology on the former structure carries over to the latter.
Beware that the concatenation in a∗ converts to the addition in N. In particular, the
set product on N is denoted X + Y . Its neutral element is the singleton {0} (or simply
denoted 0) and ∅ is an absorbing element.

First, we introduce some notations. Speaking of the singleton {n}, we use the abusive
but convenient notation n when the context is clear. Hence, for a subset X ⊆ N, we
write n +X for {n} +X. The multiplication of subset X by a scalar p ∈ N i.e., the set{px ∣ x ∈X}, is denoted pX. In particular, pN is the set of multiples of p. We say that a
subset X of N is bounded by k, if x ∈X implies x < k i.e., if X ⊆ {0, . . . , k − 1}.
Rational subsets of N

The proof of the following simple result that characterizes rational sets, is left to the
reader. This is basically due to the famous characterization of rational subsets of N as
semilinear sets i.e., �nite unions of linear sets.

Proposition 34. A subset X of N is rational if and only if there exist two integers t and p
and two �nite sets A andM respectively bounded by t and p such that X =A ∪ (t +M + pN).

If X = A∪(t +M + pN), for two integers t and p and two subsets A andM respectively
bounded by t and p, we say that A∪(t +M + pN) is a rat-expression for X. The integers
t and p are respectively the threshold and the period of the rat-expression or simply a
threshold and a period for X, when the rat-expression is not made precise. It is possible
to choose t and p minimal. In this case t and p are called the threshold and the period of
the rational set X. Observe that if A ∪ (t +M + pN) is a rat-expression of a �nite set X,
then p = 0 and so M = ∅; thus X = A. Conversely, if X is in�nite, then p > 0 and M ≠ ∅.
Equivalent rat-expressions of rational sets

The same rational subset is de�nable by di�erent rat-expressions with di�erent thresholds
and periods. We show how these parameters can be modi�ed.

Lemma 11. Let X be a rational set and let t and p be the threshold and period of some
rat-expression of X. Then, for any u ≥ t, there exists a computable rat-expression of X
with threshold u and period p.

Proof. Let A ∪ (t +M + pN) be a rat-expression of a rational set X and let u be greater
than or equal to t. Since u ≥ t, for some k ≥ 0 and 0 ≤ s < p we have u = t + s + kp. De�ne

5.3. Sweeping weakens two-way transducers 113

a subset M ′ of {0, . . . , p − 1} as follow: j ∈ {0, . . . , p − 1} belongs to M ′ if and only if j + s
belongs to M or to p +M i.e.,

M ′ = { i − s ∣ i ∈M and i ≥ s
p + i − s ∣ i ∈M and i < s }

and de�ne A′ as follows:
A′ = (t +M + p{0, . . . , k − 1}) ∪ (t + {i ∈M ∣ i < s} + kp)

Observe that: X∩{0, . . . , t − 1} = A ; X∩{t, . . . , u − 1} = A′ and X∩(u +N) = u+M ′+pN.
Thus, X = (A ∪A′) ∪ (u +M ′ + pN).
Lemma 12. Let X be a rational set, and let t and p be the threshold and period of some
rat-expression of X. Then, for any r > 0, there exists a computable rat-expression of X
with threshold t and period rp.

Proof. Let A ∪ (t +M + pN) be a rat-expression of a rational set X and let r be a
positive integer. Simply set M ′ to be equal to the set M + p{0, . . . , r − 1}. We prove
X = A ∪ (t +M ′ + rpN). It su�ces to prove t +M + pN = t +M ′ + rpN.

Let x = t +m + kp for some m ∈ M and some k ≥ 0. Then, the euclidian division of
k by r gives k = qr + ` with 0 ≤ ` < r. Hence x = (t +m + `p) + qrp. By de�nition of M ′,
m + `p belongs to M ′, and thus x ∈ t +M ′ + pN.

Reciprocally, if x = t +m′ + qrp for some m′ ∈ M ′ and q ≥ 0, then there exist m ∈ M
and 0 ≤ ` < r such that m′ = m + `p. Thus, x = t +m + p(` + qr) belongs to t +M + pN.
This concludes the proof.

By combining both Lemmas 11 and 12, a unique threshold and period can be chosen
to work with every rational sets of a �nite family:

Corollary 22. Let F be a �nite family of rational sets. For each X ∈ F , let tX and pX
denote the threshold and the period of some rat-expression of X. Then, there exists for
each X ∈ F a rat-expression of X with threshold max

X∈F (tX) and period lcmX ∈ F (pX).
It is then easy to compute the union or the intersection of rational sets. Indeed,

if AX ∪ (t +MX + pN) and AY ∪ (t +MY + pN) are two rat-expressions, then their union
is equal to (AX ∪AY) ∪ (t + (MX ∪MY) + pN), which is a rat-expression with the same
threshold and the same period. This particular case is instrumental to the last part of
our proof.

Proposition 35. Given a �nite family p1, p2, . . . , pn of distinct prime integers, the period
of the set ⋃

0<i≤npiN is equal to ∏
0<i≤npi.

114 Chapter 5. Two-way transducers

Proof. Let X denote the set ⋃
0<i≤npiN. By Corollary 22 and previous observation, it is

clear that p = p1 ×⋯ × pn is a period for X.
Indeed, the minimal period divides p. If it is not equal to p then for some pi the

integer p̂i = p1×⋯×pn
pi

is a period. Then pi ∈ X implies pi + p̂i ∈ X i.e., pi + p̂i = rpj for
some 1 ≤ j ≤ n and some r ∈ N. If i = j then the left handside is divisible by pi thus p̂i is
divisible by pi, a contradiction. Otherwise, pj divides p̂i thus pi, a contradiction.

The sum of rational subsets of N

By Kleene Theorem we know that the sum of two rational sets is rational. Here we
discuss the value of the threshold and the period of the rat-expression of the sum of two
subsets of N. We start by proving intermediate result:

Proposition 36. Let t and p be a threshold and a period for a rational set X. Let Y be
bounded by some s ∈ N. Then X +Y admits a rat-expression of threshold t+ s and period
p.

Proof. For some A bounded by t and someM bounded by p, we haveX = A∪(t +M + pN).
Since Y = ⋃

y∈Y {y}, we have X + Y = (A + Y) ∪ ⋃
y∈Y (y + t +M + pN). We �x y ∈ Y . By

assumption t + y < t + s. By Lemma 11, there exist Ay and My respectively bounded by
t + s and p such that y +X = Ay ∪ ((t + s) +My + pN). Finally

X + Y = (⋃
y∈Y Ay) ∪ ((t + s) + (⋃

y∈Y My) + pN)

Lemma 13. Let t, s and p be three integers, and let J and K be two subsets bounded by
p. Then there exist A and M , respectively bounded by t + s + p and p, such that

(t + J + pN) + (s +K + pN) = A ∪ ((t + s + p) +M + pN)
Proof. Observe that (t + J + pN) + (s +K + pN) is equal to K + (t + s + J + pN). Since K
is bounded by p, the result follows directly from Proposition 36.

We are now able to consider the sum of two general rational sets.

Proposition 37. Let AX ∪(tX +MX + pXN) and AY ∪(tY +MY + pYN) be the respective
rat-expressions of two rational sets X and Y . Fix t = max(tX , tY) and p = lcm(pX , pY).
Then the rational set X + Y admits a rat-expression of threshold (2t + p) and period p.

5.3. Sweeping weakens two-way transducers 115

Proof. By Corollary 22, we may �nd A′
X and A′

Y bounded by t andM ′
X andM ′

Y bounded
by p such that: X = A′

X ∪ (t +M ′
X + pN) and Y = A′

Y ∪ (t +M ′
Y + pN). By distributivity:

X + Y = ⋃
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(A′
X +A′

Y)(A′
X + t +M ′

Y + pN)(A′
Y + t +M ′

X + pN)(2t +M ′
X +M ′

Y + pN)
We consider each of the four subsets separately:

1. the set A0 = A′
X +A′

Y is a �nite set bounded by 2t and so by 2t + p;
2. the set A′

X + t+M ′
Y +pN can be rewritten, thanks to Proposition 36 and Lemma 11,

as A1 ∪ ((2t + p) +M1 + pN) with A1 ⊆ {0, . . . ,2t + p − 1} and M1 ⊆ {0, . . . , p − 1};
3. similarly the set A′

Y + t +M ′
X + pN is rewritten as A2 ∪ ((2t + p) +M2 + pN);

4. from Lemma 13 follows the existence of the sets A3 and M3, respectively bounded
by 2t + p and p, such that 2t +M ′

X +M ′
Y + pN = A3 ∪ (2t + p +M3 + pN).

We pose A = A0 ∪A1 ∪A2 ∪A3 and M =M1 ∪M2 ∪M3. We have

X + Y = A ∪ ((2t + p) +M + pN)

Star of rational subsets of N

The following lemma gives a characterization of star-generated subsets of integers.

Lemma 14. Let X be a subset of N. Then, denoting by r the greatest common divisor
of the elements of X, i.e., r = gcd(X), there exist an integer t ∈ N and a �nite set
A ⊆ {0, . . . , t − 1} such that:

X∗ = r (A ∪ (t +N))
In particular, X∗ is rational and is included in rN.

Proof. Whenever r = gcd(X) = 1, it is known that X∗ = A ∪ (t + N) for some integer t
and some subset A bounded by t, e.g., [64, Theorem 1.0.1]. Observe that t − 1 when t is
minimal is known as the Frobenius number.

We now extend this result to the general case, where r is arbitrary. We de�ne
X/r = {x ∣ rx ∈X}. Observe that X∗ = rX/r∗. Hence: X∗ = r (A ∪ t +N).

116 Chapter 5. Two-way transducers

Considering the Kleene star of a rational set, it happens that both the threshold and
the period have no simple expressions. However, we are able to bound the value of the
period which is enough for our purpose.

Lemma 15. Let A∪(t +M + pN) be a rat-expression of some non-empty rational set X.
Then X∗ admits a period less than or equal to max (t, p).
Proof. Let r denote the greater common divisor of the elements of X. By Lemma 14,
X∗ = r (K ∪ (` +N)) and thus r is a period of X∗.

Now we prove an upper bound on r in the two disjoint cases: �nite or in�nite. If X is
�nite, then X is equal to A and is thus bounded by t. Since r divides all the elements of
X (supposed non-empty), we have r < t. Else, if X is in�nite, then p > 0 and M ≠ ∅. For
any x ∈ t +M , r divides both x and x + p, and thus r divides p. So r ≤ p. This concludes
the proof.

5.3.2 The unary output case

In Section 5.2, we proved that when Σ and ∆ are unary, the family of relations in Σ∗×∆∗
accepted by 2-way transducers is exactly the family of Hadamard relations. The crux of
the proof seems to rely on the hypothesis that ∆ is unary, since it is strongly required
by the characterization of the family Had(Σ∗ ×∆∗) in terms of semi-linear forms (see
Proposition 32). We left open the general case where Σ has at least two elements and
∆ is unary. Here we show that in this case the family of relations realized by 2-way
transducers strictly contains the family of Hadamard relations.

