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INPUT- OR OUTPUT-UNARY SWEEPING

TRANSDUCERS ARE WEAKER THAN THEIR 2-WAY

COUNTERPARTS

Bruno Guillon1

Abstract. In a previous paper we showed that two-way (nondeter-
ministic) transducers with unary input and output alphabets have the
same recognition power as the sweeping ones. We show that this no
longer holds when one of the alphabets has cardinality at least 2.

Résumé. Dans un article précédent, nous avons montré que les trans-
ducteurs non-déterministes bidirectionnels sur des alphabets d'entrée
et de sortie unaires, ont la même puissance de reconnaissance que les
transducteurs boustrophédons. Nous prouvons ici que ce résultat n'est
plus vrai, lorsque l'un des alphabet est de cardinalité au moins 2.

1991 Mathematics Subject Classi�cation. 68Q70.

1. Introduction

Finite automata exist in di�erent variants: 1-way deterministic (1DFA), 1-way
nondeterministic (1NFA), 2-way deterministic (2DFA) and 2-way nondeterminis-
tic (2NFA) but all are equivalent as far as recognition power is concerned. Pro-
viding an additional tape to the device leads to a new computational model. In
automata theory, there are mainly two such models: two-tape �nite automata and
transducers. Both recognize the same object: binary word relations, i.e., a subset
of a direct product of two free monoids, say Σ∗×∆∗. However, in the former model,
the two tapes play a symmetric role, while in the latter, an input (read-only) tape
and an output (write-only) tape are distinguished. In the case of 1-way devices,
it is well known that both models recognize the same class of relations, namely
the class of rational relations on Σ∗ × ∆∗. But the di�erent versions, determin-
istic or nondeterministic, lead to di�erences: 1-way deterministic transducers are
less powerful than 1-way two-tape DFAs, which are themselves less powerful than
1-way transducer (or 1-way two-tape NFA), see for instance [17].
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Here we work with 2-way transducers which are 2-way �nite automata where
every transition is associated with a regular language. Though the more classical
model assumes that a transition is associated with a singleton, it is routine to
prove that this more general form does not alter the computational power (in-
deed, regular output producing can be simulated by stationary steps simulating
an automaton on the output). The machine must be thought of as consisting of a
read-only input tape which can be scanned back and forth and a write-only out-
put tape which is visited in one direction only. Every time a symbol of the input
tape is read, a word from the language associated with the transition is printed
on the output tape and the input head is moved in one of the two directions or
is kept where it is. The accepted relation is then the set of pairs of words (u, v)
such that v is produced on the output tape during an accepting computation of
the automaton on u. It is a subset of Σ∗ × ∆∗, where Σ is the input alphabet
and ∆ the output alphabet. A big di�erence from the �nite automata is that 2-
way transducers, even the deterministic version, have di�erent recognition power
than their 1-way counterpart. Consequently, the issues on these objects are of a
di�erent nature and in particular it makes sense to investigate subclasses of such
transducers. Without being exhaustive we recall a couple of major results in the
literature. In [11] structural properties are studied: the 2-way deterministic trans-
ducers were shown to be those realizing a binary function de�nable in MSO. In [8]
the relations realized by 2-way transducers are proved to be uniformizable. We
recall that this means that for each input word with a non-empty image in the
relation, it is possible to choose one and only one word in the image in such a
way that the resulting function is also realizable by a 2-way transducer. Decision
issues were also tackled: it is decidable whether or not given a 2-way or sweeping
functional transducer is equivalent to a 1-way transducer, [3, 12].

In the majority of the results cited above, the authors consider some subfamilies
of transducers where, in some sense, the nondeterminism is restricted. In [7], we
studied a di�erent kind of restriction, considering the case where both input and
output alphabets are unary, i.e., Σ and ∆ are both singletons. Restricting the
alphabets to a single letter is usual in Automata Theory. This particular case
shows important di�erences with the general case. Probably, the main result of
this kind is the collapse of the unary context-free and regular languages, provided
by Ginsburg and Rice [13]. Speaking of transducers, we can deduce from [2], that
whenever an output-unary 2-way transducer is functional or when its underlying
automaton is unambiguous, it can be simulated by a 1-way transducer.

In [7], we introduced the Hadamard like operations on relations. As a byproduct
it was shown that all unary 2-way transducers are equivalent to sweeping trans-
ducers: in other words it is no loss of generality to impose that the transducer
changes direction on the endmarkers only. In this paper we investigate the cases
where one only of the two alphabets is unary. The results are summarized in Ta-
ble 1, in which we distinguish six cases: on one hand, a 2-way transducer may be
deterministic or nondeterministic (columns); on the other hand, one or both alpha-
bets may be unary or not (lines). In each cases, we determine the most restricted
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variant among 1-way, sweeping and 2-way (i.e., unrestricted), which is equivalent
to a general 2-way transducer. The particular and simple case of input-unary de-
terministic 2-way transducers has been discussed in [6, page 4]. Our results solve
the case of input- or output-unary 2-way nondeterministic transducers.

Restrictions Deterministic = [11] Functional Nondeterministic

Input-unary Sweeping [6]
2-way

Theorem 5.3

Output-unary
1-way [2, 7]

2-way
Theorem 4.7

Input- and
output-unary

Sweeping [7]

Table 1. The most head-move restricted variant (among 1-way,
sweeping and 2-way) equivalent to a 2-way transducer by cases.

First, when the output alphabet is unary, since the image of a �xed word by a 2-
way transducer is always a rational language and because unary rational languages
are semi-linear sets, we study the period of such image languages. We prove that
given a 1-way transducer (resp. a sweeping transducer), there exists a constant k
such that, for each input word u, the image of u is a semi-linear language of period

bounded by k (resp. in O(∣u∣k), where ∣u∣ denotes the length of u). Then we exhibit
a relation accepted by an output-unary 2-way transducer that admits images whose
periods are not polynomially bounded in the length of the input. This proves that
sweeping transducers are weaker than general 2-way transducers. A recent paper
shows that two-way N -automata on the tropical semiring N = ⟨(N∪{∞}),min,+⟩
are always equivalent to one-way automata, [5]. It is worthwhile observing that
the tropical semiring is isomorphic to a sub-semiring of Rat (a∗) in the mapping
n↦ ana∗ and that consequently an N -automaton is a particular case of a two-way
transducer whose images have all ultimate period equal to 1. This strengthens the
evidence that studying periods is important for two-way transducers.

Second, we exhibit a relation accepted by a 2-way transducer with unary input
which cannot be recognized by a sweeping transducer. This result is obtained by
counting the images associated to a given word, and showing that no sweeping
transducer accepting the relation may produce a su�cient number of images for
large inputs.

The paper is organized as follows. Section 2 recalls all the basic notions and
results on �nite automata and transducers. It is meant to make the paper as self-
contained as possible. It also recalls the two Hadamard operations on relations
which we introduced in our previous paper. These operations are used in order
to algebraically characterize the family of relations accepted by output- nd input-
unary sweeping transducer (Propositions 2.13 and 2.14). Section 3 revisits the well-
known properties of the rational subsets of the additive monoid of non-negative
integers. The emphasis is on controlling the ultimate periods under the operation
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of set sum and Kleene star in order to express it as a function of the input.
Section 4 applies these results to give a necessary condition for an output-unary
two-way transducer to be equivalent to a sweeping transducer, namely, the images
associated to an input by such a sweeping transducer should have a period wich
is bounded by some polynomial in the length of the input (Theorem 4.4). Using
this strong property, we exhibit a two-way transducer which is not equivalent
to a sweeping transducer (Lemma 4.6), and hence we obtain the separation of
the output-unary 2-way and sweeping transducers (Theorem 4.7). In section 5, we
consider the case of input-unary 2-way transducers. A particular relation accepted
by a 2-way transducer is exhibited and it is proved that no sweeping transducer
may accept it (Lemma 5.2). Hence, we obtain the separation of input-unary 2-
way and sweeping transducers (Theorem 5.3). Some concluding remarks are given
in Section 6.

2. Preliminaries

2.1. Alphabets, words, languages, rational sets

We assume the reader is familiar with language and automata theory. For the
sake of completeness we recall some notions and �x some notations.

