Characterization of relations accepted by two-way transducers

Bruno Guillon1,2

1IRIF - Université Paris-Diderot, Paris 7
2Dipartimento di Informatica - Università degli studi di Milano

February 12. 2016
Séminaire Automate
1-way automaton over Σ

$A = (Q, q_-, F, \delta)$

transition set: $Q \times \Sigma \times Q$

```
the input word
```

```
Automaton
```

READ
2-way automaton over Σ

A

$(Q, q_-, F, \delta) \leftarrow$

transition set: $Q \times \Sigma_{\triangleright, \triangleleft} \times \{-1, 0, 1\} \times Q$

left endmarker

right endmarker

Automaton

A

$(Q, q_-, F, \delta) \leftarrow$

transition set: $Q \times \Sigma_{\triangleright, \triangleleft} \times \{-1, 0, 1\} \times Q$
2-way transducer over Σ, Γ

$$(A, \phi)$$

$$(Q, q_-, F, \delta)$$

production function: $\delta \rightarrow \text{RAT}(\Gamma^*)$

transition set: $Q \times \Sigma_{\triangleright, \triangleleft} \times \{-1, 0, 1\} \times Q$
A simple example: $SQUARE = \{(w, ww) \mid w \in \Sigma^*\}$
A simple example: $\text{SQUARE} = \{(w, ww) \mid w \in \Sigma^*\}$

- copy the input word
A simple example: \(\text{SQUARE} = \{(w, ww) \mid w \in \Sigma^*\} \)

- Copy the input word
- Rewind the input tape
A simple example: $SQUARE = \{(w, ww) \mid w \in \Sigma^*\}$

- copy the input word
- rewind the input tape
- append a copy of the input word
A simple example: $\text{SQUARE} = \{(w, ww) \mid w \in \Sigma^*\}$

- copy the input word
- rewind the input tape
- append a copy of the input word
A simple example: \(\text{SQUARE} = \{(w, ww) \mid w \in \Sigma^*\} \)

- copy the input word
- rewind the input tape
- append a copy of the input word
Another example: \(\text{uMULT} = \{ (a^n, a^{kn}) \mid k, n \in \mathbb{N} \} \)
Another example: $\text{UMULT} = \{(a^n, a^{kn}) | k, n \in \mathbb{N}\}$
Another example: \(\text{UMULT} = \{(a^n, a^{kn}) \mid k, n \in \mathbb{N}\} \)
Another example: $\text{uMULT} = \{(a^n, a^{kn}) \mid k, n \in \mathbb{N}\}$
Another example: \(\text{uMULT} = \{(a^n, a^{kn}) | k, n \in \mathbb{N}\} \)
Another example: $\mathcal{U}\text{MULT} = \{(a^n, a^{kn}) \mid k, n \in \mathbb{N}\}$

copy the input word \rightarrow rewind the input tape
Another example: $\text{uMULT} = \{(a^n, a^{kn}) \mid k, n \in \mathbb{N}\}$
Another example: $\text{uMULT} = \{(a^n, a^{kn}) \mid k, n \in \mathbb{N}\}$
Rational operations

- Union

- Componentwise concatenation

\[R_1 \cdot R_2 = \{ (u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2 \} \]

- Kleene star

\[R^* = \{ (u_1 u_2 \cdots u_k, v_1 v_2 \cdots v_k) \mid \forall i \ (u_i, v_i) \in R \} \]
Rational operations

- Union

- Componentwise concatenation

\[R_1 \cdot R_2 = \{(u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\} \]

- Kleene star

\[R^* = \{(u_1 u_2 \ldots u_k, v_1 v_2 \ldots v_k) \mid \forall \ i \ (u_i, v_i) \in R\} \]

Definition \((Rat(\Sigma^* \times \Gamma^*))\)

The class of rational relations is the smallest class:

- contains finite relations
- closed under rational operations
Rational operations

- Union
 \[R_1 \cup R_2 \]

- Componentwise concatenation
 \[R_1 \cdot R_2 = \{(u_1 u_2, \nu_1 \nu_2) \mid (u_1, \nu_1) \in R_1 \text{ and } (u_2, \nu_2) \in R_2\} \]

- Kleene star
 \[R^* = \{(u_1 u_2 \cdots u_k, \nu_1 \nu_2 \cdots \nu_k) \mid \forall i \ (u_i, \nu_i) \in R\} \]

Definition \((\text{Rat}(\Sigma^* \times \Gamma^*))\)

The class of rational relations is the smallest class:
- contains finite relations
- closed under rational operations

Theorem (Elgot, Mezei - 1965)

1-way transducers \(\equiv\) the class of rational relations.
Hadamard operations

- Union
 \(R_1 \cup R_2 \)

- H-product
 \[
 R_1 \boxplus R_2 = \{ (u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2 \}
 \]
Hadamard operations

- Union
- H-product

\[
R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}
\]

Example: \textit{SQUARE} = \{(w, ww) \mid w \in \Sigma^*\} = \text{Id} \oplus \text{Id}