Massaging the productions

In this section we give a kind of normal form for transducers with unary output. Thanks
to the identi�cation between unary languages and subsets of N, we may associate to each
production function of such transducers, a production function that maps transitions into
rational subsets of N.

We show that transducers over Σ and N admit a simple form:

Lemma 16. Let T be a transducer with transition set δ and production function φ ∶
δ → Rat(N). Then there exists an equivalent transducer T ′ such that the image of each
transition by the production function is of the form t+pN for some non-negative integers
t and p. Moreover, if T is 1-way or restless or both, so is the resulting transducer.

Proof. We �x the transducer T = (A, φ). By Proposition 34, for each transition e of A
the language φ(e) admits a rat-expression Ae ∪ (te +Me + peN). By decomposing Ae and

5.3. Sweeping weakens two-way transducers 117

Me as �nite union of singletons, we obtain:

φ(e) = (⋃
a∈Ae

a + 0N) ∪ (⋃
m∈Me

(te +m) + peN)
Hence, by indexing the disjoint union Ae⊍Me by Ie = {0, . . . , ∣Ae∣ + ∣Me∣ − 1}, the set φ(e)
may be written as ⋃

i∈Ie ti,e + pi,eN.
Now we modify the transducer (A, φ) into (A′, φ′) in such a way that the transi-

tions distinguish the indices i chosen in Ie. This can easily be done by recording in
the �nite control of A′ which choice has been done at the last transition. Formally,
a state of A′ is a pair (q, i) where q is a state of A and i is an index in ⋃e Ie. For
each transition f = (q, a, d, q′) of A and each index i ∈ ⋃e Ie there are ∣If ∣ transitions:((q, i), a, d, (q′, j)) for j ∈ If . Finally, the image of a transition ((q, i), a, d, (q′, j)) by φ′
is de�ned as tj,f + pj,fN. By construction the resulting transducer is equivalent to T .
Observe that the directions are kept.

Images of 1-way transducers

Let R ⊆ Σ∗ × ∆∗ be a rational relation, i.e., a relation realized by a 1-way transducer.
For all words u ∈ Σ∗ the set R(u) = {v ∈ ∆∗ ∣ (u, v) ∈ R} is a rational subset of ∆∗, [66,
Theorem IV.1.3]. Here we show that when ∆ is unary the collection of all possible images
satis�es a uniform property. We keep identifying ∆∗ and N.
Theorem 17. Let Σ be an arbitrary alphabet. Let R be a rational relation in Σ∗ × N.
Then, there exist two integers t and p such that, for all w ∈ Σ∗, the rational language
R(w) admits a rat-expression of threshold t (∣w∣ + 1) and period p.

Proof. By Theorem 6, R is accepted by a 1-way transducer T = (A, φ) which we can
suppose restless by Proposition 7. Let w be an input word in Σ∗ and let n denote its
length. Let R be the set of all successful runs of T on w. Observe that since T is 1-way
restless, every run r in R has length n+2 (there is exactly one con�guration per position,
including endmarkers). Thus R is �nite. The image of w is:

R(w) = ⋃
r∈RΦ(r)

Via Lemma 16 we suppose without loss of generality that for each e ∈ δ, φ(e) = te+peN
for some integers te and pe.

We �x one run r ∈ R of trace t. For each e ∈ δ, we denote by re the number of
occurences of e in t. By commutativity,

Φ(r) = ∑
e∈δ (tere + (peN)re) = (∑

e∈δ tere) + (∑
e∈δ (peN)re)

118 Chapter 5. Two-way transducers

Note that ∣t∣ = n+ 1. Thus, sr = ∑
e∈δ tere is an integer less than or equal to m(n+ 1) where

m = max
e∈δ (te). Then, de�ne Cr = ∑

e∈δ (peN)re . Denote by Ir the set of transitions e such that
re > 0. Since for any ` we have `N+ `N = `N, the set Cr is equal to ∑

e∈Ir peN. Observe that
there are �nitely many possible Ir. By Corollary 22, there exist two integers k and p such
that for each subset I of transitions, there are two sets AI and MI , respectively bounded
by k and p, such that ∑

e∈I peN = AI∪(k +MI + pN). In particular, Cr = AIr∪(k +MIr + pN).
Finally:

Φ (r) = sr + (AIr ∪ (k +MIr + pN))= (sr +AIr) ∪ (sr + k +MIr + pN)
As previously claimed, sr < m(n + 1). We can thus �nd an integer t, independent on n,
such that k +m(n + 1) < t(n + 1). Then, using Lemma 11, we can �nd Br bounded by
t(n + 1) and M ′

r bounded by p such that Φ(r) = Br ∪ (t(n + 1) +M ′
r + pN).

Now we consider all successful runs of T on w, i.e., all runs in R. It follows from
previous study:

R(w) = ⋃
r∈RBr ∪ (t(n + 1) +M ′

r + pN)
and hence, by commutativity and associativity of the set union operation:

R(w) = (⋃
r∈RBr) ∪ (t(n + 1) + (⋃

r∈RM
′
r) + pN)

Because each Br and M ′
r are respectively bounded by t(n + 1) and p, so are their

respective unions over R.

Back to 2-way transducers

From the study of Section 5.3.1, we are now able to extend Theorem 17 to the relations
of the special form R H S

⋆ for some rational relations R and S.

Lemma 17. Let Σ be an arbitrary alphabet. Let R and S be two rational relations in

Σ∗ ×N. The rational set (R H S
⋆)(w) admits a period in O(∣w∣).

Proof. By Theorem 17, for Z = R,S, there exist two integers tZ and pZ , such that for
every w ∈ Σ∗, there are two �nite subsets AZ(w),MZ(w) ⊆ N respectively bounded by
tZ (∣w∣ + 1) and pZ that satisfy:

Z(w) = AZ(w) ∪ (tZ (∣w∣ + 1) +MZ(w) + pZN)

5.3. Sweeping weakens two-way transducers 119

Consider S⋆ . By Lemma 15, the set S⋆(w) = (S(w))∗ admits a period qS,w less
than or equal to max (tS (∣w∣ + 1) , pS). Applying Lemma 12, the integer pw = pR × qS,w
is a period for both R(w) and S(w)∗ and thus for R(w) + S(w)∗ = (R H S

⋆) (w) by
Proposition 37. Observe that pw = pR × qS,w ≤ pR×max (tS × (∣w∣ + 1) , pS). This concludes
the proof.

Finally, we prove that the period of the image of an input of length n in a 2-way
transduction is bounded by a polynomial in n:

Theorem 18. Let Σ be an arbitrary alphabet. Let R be an Hadamard relation in Σ∗ ×N.
Then there exists an integer k such that for each input word w ∈ Σ∗, the rational set R(w)
admits a period in O(∣w∣k).
Proof. Let R be an Hadamard relation in Σ∗ × N. Then, by Proposition 32, for some
�nite families of rational relations (Xi)0≤i<k and (Yi)0≤i<k:

R = ⋃
0≤i<kXi H Y

⋆
i

By Lemma 17, for every 0 ≤ i < k there exists an integer ci such that for every w ∈ Σ∗,
the set (Xi H Y

⋆
i) (w) admits a rat-expression of period pi less than or equal to ci(∣w∣+1).

We de�ne p = ∏
0≤i<k pi. Thus, p ≤ ∏

0≤i<k ci(∣w∣+1) = O (∣w∣k). By Lemma 12, p(w) is a period
for every (Xi H Y

⋆
i) (w). Thus, using Lemma 11 that preserves the period, we can show

that p is a period of R(w).
Separating general 2-way and sweeping transducers

Theorem 18 allows us to prove that the family Had(Σ∗ × a∗) is strictly included in the
family of 2-way transductions, i.e., the family of relations in Σ∗ × a∗ accepted by 2-way
transducers. We de�ne the relation MultBlock on Σ = {a,#} by setting for each input
word w ∈ Σ∗:

MultBlock(w) = {kn ∣ k,n ∈ N and w ∈ Σ∗#an#Σ∗}
The relation is accepted by a 2-way transducer:

Proposition 38. The relation Mult-Block is accepted by a 2-way transducer.

Proof. The automaton underlying our 2-way transducer accepting MultBlock is de-
picted in Figure 5.3. For clarity, the production function is given in caption. It should
be clear that the relation accepted is MultBlock.

120 Chapter 5. Two-way transducers

q− Ð→q

←Ðq

q+

a,+1

#,
+1▷,+1

#,+1

a,+1

#
,−1

#,+1

a,−1

#
,+1

a,+1

#,+1

Figure 5.3 � The underlying automaton of a 2-way transducer acceptingMultBlock.
The production function maps the transition (←Ðq , a,−1,←Ðq) to 1 and all other transitions
to 0.

We prove now that MultBlock is not Hadamard:

Lemma 18. The relation MultBlock is not Hadamard.

Proof. By Theorem 18, it su�ces to prove by contraposition that there exists an in�nite
sequence of input words wn ∈ Σ∗ of strictly increasing length such that the minimal period
pn of MultBlock(wn) is superpolynomial in the length ∣wn∣.

For n > 0, we de�ne wn = #ar1#ar2#⋯#arn# where ri denotes the i-th prime number.
The image of wn by MultBlock is given by:

MultBlock(wn) = ⋃
0<i≤n (riN)

By Proposition 35, the minimal period pn is equal to ∏
0<i≤n ri. Asymptotically pn is in

Ω (en log(n)) [29]. On the other hand, ∣wn∣ = n+1+ ∑
0<i≤n ri is in θ (1

2n
2 log(n)) [4]. A simple

computation shows that pn is in Ω (e 3
√∣wn∣ log(∣wn∣)) which is superpolynomial in ∣wn∣.

Observe that for every integer k, the period of the image of w ∈ Σ∗ in the restriction
MultBlock ∩ ((#a∗)k# ×N) is in O(∣w∣k).

Recall Corollary 4 and Corollary 8 asserting the equivalence between Hadamard rela-
tions and relations accepted by sweeping transducers.

Theorem 19. Let Σ and ∆ be two alphabets. If Σ has cardinality at least 2 then
the family of Hadamard (resp. Mirror-Hadamard) relations in Had(Σ∗ ×∆∗) (resp.
MHad(Σ∗ ×∆∗)), or equivalently the family of rotating (resp. sweeping) transductions
over Σ and ∆, is strictly included in the family of 2-way transductions.

5.3. Sweeping weakens two-way transducers 121

A corollary

Recall that the componentwise concatenation of two relations A1,A2 ⊆ Σ∗ × N is the
relation given by A1 ⋅A2 = {(u1u2, n1 + n2) ∣ (u1, n1) ∈ A1, (u2, n2) ∈ A2}. De�ne the two
relations:

Erase = {(w,0) ∣ w ∈ Σ∗};
MultOneBlock = {(#an#, kn) ∣ n, k ∈ N and w ∈ N}.

Observe that Erase is rational therefore Hadamard andMultOneBlock is Hadamard3.
Then we have:

MultBlock = Erase ⋅MultOneBlock ⋅Erase
The following is hence a consequence of Lemma 18.