The cardinality of a set X is denoted ∣X ∣. An alphabet Σ is a non-empty �nite
set of symbols. The free monoid it generates is denoted by Σ∗, and its elements
are words over Σ including the empty word ε. The length of a word u is ∣u∣.
For a symbol c ∈ Σ, the number of occurrences of c in w is denoted ∣w∣c. The
concatenation of two words u and v is denoted uv. A language is a set of words,
i.e., a subset of Σ∗.

An alphabet is unary if it is a singleton. A unary word (resp. unary language)
is a word (resp. language) over a unary alphabet.

Given a monoid (M, ⋅,1), the family of rational subsets denoted Rat(M) is
the least family containing the �nite sets and closed under set union (X ∪ Y ={z ∣ z ∈X or z ∈ Y }), set product (X ⋅ Y = {xy ∣ x ∈X, y ∈ Y }) and Kleene star
(X∗ = {x1⋯xp ∣ p ∈ N, xi ∈X} with the convention x1⋯xp = 1 when p = 0).

In this paper, we are mainly interested in the monoid M = Σ∗ ×∆∗. Its subsets
are called relations. Given R ⊆ Σ∗ ×∆∗ and u ∈ Σ∗ we denote by R(u) the image
of u by R, i.e., the language {v ∈ ∆∗ ∣ (u, v) ∈ R}.
2.2. Two-way Finite Automata

We �x an alphabet Σ, called input alphabet, and let ▷ and ◁ be two special
symbols which do not belong to Σ, called respectively left and right endmarkers.
The set Σ ∪ {▷,◁} is denoted by Σ.

De�nition 2.1. A 2-way �nite automaton (or simply automaton if not otherwise
stated) A over Σ is a tuple (Q, q−,Q+, δ), where Q is a �nite set of states, q− ∈ Q is
the initial state, Q+ ⊆ Q is the set of accepting states and δ is the set of transitions,
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a subset of Q×Σ× {−1,0,1}×Q, with the restriction that it does not contain any
transition of the form (q,▷,−1, q′) or (q,◁,+1, q′) for any q, q′ ∈ Q.

The size of A, denoted size (A), is its number of states, i.e., size (A) = ∣Q∣.
We recall the dynamics of the device. Given an input word u = u1⋯un on Σ

we augment it to ũ = u0 ⋅ u1⋯un ⋅ un+1 where u0 = ▷ and un+1 = ◁. The automa-
ton starts the computation with the word ũ written on the tape, the input head
positioned on the leftmost cell scanning u0, and in state q−. At each step, the
automaton reads the input symbol a ∈ Σ scanned by the head, and according to
its current state q chooses a direction d and a state q′ with (q, a, d, q′) ∈ δ. Then it
enters the state q′ and moves its head according to d. The automaton accepts the
input word u if it eventually enters an accepting state at the rightmost position,
un+1. Because of the restrictions on transition set, the input head cannot move
out of ũ. The set of all words accepted by the automaton is the language accepted.
Two automata are equivalent if they accept the same language.

Now we consider some restricted versions of �nite automata. An automaton is
1-way (resp. restless) if no transition is of the form (q, c,−1, q′) (resp. (q, c,0, q′))
for some q, q′ ∈ Q and c ∈ Σ. It is sweeping if the input head changes direction
when scanning an endmarker only. The automaton is deterministic if for each
pair (q, a) in Q × Σ (resp. in Q+ × {◁}), there exists at most one pair (resp. no
pair) (d, q′) in {−1,0,1} × Q with (q, a, d, q′) ∈ δ, in other words δ is a (partial)

function from (Q ×Σ) ∖ (Q+ × {◁}) into {−1,0,1} ×Q. It is well-known that all
versions accept the same family, namely the family of regular languages (see, for
example, [16, 18]).

2.3. Configurations, runs, traces

The description of the system at a �xed time is given by the current state and
the input head position: a con�guration of an automaton A over a word u of
length n is a pair (q, p) where q is a state and p is a position of ũ, i.e., an integer
such that 0 ≤ p ≤ n + 1. The initial con�guration is the con�guration (q−,0). An
accepting con�guration is any con�guration (q, n + 1) with q ∈ Q+. We call border
con�guration, any con�guration whose position is equal to 0 or n + 1.

From the transition set follows the successor relation on con�gurations on u.
A pair of con�gurations ((q, p), (q′, p′)) belongs to the successor relation, written(q, p)→ (q′, p′), if the automaton may enter (q′, p′) from (q, p) in one step, that is(q, up, (p′ −p), q′) belongs to δ. In particular (p′ −p) has to be equal to −1, 0 or 1.
Observe that the relation depends on the input word. Also, if A is deterministic,
then the accepting con�gurations have no successor.

De�nition 2.2. A run of A on u is a sequence c0, c1, . . . , c` of successive con�g-
urations of A on u, i.e., for each 0 ≤ i < `, ci → ci+1. If ` = 0 the run is reduced to
a single con�guration and it is called trivial.

A run is successful if it starts from the initial con�guration and halts in some
accepting con�guration.
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An input word u is accepted by an automaton A if there exists a successful run
of A on u.

The following notion is probably super�uous when dealing with automata but
it is instrumental when working with transducers.

De�nition 2.3. The trace of a run r = (q0, p0), (q1, p1), . . . , (q`, p`) of A on u is
the sequence tr = t1, . . . , t` of transitions such that for each 0 < i ≤ `, ti is the
witness of (qi−1, pi−1)→ (qi, pi), i.e., ti = (qi−1, upi−1 , pi − pi−1, qi).

As a property of its dynamic, we say that a �nite automaton is unambigu-
ous if there exists at most one successful run on each input word. Trivially, a
deterministic automaton is unambiguous as well.

We now de�ne a particular type of runs. A �nite run is a hit, if its �rst and last
con�gurations are both border and if no other con�guration is border. Because
initial and accepting con�gurations are border, every successful run is a �nite
composition of hits.

The controlled composition of runs is a partial operator on runs, denoted @.
Given two runs r = c0, c1, . . . , c` and r′ = c′0, c′1, . . . , c′̀ ′ , the controlled composition
of r with r′ exists if and only if c` = c′0 and, in this case, is equal to:

r@r′ = c0, c1, . . . , c`−1, c`, c′1, c′2, . . . , c′̀ ′
Remark that the matching con�guration at the interface of the two runs, has been
collapsed into one. The equivalent notation r@c`@r′ is convenient for explicitly
naming the matching con�guration.

2.4. Two-way transducers

Here Σ and ∆ are two �xed input and output alphabets. Two-way transducers
are two-way �nite automata which are provided with the ability to output symbols
during the computation. A natural way to de�ne such machines is to add a function
that maps every transition into some kind of output. At each step, the machine
performs a transition, and produces an output.

De�nition 2.4. A 2-way transducer (or simply transducer if not otherwise stated)
is a pair T = (A,φ) where A is an automaton over Σ with transition set δ and
where φ is a production function which is a mapping of δ into the set of non-empty
rational subsets of ∆∗. Its size is size (T ) = size (A).

Let u be a word in Σ∗ and let r be a run on u of trace t1⋯t`. The word v ∈ ∆∗ is
produced by r if it belongs to the subset φ(t1)⋯φ(t`). We will also use the notation
ΦT (r) = φ(t1)⋯φ(t`) or simply Φ(r) when the transducer T is understood.

A pair (u, v) ∈ Σ∗ × ∆∗ is accepted by the transducer if v is produced by a
successful run on u. The relation accepted by T is the set of all such (u, v).

By a slight abuse of language, we say that a production function is single-valued
if the image of each transition is a singleton. The transducer T is deterministic
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(resp. unambiguous), if A is deterministic (resp. unambiguous) and φ is single-
valued. It is 1-way or restless or sweeping if A is. It is well known that the
family of relations accepted by 1-way transducers is the family of rational relations,
e.g., [4, Theorem III. 7.1] [9, 17].

Theorem 2.5. 1-way transducers accept exactly the family of rational relations.

The family of rational relations is strictly smaller than the family of relations
accepted by general transducers, even when both input and output alphabets are
unary.

Example 2.6. The relation uMult = {(an, akn) ∣ n, k ∈ N} is accepted by the 3-

state 2-way restless single-valued sweeping transducer (({Ð→q ,←Ðq , q+} ,←Ðq ,{q+} , δ) , φ)
where:

δ = { (Ð→q , a,+1,Ð→q ) , (←Ðq , a,−1,←Ðq ) , (q+, a,+1, q+)(Ð→q ,◁,−1,←Ðq ) , (←Ðq ,▷,+1,Ð→q ) , (←Ðq ,▷,+1, q+) }
and φ maps (Ð→q , a,+1,Ð→q ) to {a} and all other transitions to {ε} (see Figure 1).