- copy the input word
- rewind the input tape
- append a copy of the input word
Hadamard operations

- Union
- H-product

\[R_1 \oplus R_2 = \{ (u, \nu_1 \nu_2) \mid (u, \nu_1) \in R_1 \text{ and } (u, \nu_2) \in R_2 \} \]

- H-star

\[R^{H*} = \{ (u, \nu_1 \nu_2 \cdots \nu_k) \mid \forall i \ (u, \nu_i) \in R \} \]
Hadamard operations

- **Union**
 \[R_1 \cup R_2 \]

- **H-product**
 \[R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\} \]

- **H-star**
 \[R^{H*} = \{(u, v_1 v_2 \cdots v_k) \mid \forall i \ (u, v_i) \in R\} \]

Example: \(u\text{MULT} = \{(a^n, a^{kn}) \mid k, n \in \mathbb{N}\} = u\text{ID}^{H*} \)
Hadamard operations

- Union

\[R_1 \cup R_2 \]

- H-product

\[R_1 \oplus R_2 = \{ (u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2 \} \]

- H-star

\[R^{H*} = \{ (u, v_1 v_2 \cdots v_k) \mid \forall i (u, v_i) \in R \} \]

Definition \((\text{HAD}(\Sigma^* \times \Gamma^*)) \)

The class of Hadamard relations is the smallest class:

- contains rational relations
- closed under Hadamard operations
Hadamard relations

Proposition

two-way transducers are closed under H-operations.
Hadamard relations

Proposition

two-way transducers are closed under H-operations.

Proof

- $R_1 \cup R_2$:
 - simulate T_1 or T_2
Hadamard relations

Proposition

two-way transducers are closed under H-operations.

Proof

- $R_1 \cup R_2$:
 - simulate T_1 or T_2

- $R_1 \otimes R_2$:
 - simulate T_1
 - rewind the input tape
 - simulate T_2
Hadamard relations

Proposition

Two-way transducers are **closed** under **H-operations**.

Proof

- \(R_1 \cup R_2 \):
 - simulate \(T_1 \) or \(T_2 \)
- \(R_1 \oplus R_2 \):
 - simulate \(T_1 \)
 - rewind the input tape
 - simulate \(T_2 \)
- \(R^{H*} \):
 - repeat an arbitrary number of times:
 - simulate \(T \)
 - rewind the input tape
 - reach the right endmarker and accept
Hadamard relations

Proposition

two-way transducers are closed under H-operations.

Proposition

$\text{HAD} \equiv \text{rotating}$
Hadamard relations

Proposition

two-way transducers are closed under H-operations.

Proposition

\[\text{HAD} = \text{rotating} \subseteq \text{two-way} \]
Hadamard relations

Proposition
two-way transducers are closed under H-operations.

Proposition
| Rat | HAD | = | rotating | ⊆ | two-way |

Example

$$\text{uMult} = \{ (a^n, a^{kn}) \mid k, n \in \mathbb{N} \} = \{ (a^n, a^n) \mid n \in \mathbb{N} \}^{H^*} = \text{uId}^{H^*}$$
Main result

Theorem (Elgot, Mezei - 1965)

1-way transducers \(\equiv\) the class of rational relations.
Main result

Theorem (This talk)

When $\Sigma = \{a\}$ and $\Gamma = \{a\}$:

2-way transducers \equiv the class of HAD relations.
Main result

Theorem (Elgot, Mezei - 1965)

When $\Sigma = \{a\}$ and $\Gamma = \{a\}$:

2-way transducers \equiv the class of HAD relations.

This talk

Theorem

With $\Sigma = \{a, \#\}$:

$\text{HAD} \not\subset \text{two-way}$

With $\Gamma = \{a, b\}$:

$\text{HAD} \not\subset \text{two-way}$
Known results on 2-way transducers

- functional \iff deterministic \iff MSO definable functions
- general incomparable MSO definable relations

[Engelfriet, Hoogeboom - 2001]
Known results on 2-way transducers

- functional \equiv deterministic \equiv MSO definable functions
- general incomparable MSO definable relations

[Engelfriet, Hoogeboom - 2001]

- 1-way simulation of 2-way functional transducer:
 decidable and constructible

[Filiot et al. - 2013]
Known results on 2-way transducers with unary output

When $\Gamma = \{a\}$:
Known results on 2-way transducers with unary output

When $\Gamma = \{a\}$:

- Simulation of unambiguous by 1-way [Anselmo - 1990]
- Simulation of unambiguous by deterministic [Carnino, Lombardy - 2014]
Known results on 2-way transducers with unary output

When $\Gamma = \{a\}$:

- Simulation of unambiguous by 1-way [Anselmo - 1990]
- Simulation of unambiguous by deterministic [Carnino, Lombardy - 2014]
- Tropical \equiv 1-way [Carnino, Lombardy - 2014]

Production function $\Phi : \delta \rightarrow \{a^n a^* | n \in \mathbb{N}\} \cup \emptyset$

Rational of period 1
$\Sigma = \{a\} \text{ and } \Gamma = \{a\}$
From 2-way transducers to \mathbb{HAD} (unary case) [1]

Theorem

When $\Sigma = \{a\}$ and $\Gamma = \{a\}$:

$$\mathbb{HAD} \iff \text{two-way transducers}$$

Proof

- \subseteq: done.
- \supseteq: to do.
From 2-way transducers to \(\text{HAD} \) (unary case) [1]

Theorem

When \(\Sigma = \{a\} \) and \(\Gamma = \{a\} \):

\[
\text{HAD} \iff \text{two-way transducers}
\]

Proof

- \(\subseteq \): done.
- \(\supseteq \): to do.