Corollary 23. The family of Hadamard relations is not closed under componentwise
concatenation, even when the output alphabet is unary.

5.3.3 The unary input case

We know that 2-way transducers are equivalent to sweeping transducer when both the
input and the output alphabets are unary. Theorem 19 shows that this is not the case
anymore, when the output alphabet only is unary. In this section we give an example of
a relation in {a}∗×{a, b}∗ which is accepted by a 2-way transducer but not by a sweeping
transducer.

Example 13.

LR-Prefix = {(an, apbp) ∣ 0 < p ≤ n, n ∈ N}
It is an easy exercise to build a 2-way transducer accepting LR-Prefix. We give one in
Figure 5.4. Observe that it has a nondeterministic choice in state Ð→q scanning a. This
nondeterminism is strongly required for our purpose, since every deterministic output-
unary transducer admits an equivalent 1-way transducer [2].

The relation LR-Prefix cannot be accepted by a sweeping transducer.

Lemma 19. No sweeping transducer may accept the relation LR-Prefix.

3But it is not rational: compare it with the relation uMult de�ned in Section 2.3.4.

122 Chapter 5. Two-way transducers

Ð→q ←Ðq q+

a,+1▷,+1

a,−1

a,−1

▷,+1

a,+1

φ((q, c, d, q′)) is equal to a if q′ = Ð→q , to b if q′ = ←Ðq and to ε else.

Figure 5.4 � A 2-way transducer accepting LR-Prefix.

Proof. Suppose there exists a sweeping transducer T accepting LR-Prefix. Without
loss of generality, we assume T is restless.

We �rst show that this is no loss of generality to suppose that φ is single-valued.
Indeed, since the image of any input word is �nite, for every transition t, φ(t) is �nite.
It is thus possible to store the last chosen output in the �nite control of the automaton,
in order to make T single-valued. Thus, we assume from now on that T is a sweeping
restless single-valued transducer accepting LR-Prefix.

Observe that for each n ∈ N, the language LR-Prefix(an) has cardinality n, by
de�nition. We will prove that for some large enough n, the set of outputs produced by
the successful runs of T on an has cardinality less than n, leading to a contradiction.

Let r be a successful run on some input u. We can decompose r into three runs as
follows:

r = r1@(q, p)@r2@(q′, p′)@r3

such that r2 is a (q, p) to (q′, p′) hit, and:
φ(r1) ∈ a∗ φ(r2) ∈ a∗b+ φ(r3) ∈ b∗

Observe that, because T is sweeping, p′ is the border opposite to p. We may thus identify
both using the one-bit information b ∈ {▷,◁}, meaning that up = b. The border opposite
to b is denoted band up′ = b. The tuple (r1, r2, r3) is called (q, b, q′)-phase decomposition
of r.

5.3. Sweeping weakens two-way transducers 123

For each state q and q′ and each b ∈ {▷,◁}, we de�ne the following relations:

Prefixq,b,q′ = {(u, v) ∣ there exists a successful run on u of (q, b, q′)-phase
decomposition (r1, r2, r3) and v = φ(r1) }

Transitq,b,q′ = {(u, v) ∣ there exists a successful run on u of (q, b, q′)-phase
decomposition (r1, r2, r3) and v = φ(r2) }

Suffixq,b,q′ = {(u, v) ∣ there exists a successful run on u of (q, b, q′)-phase
decomposition (r1, r2, r3) and v = φ(r3) }

There are �nitely many triples (q, b, q′) and by de�nition:

LR-Prefix = ⋃
q,b,q′

Prefixq,b,q′ H Transitq,b,q′ H Suffixq,b,q′ (5.4)

Observe that, for each q, q′ and b, the three relations de�ned above have the same
domain which is equal to:

Dq,b,q′ = {u ∈ a∗ ∣ there exists a successful run on u
which admits a (q, b, q′)-phase decomposition }

It is easy to prove that it is recognizable. Thus, each relation Transitq,b,q′ is accepted
by a 1-way transducer Tq,b,q′ obtained from T . The transducer Tq,b,q′ does not simply
simulate the (q, b) to (q′, b) hits of T , but should also check that the input belongs
to Dq,b,q′ . We denote by N the maximal number of states of these 1-way transducers i.e.,
N = max

q,b,q′
∣Tq,b,q′ ∣.

We �x (q, b, q′). It is easy to see that both Prefixq,b,q′ and Suffixq,b,q′ should be
functional. It follows that for any n ∈ N we have:

∣(Prefixq,b,q′ H Transitq,b,q′ H Suffixq,b,q′) (an)∣ = ∣Transitq,b,q′(an)∣ (5.5)

Moreover, if v and v′ in a∗b+ belong to Transitq,b,q′(an) then we have:

∣v∣b − ∣v∣a = ∣v′∣b − ∣v′∣a (5.6)

We will use this property, in order to bound in function of N , the number of words in
each Transitq,b,q′(an).

Let n be �xed and let r be a successful run of Tq,b,q′ (i.e., the 1-way transducer
accepting Transitq,b,q′) on an. Suppose:

r = r1@`1@r2@`2@r3

124 Chapter 5. Two-way transducers

where both `1 and `2 are cycles (i.e., sub-runs starting and ending in the same state),
with φ(`1) ∈ a+ and φ(`2) ∈ b∗ (or similarly, a∗ and b+ respectively). Denote by h1

and h2 the length, in terms of head moves, of `1 and `2 respectively. Then, on the input
word u = an+h1h2−h1−h2 , we may �nd two di�erent successful runs: one repeating h2 times
the cycle `1 and 0 times the cycle `2, and the second repeating 0 times the cycle `1 and h1

times the cycle `2. The associated outputs trivially violates (5.6). Hence, every successful
run r of Tq,b,q′ satis�es one of the three following properties:

� all the cycles of r have their output in a+;
� all the cycles of r have their output in b+;
� all the cycles of r have their output in {ε}.

For each case, the number of a or the number of b produced during r is linearly bounded
in N , say, less than kN . Since, for any number of a (resp. of b) in the output, there is only
one possible number of b (resp. of a) by (5.6), the total number of v ∈ Transitq,b,q′(an)
is less than kN .

We conclude by observing that, by the equations (5.4) and (5.5), the number of
outputs associated to any input word an is bounded by 2kN ∣Q∣2. This is a contradiction,
since any input an with n > 2kN ∣Q∣2 has more associated outputs.

It follows that the family of Hadamard relations does not capture the family of re-
lations accepted by 2-way transducers, even when the input alphabet is unary. See the
analogy with Theorem 19.

Theorem 20. Let Σ and ∆ be two alphabets. If Σ has cardinality at least 2 then
the family of Hadamard (resp. Mirror-Hadamard) relations in Had(Σ∗ ×∆∗) (resp.
MHad(Σ∗ ×∆∗)), or equivalently the family of rotating (resp. sweeping) transductions
over Σ and ∆, is strictly included in the family of general transductions, i.e., relations
accepted by 2-way transducers.

As for Theorem 19, we can deduce a non-closure property of the family of Hadamard
relations.

Corollary 24. The family of Hadamard relations is not closed under componentwise
concatenation, even when the input alphabet is unary.

Proof. We de�ne the following relation:

Renamea,b = {(an, bn) ∣ n ∈ N}

5.3. Sweeping weakens two-way transducers 125

Obviously, it is rational. Hence, the Hadamard product: Id H Renamea,b belongs to
Had(a∗ × {a, b}∗). We conclude the proof by observing:

LR-Prefix = (Id H Renamea,b) ⋅Erase
where the relation Erase is de�ned as in Section 5.3.2.

5.3.4 Conclusion

Corollary 4 together with Corollary 8, claims that on unary input and output alphabets,
sweeping transducers have the same recognition power as general 2-way transducers. In
this section, we have shown how crucial is the hypothesis asking for both input and
output alphabets. Indeed, we have exhibited two relations, one with a unary input
alphabet, the other with a unary output alphabet, that separate the two families of
relations (Theorems 19 and 20). Despite the intuition and the simplicity of the two
examples, the proofs involve many intermediate results and some technical material,
showing the complexity of the dynamics of 2-way devices. Some of these intermediate
results are interesting for their own sake, in particular, the bound on the period of the
image of unary 1-way and unary sweeping transducers (Theorems 17 and 18).

126 Chapter 5. Two-way transducers

Chapter 6

Iteration of arity 2 relations on words

6.1 Preliminaries

In this chapter we consider relations in Σ∗ ×Σ∗, for some �xed alphabet Σ. When Σ is
supposed to be unary, it is more convenient to work in N × N which can be identi�ed
with a∗ × a∗ by the mapping an ↦ n extended to a∗ × a∗.
Notations: We will consider sequences of words, that it is convenient to write
w1,w2, . . . ,wn. Hence, wi does no longer refer to the i-th symbol of w, as denoted in
Section 2.1.2, but to the i-th word in the sequence. We are thus led to change the former
notation: given a word w of length n, and given 1 ≤ i ≤ n, the i-th symbol of w is denoted
by w[i].
6.1.1 Composition and iteration of relations

Given R and S in Σ∗ ×Σ∗, we de�ne the composition of R and S in a natural way:

R ○ S ∶= {(u,w) ∣ ∃v ∈ Σ∗, (u, v) ∈ S and (v,w) ∈ R}
The identity relation Id = {(u,u) ∣ u ∈ Σ∗} is a neutral element for the composition.
Moreover, the composition is distributive over the union. Thus, the structure⟨2Σ∗×Σ∗

,∪, ○, Id,∅⟩ is a semiring.

We can inductively de�ne the composition powers of a relation as follows:

R(0) ∶= Id and for each k ≥ 0, R(k+1) ∶= R ○R(k)

127

128 Chapter 6. Iteration of arity 2 relations on words

The iterative star of R, which is the re�exive and transitive closure of R, denoted R(∗),
is de�ned by:

R(∗) ∶= ⋃
k∈NR

(k)

Concerning rational relations, we have the important result:

Theorem 21 (Elgot and Mezei [23]). If R and S are rational relations, so is R ○ S.
6.1.2 Decidability problems

This chapter is motivated by the case of rational relations. Indeed, if the di�erent com-
position powers of a rational relation are still rational, their union is not, even in the case
of unary alphabet (see Theorem 29). We ask the following questions, given a relation R
and a class of relation X:

� Membership to a relation R: can we decide whether or not a given a pair (u, v)
belongs to R(∗)?

� Classification for a family of relations X: given a relation R, does R(∗)
belongs to X?

We will prove that for some very restricted R, theMembership problem is decidable (see
Example 14, 26 and 28), and we determinate its complexity (which is a kind of answer
to the Classifying problem). However, in most cases, the Membership problem has
a negative (see [75]) and we propose some new approaches (see Theorems 25, and 29).

We did not have the time to study the following questions but there are worthwhile
being considered. Given a relation R,

� Local finite power property: does there exist for each word u, an integer N such
that R(u)(∗) = ⋃

0≤k<NR(u)(k)?
� Finite power property: does there exist an integer N such that R(∗) = ⋃

0≤k<NR
(k)?