←ÐqÐ→q q+
▷,+1 ∣ ε ▷,+1 ∣ ε

a,−1 ∣ ε◁,−1 ∣ εa,+1 ∣ a a,+1 ∣ ε

Figure 1: A sweeping transducer accepting the relation uMult

(an edge (q, q′) is labeled (s, d ∣ w) if φ maps the transition(q, s, d, q′) to w.)
The automaton works in three modes. In state ←Ðq it rewinds the input tape,

that is, it moves the input head back to the left endmarker without outputting
any symbol. Then, it performs a nondeterministic choice: it either enters state Ð→q
which is used in order to copy the entire input word (observe that the incoming
and outgoing transitions are labeled by the left and right endmarkers respectively
and that the transition cycling on Ð→q produce the output {a}) or it enters state q+
in order to accept after reaching the right endmarker.

It is easy to show that uMult is not rational. It follows from Theorem 2.5
that no 1-way transducer can accept it. In [7, Corollary 1] it was shown that no
transducer (A,φ) with A being unambiguous, may accept uMult.

We now show that two-way transducers may be made restless.

Lemma 2.7. Each transducer T admits a computable equivalent restless trans-
ducer. Moreover, if T is 1-way (resp. sweeping), so is the resulting equivalent
restless transducer.
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Proof. Let T = (A,φ) be a transducer of transition set δ. We say that a run is
1-move-at-end if it is of the form (q0, p), (q1, p), . . . , (q`, p), (q`+1, p+d) for ` ≥ 0, for
some position p and some direction d ∈ {−1,+1}. The main idea of the proof is to
simulate every such 1-move-at-end run by a single restless step (q0, p), (q`+1, p+d).
The question of the output generated by this single step is treated in the following.

We consider 0-move runs, i.e. runs whose con�gurations have all the same
position component. Because only one input tape cell is visited, the run does not
really depend on the input nor the position but on the current scanned symbol
only. The set of 0-move runs which start in state q scanning symbol a and end in
state q′ (still scanning a) is denoted Rq,q′,a. The language Lq,q′,a is de�ned as the
union of the production associated to the runs in Rq,q′,a, i.e.,

Lq,q′,a = ⋃
r∈Rq,q′,a

Φ(r)
We prove that Lq,q′,a is rational. Observe that we can easily obtain a one-way

transducer Tq,q′,a from T such that Tq,q′,a accepts the relation {(a, v) ∣ v ∈ Lq,q′,a}.
By Theorem 2.5, the relation is rational and hence, the language Lq,q′,a is rational
by projection.

We now de�ne a new set of transitions δ1 and its associated production func-
tion φ1 (see Figure 2a). A transition t = (q, a, d, q′′) belongs to δ1 if and only if
d ≠ 0 and there exists a state q′ such that Rq,q′,a is not empty and (q′, a, d, q′′)
belongs to δ. The rational image of t by φ1 is given by:

φ1(t) =⋃
q′

(Lq,q′,a ⋅ φ(q′, a, d, q′′))
Since any con�guration (q, p) is a run in Rq,q,a, any restless transition t of A
belongs to δ1 and therefore φ(t) is a subset of φ1(t).

Every successful run r of T can be factorized in

r = r0@r1@⋯@rk−1@rk

where ri is a 1-move-at-end run for each 0 ≤ i < k and rk is a 0-move run occurring
at the rightmost position (scanning the right endmarker). Using δ1 and φ1, we
may simulate r0@⋯@rk−1 by a restless run r′. The last factor rk is problematic
since it may be a non-trivial 0-move run which is not followed by a restless step.
We thus need to produce the output in Lq,q′,◁ for any accepting state q′ in the last
restless step, i.e., the last step simulating rk−1. This requires a nondeterministic
choice, since the automaton has to guess the presence of the right endmarker one
cell to the right.

To this aim, we create a new state q◁, which is halting. We then de�ne a
transition set δ◁ and a new production funcion φ◁ (see Figure 2b). A transition
t = (q, a, d, q◁) belongs to δ◁ if and only if d = +1 and there exist two states q′ and
q′′ such that Rq′,q′′,◁ is not empty, q′′ is an accepting state of T and (q, a, d, q′)
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a ?

q

q′
q′′

t1

(a)

a ◁?

q

q′

q′′ q◁

t1

t◁

≡

(b)

Figure 2: Transition in δ1 (a) and δ◁ (b) for restless simulation
of two-way transducers. A dashed arrow holds for a succession of
stationary steps and a plain arrow holds for a single step.

belongs to δ1. The image of t by φ◁ is given by:

φ◁(q, a, d, q◁) = ⋃
q′∈Q,q′′∈Q+

(φ1(q, a, d, q′) ⋅Lq′,q′′,◁)
which is rational.

Our restless transducer simulating T = (A,φ) is de�ned as T ′ = (A′, φ1 ∪ φ◁)
where A′ = (Q ∪ {q◁} , q−,{q◁} , δ1 ∪ δ◁), where Q and q− denote respectively the
state set and the initial state of A. From any run of T ′ producing a word v, we can
�nd a run of T producing v and reciprocally. Since the transitions of δ1 and δ◁
have the same directions as the corresponding transitions (or 1-move-at-end runs)
of T , the construction preserves the property of being one-way or sweeping. �

2.5. Hadamard Relations

The relations accepted by 2-way transducers include strictly the rational rela-
tions (see Example 2.6). We recall additional operations that we proved su�cient
to express relations accepted by 2-way transducers when both alphabets Σ and
∆ are unary [7]. The main result of this paper is that when ∆ is unary and Σ
arbitrary these operations do not capture the whole family of relations recognized
by 2-way transducers but those and only those relations recognized by sweep-
ing transducers. We introduce the Hadamard operations and de�ne the family of
Hadamard relations. All the materials are taken from [7, Section 2], in which re-
lations were represented as formal series. Most of the following results hold under
weaker assumptions but the generality is not necessary for our purpose.
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De�nition 2.8. The Hadamard operations of two relations R,S ⊆ Σ∗ × ∆∗ are
given by:

● the Hadamard product (or H-product): R H S:

∀w ∈ Σ∗,R H S(w) = R(w) ⋅ S(w) (set concatenation)

● the Hadamard star (or H-star): RH⋆:
∀w ∈ Σ∗,RH⋆(w) = R(w)∗

Under the assumption that ∆ is unary the class of rational relations is closed
under the Hadamard product, [17, Theorem III. 3.1].

Theorem 2.9. If ∆ is unary then the family Rat (Σ∗ ×∆∗) is closed under H-
product.

However, the H-star of a rational relation is not necessarily rational, even
when Σ is unary. Take for example the identity relation on Σ∗ × Σ∗: Id ={(w,w) ∣ w ∈ Σ∗}. It is trivially rational, but IdH⋆ = uMult is not rational. There-
fore the following de�nes a broader family.

De�nition 2.10. The family of Hadamard relations, denoted Had (Σ∗ ×∆∗), is
the closure of the family Rat (Σ∗ ×∆∗) by Hadamard operations and union.

Whenever ∆ is unary, this family has a simpler characterization.

Proposition 2.11. Let Σ and ∆ be two alphabets with ∆ unary. A relation R
belongs to Had (Σ∗ ×∆∗) if and only if there exist two �nite families of rational
relations Ri's and Si's, such that: R = ⋃

i
Ri H S

H⋆
i .

Proof. Denote by F the family of relations of the form ⋃iRi H SH⋆i as in the
proposition. By de�nition, F is included in Had (Σ∗ ×∆∗). Since any rational
relation R is equal to R H ∅H⋆, we have Rat (Σ∗ ×∆∗) ⊆ F . Thus it su�ces to
prove that F is closed under Hadamard operations and union.