We fix a transducer \(T \).
From 2-way transducers to HAD (unary case) [2]

- Consider border to border run segments;

<table>
<thead>
<tr>
<th>q_1</th>
<th>q_2</th>
<th>q_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$R_1 = \{(u, v_1)\}$

$R_2 = \{(u, v_2)\}$

$R_3 = \{(u, v_3)\}$

$R_1 \cap R_2 \cap R_3 = \{(u, v_1v_2v_3)\}$
From 2-way transducers to HAD (unary case) [2]

- Consider border to border run segments;

\[R_1 = \{(u, v_1)\} \]
\[R_2 = \{(u, v_2)\} \]
\[R_3 = \{(u, v_3)\} \]
From 2-way transducers to HAD (unary case) [2]

- Consider border to border run segments;
- Compose border to border segments;

\[
R_1 = \{(u, v_1)\} \quad R_2 = \{(u, v_2)\} \quad R_3 = \{(u, v_3)\}
\]
From 2-way transducers to \mathbb{HAD} (unary case) [2]

- Consider border to border run segments;
- Compose border to border segments;

\[
R_1 = \{(u, v_1)\} \\
R_2 = \{(u, v_2)\} \\
R_3 = \{(u, v_3)\}
\]

\[
R_1 \boxplus R_2 \boxplus R_3 = \{(u, v_1v_2v_3)\}
\]
From 2-way transducers to HAD (unary case) [3]

\[
\begin{array}{c|c|c}
\triangleright & u & \triangleleft \\
\hline
q_1 & & q_2 \\
\end{array}
\]

define a relation R_{b_i, b_j}
From 2-way transducers to \(\text{HAD}\) (unary case) [3]

\[
\begin{array}{ccc}
\triangleright & u & \triangleleft \\
q_1 & \longrightarrow & q_2 \\
\end{array}
\]

define a relation \(R\)

\[
Q \times \{\triangleright, \triangleleft\}
\]

\[b_i, b_i\]
From 2-way transducers to HAD (unary case) [3]

\[
\begin{array}{c|c|c}
\triangleright & u & \triangleright \\
q_1 & \rightarrow & q_2
\end{array}
\]

define a relation \(R_{b_i, b_j} \) of \(Q \times \{\triangleright, \triangleleft\} \)

\[
\text{HIT} = \begin{pmatrix}
R_{0,0} & R_{0,1} & \cdots & R_{0,k} \\
R_{1,0} & R_{1,1} & \cdots & R_{1,k} \\
\vdots & \vdots & \ddots & \vdots \\
R_{k,0} & R_{k,1} & \cdots & R_{k,k}
\end{pmatrix}
\]

\[Q \times \{\triangleright, \triangleleft\}\]
From 2-way transducers to \mathbb{HAD} (unary case) [4]

\begin{equation}
\langle \mathbb{HAD}, \cup, \oplus, \cdot \rangle \text{ is a Conway semiring}.
\end{equation}
From 2-way transducers to HAD (unary case) [4]

$\langle \text{HAD}, \cup, \oplus, \ast \rangle$ is a Conway semiring.

Look at the successive power of the matrix HIT: HIT^k

...that is, the compositions of k border to border runs...
From 2-way transducers to HAD (unary case) [4]

$\langle \text{HAD}, \cup, \oplus, \ast \rangle$ is a **Conway** semiring.

Look at the star of the matrix HIT: HIT^\ast

...that is, the behavior of \mathcal{T}.

Remark

The relation accepted by \mathcal{T} is a union of entries of HIT^\ast.
From 2-way transducers to HAD (unary case) [4]

$\langle \text{HAD}, \cup, \oplus, \cdot^* \rangle$ is a Conway semiring.

Look at the star of the matrix HIT: HIT^{\cdot^*}

...that is, the behavior of \mathcal{T}.

Remark

The relation accepted by \mathcal{T} is a union of entries of HIT^{\cdot^*}.

entries of $\text{HIT} \in \text{HAD} \quad \rightarrow \quad \text{entries of } \text{HIT}^{\cdot^*} \in \text{HAD}$
From 2-way transducers to HAD (unary case) [5]
From 2-way transducers to HAD (unary case) [5]
From 2-way transducers to \(\text{HAD} \) (unary case) [5]
From 2-way transducers to HAD (unary case) [5]
From 2-way transducers to \(\text{HAD} \) (unary case) [5]
From 2-way transducers to HAD (unary case) [5]
From 2-way transducers to HAD (unary case) [5]
From 2-way transducers to HAD (unary case) [5]
From 2-way transducers to HAD (unary case) [6]

$\langle \text{HAD}, \cup, \oplus, \cdot \rangle$ is a Conway semiring.