� Universality: is R(∗) equal to Σ∗ ×Σ∗?
� Local nilpotency: does there exist for each u, an integer N such that R(u)(N) = ∅?
� Nilpotency: does there exists an integer N such that R(N) = ∅?
Example 14 (Example: iteration of recognizable relation). In [66], the following is given
as exercise: if R is recognizable, then R ○R(∗) is recognizable.

6.1. Preliminaries 129

Indeed, let R be a recognizable binary relation. By Theorem 1, we may suppose
R = ⋃

i∈IAi ×Bi for some �nite set of indexes I, and some regular languages Ai's and Bi's.

We associate to R the bipartite graph G built as follows:

1. The vertices of G are the Ai's and Bi's.

2. For each i, we de�ne an edge from Ai to Bi.

3. For each i, j such that Ai ∩Bj ≠ ∅, we de�ne an edge from node Bj to node Ai.

Suppose (w,w′) ∈ R○R(∗). Thus there exists w0,w1, . . . ,wn such that w0 = w, wn = w′,
and for each j, (wj,wj+1) ∈ R. Because R = ⋃

i∈IAi × Bi, there exist a sequence i1, . . . , in

of indexes from I, such that, w0 ∈ Ai1, wn ∈ Bin and for each 1 ≤ j < n, wj ∈ Bij ∩Aij+1,
which, in particular implies that Bij ∩ Aij+1 ≠ ∅, or equivalently, that (Bij ,Aij+1) is an
edge of G. Moreover, by construction of G there are edges from Aij to Bij for each j.
Thus, (w,w′) ∈ R ○R(∗) implies that there exists a path in G from a node Ai1 to a node
Bin such that, w ∈ Ai1 and w′ ∈ Bin.

Conversely, suppose we have a path in G from a node Ai1 to a node Bin, and let be
w ∈ Ai1 and w′ ∈ Bin. Because the graph is bipartite, the path is necessary of the following
form: Ai1 ,Bi1 , . . . ,Ain ,Bin. Moreover, for j < n, Bij ∩Aij+1 ≠ ∅, hence we can �nd and
�x a wj ∈ Bij ∩Aij+1. We obtain a sequence w1,w2, . . . ,wn−1, that we extend with w0 = w
and wn = w′. By de�nition, each (wj,wj+1) belongs to R. This implies (w,w′) ∈ R ○R(∗).

The graph G is �nite (it does not depend on w), thus we can pre-compute the set of
accessible indexes:

AccG ∶= {(i, j) ∣ there exists a path from node Ai to node Bj}
Hence, R ○R(∗) = ⋃(i,j)∈AccGAi ×Bj, which is recognizable.

In particular, the Finite Power Property, and thus its local version, are always
true for recognizable relations. Indeed, the minimal integer N such that R(∗) = R(N) is
the maximal distance in the graph G divided by 2. In particular, it is bounded by ∣I ∣1.
Concerning the Nilpotency, the problem reduces to the existence of a cycle in G. It is
thus decidable.

1This answer to the Finite Power Property can be generalize to any relation of the form⋃
i≤MAi ×Bi.

130 Chapter 6. Iteration of arity 2 relations on words

6.1.3 Length-preserving relations, padding and completion

We introduce here a very basic property of relations. A relation R ⊆ Σ∗ × Σ∗ is length-
preserving if each (u, v) ∈ R satis�es ∣u∣ = ∣v∣. Clearly, if R and S are length-preserving,
so are R ○ S, R(k) for k ∈ N and R(∗).

We can map a relation into a length-preserving one in an injective way. To this
end, we de�ne some one-to-one mappings of 2Σ∗×Σ∗ into 2(Σ∪{#})∗×(Σ∪{#})∗ for some new
symbol #. For (u, v) ∈ Σ∗ × Σ∗ and k ∈ N, the k-padding of (u, v), denoted (u, v)#k , is
the pair of words obtained from (u, v) by adding exactly k symbol # at the right of the
longest component, and adding enough # at the right of the shortest one in order to
obtained a pair of words of same length. The completion of (u, v), denoted (u, v)#, is
its 0-padding. Formally:

(u, v)#k ∶= (u#i, v#j) with ∣u∣ + i = ∣v∣ + j and min (i, j) = k (u, v)# ∶= (u, v)#0

The de�nition of k-padding (resp. completion) of a relation R, denoted R#k (resp. R#),
is the natural extension from pair of words to subsets of pair of words:

R#k ∶= {(u, v)#k ∣ (u, v) ∈ R} R# ∶= {(u, v)# ∣ (u, v) ∈ R}
Observe that the k-paddings (and so, the completion) of a relation R ⊂ Σ∗ × Σ∗

is a relation on the alphabet Σ ∪ {#}. In particular, if Σ is unary, the completion
of R ⊂ Σ∗ ×Σ∗ is generally no longer a relation on a unary alphabet. The completion of
a length-preserving relation is equal to the relation itself.

6.1.4 One-way two-tape �nite automata

Here we use the model of 2-tape automaton introduced by Rabin and Scott [63]. and we
study some restricted variants. This device may be seen as an extension of the 1-way
�nite automata (see De�nition 7) in which an additional read-only tape is scanned by
a second input head. It can easily be extended to the model of n-tape �nite automata2

for arbitrary n > 0, but, since we aim to study the composition and iteration of relations
of arity 2, we are essentially interested in the 2-tape case. All the de�nitions below
(con�gurations, runs. . .) are straightforward adaptations of those given in Section 2.3.

2The 2-way variants of 2-tape �nite automata has also been studied (see for instance [28]), but
their dynamics is really di�cult to catch. They recognize a much broader family of relations than the
rational one. It is for example easy to build a 2-way 2-tape �nite automaton accepting the relation{(anbncn, anbncn) ∣ n ∈ N}.

6.1. Preliminaries 131

Device

A 2-tape �nite automaton (fa2) scans two read-only input tapes, each with an indepen-
dent head. At each step, the transition function determines the possible next states and
head movements, based on the current state and the symbols currently scanned by the
heads. Two special symbols ▷ and ◁ mark the left and the right ends of each input tape,
preventing the input heads to fall out the tape. Formally:

De�nition 19. A 2-tape �nite automaton is a tuple (Q,Σ,▷,◁, δ, I, F), where:
� Q is the �nite set of states;

� I (resp. F) is a subset of Q, whose elements are the initial (resp. accepting) states;

� Σ is an alphabet, called input alphabet, not including the symbols ▷ and ◁, which
are respectively the left and right endmarkers;

� δ is the transition set, i.e., a subset of Q × Σ▷◁2 × {0,1}2 × Q where Σ▷◁ de-
notes the extended alphabet Σ ∪ {▷,◁}. It is supposed to be disjoint from the set
F × {◁}2 × {0,1}2 ×Q.

Con�gurations, runs. . .

Given an automaton A = (Q,Σ,▷,◁, I, F) and given two words w1 and w2, a con�gura-
tion of A on (w1,w2) is a tuple (q, p1, p2) ∈ Q×{0, . . . , ∣w1∣ + 1}× {0, . . . , ∣w2∣ + 1} where q
is the current state and p1 (resp. p2) is the current position of the �rst (resp. second)
head on w̃1 (resp. w̃2) (as denoted in Section 2.3.2, w̃ denote the word ▷w◁ for any w).
In particular when pi = 0 (resp. ∣wi∣ + 1) the i-th head is scanning the left (resp. right)
endmarker, that we denote wi[0] (resp. wi[∣wi∣ + 1]). An initial con�guration is a con-
�guration (q,0,0) with q ∈ I. When q belongs to F , p1 = ∣w1∣ + 1 and p2 = ∣w2∣ + 1, the
con�guration is accepting.

The successor relation between con�gurations, denoted →, describes one computa-
tional step of the machine. It naturally derives from δ:

(q, p1, p2) → (q′, p′1, p′2) if and only if (q, (w1[p1],w2[p2]), (p′1 − p1, p
′
2 − p2), q′) ∈ δ

A con�guration is said halting if it does not admit a successor. Due to the last restriction
on δ in De�nition 19, every accepting con�guration is halting.

A run ρ of A on input words (w1,w2) is a possibly in�nite sequence of con�guration,
c0, c1, . . . such that for all k ≥ 0, ck → ck+1. It is initial if c0 is initial. It is halting if
it is �nite and its last con�guration is halting. A successful run is a run which is both

132 Chapter 6. Iteration of arity 2 relations on words

initial and halting, and whose last con�guration is accepting. The automaton A accepts
an input w = (w1,w2) if and only if there exists a successful run of A on w. The relation
accepted by A, denoted ∣∣A∣∣, is the set of pair of words accepted by A.
Recognition power of fa2

The main result concerning fa2s is:

Theorem 22 (Elgot and Mezei [23]). A relation in Σ∗ ×Σ∗ is accepted by a fa2 if and
only if it is a rational subset of Σ∗ ×Σ∗.

Restrictions

As for fas, K-fas and transducers (see Sections 2.3.2, 2.3.3, 2.3.4), we de�ne some re-
stricted variants of the device. A fa2 is:

� deterministic (dfa2), if it is initial, i.e., I is a singleton, and for each state q and
each symbols c1 and c2, there exist at most one pair (d1, d2) and one state q′ such
that (q, (c1, c2), (d1, d2), q′) is a transition;

� unambiguous (ufa2), if for each input there exists at most one successful run;

� synchronous (sfa2), if it enforces the two heads to have always the same position,
i.e., if

δ ⊆ (Q ×Σ▷◁2 × {(0,0), (1,1)} ×Q)
In particular, it may accept length-preserving relations only.

As expected, deterministic implies unambiguous. The synchronous variant is relevant
when considering the family of series whose completion is accepted by the device.

Compacting

Since the two heads of a sfa2 are always at the same position, they may be �glued�
together into one input head scanning a 2-track tape. In other words, a relation ac-
cepted by a synchronous 2-tape automaton may be seen as a rational language on the
alphabet (Σ ×Σ).
De�nition 20. The compacting of a length-preserving relation R is the language qR on
the alphabet (Σ ×Σ), such that a word w belongs to qR if and only if, denoting (ui, vi) the
symbol w[i] ∈ Σ ×Σ, we have (u1⋯u∣w∣, v1⋯v∣w∣) ∈ R.

6.1. Preliminaries 133

Compacting is aimed to better describe the relations accepted by sfa2. The following
result gives a trivial characterization of such relations.

Proposition 39. A length-preserving relation in Σ∗ × Σ∗ is accepted by a sfa2 if and
only if, its compacting is accepted by a fa working on the alphabet Σ ×Σ.

Proof. The proof is trivial. It is easily done by bijectively mapping every transition(q, (c1, c2), (d, d), q′) of a synchronous fa2 into a transition (q, (c1, c2), d, q′) of a fa, and
conversely.

As said before, synchronous fa2 will be applied to the completion of relations. Thus,
we speak of the compacting of an arbitrary (that is, not length-preserving) relation R to
refer to the compacting of its completion, and we denote qR ∶= |R#.

