
Safety Analysis of Parameterised Networks with1

Non-Blocking Rendez-Vous2

Lucie Guillou3

IRIF, CNRS, Université Paris Cité, France4

Arnaud Sangnier5

IRIF, CNRS, Université Paris Cité, France6

Nathalie Sznajder7

LIP6, CNRS, Sorbonne Université, France8

Abstract9

We consider networks of processes that all execute the same finite-state protocol and communicate10

via a rendez-vous mechanism. When a process requests a rendez-vous, another process can respond11

to it and they both change their control states accordingly. We focus here on a specific semantics,12

called non-blocking, where the process requesting a rendez-vous can change its state even if no13

process can respond to it. We study the parameterised coverability problem of a configuration in14

this context, which consists in determining whether there is an initial number of processes and an15

execution allowing to reach a configuration bigger than a given one. We show that this problem is16

EXPSPACE-complete and can be solved in polynomial time if the protocol is partitioned into two17

sets of states, the states from which a process can request a rendez-vous and the ones from which18

it can answer one. We also prove that the problem of the existence of an execution bringing all19

the processes in a final state is undecidable in our context. These two problems can be solved in20

polynomial time with the classical rendez-vous semantics.21

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory22

Keywords and phrases Parameterised verification, Coverability, Counter machines23

Digital Object Identifier 10.4230/LIPIcs..2023.24

1 Introduction25

Verification of distributed/concurrent systems. Because of their ubiquitous use in applications26

we rely on constantly, the development of formal methods to guarantee the correct behaviour27

of distributed/concurrent systems has become one of the most important research directions28

in the field of computer systems verification in the last two decades. Unfortunately, such29

systems are difficult to analyse for several reasons. Among others, we can highlight two30

aspects that make the verification process tedious. First, these systems often generate a large31

number of different executions due to the various interleavings generated by the concurrent32

behaviours of the entities involved. Understanding how these interleavings interact is a33

complex task and can often lead to errors at the design-level or make the model of these34

systems very complex. Second, in some cases, the number of participants in a distributed35

system may be unbounded and not known a priori. To fully guarantee the correctness of such36

systems, the analysis would have to be performed for all possible instances of the system,37

i.e., an infinite number of times. As a consequence, classical techniques to verify finite state38

systems, like testing or model-checking, cannot be easily adapted to distributed systems and39

it is often necessary to develop new techniques.40

Parameterised verification. When designing systems with an unbounded number of parti-41

cipants, one often provides one schematic program (or protocol) intended to be implemented42

by multiple identical processes, parameterised by the number of participants. In general,43

even if the verification problem is decidable for a given instance of the parameter, verifying44

© L. Guillou and A. Sangnier and N. Sznajder;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs..2023.
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

all possible instances is undecidable ([3]). However, several parameters come into play that45

can be adjusted to allow automatic verification. One key aspect to obtain decidability is46

to assume that the processes do not manipulate identities and use simple communication47

mechanisms like pairwise synchronisation (or rendez-vous) [13], broadcast of a message to48

all the entities [10] (which can as well be lossy in order to simulate mobility [6]), shared49

register containing values of a finite set [11], and so on (see [9] for a survey). In all the50

aforementioned cases, all the entities execute the same protocol given by a finite state51

automaton. Note that parameterised verification, when decidable like in the above models,52

is also sometimes surprisingly easy, compared to the same problem with a fixed number of53

participants. For instance, liveness verification of parameterised systems with shared memory54

is Pspace-complete for a fixed number of processes and in NP when parameterised [7].55

Considering rendez-vous communication. In one of the seminal papers for the verification56

of parameterised networks [13], German and Sistla (and since then [4, 14]) assume that the57

entities communicate by “rendez-vous”, a synchronisation mechanism in which two processes58

(the sender and the receiver) agree on a common action by which they jointly change their59

local state. This mechanism is synchronous and symmetric, meaning that if no process is60

ready to receive a message, the sender cannot send it. However, in some applications, such61

as Java Thread programming, this is not exactly the primitive that is implemented. When62

a Thread is suspended in a waiting state, it is woken up by the reception of a message63

notify sent by another Thread. However, the sender is not blocked if there is no suspended64

Thread waiting for its message; in this case, the sender sends the notify anyway and the65

message is simply lost. This is the reason why Delzanno et. al. have introduced non-blocking66

rendez-vous in [5] a communication primitive in which the sender of a message is not blocked67

if no process receives it. One of the problems of interest in parameterised verification is the68

coverability problem: is it possible that, starting from an initial configuration, (at least)69

one process reaches a bad state? In [5], and later in [19], the authors introduce variants70

of Petri nets to handle this type of communication. In particular, the authors investigate71

in [19] the coverability problem for an extended class of Petri nets with non-blocking arcs,72

and show that for this model the coverability problem is decidable using the techniques of73

Well-Structured Transitions Systems [1, 2, 12]. However, since their model is an extension of74