Look at the star of the matrix HIT: HIT^{H^*}

\[\text{HIT}^{H^*} \]

\[\text{entries of } \text{HIT} \in \text{HAD} \iff \text{entries of } \text{HIT}^{H^*} \in \text{HAD} \]

Remark

The relation accepted by \mathcal{T} is a union of entries of HIT^{H^*}.

\[\text{entries of } \text{HIT} \in \text{HAD} \iff \text{entries of } \text{HIT}^{H^*} \in \text{HAD} \]
From 2-way transducers to HAD (unary case) [6]

$\langle \text{HAD}, \cup, \oplus, \cdot^* \rangle$ is a Conway semiring.

Look at the star of the matrix $\text{HIT}: \text{HIT}^{\cdot^*}$

...that is, the behavior of \mathcal{T}.

Remark

The relation accepted by \mathcal{T} is a union of entries of HIT^{\cdot^*}.

entries of $\text{HIT} \in \text{HAD} \iff$ entries of $\text{HIT}^{\cdot^*} \in \text{HAD}$

Proposition

unary 2-way transducers $\subseteq \text{HAD}$
From 2-way transducers to HAD (unary case) \[6\]

\[
\langle \text{HAD}, \cup, \oplus, \text{H}^* \rangle \text{ is a Conway semiring.}
\]

Look at the star of the matrix HIT: HIT^{H^*}

\[
\text{... that is, the behavior of } \mathcal{T}.
\]

Remark

The relation accepted by \mathcal{T} is a union of entries of HIT^{H^}.*

entries of $\text{HIT} \in \text{HAD} \iff$ entries of $\text{HIT}^{\text{H}^*} \in \text{HAD}$

Proposition

unary 2-way transducers $\subseteq \text{HAD}$

Proposition

with $\Gamma = \{a\}$ only, sweeping transducer $\subseteq \text{HAD}$
From 2-way transducers to HAD (unary case) [6]

\[
\langle \text{HAD}, \cup, \oplus, \ast \rangle \text{ is a Conway semiring}.
\]

Look at the star of the matrix HIT: HIT^{\ast}

\[
\ldots \text{that is, the behavior of } \mathcal{T}.
\]

Remark

The relation accepted by \mathcal{T} is a union of entries of HIT^\ast.

Proposition

unary 2-way transducers \equiv HAD

Proposition

with $\Gamma = \{a\}$ only, sweeping transducer \equiv HAD
Generalizations?

Theorem

When $\Sigma = \{a\}$ and $\Gamma = \{a\}$:

2-way transducers accept exactly the HAD relations.

With only $\Gamma = \{a\}$:

sweeping transducer $= \text{HAD}$
Generalizations?

Theorem
When $\Sigma = \{a\}$ and $\Gamma = \{a\}$:

2-way transducers accept exactly the \textbf{HAD relations}.

With only $\Gamma = \{a\}$:

sweeping transducer $=$ \textbf{HAD}
Theorem

When $\Sigma = \{a\}$ and $\Gamma = \{a\}$:

2-way transducers accept exactly the HAD relations.

With only $\Gamma = \{a\}$:

sweeping transducer \equiv HAD

2-way transducers \equiv sweeping transducers

effective
Generalizations?

Theorem

When $\Sigma = \{a\}$ and $\Gamma = \{a\}$:

- **2-way transducers** accept exactly the **HAD relations**.

2-way transducers \equiv sweeping transducers

With only $\Gamma = \{a\}$:

- **Sweeping transducer** \equiv **HAD**

Question

Generalization to arbitrary Σ?
Generalizations?

Theorem

When $\Sigma = \{a\}$ and $\Gamma = \{a\}$:

2-way transducers accept exactly the HAD relations.

With only $\Gamma = \{a\}$:

sweeping transducer \equiv HAD

Question

Generalization to arbitrary Σ? to arbitrary Γ?
\[\Sigma = \{ a, \# \} \quad \text{and} \quad \Gamma = \{ a \} \]
On $\Sigma = \{a, \#\}$, and $\Gamma = \{a\}$: counter example

$$R = \{(u, a^{kn}) | k, n \in \mathbb{N}, \#a^k\# \text{ is a factor of } u\}$$
On $\Sigma = \{a, \#\}$, and $\Gamma = \{a\}$: counter example

$$R = \{(u, a^{kn}) \mid k, n \in \mathbb{N}, \#a^k\# \text{ is a factor of } u\}$$
On $\Sigma = \{a, \#\}$, and $\Gamma = \{a\}$: counter example

$$R = \{(u, a^{kn}) \mid k, n \in \mathbb{N}, \#a^k\# \text{ is a factor of } u\}$$
On $\Sigma = \{a, \#\}$, and $\Gamma = \{a\}$: counter example