Links with transducers

Input, output: In the case of transducers, the roles of the two tapes are clearly identi�ed:
one holds an input and the other one the output produced by the machine. For 2-tape
automata, this distinction is less relevant, since they play a symmetric role. However,
for convenience and since our model is meant to study the composition of relations, by
convention we name the �rst (resp. the second) tape the input (resp. output) tape.
Similarly, we will speak of the input/output heads or words, and of the domain/image
of a fa2.

From a fa2 accepting a relation R, we can easily construct a second fa2 accept-
ing Sym(R), by exchanging the roles of the two tapes. The resulting fa2 is the symmetric
of the �rst one.

Equivalence with transducers: It is well known that 2-tape �nite automata are equiv-
alent to 1-way transducers, and characterize the class of rational relations.

Proposition 40. Every fa2 is e�ectively equivalent to a 1-way transducer.

Proof. A fa2 can easily simulate an elementary transducer (see Section 2.3.4 and Propo-
sition 6). Indeed, every time the simulated device writes a symbol on its output tape,
the simulating fa2 can check that the same symbol is scanned by its output head, and
move it one cell to the right.

Conversely, a transducer can simulate a fa2, by nondeterministically guessing which
symbol is scanned by the simulated fa2 after each move, and writing it on the output
tape. In order to simulate transitions that does not move the output head, it has to store
the previous guessed symbol in its �nite control.

134 Chapter 6. Iteration of arity 2 relations on words

Despite this correspondence, the two devices have signi�cant di�erences, whenever
deterministic aspects are considered. Indeed, deterministic 2-tape fas are more powerful
than deterministic transducers. Observe for example that, since the output preexists the
computation, a relation accepted by a dfa2 is not necessarily functional.

6.1.5 Classes of relations and hierarchy

Classes of relations

We distinguish now di�erent families of relations. The distinction may arise either by
considering their natural acceptor, or by their algebraic properties.

The family of recognizable relations, denoted Rec, has been de�ned in De�nition 2
and is characterized in Theorem 1. The rational relations have been introduced in De�-
nition 1 and are accepted by fa2s, thanks to Theorem 22. However, the formalism of fa2

allows us to de�ne further families. We denote by DRat, URat and NRat the family
of relations respectively recognized by deterministic, unambiguous and nondeterministic
fa2. The family of synchronous relations is the family of relations whose completion is
recognized by a synchronous fa2 and is denoted Sync.

Another less traditional class is the class of special relations, denoted Spec. Because
no natural acceptor exists for this class, we de�ne it as it was introduced in [1, 49]. A
relation R on Σ∗ × Σ∗ is special if and only if there exists a rational language L over Σ
and a recognizable relation T over Σ such that: R = {(wu,wv) ∣ w ∈ L, (u, v) ∈ T}. By
taking L = {ε}, we directly obtain that every recognizable relation is special. It is also
trivial to see that Spec ⊊ Sync. Finally, the family Finite of �nite relations is included
in every other class.

Notation: We will use the small-capital letter u to restrict the considered class to rela-
tions on unary a alphabet, and the pre�x lp will denote the length-preserving restriction.
For instance, lpDRat refer to the family of length-preserving deterministic rational re-
lations.

Based on the characterization of Elgot and Mezei (Theorem 1), it is not di�cult to
prove the following result.

Proposition 41. A relation R ⊆ Σ∗ × Σ∗ is recognizable if and only if the language{u#v ∣ (u, v) ∈ R} is rational, for # not belonging to Σ.

A more powerful and well-known property holds for rational relations:

Proposition 42. A relation R ⊆ Σ∗ × Σ∗ is rational, if and only if the language{u#v ∣ (u, v) ∈ R} is context-free, for # not belonging to Σ.

6.1. Preliminaries 135

This result has already been used in order to prove that the relation Rev, which maps
every word to its mirror, is not rational (see Proposition 11).

Concerning synchronous relations, a corollary of Proposition 39, is that synchronous
relations are no more than rational languages on the alphabet (Σ ∪ {#})2 ∖ {(#,#)}.
Corollary 25 (of Proposition 39). A relation R in Σ∗ ×Σ∗ is synchronous, if and only
if the relation R# is a rational language over the alphabet (Σ ∪ {#})2 ∖ {(#,#)}.

Eilenberg proved that if a relation is both rational and length-preserving, then it is
synchronous.

Theorem 23 (Eilenberg [21]). If R is length-preserving and rational, then it is syn-
chronous.

Hierarchy

The following hierarchy is a direct consequence of the de�nitions:

Finite ⊆ Rec ⊆ Spec ⊆ Sync ⊆ DRat ⊆ URat ⊆ NRat (6.1)

Furthermore it is well known that it is strict. We give simple examples that witness
the strictness of the above inclusions. When possible, they are taken unary or length-
preserving. The hierarchy is depicted in Figure 6.1.

A natural example of non-recognizable relation in Spec is the identity relation
Id = {(w,w) ∣ w ∈ Σ∗}. Even its unary version, denoted uID, belongs to Spec ∖ Rec.
Moreover it is length-preserving. In fact, we may easily prove from Proposition 41, that
if a relation is both length-preserving and recognizable then it is �nite.

The relation uSquare ∶= {(an, a2n) ∣ n ∈ N} belongs to uDRat∖uSync. Indeed, sup-
pose it is synchronous. Then ­uSquare is a rational language on ∆={(a, a), (a,#), (#, a)}
by Corollary 25. Considering the mapping µ which maps every symbol (c, c′) ∈ ∆ into
its �rst component c, we obtain that the language µ(­uSquare) is a rational language

on Σ ∪ {#}. This is a contradiction since µ(­uSquare) = {an#n ∣ n ∈ N} is clearly not
rational.

Always on the unary alphabet Σ = {a}, it is easy to �nd a relation in URat which
does not belong to DRat. In Section 6.2.2 we consider the following relation, which
implements the well-known Collatz (also called Syracuse) function:

Syracuse = {(a2n, an) ∣ n ∈ N} ∪ {(a2n+1, a6n+4) ∣ n ∈ N}
A simple pumping argument may be used in order to prove that it does not belong
to DRat.

136 Chapter 6. Iteration of arity 2 relations on words

NRat

URat

DRat

Sync

Spec

Reco

Finite

L-or-R

SameLength

All = a∗ × a∗

Syracuse

uSquare

uId

Figure 6.1 � Hierarchy of the main relation classes with the examples of separating
relation (orange: unary; green: length-preserving)

The probably simplest example of length-preserving synchronous relation is:

SameLength = {(u, v) ∣ u, v ∈ Σ∗, ∣u∣ = ∣v∣}
It is not special provided Σ has at least two symbols. Indeed, as shown with Corollary 26,
the two families Sync and Spec coincide in the unary case.

The last example introduced here is a bit arti�cial. It is aimed to belong to
NRat ∖URat, which can be proved by a simple pumping argument.

L-or-R = {(anbm, ck) ∣ n,m ∈ N, k = n or k =m}
Unary synchronous relations

As already said at the beginning of this chapter, a unary word is characterized by its
length, in the mapping an ↦ n. Thus, unary languages are viewed as integer sets, and
unary relations as subset of N2. Unary rational languages (view as integers set) are
simply characterized by semi-linear sets (see [22]), that is �nite union of linear sets,
which may take the form given in Proposition 34. From this characterization, we are able
to characterize unary synchronous relations.

Theorem 24. A unary relation R is synchronous if and only if,

R = ⋃
i∈I {(Mx + ai,My + bi), x, y ∈ N, Ci(x, y)} (6.2)

6.1. Preliminaries 137

where I is a �nite family of indices, M is a constant, and for each i ∈ I, ai and bi are
two positive integers less than M , and Ci is one of the following predicates:

Ci ∈ {0 = x = y , 0 = x ≤ y , 0 = y ≤ x
0 ≤ x = y , 0 ≤ x ≤ y , 0 ≤ y ≤ x}

Proof. We start by proving that if a relation is of the form (6.2) then it is synchronous.
Since synchronous relations are closed under union, it is su�cient to prove that, for any
constants M , any c and d less than M , and any predicate C as in the Theorem, the
relation R = {(Mx + c,My + d) ∣ x, y ∈ N, C(x, y)} is synchronous.

First of all, observe that, if C implies x = 0 or y = 0, then R is trivially recognizable,
and thus it is synchronous. Secondly, the cases in which C implies x = y obviously leads
to a special relation which is thus synchronous too. The remaining cases are: 0 ≤ x ≤ y
and 0 ≤ y ≤ x. By symmetry, it is su�cient to consider one of these two cases only. From
now on, we suppose that C is 0 ≤ x ≤ y. Then:
� if c ≤ d, then the language R# over the alphabet ∆ = {(a, a), (a,#), (#, a)} is:

R = ((a, a)M)∗(a, a)c ⋅ (#, a)d−c ⋅ ((#, a)M)∗
It is thus rational on ∆, which directly implies that R is synchronous.

� else, we have d < c <M . In this case, the language R# is:

R = ((a, a)M)∗ ⋅ [((a, a)d ⋅ (a,#)c−d) ⋃ ((a, a)c ⋅ (#, a)M−(c−d) ⋅ ((#, a)M)∗)]
Thus R is synchronous.

In any cases we have shown that R is synchronous, this proves the �if� direction of the
theorem.

Conversely, let R be a unary synchronous relation. By Corollary 25, there exists
a 1-way deterministic �nite automaton A = (Q,∆, δ, q0, F) over the alphabet
∆ = {(a, a), (a,#), (#, a)}, accepting the language R#.

The automaton A induces three families of unary automata, indexed by Q, de�ned
as follows:

A
(q)
0 ∶= (Q,{(a, a)}, q0,{q}, δ∣{(a,a)})

A
(q)
1 ∶= (Q,{(a,#)}, q, F, δ∣{(a,#)}) A

(q)
2 ∶= (Q,{(#, a)}, q, F, δ∣{(#,a)})

138 Chapter 6. Iteration of arity 2 relations on words

Each of these automaton recognizes a unary rational language, which can be viewed
as a recognizable subset of N. For each k ∈ {0,1,2} and each q ∈ Q, we denote by L(q)

k

this set recognized by the automaton A(q)
k . By Proposition 34 and Corollary 22, there

exists two constants t and p such that, there exists for each pair k, q two �nite sets
A

(q)
k ⊆ {0, . . . , t − 1} and M (q)

k ⊆ {0, . . . , p − 1} such that:

L
(q)
0 = {(a, a)n ∣ n ∈ A(q)

0 ∪ (t +M (q)
0 + pN)}

L
(q)
1 = {(a,#)n ∣ n ∈ A(q)

1 ∪ (t +M (q)
1 + pN)}

L
(q)
2 = {(#, a)n ∣ n ∈ A(q)

2 ∪ (t +M (q)
2 + pN)}

By construction of the automata A(q)
k , the language R# is:

R# = (⋃
q∈QL

(q)
0 ⋅L(q)

1) ⋃ (⋃
q∈QL

(q)
0 ⋅L(q)

2) (6.3)

The �rst (resp. second) member of the union contains all the pairs (u, v) in R such
that ∣u∣ ≥ ∣v∣ (resp. ∣u∣ ≤ ∣v∣). Observe that the language ⋃q∈F Lq0 of pairs (u, v) ∈ R with∣u∣ = ∣v∣ is included in the two members of the union, since when q belongs to F , both A(q)

1

and A(q)
2 accept the empty word.