The closure under union is trivially obtained from the de�nition of F . Let
T = ⋃

i∈IRi H S
H⋆
i and T ′ = ⋃

j∈JR
′
j H S

′H⋆
j be in F , and let u be a word in Σ∗. We
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consider the image of u by the Hadamard product T H T ′:

(T H T ′) (u) = (⋃
i∈IRi H S

H⋆
i )(u) ⋅ ⎛⎝⋃j∈JR′

j H S
′H⋆
j

⎞⎠(u)
= (⋃

i

Ri(u) ⋅ Si(u)∗) ⋅ (⋃
j

R′
j(u) ⋅ S′j(u)∗)

=⋃
i,j

Ri(u) ⋅ Si(u)∗ ⋅R′
j(u) ⋅ S′j(u)∗

=⋃
i,j

(Ri(u) ⋅R′
j(u)) ⋅ (Si(u)∗ ⋅ S′j(u)∗) [by commutativity]

=⋃
i,j

(Ri(u) ⋅R′
j(u)) ⋅ (Si(u) ∪ S′j(u))∗ [by commutativity]

=⋃
i,j

(Ri H R′
j) (u) ⋅ (Si ∪ S′j)H⋆ (u)

= (⋃
i,j

(Ri H R′
j) H (Si ∪ S′j)H⋆)(u)

By Theorem 2.9, each Ri H R
′
j is rational and by de�nition, each Si ∪ S′j is also

rational. Hence, T H T ′ belongs to F .
We consider now the Hadamard star of T . We claim:

TH⋆ = (⋃
i∈IRi H S

H⋆
i )H⋆ = ⋃

X⊆I ( H

i∈XRi) H (⋃
i∈XRi ∪ Si)

H⋆
(1)

Observe that there are �nitely many X ⊆ I, and that for each such X, both
relations H i∈X Ri (remember Theorem 2.9) and ⋃i∈X Ri ∪ Si are rational. This
implies that TH⋆ belongs to F .

We now prove the equality (1). Let (u, v) be in TH⋆, that is v belongs to[(⋃i∈I Ri H SH⋆i ) (u)]∗. Thus, v = v0v1⋯vn for some n ∈ N such that each vk
belongs to ⋃i∈I Ri(u) ⋅ Si(u)∗. For each k we �x an index ik ∈ I such that vk ∈
Rik(u) ⋅ Sik(u)∗ and we denote by X the set {ik ∣ 0 ≤ k ≤ n}. Hence, v belongs
to Ri0(u) ⋅ Si0(u)∗⋯Rin(u) ⋅ Sin(u)∗. Using the commutativity of ∆∗, we may
reorganize the vis and therefore v belongs to

(∏
i∈XRi(u)) ⋅ (⋃i∈XRi(u) ∪ Si(u))

∗ = ⎛⎝( H

i∈XRi) H (⋃
i∈XRi ∪ Si)

H⋆⎞⎠(u).
Reciprocally, let (u, v) belong to (H i∈X Ri) H (⋃i∈X Ri ∪ Si)H⋆ for some X ⊆

I. For some x and y, we have v = xy where x belongs to ∏i∈X Ri(u) and y
belongs to (⋃i∈X Ri(u) ∪ Si(u))∗. Using commutativity, we may decompose y
into y0⋯yqyq+1⋯yq+p, where for each 0 ≤ h ≤ q (resp. each q < h ≤ q + p), the
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word yh belongs to Rih(u) (resp. Sih(u)) for some ih ∈ X. For each i ∈ X we
de�ne wi as the concatenation of each yh, with q < h ≤ q + p, such that ih = i, i.e.,

wi = ∏
q<h≤q+p ∣ ih=i

yh

In particular, if for no q < h ≤ q + p the equality ih = i holds, then wi is equal to ε.
We now decompose the word x into ∏i∈X xi with each xi ∈ Ri(u). Finally, we use
commutativity to obtain the equality v = ∏i∈X (xi ⋅wi) ⋅∏0≤h≤q yh. Each xi ⋅ wi
belongs to (Ri H SH⋆i ) (u) and each yh belongs to Rih and thus to (Rih H SH⋆ih ) (u).
Hence, v belongs to TH⋆(u) = (⋃i∈I Ri H SH⋆i )H⋆ (u). �

The Hadamard operations were introduced because they are well-suited to the
relations realized by 2-way transducers. Indeed, this family of relations is closed
under Hadamard operations.

Proposition 2.12. If R and S are relations accepted by 2-way transducers, so
are the relations RHS and RH⋆. Moreover if R and S are accepted by sweeping
transducers, then so are R H S and RH⋆.
Proof. We build a 2-way transducer accepting R H S. Our transducer works in
three successive modes: (1) it simulates a transducer accepting R; (2) if the sim-
ulation succeed, it rewinds the input tape using a fresh state; (3) it simulates a
transducer accepting S and �nally accepts if this second simulation succeed.

Now, we build a 2-way transducer accepting RH⋆. The transducer works as
follows. From the initial con�guration it performs a nondeterministic choice: it
either enters a special state in order to accept at the right endmarker after having
crossed the entire input tape; or it starts a direct simulation of a 2-way transducer
accepting R. In the second case, if the simulation succeed, it rewinds the input
tape using a new state and repeats the previous actions starting from the initial
nondeterministic choice. Observe that the automaton of Figure 1 can be seen as
those resulting from this construction applied to R = Id. Indeed, as previously
observed, uMult = IdH⋆.

We can easily show that both constructions preserve the property of being
sweeping1. �

In particular, thanks to Theorem 2.5, if a relation is Hadamard then it is ac-
cepted by a sweeping transducer. The converse happens to be true under the
assumption that ∆ is unary. Observe that the relations produced by a single hit
of a sweeping transducer are rational since during that hit, the computation is
1-way. It follows from [7, Proposition 4] that every sweeping transducer accepts
an Hadamard relation, whenever ∆ is unary. Hence, Hadamard relations are char-
acterized by sweeping transducers:

Proposition 2.13. Let Σ and ∆ be two alphabets. If ∆ is unary, the family of
relations accepted by sweeping transducers over Σ, ∆ is equal to Had(Σ∗ ×∆∗).

1We may also observe that the �rst construction, that is, those for R H S, also preserves
determinism. This is not the case for the second construction.



TITLE WILL BE SET BY THE PUBLISHER 13

It can be deduced from [15, Theorem 15] that the same holds for input-unary
sweeping transducers.

Proposition 2.14. Let Σ and ∆ be two alphabets. If Σ is unary, the family of
relations accepted by sweeping transducers over Σ, ∆ is equal to Had(Σ∗ ×∆∗).

It is shown in Section 4 (see Theorems 4.7 and 5.3 below), that general 2-way
transducers accept more than Had(Σ∗ ×∆∗) even when Σ or ∆ is unary.

3. Revisiting the family Rat (a∗)
Taking advantage of the observation that (a∗, ⋅, ε) is isomorphic with the addi-

tive monoid (N,+,0) in the mapping n ↦ an, we prefer for notational reasons to
work in N. With this identi�cation we may speak of the subset of N accepted by
an automaton over a unary alphabet. From now on instead of working in Σ∗ × a∗
we will work in the equivalent structure Σ∗ × N. All the terminology on the for-
mer structure carries over to the latter. Observe that the concatenation in a∗
corresponds to the addition in N. In particular, the set product on N is denoted
X + Y . Its neutral element is the singleton {0} (or simply denoted 0) and ∅ is an
absorbing element.

First, we introduce some notations. Speaking of the singleton {n}, we use the
abusive but convenient notation n when the context is clear. Hence, for a subset
X ⊆ N, we write n +X for {n} +X. The multiplication of a subset X by a scalar
p ∈ N, i.e., the set {px ∣ x ∈X}, is denoted pX. In particular, pN is the set of all
multiples of p. The sum of p copies ofX is denotedXp, for instanceX3 =X+X+X.
For an integer k, the set of all integers smaller than k is denoted J0, kJ. We say
that a subset X of N is bounded by k, if x ∈X implies x < k, i.e., if X ⊆ J0, kJ.

3.1. Rational subsets of N

The following simple result that characterizes regular sets, is a direct conse-
quence of the famous characterization of rational subsets of N as semilinear sets,
i.e., �nite unions of linear sets [10].

Proposition 3.1. A subset X of N is regular if and only if there exist two integers t
and p and two �nite sets A and M respectively bounded by t and p such that
X = A ∪ (t +M + pN).