$R = \{(u, a^{kn}) \mid k, n \in \mathbb{N}, \#a^k\# \text{ is a factor of } u\}$
On $\Sigma = \{a, \#\}$, and $\Gamma = \{a\}$: counter example

$$R = \{(u, a^{kn}) \mid k, n \in \mathbb{N}, \#a^k\# \text{ is a factor of } u\}$$
On $\Sigma = \{a, \#\}$, and $\Gamma = \{a\}$: counter example

$$R = \{(u, a^{kn}) \mid k, n \in \mathbb{N}, \#a^k\# \text{ is a factor of } u\}$$
On $\Sigma = \{a, \#\}$, and $\Gamma = \{a\}$: counter example

$$R = \{(u, a^{kn}) \mid k, n \in \mathbb{N}, \#a^k\# \text{ is a factor of } u\}$$
On $\Sigma = \{a, \#\}$, and $\Gamma = \{a\}$: counter example

$$R = \{(u, a^{kn}) \mid k, n \in \mathbb{N}, \#a^k\# \text{ is a factor of } u\}$$
Sweeping weakens two-way transducers

Proposition

With $\Sigma = \{a, \#\}$ and $\Gamma = \{a\}$, Halad \neq sweeping and two-way.
Sweeping weakens two-way transducers

Proposition
With $\Sigma = \{a, \#\}$ and $\Gamma = \{a\}$,

$\text{Had} \equiv \text{sweeping \cancel{two-way}}$

Proof

- Establish a non trivial property satisfied by rational relations
Sweeping weakens two-way transducers

Proposition

With \(\Sigma = \{ a, \# \} \) and \(\Gamma = \{ a \} \),

\[
\text{HAD} = \text{sweeping} \quad \not\in \quad \text{two-way}
\]

Proof

- Establish a non trivial property satisfied by rational relations

 \[R(u) = \{ v \mid (u, v) \in R \} \in 2^{\Gamma^*} \]

 ... a property on the language of images
Sweeping weakens two-way transducers

Proposition

With $\Sigma = \{a, \#\}$ and $\Gamma = \{a\}$,

\[\text{HAD} = \text{sweeping} \neq \text{two-way} \]

Proof

- Establish a non trivial property satisfied by rational relations
 ... a property on the language of images

 \[R(u) = \{v \mid (u, v) \in R\} \in 2^\Gamma^* \]

- Extend it to Hadamard relations
Sweeping weakens two-way transducers

Proposition

With $\Sigma = \{a, \#\}$ and $\Gamma = \{a\}$,

$\text{HAD} = \text{sweeping} \not\subseteq \text{two-way}$

Proof

- Establish a non trivial property satisfied by rational relations

 ...a property on the language of images

 $$R(u) = \{ v \mid (u, v) \in R \} \in 2^{\Gamma^*}$$

- Extend it to Hadamard relations

- Prove that the previous relation does not satisfy the property
Revisiting the family $\text{Rat}(a^*)$

the family $\text{Rat}(a^*)$ is isomorphic to the rational subsets of \mathbb{N}

by the canonical mapping $a^n \mapsto n$
Revisiting the family \(\text{Rat}(a^*) \)

The family \(\text{Rat}(a^*) \) is isomorphic to the rational subsets of \(\mathbb{N} \) by the canonical mapping \(a^n \mapsto n \).
Revisiting the family $Rat(a^*)$

The family $Rat(a^*)$ is isomorphic to the rational subsets of \mathbb{N} by the canonical mapping $a^n \mapsto n$.

Diagram showing a line with dots representing elements of the family $Rat(a^*)$ and a mapping to the natural numbers \mathbb{N}.
Revisiting the family $Rat(a^*)$

The family $Rat(a^*)$ is isomorphic to the rational subsets of \mathbb{N} by the canonical mapping $a^n \mapsto n$.
Revisiting the family $\text{Rat}(a^*)$

The family $\text{Rat}(a^*)$ is isomorphic to the rational subsets of \mathbb{N} by the canonical mapping $a^n \mapsto n$

$L = A \cup (t + M + p\mathbb{N})$

where: $t, p \in \mathbb{N}$, $A \subseteq [0, t]$ and $M \subseteq [0, p]$

- t is a threshold for L
- p is a period for L
Periods of images

\[R \subseteq \Sigma^* \times \Gamma^*. \text{ The image of } u \in \Sigma^* \text{ is:} \]

\[R(u) = \{ v \mid (u, v) \in R \} \in 2^{\Gamma^*} \]
Periods of images

\[R \subseteq \Sigma^* \times \Gamma^* \]. The image of \(u \in \Sigma^* \) is:

\[R(u) = \{ v \mid (u, v) \in R \} \in 2^{\Gamma^*} \]

Theorem

\(R \) is **rational** \(\Rightarrow \exists t, p \) such that \(\forall u \)