By simple rewriting, we obtain Expression (6.2).

A direct consequence is that unary synchronous relations are special.

Corollary 26. When Σ is unary, the families Sync and Spec coincide.

6.2 Iteration

In this section, we are interested in the Membership problem, when restricting the
considered relation to belong to some class. Theorem 25 and Theorem 29 shows that
in the majority of the cases, the answer is negative, i.e., the membership problem is
undecidable.

However, when considering low-level classes such as Rec or Sync, we are able to de-
cide the membership problem (see Example 14, Theorem 28 and Theorem 26). Moreover,
the algorithm is itself an answer to the Classifying problem.

6.2. Iteration 139

6.2.1 Iteration of synchronous relations

Synchronous relations are simpler than rational. However we prove in Theorem 25 that
iterated synchronous relations captures in some sense the complexity of Turing Machine
computations. This result is based on an encoding of con�gurations of Turing Machine
(i.e., the instantaneous descriptions of a Turing Machine at a �xed time) into words.

We encode a con�guration (q,w, h) of a Turing Machine M in a word 9w in the
recognizable language Σ∗ ⋅ (Σ ×Q) ⋅Σ∗ as follows: for each i ≠ h, 9wi = wi, and 9wh = (wh, q).
For example the word 9w = aabbaaa(b, q)aabbbabb encodes the con�guration where the
tape contains the word aabbaaabaabbbabb, the current state is q and the input head is
in position 8 (reading a symbol b). Suppose now that δ(q, b) is equal to (q′, a,−1), then
the next con�guration is composed of tape word aabbaaaaaabbbabb, state q′ and head
position 7. Thus the encoding of this con�guration is aabbaa(a, q′)aaabbbabb.

Because a Turing Machine works locally, the relation consisting of pairs of words
encoding successive con�gurations is synchronous.

Theorem 25. There exists a synchronous binary relation X such that the iterated relation
is non-recursive.

Proof. The proof is based on the previous encoding technique, by reducing the Mem-

bership problem (i.e., does an element (x, y) belong to the iterated relation?) to the
Turing-Accessibility problem (i.e., does a con�guration c′ be accessible from a con�gura-
tion c?).

Length-preserving synchronous relations

The general synchronous relations are able to mimic the transitions of any Turing Ma-
chine. Subclasses may only capture the transitions of less powerful models of compu-
tation. This is the case of length-preserving rational relations, which are synchronous
thanks to Theorem 23). The following shows that the Membership problem is decid-
able for length-preserving rational relations.

Theorem 26. Let R be a binary length-preserving rational relation, then the compact-
ing of R(∗) (see De�nition 20) is accepted by a (nondeterministic) linear bounded �nite
automaton.

Proof. Let R be a binary length-preserving rational relation over an alphabet Σ, and let A
be a synchronous two-tape automaton accepting R. We build a nondeterministic linear
bounded automaton which accepts an input w ∈ (Σ2)∗ if and only if it is the compacting
of some (w,w′) ∈ R(∗). The alphabet is Σ × Σ thus we can see the tape as two tracks.

140 Chapter 6. Iteration of arity 2 relations on words

Initially the �rst track contains w, while the second contains w′ and remains unchanged
during the computation. It works in two alternating modes, testing and simulating.
The objective of the later mode is to overwrite the �rst track with one of its possible
image by R. The former mode simply tests equality between the two tracks.

testing Starting from the rightmost position, the input head scans the entire tape (from
right to left), testing whether or not the two tracks contain the same word. If this
is the case, the machine accepts, otherwise, it enters the second mode.

simulating Starting from the leftmost position, the machine simulates A. At each position, the
machine guesses which letter stands at the same position of the second tape of A,
and overwrites it on the �rst track. It performs the transition of A and proceeds
to the right. After having reached the rightmost position of the input, the machine
either enters the testing mode if the simulated state of A is accepting, or halts
and rejects otherwise.

The following result is a kind of converse of the previous Theorem. It is in the same
vein as [75, Corollary 5.5].

Theorem 27. Let L be a context-sensitive language in Σ∗. Then there exists an alpha-
bet ∆, a synchronous length-preserving relation R ⊆ ∆∗ × ∆∗ and a recognizable rela-
tion S ⊆ ∆∗ ×∆∗, such that L = π(R(∗) ∩ S), where π is the projection of ∆∗ ×∆∗ on the
�rst component.

Proof. We only give a sketch of the proof, since it is essentially an encoding of the con�g-
urations of linear bounded automata. Let A be a linear bounded automaton accepting L,
let q0 be its initial state, Q be its state set and assume the acceptance is done by en-
tering a halting state h ∈ Q. In our model, the head never leaves the space initially
occuped by the input word. We de�ne ∆ = Σ ∪ (Σ ×Q). As done above we encode a
con�guration of A as a word in Σ∗ ⋅ (Σ ×Q) ⋅ Σ∗. The relation R consists all the pairs
that encode successive con�gurations of A, along with the pairs (aw, (a, q0) ⋅ w) which
allows to initialize the computation. Then it su�ces to de�ne S as the recognizable
relation Σ∗ × (Σ∗ ⋅ (Σ × {h}) ⋅Σ∗).
6.2.2 The unary case

Unary synchronous relations

Theorem 28. If R is a synchronous binary relation over a unary alphabet, then R(∗) is
also synchronous.

6.2. Iteration 141

Proof. Let R be a synchronous binary relation over the unary alphabet {a}. Interpreting
the two components as non-negative integers, by Property 6.2 we may suppose R is of
the form: ⋃

i∈I {(Mx + ai,My + bi) , Ci(x, y)} (6.4)

for some positive integers M , ai's and bi's and some total ordering Ci of 0, x and y.

We build a 2-way �nite automaton A, working on the alphabet {a,#} × {a,#}, such
that a word w = (w,w′) belongs to R(∗) if and only if there exists k such that the
k-padding of the compacting of w (see Section 6.1.3 and De�nition 20) is accepted
by A. The input of A is the word which is the compacting of the pair (w#i,w′#j)
with k = min (i, j) and ∣w∣ + i = ∣w′∣ + j.

By de�nition, a pair w = (w,w′) belongs to R(∗) if and only if there is a sequence
w0,w1, . . . ,wn such that w = w0, w′ = wn and for each 0 ≤ ` < n, (w`,w`+1) ∈ R. Since A
is an fa, it cannot write, but it will use its head position in order to encode each suc-
cessive wi. The simulation proceeds in n steps. At the end of step `, the head is in
position p = ∣w`∣ and the value p mod M is stored in the �nite control (this can be done
by updating this state component at each move). The step ` + 1 consists of choosing
one i ∈ I such that p = ai mod M , in Expression (6.4), and to perform the relation
Ri = {(Mx + ai,My + bi) ∣ Ci(x, y)}. The action to be carried out depends on the predi-
cate Ci. The case study is detailed below, with the implicit assumption that if an action
fails then the automaton rejects.

case 0 = x = y: the head moves ai cells backwards, veri�es that it is at position 1 and
then moves bi cells to the right;

case 0 = x ≤ y: the head moves ai cells backwards, veri�es that it is at position 1 and
then it moves bi + kM cells to the right where k is arbitrary;

case 0 = y ≤ x: the head moves backward to position 1 and then moves bi cells to the
right;

case 0 ≤ x = y: it moves to position p − ai + bi;
case 0 ≤ x ≤ y: the head moves to position p−ai+bi and then moves an arbitrary number

of times M cells to the right;

case 0 ≤ y ≤ x: the head moves to position p−ai+bi and then moves an arbitrary number
of times M cells to the left.

The computation begins with positioning the head on the rightmost occurrence of a
on track 1. At the end of each step (including this initial step), it tests whether or not

142 Chapter 6. Iteration of arity 2 relations on words

the head is positioned on the rightmost occurrence of a on track 2. If it the case, it halts
and accepts.

By construction, a pair w belongs to R(∗) if and only if there exists k such that the
k-padding of w is accepted by A. We de�ne the homomorphism h which maps (#,#)
to ε and leaves the other symbols unchanged. It su�ces to observe that the compacting
of the completion of R(∗) is the image by h of the language recognized by A. Thus, it is
rational, and so R(∗) is synchronous.

Unary rational relations

Here we still study the case of unary rational relations, but we relax the condition that the
relation is synchronous. The situation is completely di�erent, even under the stronger
assumption that the relation is functional. More surprisingly, the following example
known as the Collatz function, is the union of two unary sequential relations (that is in
our terminology, accepted by 1-way deterministic transducer).

f(n) = { n/2 if n is even
3n + 1 if n is odd

and R = {(n, f(n)) / n ∈ N}
It is straightforward that R is rational as the union of the linear sets R1 = {(2n,n) / n ∈ N}
and R2 = {(2n + 1,6n + 4) / n ∈ N}.

As of today, it is unknown whether the Membership problem for R(∗) is decidable.
It is conjectured that for every n > 0 there exists k such that fk(n) = 1. In other words:

Conjecture 2. {(n,1) / n ≥ 1} is included in R(∗).
We recall the following generalization due to Conway [17].

De�nition 21 (Generalized Collatz Functions). A function g of N into N is called a
Collatz function if there exists an integer m together with non-negative rational num-
bers {ai, bi ∣ i <m}, such that whenever x mod m, then g(x) = aix + bi is integral.
Proposition 43. A Collatz function of N into N is rational and total.

Proof. We use the notation of De�nition 21, and we prove that a Collatz function is
rational. It su�ces to prove that the restriction of the function to the integers equal
to i mod m is rational. We set ai = p

q and bi = r
s and because g(i) and g(i + m) are

integral, it follows that aim is integral and therefore q divides m.
Let t be the least common multiple of q and s and set t = αq = βs. We compute

g(km + i) = p
q
(km + i) + r

s
= αp(km + i) + βr

t
= αpi + βr

t
+ αpm

t
k

6.2. Iteration 143

Observe that the �rst term of the last expression is equal to g(i) and is therefore an
integer. Concerning the second term, we have αpm

t = pm
q which is an integer since, as

observed above, q divides m.
Finally the graph of the restriction of the function g to the integers equal to i mod m,

i.e., the relation #gi ∶= {(km + i, g(km + i)) ∣ k ∈ N} is the linear relation:

(i, αpi + βr
t

) + (m, pm
q

)N

The following two results are direct consequences of Theorem 1 and Theorem 2 of [51]
and give a negative answer to the Membership problem for unary rational relations.

Theorem 29. There exists a unary functional rational relation R such that R(∗) is non-
recursive.