If X = A ∪ (t +M + pN), for two integers t and p and two subsets A and M
respectively bounded by t and p, we say that A ∪ (t +M + pN) is a rat-expression
for X. The integers t and p are respectively the threshold and the period of the
rat-expression or simply a threshold and a period for X, when the rat-expression
is not made precise. It is possible to choose t and p minimal. In this case t and
p are called the threshold and the period of the regular set X. Observe that if
A ∪ (t +M + pN) is a rat-expression of a �nite set X, then p = 0 and so M = ∅;
thus X = A. Conversely, if X is in�nite, then p > 0 and M ≠ ∅.
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3.2. Equivalent rat-expressions of regular sets

The same regular subset is de�nable by di�erent rat-expressions with di�erent
thresholds and periods. We show how these parameters can be modi�ed.

Lemma 3.2. Let X be a regular set and let t and p be the threshold and period
of some rat-expression of X. Then, for any u ≥ t, there exists an e�ectively
constructible rat-expression of X with threshold u and period p.

Proof. Let A ∪ (t +M + pN) be a rat-expression of a regular set X and let u be
greater than or equal to t. Since u ≥ t, for some k ≥ 0 and 0 ≤ s < p we have
u = t + s + kp. De�ne a subset M ′ of {0, . . . , p − 1} as follows:

M ′ = {i − s ∣ i ∈M and i ≥ s} ∪ {p + i − s ∣ i ∈M and i < s}
and de�ne A′ as follows:

A′ = (t +M + p{0, . . . , k − 1}) ∪ (t + {i ∈M ∣ i < s} + kp)
Observe that: X ∩ J0, tJ = A ; X ∩ Jt, uJ = A′ and X ∩ (u +N) = u+M ′ + pN. Thus,
X = (A ∪A′) ∪ (u +M ′ + pN). �

Lemma 3.3. Let X be a regular set, and let t and p be the threshold and period
of some rat-expression of X. Then, for any r > 0, there exists a computable rat-
expression of X with threshold t and period rp.

Proof. Let A ∪ (t +M + pN) be a rat-expression of a regular set X and let r be
a positive integer. Simply set M ′ to be equal to the set M + p J0, rJ. We prove
X = A ∪ (t +M ′ + rpN). It su�ces to prove t +M + pN = t +M ′ + rpN.

Let x = t+m+kp for some m ∈M and some k ≥ 0. Then, the Euclidean division
of k by r gives k = qr + ` with 0 ≤ ` < r. Hence x = (t+m+ `p)+ qrp. By de�nition
of M ′, m + `p belongs to M ′, and thus x ∈ t +M ′ + pN.

Reciprocally, if x = t +m′ + qrp for some m′ ∈ M ′ and q ≥ 0, then there exist
m ∈M and 0 ≤ ` < r such that m′ =m + `p. Thus, x = t +m + p(` + qr) belongs to
t +M + pN. This concludes the proof. �

By combining both Lemmas 3.2 and 3.3, a unique threshold and period can be
chosen to work with every regular sets of a �nite family:

Corollary 3.4. Let F be a �nite family of regular sets. For each X ∈ F , let tX
and pX denote the threshold and the period of some rat-expression of X. Then,
there exists for each X ∈ F a rat-expression of X with threshold max

X∈F (tX) and
period lcm

X∈F (pX).
It is then easy to compute the union or the intersection of regular sets. If

AX ∪ (t +MX + pN) and AY ∪ (t +MY + pN) are two rat-expressions, then their
union is equal to (AX ∪AY ) ∪ (t + (MX ∪MY ) + pN), which is a rat-expression
with the same threshold and the same period. This following particular case is
instrumental to the last part of our proof.
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Proposition 3.5. Given a �nite family p1, p2, . . . , pn of distinct prime integers,
the least period of the set ⋃

0<i≤npiN is equal to ∏
0<i≤npi.

Proof. Let X denote the union over 0 < i ≤ n of piN. By Corollary 3.4 and previous
observation, p = p1 ×⋯ × pn is a period for X.

The minimal period of X divides p. If it is not equal to p then for some pi
the integer p̂i = p1×⋯×pn

pi
is a period. Then for large enough k, kpi ∈ X implies

kpi+ p̂i ∈X, i.e., kpi+ p̂i = rpj for some 1 ≤ j ≤ n and some r ∈ N. We may suppose
that k is prime and greater than p. If i = j then the left handside is divisible by
pi thus p̂i is divisible by pi, a contradiction. Otherwise, pj divides p̂i thus kpi, a
contradiction. �

3.3. The sum of regular subsets of N

By Kleene Theorem we know that the sum of two regular sets is regular. Here
we discuss the value of the threshold and the period of the rat-expression of the
sum of two subsets of N. We start by proving an intermediate result:

Proposition 3.6. Let t and p be a threshold and a period for a regular set X. Let
Y be bounded by some s ∈ N. Then X +Y admits a rat-expression of threshold t+s
and period p.

Proof. For some A bounded by t and some M bounded by p, we have X = A ∪(t +M + pN). Since Y = ⋃
y∈Y {y}, we have X + Y = (A + Y ) ∪ ⋃

y∈Y (y + t +M + pN).
We �x y ∈ Y . By assumption t + y < t + s. By Lemma 3.2, there exist Ay and My

respectively bounded by t + s and p such that y +X = Ay ∪ ((t + s) +My + pN).
Finally X + Y = ( ⋃

y∈Y Ay) ∪ ((t + s) + ( ⋃
y∈Y My) + pN). �

Lemma 3.7. Let t, s and p be three integers, and let J and K be two subsets
bounded by p. Then there exist A and M , respectively bounded by t + s + p and p,
such that

(t + J + pN) + (s +K + pN) = A ∪ ((t + s + p) +M + pN)
Proof. Observe that (t + J + pN) + (s +K + pN) is equal to K + (t + s + J + pN).
Since K is bounded by p, the result follows directly from Proposition 3.6. �

We are now able to consider the sum of two general regular sets.

Proposition 3.8. Let AX ∪ (tX +MX + pXN) and AY ∪ (tY +MY + pY N) be the
respective rat-expressions of two regular sets X and Y . Fix t = max(tX , tY ) and p =
lcm(pX , pY ). Then the regular set X +Y admits a rat-expression of threshold (2t+
p) and period p.

Proof. By Corollary 3.4, we may �nd A′
X and A′

Y bounded by t and M ′
X and M ′

Y

bounded by p such that: X = A′
X ∪ (t +M ′

X + pN) and Y = A′
Y ∪ (t +M ′

Y + pN).
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By distributivity:

X + Y =⋃
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(A′
X +A′

Y )(A′
X + t +M ′

Y + pN)(A′
Y + t +M ′

X + pN)(2t +M ′
X +M ′

Y + pN)
We consider each of the four subsets separately:

(1) the set A0 = A′
X +A′

Y is a �nite set bounded by 2t and so by 2t + p;
(2) the set A′

X + t +M ′
Y + pN can be rewritten, thanks to Proposition 3.6

and Lemma 3.2, as A1 ∪ ((2t + p) +M1 + pN) with A1 ⊆ J0,2t + pJ and
M1 ⊆ J0, pJ;

(3) similarly the set A′
Y +t+M ′

X +pN is rewritten as A2∪((2t + p) +M2 + pN);
(4) from Lemma 3.7 follows the existence of the sets A3 and M3, respec-

tively bounded by 2t + p and p, such that 2t +M ′
X +M ′

Y + pN = A3 ∪(2t + p +M3 + pN).
We set A = A0 ∪ A1 ∪ A2 ∪ A3 and M = M1 ∪ M2 ∪ M3. We have X + Y =
A ∪ ((2t + p) +M + pN). �

3.4. The star of regular subsets of N

The following lemma gives a characterization of star-generated sets of integers.

Lemma 3.9. Let X be a subset of N. Then, denoting by r the greatest common
divisor of the elements of X, i.e., r = gcd(X), there exist an integer t ∈ N and a
�nite set A ⊆ J0, tJ such that X∗ = r (A ∪ (t +N)). In particular, X∗ is regular and
is included in rN.

Proof. Whenever r = gcd(X) = 1, it is known that X∗ = A ∪ (t + N) for some
integer t and some subset A bounded by t, e.g., [1, Theorem 1.0.1]. Observe that
t − 1 when t is minimal is known as the Frobenius number.