- \(t (|u| + 1) \) is a **threshold** and of \(R(u) \).
- \(p \) is a **period**
Periods of images

\[R \subseteq \Sigma^* \times \Gamma^* \]. The image of \(u \in \Sigma^* \) is:

\[R(u) = \{ v \mid (u, v) \in R \} \in 2^{\Gamma^*} \]

Theorem

\(R \) is rational \(\Rightarrow \exists t, p \) such that \(\forall u \)

\[t(|u| + 1) \text{ is a threshold and } \]
\[p \text{ is a period} \]

Theorem

\(R \) is HAD \(\Rightarrow \exists k \) such that \(\forall u, R(u) \) has a period \(p \in O\left(|u|^k\right) \).
The counter example

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R = \{ (u, a^{kn}) \mid k, n \in \mathbb{N}, \#a^k\# \text{ is a factor of } u \} \]
The counter example

\[\Sigma = \{ \#, a \} \text{ and } \Gamma = \{ a \} \]

\[R = \{ (u, a^{kn}) \mid k, n \in \mathbb{N}, \#a^k\# \text{ is a factor of } u \} \]

\[u = \#a^{n_1}\#a^{n_2}\# \cdots \#a^{n_r}\# \]

\[R(u) = \bigcup_{0 < i \leq r} \{ a^{kn_i} \} = \bigcup_{0 < i \leq r} n_i \mathbb{N} \]

has minimal period \(\text{lcm}_{0 < i \leq r}(n_i) \)

\[|u| = \sum_{0 < i \leq r} n_i + r + 1 \]
The counter example

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R = \{(u, a^{kn}) \mid k, n \in \mathbb{N}, \#a^k\# \text{ is a factor of } u\} \]

\[u = \#a^{n_1}\#a^{n_2}\#\cdots\#a^{n_r}\# \]

\[R(u) = \bigcup_{0<i\leq r} \{a^{kn_i}\} = \bigcup_{0<i\leq r} n_i\mathbb{N} \text{ has minimal period } \text{lcm}_{0<i\leq r}(n_i) \]

\[|u| = \sum_{0<i\leq r} n_i + r + 1 \]

\[g(n) = \max\left(\{|\text{lcm}(n_i)| \sum n_i = n\}\right) \text{ (Landau’s function)} \]
The counter example

\[\Sigma = \{ \#, a \} \text{ and } \Gamma = \{ a \} \]

\[R = \left\{ (u, a^{kn}) \mid k, n \in \mathbb{N}, \#a^k\# \text{ is a factor of } u \right\} \]

\[u = \#a^{n_1}\#a^{n_2}\# \cdots \#a^{n_r}\# \]

\[R(u) = \bigcup_{0<i\leq r} \{ a^{kn_i} \} = \bigcup_{0<i\leq r} n_i \mathbb{N} \quad \text{has minimal period } \operatorname{lcm}_{0<i\leq r}(n_i) \]

\[|u| = \sum_{0<i\leq r} n_i + r + 1 \]

\[g(n) = \max \left(\{ \operatorname{lcm}(n_i) \mid \sum n_i = n \} \right) \quad \text{(Landau’s function)} \]

the period is super-polynomial in \(|u|\)
\[\Sigma = \{a\} \quad \text{and} \quad \Gamma = \{a, b\} \]
On $\Sigma = \{a\}$ and $\Gamma = \{a, b\}$

Proposition

$\text{HAD} \subseteq \text{two-way}$

Example

$R = \{(a^n, a^p b^p) \mid n \in \mathbb{N}, 0 \leq p < n\}$
On $\Sigma = \{a\}$ and $\Gamma = \{a, b\}$

Proposition
$\text{HAD} \subseteq \text{two-way}$

Example
$R = \{(a^n, a^p b^p) \mid n \in \mathbb{N}, 0 \leq p < n\}$
On $\Sigma = \{a\}$ and $\Gamma = \{a, b\}$

Proposition

$\text{HAD} \subseteq \text{two-way}$

Example

$$R = \{(a^n, a^p b^p) \mid n \in \mathbb{N}, 0 \leq p < n\}$$
On $\Sigma = \{a\}$ and $\Gamma = \{a, b\}$

Proposition

$\text{Had} \subseteq \text{two-way}$

Example

$R = \{(a^n, a^p b^p) | n \in \mathbb{N}, 0 \leq p < n\}$
Conclusion

<table>
<thead>
<tr>
<th>Transducer</th>
<th>One-way</th>
<th>Rotating</th>
<th>Sweeping</th>
<th>Two-way</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td>MHAD</td>
<td></td>
</tr>
<tr>
<td>Input unary</td>
<td>RAT</td>
<td></td>
<td></td>
<td>MHAD</td>
</tr>
<tr>
<td>Output unary</td>
<td></td>
<td>HAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input and output unary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Deterministic (== functional) case: everything is effective...