Petri nets, the latter problem is Expspace-hard [16] (no upper bound is given). Relying on75

Petri nets to obtain algorithms for parameterised networks is not always a good option. In76

fact, the coverability problem for parameterised networks with rendez-vous is in P[13], while77

it is Expspace-complete for Petri nets [18, 16]. Hence, no upper bound or lower bound can78

be directly deduced for the verification of networks with non-blocking rendez-vous from [19].79

Our contributions. We show that the coverability problem for parameterised networks with80

non-blocking rendez-vous communication over a finite alphabet is Expspace-complete. To81

obtain this result, we consider an extension of counter machines (without zero test) where82

we add non-blocking decrement actions and edges that can bring back the machine to its83

initial location at any moment. We show that the coverability problem for these extended84

counter machines is Expspace-complete (Section 3) and that it is equivalent to our problem85

over parameterised networks (Section 4). We consider then a subclass of parameterised86

networks – wait-only protocols – in which no state can allow to both request a rendez-vous87

and wait for one. This restriction is very natural to model concurrent programs since when a88

thread is waiting, it cannot perform any other action. We show that coverability problem89

can then be solved in polynomial time (Section 5). Finally, we show that the synchronization90

problem, where we look for a reachable configuration with all the processes in a given state,91

is undecidable in our framework, even for wait-only protocols (Section 6).92

L. Guillou and A. Sangnier and N. Sznajder XX:3

Due to lack of space, some proofs are only given in the appendix.93

2 Rendez-vous Networks with Non-Blocking Semantics94

For a finite alphabet Σ, we let Σ∗ denote the set of finite sequences over Σ (or words). Given95

w ∈ Σ∗, we let ∣w∣ denote its length: if w = w0 . . . wn−1 ∈ Σ∗, then ∣w∣ = n. We write N to96

denote the set of natural numbers and [i, j] to represent the set {k ∈ N ∣ i ≤ k and k ≤ j} for97

i, j ∈ N. For a finite set E, the set NE represents the multisets over E. For two elements98

m, m′ ∈ NE , we denote m +m′ the multiset such that (m +m′)(e) = m(e) +m′(e) for all99

e ∈ E. We say that m ≤m′ if and only if m(e) ≤m′(e) for all e ∈ E. If m ≤m′, then m′ −m100

is the multiset such that (m′ −m)(e) = m′(e) −m(e) for all e ∈ E. Given a subset E′ ⊆ E101

and m ∈ NE , we denote by ∣∣m∣∣E′ the sum Σe∈E′m(e) of elements of E′ present in m. The102

size of a multiset m is given by ∣∣m∣∣ = ∣∣m∣∣E . For e ∈ E, we use sometimes the notation e103

for the multiset m verifying m(e) = 1 and m(e′) = 0 for all e′ ∈ E ∖ {e} and, to represent for104

instance the multiset with four elements a, b, b and c, we will also use the notations Ha, b, b, cI105

or Ha, 2 ⋅ b, cI.106

2.1 Rendez-Vous Protocols107

We can now define our model of networks. We assume that all processes in the network follow108

the same protocol. Communication in the network is pairwise and is performed by rendez-vous109

through a finite communication alphabet Σ. Each process can either perform an internal110

action using the primitive τ , or request a rendez-vous by sending the message m using the111

primitive !m or answer to a rendez-vous by receiving the message m using the primitive ?m (for112

m ∈ Σ). Thus, the set of primitives used by our protocols is RV (Σ) = {τ} ∪ {?m, !m ∣m ∈ Σ}.113

▶ Definition 2.1 (Rendez-vous protocol). A rendez-vous protocol (shortly protocol) is a tuple114

P = (Q, Σ, qin, qf , T) where Q is a finite set of states, Σ is a finite alphabet, qin ∈ Q is the115

initial state, qf ∈ Q is the final state and T ⊆ Q ×RV (Σ) ×Q is the finite set of transitions.116

For a message m ∈ Σ, we denote by R(m) the set of states q from which the message m117

can be received, i.e states q such that there is a transition (q, ?m, q′) ∈ T for some q′ ∈ Q.118

A configuration associated to the protocol P is a non-empty multiset C over Q for which119

C(q) denotes the number of processes in the state q and ∣∣C ∣∣ denotes the total number of120

processes in the configuration C. A configuration C is said to be initial if and only if C(q) = 0121

for all q ∈ Q ∖ {qin}. We denote by C(P) the set of configurations and by I(P) the set of122

initial configurations. Finally for n ∈ N ∖ {0}, we use the notation Cn(P) to represent the set123

of configurations of size n, i.e. Cn(P) = {C ∈ C ∣ ∣∣C ∣∣ = n}. When the protocol is made clear124

from the context, we shall write C, I and Cn.125

We explain now the semantics associated with a protocol. For this matter we define the126

relation Ð→P ⊆ ⋃n≥1 Cn × ({τ} ∪Σ ∪ {nb(m) ∣m ∈ Σ}) × Cn as follows. Given n ∈ N ∖ {0} and127