We now extend this result to the general case, where r is arbitrary. We de�ne

X/r = {x ∣ rx ∈X}. We have gcd(Xr) = 1. Since X∗ = r (X/r)∗ and gcd (Xr) = 1,
we have X∗ = r (A ∪ t + (N)). �

Considering the Kleene star of a regular set, it happens that both the threshold
and the period have no simple expressions. However, we are able to bound the
value of the period which is enough for our purpose.

Lemma 3.10. Let A∪(t +M + pN) be a rat-expression of some non-empty regular
set X. Then X∗ admits a period less than or equal to max (t, p).
Proof. Let r denote the greatest common divisor of the elements of X. By
Lemma 3.9, X∗ = r (K ∪ (` +N)) and thus r is a period of X∗.

Now we prove an upper bound on r in the two disjoint cases: �nite or in�nite.
If X is �nite, then X is equal to A and is thus bounded by t. Since r divides all
the elements of X (supposed non-empty), we have r < t. Else, if X is in�nite, then
p > 0 and M ≠ ∅. For any x ∈ t+M , r divides both x and x+p, and thus r divides
p. So r ≤ p. This concludes the proof. �
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4. Sweepingness weakens 2-way transducers even with a

unary output alphabet

In [7], we proved that when Σ and ∆ are unary, the family of relations in
Σ∗×∆∗ accepted by 2-way transducers is exactly the family of Hadamard relations.
The crux of the proof seems to rely on the hypothesis that ∆ is unary, since
this fact is strongly required by the characterization of the family Had(Σ∗ ×∆∗)
of Proposition 2.11. In fact, for arbitrary Σ and unary ∆, the construction we
developed can be extended to show that the relations accepted by various restricted
versions of 2-way transducers are in Had(Σ∗ ×∆∗): among others, the transducers
that are deterministic, unambiguous, functional, or k-valued. We left open the
general case where Σ has at least two elements and ∆ is unary. Here, we show
that in this case the family of relations realized by 2-way transducers strictly
contains the family of Hadamard relations.

4.1. Massaging the productions

In this section we give a kind of normal form for transducers with unary output.
Thanks to the identi�cation between unary languages and subsets of N, we may
associate to each production function of such transducers a production function
that maps transitions into regular subsets of N.

We show that transducers over Σ and N admit a simple form:

Lemma 4.1. Let T be a transducer with transition set δ and production function
φ ∶ δ → Rat (N). Then there exists an equivalent transducer T ′ such that the
image of each transition by the production function is of the form t+ pN for some
non-negative integers t and p. Moreover, if T is 1-way or restless or both, so is
the resulting transducer.

Proof. We �x the transducer T = (A,φ). By Proposition 3.1, for each transi-
tion e of A the language φ(e) admits a rat-expression Ae ∪ (te +Me + peN). By
decomposing Ae and Me as �nite union of singletons, we obtain:

φ(e) = ( ⋃
a∈Ae

a + 0N) ∪ ( ⋃
m∈Me

(te +m) + peN)
Hence, by indexing the disjoint union Ae ⊍Me by Ie = {0, . . . , ∣Ae∣ + ∣Me∣ − 1}, the
set φ(e) may be written as ⋃

i∈Ie ti,e + pi,eN.
Now we modify the transducer (A,φ) into (A′, φ′) in such a way that the tran-

sitions distinguish the indices i chosen in Ie. This can easily be done by recording
in the �nite control of A′ which choice has been done at the last transition. For-
mally, a state of A′ is a pair (q, i) where q is a state of A and i is an index in⋃e Ie. For each transition f = (q, a, d, q′) of A and each index i ∈ ⋃e Ie there are∣If ∣ transitions: ((q, i), a, d, (q′, j)) for j ∈ If . Finally, the image of a transition((q, i), a, d, (q′, j)) by φ′ is de�ned as tj,f + pj,fN. By construction the resulting
transducer is equivalent to T . Observe that the directions are kept. �
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4.2. Images of 1-way transducers

Let R ⊆ Σ∗×∆∗ be a rational relation, i.e., a relation realized by a 1-way trans-
ducer. For all words u ∈ Σ∗ the set R(u) = {v ∈ ∆∗ ∣ (u, v) ∈ R} is a rational subset
of ∆∗, [17, Theorem IV.1.3]. Here, we show that when ∆ is unary the collection of
all possible images satis�es a uniform property. We keep identifying ∆∗ with N.

Theorem 4.2. Let Σ be an arbitrary alphabet. Let R be a rational relation in
Σ∗×N. Then, there exist two integers t and p such that, for all w ∈ Σ∗, the regular
language R(w) admits a rat-expression of threshold t (∣w∣ + 1) and period p.

Proof. By Theorem 2.5, R is accepted by a 1-way transducer T = (A,φ) as in
De�nition 2.4, which we can suppose restless by Lemma 2.7. Let w be an input
word in Σ∗ and let n denote its length. Let R be the set of all successful runs of
T on w. Observe that since T is 1-way restless, every run r in R has length n + 2
(there is exactly one con�guration per position, including endmarkers). Thus R
is �nite. The image of w is:

R(w) = ⋃
r∈RΦ(r)

Via Lemma 4.1 we suppose without loss of generality that for each e ∈ δ, φ(e) =
te + peN for some integers te and pe.

We �x one run r ∈ R of trace t. For each e ∈ δ, we denote by re the number
of occurrences of e in t. By commutativity (recall that Xp denotes the sum of p
copies of X),

Φ(r) =∑
e∈δ (tere + (peN)re) = (∑

e∈δ tere) + (∑
e∈δ (peN)re)

Note that ∣t∣ = n+1. Thus, sr = ∑
e∈δ tere is an integer less than or equal to m(n+1)

where m = max
e∈δ (te). Then, de�ne Cr = ∑

e∈δ (peN)re . Denote by Ir the set of

transitions e such that re > 0. Since for any ` we have `N + `N = `N, the set
Cr is equal to ∑

e∈Ir peN. Observe that there are �nitely many possible Ir. By

Corollary 3.4, there exist two integers k and p such that for each subset I of
transitions, there are two sets AI and MI , respectively bounded by k and p, such
that ∑

e∈I peN = AI∪(k +MI + pN). In particular, Cr = AIr∪(k +MIr + pN). Finally:
Φ (r) = sr + (AIr ∪ (k +MIr + pN))= (sr +AIr) ∪ (sr + k +MIr + pN)

As previously claimed, sr <m(n+1). We can thus �nd an integer t, independent on
n, such that k+m(n+1) < t(n+1). Then, using Lemma 3.2, we can �nd Br bounded
by t(n + 1) and M ′

r bounded by p such that Φ(r) = Br ∪ (t(n + 1) +M ′
r + pN).
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Now we consider all successful runs of T on w, i.e., all runs in R. It follows
from our previous study:

R(w) = ⋃
r∈RBr ∪ (t(n + 1) +M ′

r + pN)
and hence, by commutativity and associativity of the set union operation:

R(w) = (⋃
r∈RBr) ∪ (t(n + 1) + (⋃

r∈RM
′
r) + pN)

Because each Br and M ′
r are respectively bounded by t(n + 1) and p, so are

their respective unions over R. �

4.3. Back to 2-way transducers

From the study of Section 3, we are now able to extend Theorem 4.2 to the
relations of the special form R H SH⋆ for some rational relations R and S.