Thank you for your attention.
Conclusion

<table>
<thead>
<tr>
<th>transducer</th>
<th>one-way</th>
<th>rotating</th>
<th>sweeping</th>
<th>two-way</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>input unary</td>
<td></td>
<td>R\text{AT}</td>
<td></td>
<td>MH\text{AD}</td>
</tr>
<tr>
<td>output unary</td>
<td></td>
<td></td>
<td>H\text{AD}</td>
<td></td>
</tr>
<tr>
<td>input and output unary</td>
<td></td>
<td></td>
<td></td>
<td>MH\text{AD}</td>
</tr>
</tbody>
</table>

everything is effective...
Conclusion

Deterministic (= functional) case

<table>
<thead>
<tr>
<th>transducer</th>
<th>one-way</th>
<th>rotating</th>
<th>sweeping</th>
<th>two-way</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>input unary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>output unary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>input and output unary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thank you for your attention.
Conclusion

<table>
<thead>
<tr>
<th>transducer</th>
<th>one-way</th>
<th>rotating</th>
<th>sweeping</th>
<th>two-way</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>input unary</td>
<td></td>
<td></td>
<td>MHAd</td>
<td>MHAd</td>
</tr>
<tr>
<td>output unary</td>
<td>RAT</td>
<td></td>
<td>HAD</td>
<td></td>
</tr>
<tr>
<td>input and output unary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Deterministic (== functional) case: everything is effective...

Thank you for your attention.
Conclusion

Thank you for your attention.
Conclusion

<table>
<thead>
<tr>
<th>transducer</th>
<th>one-way</th>
<th>rotating</th>
<th>sweeping</th>
<th>two-way</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td></td>
<td></td>
<td>MHAD</td>
<td></td>
</tr>
<tr>
<td>input unary</td>
<td>RAT</td>
<td></td>
<td></td>
<td>MHAD</td>
</tr>
<tr>
<td>output unary</td>
<td></td>
<td>HAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>input and output unary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thank you for your attention.
Appendix 1

On the optimality of:

Theorem

\[R \text{ is HAD} \Rightarrow \exists k \text{ such that } \forall u, R(u) \text{ has a period } p \in \mathcal{O}\left(|u|^k\right). \]
Example of Hadamard relation with polynomial period
\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \left\{ (\# a^{k_1} \# a^{k_2} \# \cdots \# a^{k_r} \#, a^{k_i n}) \mid n \in \mathbb{N} \right\} \]
Example of Hadamard relation with polynomial period
\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \left\{ \left(\#a^{k_1} \#a^{k_2} \# \cdots \#a^{k_r} \#, a^{k_i n} \right) \mid n \in \mathbb{N} \right\} \]
Example of Hadamard relation with polynomial period

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \{ (#a_1^k #a_2^k \ldots #a_r^k \#, a_1^{kn}) | n \in \mathbb{N} \} \]
Example of Hadamard relation with polynomial period

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$

$$R_r = \{ (#a^{k_1} #a^{k_2} \#\cdots\#a^{k_r} #, a^{k_i}n) \mid n \in \mathbb{N} \}$$
Example of Hadamard relation with polynomial period

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$

$$R_r = \{(#a^k_1 #a^k_2 #\cdots #a^k_r #, a^{k_i n}) \mid n \in \mathbb{N}\}$$
Example of Hadamard relation with polynomial period

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \{(\#a^{k_1}\#a^{k_2}\#\cdots\#a^{k_r}\#, a^{k_i}n) \mid n \in \mathbb{N}\} \]
Example of Hadamard relation with polynomial period

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$

$$R_r = \{(\# a^{k_1} \# a^{k_2} \# \cdots \# a^{k_r} \#, a^{k_i} n) \mid n \in \mathbb{N}\}$$
Example of Hadamard relation with polynomial period

$$\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\}$$

$$R_r = \{(\#a^{k_1}\#a^{k_2}\#\cdots\#a^{k_r}\#, a^{k_in}) \mid n \in \mathbb{N}\}$$
Example of Hadamard relation with polynomial period
\[\Sigma = \{ \#, a \} \text{ and } \Gamma = \{ a \} \]

\[R_r = \{ (\# a^{k_1} \# a^{k_2} \# \cdots \# a^{k_r} \#, a^{k_i n}) \mid n \in \mathbb{N} \} \]
Example of Hadamard relation with polynomial period

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \left\{ (\#a^{k_1}\#a^{k_2}\#\cdots\#a^{k_r}\#, a^{k_in}) \mid n \in \mathbb{N} \right\} \]
Example of Hadamard relation with polynomial period

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \{(#a^{k_1} a^{k_2} \# \cdots a^{k_r} \# a^{k_i n}) | n \in \mathbb{N} \} \]
Example of Hadamard relation with polynomial period

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \{\left(\#a^{k_1}\#a^{k_2}\#\cdots\#a^{k_r}\#, a^{k_i}n\right) \mid n \in \mathbb{N}\} \]
Example of Hadamard relation with polynomial period

$\Sigma = \{\#, a\}$ and $\Gamma = \{a\}$

$$R_r = \left\{ (\# a^{k_1} \# a^{k_2} \# \ldots \# a^{k_r} \#, a^{k_i n}) \mid n \in \mathbb{N} \right\}$$
Example of Hadamard relation with polynomial period