Theorem 30. It is undecidable given a unary rational relation R whether or not the
relation a∗ × a is included in R(∗).
FracTran: The previous two results are obtained by two reduction steps: the �rst one
from Minsky machines to FracTran programs, and the second one, from FracTran

programs to Collatz generalized functions. Because FracTran programs are a beautiful
illustration of unary rational functions, we recall that they are speci�ed by an ordered
�nite family of rational numbers such as

P = {4

7
,
5

4
,
12

11
,
1

3
,

7

10
,
13

5
}

The computation on an input n consists of repeatedly performing the following instruc-
tion: replace n by nr where r is the �rst rational number in the list such that nr is
integral. For example, if we start with n = 24, the next value is 24× 5

4 = 30. And then, the
following value is 30× 1

3 = 10. The entire sequence is thus: {24,30,10,7,4,5,13}. From 13
no transition is possible, so the process halts, with output value 13.

Given a FracTran program P = {p1q1 , . . . , pkqk } with each pi
qi
irreducible, we de�ne the

successor relation

RP ∶= {(n,m) ∣m is obtained from n in one step of P}
We show that this relation is rational. We build a nondeterministic two-tape �nite

automaton A that accepts RP . We �x 0 < i ≤ k. It is easy to build a fa2 accept-
ing the relation {(aqin, apin) ∣ n ∈ N}. Moreover, we can restrict the domain of its ac-
cepted relation to the recognizable language ⋃

1≤j<i{an ∣ n ∉ qjN}, using a state component

144 Chapter 6. Iteration of arity 2 relations on words

of size lcm (q1, . . . , qi−1). Hence, we may obtain a 2-tape 1-way automaton Ai which
accepts the relation:

{(aqin, apin) ∣ n ∈ N and, for each 1 ≤ j < i, qin ∉ qjN}
Finally, we simulate any transition of the FracTran program by the 2nfa2 A, which
nondeterministically chooses an index 1 ≤ i ≤ k at the beginning of the computation, and
then simulates the automaton Ai. Observe that A has ∑

1≤i≤k lcm{qj ∣ 1 ≤ j < i}×max (qi, pi)
states.

Bibliography

[1] Dana Angluin and Douglas N. Hoover. Regular Pre�x Relations. Mathematical
Systems Theory, 17(3):167�191, 1984.

[2] Marcella Anselmo. Two-Way Automata with Multiplicity. In Automata, Languages
and Programming, 17th International Colloquium, ICALP90, Warwick University,
England, July 16-20, 1990, Proceedings, pages 88�102, 1990.

[3] Marcella Anselmo and Alberto Bertoni. On 2PFA's and the Hadamard quotient of
formal power series. Bulletin of the Belgian Mathematical Society - Simon Stevin,
1(2):165�173, 1994.

[4] Eric Bach and Je�rey Outlaw Shallit. Algorithmic Number Theory: E�cient algo-
rithms. Number vol. 1 in Algorithmic Number Theory. MIT Press, 1996.

[5] Félix Baschénis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis. One-way
de�nability of sweeping transducers. 2015.

[6] Piotr Berman. A note on sweeping automata. In Jaco de Bakker and Jan van
Leeuwen, editors, Automata, Languages and Programming, volume 85 of Lecture
Notes in Computer Science, pages 91�97. Springer Berlin Heidelberg, 1980.

[7] Piotr Berman and Andrzej Lingas. On Complexity of Regular Languages in Terms of
Finite Automata. Instytut Podstaw Informatyki Warszawa: Prace IPI PAN. Institute
of Computer Science, Polish Academy of Sciences, 1977.

[8] Jean Berstel. Transductions and context-free languages. Vieweg+Teubner Verlag,
1979.

[9] Jean Berstel. Transductions and context-free languages. Springer-Verlag, 2013.

[10] Jean Berstel and Dominique Perrin. Theory of codes. Number 117 in Pure and
applied mathematics. Academic Press, Orlando, 1985.

145

146 Bibliography

[11] Jean Berstel and C. Reutenauer. Rational series and their languages. Springer,
[Place of publication not identi�ed], 2012.

[12] Vincent Carnino and Sylvain Lombardy. On Determinism and Unambiguity of
Weighted Two-way Automata. In Proceedings 14th International Conference on Au-
tomata and Formal Languages, AFL 2014, Szeged, Hungary, May 27-29, 2014., pages
188�200, 2014.

[13] Vincent Carnino and Sylvain Lombardy. Tropical Two-Way Automata. In Theoretical
Computer Science - 8th IFIP TC 1/WG 2.2 International Conference, TCS 2014,
Rome, Italy, September 1-3, 2014. Proceedings, pages 195�206, 2014.

[14] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J.
ACM, 28(1):114�133, January 1981.

[15] Christian Cho�rut and Bruno Guillon. An Algebraic Characterization of Unary
Two-Way Transducers. Lecture Notes in Computer Science, pages 196�207, 2014.

[16] Marek Chrobak. Finite automata and unary languages. Theoretical Computer Sci-
ence, 47(0):149 � 158, 1986.

[17] John H. Conway. FRACTRAN: A Simple Universal Programming Language for
Arithmetic. In Thomas M. Cover and B. Gopinath, editors, Open Problems in
Communication and Computation, pages 4�26. Springer New York, New York, NY,
1987.

[18] Karel II. Culik and Juhani Karhumäki. The Equivalence Problem for Single-Valued
Two-Way Transducers (on NPDT0L Languages) is Decidable. SIAM J. Comput.,
16(2):221�230, 1987.

[19] Pavol �uri², Juraj Hromkovi£, José D.P. Rolim, and Georg Schnitger. Las Ve-
gas versus determinism for one-way communication complexity, �nite automata,
and polynomial-time computations. In Rüdiger Reischuk and Michel Morvan, edi-
tors, STACS 97, volume 1200 of Lecture Notes in Computer Science, pages 117�128.
Springer Berlin Heidelberg, 1997.

[20] Roger W. Ehrich and Stephen S. Yau. Two-Way Sequential Transductions and Stack
Automata. Information and Control, 18(5):404�446, 1971.

[21] Samuel Eilenberg. Automata, Languages and Machines, volume A. Academic Press,
1974.

Bibliography 147

[22] Samuel Eilenberg and Marcel-Paul Schützenberger. Rational sets in commutative
monoids. J. Algebra, 13:173�191, 1969.

[23] Calvin C. Elgot and Jorge E. Mezei. On Relations De�ned by Finite Automata.
IBM Journal, 10:47�68, 1965.

[24] Joost Engelfriet and Hendrik Jan Hoogeboom. MSO de�nable string transductions
and two-way �nite-state transducers. ACM Trans. Comput. Logic, 2(2):216�254,
April 2001.

[25] Zoltán Ésik and Werner Kuich. Locally closed semirings. Monatshefte für Mathe-
matik, 137(1):21�29, 2002.

[26] Emmanuel Filiot, Olivier Gauwin, Pierre-Alain Reynier, and Frédéric Servais. From
Two-Way to One-Way Finite State Transducers. abs/1301.5197, 2013.

[27] Rusins Freivalds. Projections of Languages Recognizable by Probabilistic and Alter-
nating Finite Multitape Automata. Inf. Process. Lett., 13(4/5):195�198, 1981.

[28] Carlo A. Furia. A Survey of Multi-Tape Automata. abs/1205.0178, 2012.

[29] Dan Fux. OEIS Foundation Inc. (2011), 2001.

[30] Viliam Ge�ert. An alternating hierarchy for �nite automata. pages 15�36, 2011.

[31] Viliam Ge�ert, Bruno Guillon, and Giovanni Pighizzini. Two-way automata making
choices only at the endmarkers. Inf. Comput., 239:71�86, 2014.

[32] Viliam Ge�ert, Carlo Mereghetti, and Giovanni Pighizzini. Converting two-way non-
deterministic unary automata into simpler automata. Theoretical Computer Science,
295(1�3):189 � 203, 2003.

[33] Viliam Ge�ert, Carlo Mereghetti, and Giovanni Pighizzini. Complementing two-way
�nite automata. Information and Computation, 205(8):1173 � 1187, 2007.

[34] Viliam Ge�ert and Giovanni Pighizzini. Two-way unary automata versus logarithmic
space. Information and Computation, 209(7):1016 � 1025, 2011.

[35] Sheila A. Greibach. Hierarchy Theorems for Two-Way Finite State Transducers.
Acta Inf., 11:80�101, 1978.

[36] Eitan M. Gurari. The Equivalence Problem for Deterministic Two-Way Sequential
Transducers Is Decidable. pages 83�85, 1980.

148 Bibliography

[37] Kosaburo Hashiguchi. Limitedness theorem on �nite automata with distance func-
tions. Journal of Computer and System Sciences, 24(2):233�244, April 1982.

[38] John E. Hopcroft and Je�rey D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

[39] Juraj Hromkovi£ and Georg Schnitger. Nondeterminism versus Determinism for Two-
Way Finite Automata: Generalizations of Sipser's Separation. In JosC.M. Baeten,
JanKarel Lenstra, Joachim Parrow, and GerhardJ. Woeginger, editors, Automata,
Languages and Programming, volume 2719 of Lecture Notes in Computer Science,
pages 439�451. Springer Berlin Heidelberg, 2003.

[40] Neil Immerman. Number of quanti�ers is better than number of tape cells. Journal
of Computer and System Sciences, 22(3):384 � 406, 1981.

[41] J	anis Ka�neps and R	usi�n² Freivalds. Minimal nontrivial space complexity of proba-
bilistic one- way turing machines. In Branislav Rovan, editor, Mathematical Foun-
dations of Computer Science 1990, volume 452, pages 355�361. Springer-Verlag,
Berlin/Heidelberg, 1990.

[42] Christos A. Kapoutsis. Small Sweeping 2NFAs Are Not Closed Under Complement.
In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors,
Automata, Languages and Programming, volume 4051 of Lecture Notes in Computer
Science, pages 144�156. Springer Berlin Heidelberg, 2006.

[43] Christos A. Kapoutsis. Size Complexity of Two-Way Finite Automata. In Volker
Diekert and Dirk Nowotka, editors, Developments in Language Theory, volume 5583
of Lecture Notes in Computer Science, pages 47�66. Springer Berlin Heidelberg, 2009.

[44] Christos A. Kapoutsis. Two-Way Automata versus Logarithmic Space. In Alexander
Kulikov and Nikolay Vereshchagin, editors, Computer Science � Theory and Appli-
cations, volume 6651 of Lecture Notes in Computer Science, pages 359�372. Springer
Berlin Heidelberg, 2011.

[45] Christos A. Kapoutsis. Nondeterminism is essential in small two-way �nite automata
with few reversals. Information and Computation, 222(0):208 � 227, 2013.

[46] Christos A. Kapoutsis and Giovanni Pighizzini. Two-Way Automata Characteriza-
tions of L/poly versus NL. In EdwardA. Hirsch, Juhani Karhumäki, Arto Lepistö,
and Michail Prilutskii, editors, Computer Science � Theory and Applications, vol-
ume 7353 of Lecture Notes in Computer Science, pages 217�228. Springer Berlin
Heidelberg, 2012.

Bibliography 149

[47] Richard M. Karp and Richard J. Lipton. Turing machine that take advice. 28(1-
2):191�209, 1982.

[48] Daniel Kirsten. Distance desert automata and the star height problem. RAIRO -
Theoretical Informatics and Applications, 39(3):455�509, July 2005.