Lemma 4.3. Let Σ be an arbitrary alphabet. Let R and S be two rational relations
in Σ∗ ×N. The regular set (R H SH⋆)(w) admits a period in O(∣w∣).
Proof. By Theorem 4.2, for Z denoting R or S, there exist two integers tZ and
pZ , such that for every w ∈ Σ∗, there are two �nite subsets AZ(w),MZ(w) ⊆ N
respectively bounded by tZ (∣w∣ + 1) and pZ that satisfy:

Z(w) = AZ(w) ∪ (tZ (∣w∣ + 1) +MZ(w) + pZN)
Consider SH⋆. By Lemma 3.10, the set SH⋆(w) = (S(w))∗ admits a period

qS,w less than or equal to max (tS (∣w∣ + 1) , pS). Applying Lemma 3.3, the inte-
ger pw = pR × qS,w is a period for both R(w) and S(w)∗ and thus for R(w) +
S(w)∗ = (R H SH⋆) (w) by Proposition 3.8. Observe that pw = pR × qS,w ≤
pR×max (tS × (∣w∣ + 1) , pS). This concludes the proof. �

Finally, we prove our main result:

Theorem 4.4. Let Σ be an arbitrary alphabet. Let R be an Hadamard relation in
Σ∗ ×N. Then there exists an integer k such that for each input word w ∈ Σ∗, the
regular set R(w) admits a period in O (∣w∣k).
Proof. Let R be an Hadamard relation in Σ∗ × N. Then, for some �nite families
of rational relations (Xi)0≤i<k and (Yi)0≤i<k:

R = ⋃
0≤i<kXi H Y

H⋆
i

By Lemma 4.3, for every 0 ≤ i < k there exists an integer ci such that for
every w ∈ Σ∗, the set (Xi H Y

H⋆
i ) (w) admits a rat-expression of period pi(w)

with pi(w) < ci(∣w∣ + 1). By Corollary 3.4 and Lemma 3.3, each (Xi H Y
∗
i ) (w)
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admits a rat-expression of period p(w) = lcm
0≤i<k pi(w). Therefore, by union, p(w) is

a period for R(w) as well. We conclude by observing that

p(w) = lcm
0≤i<k pi(w) ≤ ∏

0≤i<k pi(w) < ∏
0≤i<k ci (∣w∣ + 1) = O (∣w∣k) .

�

4.4. Separating output-unary 2-way and sweeping transducers

Theorem 4.4 allows us to prove that the family Had(Σ∗ × a∗) is strictly included
in the family of relations in Σ∗ ×a∗ accepted by 2-way transducers. We de�ne the
relation MultBlock on Σ = {a,#} by setting for each input word w ∈ Σ∗:

MultBlock(w) = {kn ∣ k,n ∈ N and w ∈ Σ∗#an#Σ∗}
The relation is accepted by a 2-way transducer:

Proposition 4.5. The relation Mult-Block is accepted by a 2-way transducer.

Proof. We describe the behavior of a 2-way transducer accepting MultBlock

(see Figure 3). The automaton works in three phases: (1) it scans a pre�x of the
input until it reaches a nondeterministically chosen symbol #; (2) using #'s as
endmarkers, it copies the preceding block of successive a's an arbitrary number of
time including 0 (this phase is similar to the behavior of the automaton described
in Example 2.6); (3) after a nondeterministic choice, it scans the remaining su�x
of the input and accepts at the right endmarker. It should be clear that the relation
accepted is MultBlock. �

q− Ð→q

←Ðq

q+

a,+1

#
,+1▷,+1

#,+1
a,+1

#
,−

1

#,+1

a,−1

#
,+1

a,+1

#,+1

Figure 3: The underlying automaton of a 2-way transducer ac-
cepting MultBlock. The production function maps the transi-
tion (←Ðq , a,−1,←Ðq ) to a and all other transitions to ε.

We prove now that MultBlock is not Hadamard:

Lemma 4.6. The relation MultBlock is not Hadamard.
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Proof. By Theorem 4.4, it su�ces to prove by contraposition that there exists an
in�nite sequence of input words wn ∈ Σ∗ of strictly increasing length such that the
minimal period pn of MultBlock(wn) is superpolynomial in the length ∣wn∣.

We consider the sequence of words wn = #ar1#⋯#arn# where each ri de-
notes the i-th prime number. By Proposition 3.5, the minimal period pn for the
language MultBlock(wn) is equal to ∏0<i≤n ri.

At this point we need an instrumental function whose asymptotic behavior is
known. The Landau's function g(m) maps every integerm into the largest order of
an element of the symmetric group Sm. Equivalently, it is the largest least common

multiple of any partition of m. It is known that g(m) = e(1+o(1))√m ln(m) [14]. In
particular, g is superpolynomial in m.

In our case we have pn = g (∣wn∣a) = ∏0<i≤n ri. Because ∣wn∣ = ∣wn∣a + n + 1, we
obtain that pn is superpolynomial in ∣wn∣. �

Observe that for every integer k, the period of the image of w ∈ Σ∗ in the

restriction MultBlock ∩ ((#a∗)k# ×N) is in O (∣w∣k).
Recall Proposition 2.13 asserting the equivalence between Hadamard relations

and relations accepted by sweeping transducers.

Theorem 4.7. Let Σ and ∆ be two alphabets. If Σ has cardinality at least 2 then
the family of Hadamard relations in Had(Σ∗ ×∆∗), or equivalently the family of
relations accepted by sweeping transducers over Σ and ∆, is strictly included in
the family of relations accepted by 2-way transducers.

4.5. A corollary

Recall that the componentwise concatenation of two relations A1,A2 ⊆ Σ∗ ×N
is the relation given by A1 ⋅ A2 = {(u1u2, n1 + n2) ∣ (u1, n1) ∈ A1, (u2, n2) ∈ A2}.
De�ne the two relations:

Erase = {(w,0) ∣ w ∈ Σ∗} ;
MultOneBlock = {(#an#, kn) ∣ n, k ∈ N and w ∈ N} .

Observe that Erase is rational, therefore Hadamard, and MultOneBlock is
Hadamard (but not rational, compare with the relation uMult de�ned in Sec-
tion 2.4). Then we have:

MultBlock = Erase ⋅MultOneBlock ⋅Erase
The following is a consequence of Lemma 4.6.

Corollary 4.8. The family of Hadamard relations is not closed under component-
wise concatenation, even when the output alphabet is unary.
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5. Sweepingness weakens 2-way transducers even with a

unary input alphabet

We know that 2-way transducers are equivalent to sweeping transducers when
both the input and the output alphabets are unary. Theorem 4.7 shows that
this is not the case anymore, when the output alphabet only is unary. In this
section we give an example of a relation in {a}∗ × {a, b}∗ which is accepted by a
2-way transducer but not by a sweeping transducer. This example has also been
discussed in [6].

Example 5.1.

LR-Prefix = {(an, apbp) ∣ 0 < p ≤ n, n ∈ N}
We brie�y describe a 2-way transducer accepting LR-Prefix (see Figure 4). The
device works in three successive phases: (1) it copy a pre�x of the input until
a nondeterministically chosen point; (2) it scans the pre�x backward while out-
putting a symbol b at each move; (3) it reaches the right endmarker and accepts.

Ð→q ←Ðq q+

a,+1▷,+1
a,−1

a,−1
▷,+1

a,+1

φ((q, c, d, q′)) is equal to a if q′ =Ð→q , to b if q′ =←Ðq and to ε otherwise.

Figure 4: A 2-way transducer accepting LR-Prefix.

Observe that it perform a nondeterministic choice in state Ð→q scanning an a.
This nondeterminism is strongly required for our purpose, since every deterministic
input-unary transducer admits an equivalent sweeping transducer [6] (see Table 1).
However, observe that the transducer does not admit loops, i.e., no state can be
visited twice at the same positions. This kind of transducer is called simple in [15]
and was studied in [2] in the case of commutative outputs but arbitrary inputs.

The relation LR-Prefix cannot be accepted by a sweeping transducer.

Lemma 5.2. No sweeping transducer may accept the relation LR-Prefix.

Proof. Suppose there exists a sweeping transducer T accepting LR-Prefix. By
Lemma 2.7, we may assume T is restless. Observe that for each n > 0, the language
LR-Prefix(an) has cardinality n, by de�nition. However, we will prove that
on each input, only a bounded number of outputs may be produced by T , a
contradiction for large enough inputs.
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Let r be a successful run on some input u. We can decompose r into three runs

r = r1@(q, p)@r2@(q′, p′)@r3

such that φ(r1) ∈ a∗, and r2 is a (q, p) to (q′, p′) hit (in particular p and p′ are
border positions, i.e., positions equal to 0 or ∣u∣ + 1) with φ(r2) ∈ a∗b+ (therefore,
φ(r3) ∈ b∗). In other words, we isolate the hit r2 during which the �rst b is output.

Observe that, because T is sweeping, p′ is the border position opposite to p.
We may thus identify both using the one-bit information s ∈ {▷,◁}, meaning
that up = s. The border opposite to s is denoted s and up′ = s. The tuple (r1, r2, r3)
is called the (q, s, q′)-phase decomposition of r.