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \left\{ (\#^{a_1} \#^{a_2} \# \cdots \#^{a_r} \#, a^{k_in}) \mid n \in \mathbb{N} \right\} \]

\[u = \#\text{aaa}#\text{aaaaa}#\text{aaaaaaa}# \quad |u| = 20 \]

the period of \(R(u) \) is \(\text{lcm}(3, 5, 7) = 105 \)
Example of Hadamard relation with polynomial period

\[\Sigma = \{\#, a\} \text{ and } \Gamma = \{a\} \]

\[R_r = \{(#a^{k_1}#a^{k_2}#\cdots#a^{k_r}#, a^{k_in}) \mid n \in \mathbb{N} \} \]

the period of \(R(u) \) is in \(\mathcal{O}(|u|^r) \)
Appendix 2

On central loops when $\Sigma = \{a\}$ and $\Gamma = \{a\}$
Center loops when $\Sigma = \{a\}$ and $\Gamma = \{a\}$

We fix $q \in Q$.

- Consider the language:

$$L^\infty_q = \{ \phi(r) \mid r \text{ is a } q\text{-central loop over some input } u \}$$
Center loops when $\Sigma = \{a\}$ and $\Gamma = \{a\}$

We fix $q \in Q$.

> Consider the subset of \mathbb{N}:

$$L_q^\infty = \{ |\phi(r)| \mid r \text{ is a } q\text{-central loop over some input } u \}$$
Center loops when $\Sigma = \{a\}$ and $\Gamma = \{a\}$

We fix $q \in Q$.

- Consider the subset of \mathbb{N}:

$$L_q^\infty = \{|\phi(r)| \mid r \text{ is a } q\text{-central loop over some input } u\}$$

- It is a submonoid of $2^\mathbb{N}$
Center loops when $\Sigma = \{a\}$ and $\Gamma = \{a\}$

We fix $q \in Q$.

- Consider the subset of \mathbb{N}:

$$L_q^\infty = \{ |\phi(r)| \mid r \text{ is a } q\text{-central loop over some input } u \}$$

- It is a submonoid of $2^\mathbb{N}$

- \Rightarrow it is finitely generated: $\{g_1, \ldots, g_n\}$
Center loops when $\Sigma = \{a\}$ and $\Gamma = \{a\}$

We fix $q \in Q$.

- Consider the subset of \mathbb{N}:

$$L_q^\infty = \{\phi(r) \mid r \text{ is a } q\text{-central loop over some input } u\}$$

- It is a submonoid of $2^\mathbb{N}$

- \Rightarrow it is finitely generated: $\{g_1, \ldots, g_n\}$

- each generator g_i is produced by a q-central loop r_i
Center loops when $\Sigma = \{a\}$ and $\Gamma = \{a\}$

We fix $q \in Q$.

- Consider the subset of \mathbb{N}:

\[
L_q^\infty = \{ |\phi(r)| \mid r \text{ is a } q\text{-central loop over some input } u \}
\]

- It is a submonoid of $2^\mathbb{N}$
- \Rightarrow it is finitely generated: $\{g_1, \ldots, g_n\}$
- each generator g_i is produced by a q-central loop r_i
- each r_i needs a finite space
Center loops when $\Sigma = \{a\}$ and $\Gamma = \{a\}$

We fix $q \in Q$.

- Consider the subset of \mathbb{N}:

$$L^\infty_q = \{|\phi(r)| \mid r \text{ is a } q\text{-central loop over some input } u\}$$

- It is a submonoid of $2^\mathbb{N}$

\implies it is finitely generated: $\{g_1, \ldots, g_n\}$

- each generator g_i is produced by a q-central loop r_i

- each r_i needs a finite space bounded by N
Center loops when $\Sigma = \{a\}$ and $\Gamma = \{a\}$

We fix $q \in Q$.

- Consider the subset of \mathbb{N}:
 \[L_q^\infty = \{ |\phi(r)| \mid r \text{ is a } q\text{-central loop over some input } u \} \]

- It is a submonoid of $2^\mathbb{N}$
- \Rightarrow it is finitely generated: $\{g_1, \ldots, g_n\}$
- each generator g_i is produced by a q-central loop r_i
- each r_i needs a finite space bounded by N
- if a position is at distance $> N$ of both endmarkers, then each r_i may occur
We fix \(q \in Q \).

- Consider the subset of \(\mathbb{N} \):

\[
L_q^\infty = \{ |\phi(r)| \mid r \text{ is a } q\text{-central loop over some input } u \}
\]

- It is a submonoid of \(2^\mathbb{N} \)
- \(\Rightarrow \) it is finitely generated: \(\{g_1, \ldots, g_n\} \)
- each generator \(g_i \) is produced by a \(q\)-central loop \(r_i \)
- each \(r_i \) needs a finite space bounded by \(N \)
- if a position is at distance \(> N \) of both endmarkers, then each \(r_i \) may occur
- and thus the language \(L_q^\infty \) can be produced on the output tape