[49] Felix Klaedtke and Harald Rueÿ. Monadic Second-Order Logics with Cardinalities.
pages 681�696, 2003.

[50] Daniel Krob. The equality problem for rational series with multiplicities in the
tropical semiring is undecidable. International Journal of Algebra and Computation,
04(03):405�425, September 1994.

[51] Stuart A. Kurtz and Janos Simon. The Undecidability of the Generalized Collatz
Problem. pages 542�553, 2007.

[52] Michel Latteux, David Simplot, and Alain Terlutte. Iterated Length-Preserving
Rational Transductions. pages 286�295, 1998.

[53] Hing Leung. On the topological structure of a �nitely generated semigroup of ma-
trices. In Semigroup Forum, volume 37, pages 273�287. Springer, 1988.

[54] Hing Leung and Viktor Podolskiy. The limitedness problem on distance automata:
Hashiguchi's method revisited. Theoretical Computer Science, 310(1-3):147�158,
January 2004.

[55] Sylvain Lombardy. Two-Way Representations and Weighted Automata. August
2015.

[56] George H. Mealy. A method for synthesizing sequential circuits. The Bell System
Technical Journal, 34(5):1045�1079, September 1955.

[57] Albert R. Meyer and Michael J. Fisher. Economy of description by automata, gram-
mars, and formal systems. 1971.

[58] Silvio Micali. Two-way deterministic �nite automata are exponentially more succinct
than sweeping automata. Information Processing Letters, 12(2):103 � 105, 1981.

[59] Edward F. Moore. Gedanken-experiments on sequential machines. In Automata
studies, Annals of mathematics studies, no. 34, pages 129�153. Princeton University
Press, Princeton, N. J., 1956.

[60] R. Parikh. On Context-Free Languages. J. ACM, 13(4):570�581, 1966.

150 Bibliography

[61] Azaria Paz. Fuzzy star functions, probabilistic automata, and their approximation
by nonprobabilistic automata. Journal of Computer and System Sciences, 1(4):371�
390, 1967.

[62] Azaria Paz and Werner Rheinboldt. Introduction to probabilistic automata. Com-
puter science and applied mathematics. Academic Press, New York, 1971.

[63] Michael Rabin and Dana Scott. Finite automata and their decision problems. IBM
J.Res.Develop., 3:114�125, 1959.

[64] Jorge L. Ramírez Alfonsín. The Diophantine Frobenius Problem. Oxford Lecture
Series in Mathematics and Its Applications. OUP Oxford, 2005.

[65] K. Reinhardt and E. Allender. Making Nondeterminism Unambiguous. SIAM Jour-
nal on Computing, 29(4):1118�1131, 2000.

[66] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press,
2009.

[67] William J. Sakoda and Michael Sipser. Nondeterminism and the Size of Two Way
Finite Automata. In Proceedings of the Tenth Annual ACM Symposium on Theory
of Computing, STOC '78, pages 275�286, New York, NY, USA, 1978. ACM.

[68] Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power
Series. Springer New York, New York, NY, 1978.

[69] Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4(2):177 � 192, 1970.

[70] Marcel-Paul Schützenberger. On the de�nition of a family of automata. Information
and Control, 4(2-3):245�270, September 1961.

[71] Marcel-Paul Schützenberger. Certain elementary families of automata. pages 139�
153, New York, NY, USA, 1962. Polytechnic Press of Polytechnic Inst. of Brooklyn,
Brooklyn.

[72] John C. Shepherdson,. The reduction of two-way automata to one-way automata.
IBM J.Res.Develop., 3:198�200, 1959.

[73] Michael Sipser. Halting space-bounded computations. Theoretical Computer Science,
10(3):335 � 338, 1980.

Bibliography 151

[74] Michael Sipser. Lower Bounds on the Size of Sweeping Automata. J. Comput. Syst.
Sci., 21(2):195�202, 1980.

[75] Alain Terlutte and David Simplot. Iteration of rational transductions. 34(2):99�130,
2000.

152 Bibliography

Index

accepted
by a cfa, 23
by a fa, 26
by a fa2, 132
by a transducer, 38

accepting
con�guration, 27, 131
state, 22, 25, 131

Alternating Graph Accessibility Problem
(AGAP), 69

application of a morphism, 96

bi-mirror of a relation, 94
bijective relation, 18
border

con�guration, 27
points, 32
run, 30

both ways rational (bwRat)
relation, 97
series, 91

bounded languages, 79

c-loop, 29
Cauchy product of series, 20
central

con�guration, 27
run, 30

classical �nite automaton (cfa), 22
closure of a set, 15

complete
cfa, 24
fa, 33

composition
of relations, 127
of runs, 29

composition power of a relation, 127
computational segment, 48

connecting two states, 48
concatenation

of languages, 17
of words, 16

con�guration, 27, 35
of a fa2, 131

constant series, 19

deterministic
cfa, 24
fa, 33
fa2, 132
K-fa, 36
transducer, 38

domain
of a fa2, 133
of a relation, 17

elementary transducer, 38
empty word, 16
endmarkers, 25, 131

left (▷), 25

153

154 Index

right (◁), 25
ε-transition, 24
ε-free cfa, 24
equivalent

cfas, 23
fas, 26
K-fas, 35

existential state (of a 2afa), 68

�nite automaton (fa), 25
formal power series, 19
functional

relation (function), 18
transducer, 43

Graph Accessibility Problem (GAP), 65
graph representation of a cfa, 23

Hadamard
operations, 75
product, 73
series (Had), 75
star, 74

halting
con�guration, 27
fa, 33
K-fa, 36
run, 27, 131
transducer, 38

hit, 32, 35
hit factorization, 32

image
of a fa2, 133
of a relation, 18
of a word by a relation, 18
of a word in a series, 19

initial
cfa, 24
con�guration, 27, 131

fa, 33
run, 27, 131
state, 22, 25, 131

injective relation, 18
input

alphabet, 22, 37, 131
head of a fa2, 133
tape of a fa2, 133
word of a fa2, 133

iterative star, 128

K-�nite automaton (K-fa), 35
k-reversal bounded

fa, 33
K-fa, 36
transducer, 38

Kleene star
of a language, 17
of a series, 20
of a set, 16

language, 17
length-preserving relation, 130
loop, 29, 35
loop-free

fa, 33
K-fa, 36
run, 30
transducer, 38

matrix representation of a cfa, 23
mirror

of a language, 17
of a morphism, 96
of a series, 77
of a word, 17

Mirror-Hadamard series (MHad), 78
Mirror-rational series (MRat), 78
monoid

Index 155

commutative monoid, 16
free monoid, 16
generated by a subset, 16

multiplicity of a transition, 35

1 ⋅ , 20
1H , 74
one-directed run, 32
1-way

fa, 33
K-fa, 36
transducer, 38
transduction, 38

outer-nondeterministic
2afa, 69
fa, 33
K-fa, 36
transducer, 38

output
alphabet, 37
head, 37
head of a fa2, 133
tape of a fa2, 133
word of a fa2, 133
word of a transducer, 37

partial relation, 18
period

for a rational set X ⊆ N, 112
of a rational set X ⊆ N, 112

polynomial (Pol), 19
position on a word, 27
power of a language, 17
pre-image of a word by a relation, 18
production function

of a K-fa 35
of a transducer, 37

proper series (Prop), 19

rat-expression, 112
rational

operations on series, 21
series (Rat), 21
subsets, 16

rationally additive semiring, 21
recognizable

series, 86
subsets, 16

recognized by a K-fa, 35
rejecting

run of a 2svfa, 49
state of a 2svfa, 49

relation, 17
on words, 92

restless
fa, 33
K-fa, 36
transducer, 38
transition, 25

restriction
of a relation, 18
of a series to a language, 22

reversals, 32
rotating

fa 33
K-fa, 36
transducer, 38
transduction, 38

run, 27, 35, 37
halting, 27
initial, 27
of a fa2, 131
successful, 27
trivial, 27

scalar product, 21
self-verifying fa, 49

156 Index

semiring, 18
sequence of computational segments connect-

ing two states, 48
series associated to a relation on words, 92
simple loop, 29
single-valued

transducer, 38
transition, 38

special relations, 134
state, 22, 25, 131
successful run, 27, 35, 131
successive con�gurations, 27
support

of a K-fa, 35
of a series, 19

surjective relation, 18
sweeping

fa 33
K-fa, 36
transducer, 38
transduction, 38

symmetric
of a fa2, 133
of a relation on words, 93

synchronous
fa2, 132
relation, 134

threshold
for a rational set X ⊆ N, 112
of a rational set X ⊆ N, 112

total relation, 18
trace, 29, 35
transducer, 37
transduction, 37
transition

direction, 25
of a cfa, 23

of a fa, 25
of a fa2, 131
restless, 25
stationary, 25

trivial run, 27
two-tape �nite automaton (fa2), 131
2-way

alternating automaton (2afa), 68
transduction, 38

unambiguous
fa, 33
fa2, 132

unary
fa, 33

universal state (of a 2afa), 68

word, 16
(proper) factor/pre�x/su�x, 16
concatenation, 16
length, 16
produced by a run (of a transducer), 37

zero series, 19

	Introduction
	Computational model
	From Turing machines to finite automata
	Turing machines
	Finite automata

	Variants of finite automata
	Descriptional complexity
	Finite automata with outputs

	Iteration of binary relations on words
	Outline

	Preliminaries
	Basic definitions and notations
	Sets and monoids
	Alphabets, words and languages
	Relations and functions

	Formal power series
	General definitions
	Rational operations on series
	Rational series
	Restriction to a recognizable language

	Finite automata
	Classical finite automaton
	[Two] finite automata
	[Two] weighted-automata
	[Two] transducers

	Outer-nondeterministic Finite Automata
	Introduction
	Preliminaries
	Normal form for [2]s
	Computational segments
	Self-verifying automata

	The subroutine Reach
	Description of the subroutine Reach
	Implementation details for the subroutine Reach

	Simulation by halting self-verifying automata
	Implementation details for the subroutine nReach

	Subexponential deterministic simulation
	Conditional and unambiguous simulations
	The alternating case
	Concluding remarks

	Super- and sub-classes of rational series
	Further operations on series
	Hadamard operations
	Mirror operation
	On the scalar product
	Restriction to a recognizable support

	Hierarchy
	Recognizable series
	Comparison of families

	Relations on *
	Symmetry of relations
	Bi-mirror of relations
	Morphism
	Both ways rational relations

	[Two] transducers
	Introduction
	Unary [two] transductions
	Hadamard relation with unary output
	Main result
	[One] simulation of hits
	Unlimited number hits
	Conclusion

	Sweeping weakens [two] transducers
	Revisiting the family [a*]
	The unary output case
	The unary input case
	Conclusion

	Iteration of arity 2 relations on words
	Preliminaries
	Composition and iteration of relations
	Decidability problems
	Length-preserving relations, padding and completion
	[One] two-tape finite automata
	Classes of relations and hierarchy

	Iteration
	Iteration of synchronous relations
	The unary case

	Bibliography
	Index