For each states q and q′ and each s ∈ {▷,◁}, we de�ne the following relations:

Prefixq,s,q′ = {(u, v) ∣ there exists a successful run on u of (q, s, q′)-phase
decomposition (r1, r2, r3) and v = φ(r1) }

Transitq,s,q′ = {(u, v) ∣ there exists a successful run on u of (q, s, q′)-phase
decomposition (r1, r2, r3) and v = φ(r2) }

Suffixq,s,q′ = {(u, v) ∣ there exists a successful run on u of (q, s, q′)-phase
decomposition (r1, r2, r3) and v = φ(r3) }

There are �nitely many triples (q, s, q′) and by de�nition:

LR-Prefix = ⋃
q,s,q′

Prefixq,s,q′ H Transitq,s,q′ H Suffixq,s,q′ (2)

Observe that, for each q, q′ and s, the three relations de�ned above have the
same domain which is equal to:

Dq,s,q′ = {u ∈ a∗ ∣ there exists a successful run on u
which admits a (q, s, q′)-phase decomposition

}
It is easy to prove that Dq,s,q′ is rational. Thus, each relation Transitq,s,q′

is accepted by a 1-way transducer Tq,s,q′ obtained from T . Denoting p and p′
the positions on u such that up = s and up′ = s, the transducer Tq,s,q′ does not
simply simulate the (q, p) to (q′, p′) hits of T , but should also check that the
input belongs to Dq,s,q′ and that the output contains at least one b. This enforces
the simulated (q, p) to (q′, p′) hit to be the central factor of a (q, s, q′)-phase
decomposition of some successful run of T .

Observe that, because ∣LR-Prefix(an)∣ = n for any n > 0, no successful run
of any Tq,s,q′ on a

n may produce more than n outputs. In particular, every tran-
sition used is associated to a �nite set of productions. Therefore, the transitions
associated with in�nite languages are useless and may be removed. Then, we may
de�ne k as the maximal length of an output associated with any transition of any
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transducer Tq,s,q′ , i.e.,

k = max{∣y∣ ∈ φ(t) ∣ t transition of Tq,s,q′ with φ(t) <∞ for some q, s, q′} .
We also �x a constant N greater than the number of states of any Tq,s,q′ plus one,
i.e., N > max

q,s,q′
(size (Tq,s,q′)) + 1.

We �x (q, s, q′). First, we show that Prefixq,s,q′ and Suffixq,s,q′ are func-
tional. Suppose that (u, v) and (u, v′) belong to Prefixq,s,q′ . Since the three
relations de�ned above share the same domain, there exist w such that (u,w) ∈
Transitq,s,q′ H Suffixq,s,q′ , and hence, (u, vw) and (u, v′w) belong to LR-Prefix.
Now, because in each image of LR-Prefix the number of occurrences of a's equals
those of b's, we have ∣vw∣a = ∣vw∣b and ∣v′w∣a = ∣v′w∣b. Since both v and v′ belong
to a∗, we obtain v = v′ = a∣w∣b−∣w∣a . Thus, Prefixq,s,q′ is a function. Similarly,
Suffixq,s,q′ is a function. It follows that for any n ∈ N we have:

∣(Prefixq,s,q′ H Transitq,s,q′ H Suffixq,s,q′) (an)∣ = ∣Transitq,s,q′(an)∣ . (3)

Moreover, using the same argument, if v and v′ in a∗b+ belong toTransitq,s,q′(an)
then we have:

∣v∣b − ∣v∣a = ∣v′∣b − ∣v′∣a . (4)

We will use this property in order to bound by a constant the number of images in
each Transitq,s,q′(an). More precisely (recall the two constants k and N de�ned
previously), we prove:

∀(u, v) ∈ Transitq,s,q′ ∣v∣a < kN or ∣v∣b < kN . (5)

Then, because for any u, Transitq,s,q′(u) ⊆ a∗b+, it follows from (4) that the
number of words in Transitq,s,q′(u) is at most kN . Indeed, for each 0 < i ≤ kN ,
there exists at most one word v ∈ Transitq,s,q′(u) such that ∣v∣a = i (resp. ∣v∣b = i).

We now prove (5). Let n be �xed. A cycle is a nontrivial run not visiting
the endmarkers2, starting and ending in the same state. Since Transitq,s,q′(an)
is included in a∗b+ by de�nition, no cycle with output in a+b+ may occur in a
successful run of Tq,s,q′ .

Now, we consider two (possibly equal) successful runs r1 and r2 of Tq,s,q′ on a
n.

Suppose that there are two loops `1 and `2 occurring in r1 and r2 respectively, such
that, for some positive integers m1 and m2, we have a

m1 ∈ Φ(`1) and bm2 ∈ Φ(`2).
Denote by h1 and h2 the length, in terms of head moves, of `1 and `2 respectively.
Let v1 and v2 be two words respectively produced along r1 and r2. In particular,
by (4), we have ∣v1∣a − ∣v1∣b = ∣v2∣a − ∣v2∣b. On the pumped input an+h1h2 , we
may �nd two successful runs: one obtained from r1 by repeating h2 times the

2Cycles are used for pumping. Since an endmarker cannot be pumped (it occur only once on
the input tape), we require that no endmarker is visited during the cycles.
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cycle `1; the second obtained from r2 by repeating h1 times the cycle `2. The
words v′1 = ah2m1v1 and v

′
2 = v2bh1m2 are valid outputs associated to these two runs.

Observe that ∣v′1∣a − ∣v′1∣b = h2m1 + ∣v1∣a − ∣v1∣b and ∣v′2∣a − ∣v′2∣b = ∣v2∣a − ∣v2∣b − h1m2.
Hence, using the above constraint on v1 and v2, the two di�erences are unequal,
and therefore, v′1 and v′2 violate (4), a contradiction. Thus, for some c equal to a
or to b, no cycle occurring in any successful run of Tq,s,q′ on a

n may output a c.
Fix this c. The maximal number of steps without visiting twice the same state

is size (Tq,s,q′) − 1. Since steps from and to border con�gurations do not create
cycles, the maximal number of steps in a successful run of Tq,s,q′ on a

n without
cycles is size (Tq,s,q′)+ 1, which is less than N . Thus, the number of c's produced
along a successful run of Tq,s,q′ is bounded by kN . This concludes the proof of (5).
As explained previously, it follows ∣Transitq,s,q′(an)∣ < kN .

We conclude by observing that, by the equations (2) and (3), for each n, we have∣LR-Prefix(an)∣ < 2kN ∣Q∣2 where Q is the state set of T . This is a contradiction,

because any input an with n ≥ 2kN ∣Q∣2 has more associated outputs. �

It follows that the family of Hadamard relations does not capture the family of
relations accepted by 2-way transducers, even when the input alphabet is unary.
See the analogy with Theorem 4.7.

Theorem 5.3. Let Σ and ∆ be two alphabets. If ∆ has cardinality at least 2 then
the family of Hadamard relations in Had(Σ∗ ×∆∗), or equivalently the family of
relations accepted by sweeping transducer over Σ and ∆, is strictly included in the
family of relations accepted by 2-way transducers.

As for Section 4.5, we deduce a non-closure property of the Hadamard relations.

Corollary 5.4. The family of Hadamard relations is not closed under component-
wise concatenation, even when the input alphabet is unary.

Proof. Remember that Id denotes the identity relation (see Section 2.5), and
that Erase is the relation {(w, ε) ∣ w ∈ Σ∗} (see Section 4.5). We de�ne:

Renamea,b = {(an, bn) ∣ n ∈ N}
Obviously, it is rational. Hence, the Hadamard product: Id H Renamea,b belongs

to Had (a∗ × {a, b}∗). We conclude the proof by observing:

LR-Prefix = (Id H Renamea,b) ⋅Erase
�

6. Conclusion

Our result proved in [7] claims that on unary input and output alphabets, sweep-
ing transducers have the same recognition power as general 2-way transducers. In
this paper, we have shown that the hypothesis of having both input and output
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alphabets unary is strongly required. Indeed, we have exhibited two relations,
one with a unary output alphabet, the other with a unary input alphabet, that
separate the two models (Theorems 4.7 and 5.3). Despite the intuition and the
simplicity of the two examples, the proofs involve many intermediate results and
some technical material, showing the complexity of the dynamics of 2-way devices.
Some of these intermediate results are interesting for their own sake, in particular,
the bound on the period of the image of output-unary 1-way (Theorem 4.2) and
output-unary sweeping transducers (Theorem 4.4).
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