C, C ′ ∈ Cn and m ∈ Σ, we have:128

1. C
τÐ→P C ′ iff there exists (q, τ, q′) ∈ T such that C(q) > 0 and C ′ = C−HqI+Hq′I (internal);129

2. C
mÐ→P C ′ iff there exists (q1, !m, q′1) ∈ T and (q2, ?m, q′2) ∈ T such that C(q1) > 0 and130

C(q2) > 0 and C(q1) +C(q2) ≥ 2 and C ′ = C − Hq1, q2I + Hq′1, q′2I (rendez-vous);131

3. C
nb(m)ÐÐÐÐ→P C ′ iff there exists (q1, !m, q′1) ∈ T , such that C(q1) > 0 and (C − Hq1I)(q2) = 0132

for all (q2, ?m, q′2) ∈ T and C ′ = C − Hq1I + Hq′1I (non-blocking request).133

Intuitively, from a configuration C, we allow the following behaviours: either a process134

takes an internal transition (labeled by τ), or two processes synchronize over a rendez-vous m,135

or a process requests a rendez-vous to which no process can answer (non-blocking sending).136

XX:4 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

qin q1

q5

q3

q4 q6

q2

!a

?b !c

?a

?b !b
?c

Figure 1 Example of a rendez-vous protocol P

This allows us to define SP the transition system (C(P),Ð→P) associated to P. We will137

write C Ð→P C ′ when there exists a ∈ {τ} ∪ Σ ∪ {nb(m) ∣ m ∈ Σ} such that C
aÐ→P C ′ and138

denote by Ð→∗P the reflexive and transitive closure of Ð→P . Furthermore, when made clear139

from the context, we might simply write Ð→ instead of Ð→P . An execution is a finite sequence140

of configurations ρ = C0C1 . . . such that, for all 0 ≤ i < ∣ρ∣, Ci Ð→P Ci+1, the execution is said141

to be initial if C0 ∈ I(P).142

▶ Example 2.2. Figure 1 provides an example of a rendez-vous protocol where qin is the143

initial state and q1 the final state. A configuration associated to this protocol is for instance144

the multiset H2 ⋅ q1, 1 ⋅ q4, 1 ⋅ q5I and the following sequence represents an initial execution:145

H2 ⋅ qinI
nb(a)ÐÐÐ→ Hqin, q5I

bÐ→ Hq1, q6I
cÐ→ H2 ⋅ q2I.146

▶ Remark 2.3. When we only allow behaviours of type (internal) and (rendez-vous), this147

semantics corresponds to the classical rendez-vous semantics ([13, 4, 14]). In opposition,148

we will refer to the semantics defined here as the non-blocking semantics where a process149

is not blocked if it requests a rendez-vous and no process can answer to it. Note that150

all behaviours possible in the classical rendez-vous semantics are as well possible in the151

non-blocking semantics but the converse is false.152

2.2 Verification Problems153

We now present the problems studied in this work. For this matter, given a protocol154

P = (Q, Σ, qin, qf , T), we define two sets of final configurations. The first one F∃(P) ∶= {C ∈155

C(P) ∣ C(qf) > 0} characterises the configurations where one of the processes is in the final156

state. The second one F∀(P) ∶= {C ∈ C(P) ∣ C(Q ∖ {qf}) = 0} represents the configurations157

where all the processes are in the final state. Here again, when the protocol is clear from158

the context, we might use the notations F∃ and F∀. We study three problems: the state159

coverability problem (SCover), the configuration coverability problem (CCover) and the160

synchronization problem (Synchro), which all take as input a protocol P and can be stated161

as follows:162

Problem name Question

SCover Are there C0 ∈ I and Cf ∈ F∃, such that C0 Ð→
∗ Cf ?

CCover Given C ∈ C, are there C0 ∈ I and C′ ≥ C, such that C0 Ð→
∗ C′?

Synchro Are there C0 ∈ I and Cf ∈ F∀, such that C0 Ð→
∗ Cf ?

163

▶ Remark 2.4. The difficulty in solving these problems lies in the fact that we are seeking for164

an initial configuration allowing a specific execution but the set of initial configurations is165

infinite. The difference between SCover and Synchro is that in the first one we ask for at166

least one process to end up in the final state whereas the second one requires all the processes167

to end in this state. Note that SCover is an instance of CCover but Synchro is not.168

L. Guillou and A. Sangnier and N. Sznajder XX:5

▶ Example 2.5. The rendez-vous protocol of Figure 1 is a positive instance of SCover,169

as shown in Example 2.2. However, this is not the case for the Synchro: if an execution170

brings a process in q2, this process cannot be brought afterwards to q1. If q2 is the final171

state, P is now a positive instance of Synchro (see Example 2.2). Note that if the final172

state is q4, P is not a positive instance of SCover anymore. In fact, the only way to reach173

a configuration with a process in q4 is to put (at least) two processes in state q5 as this is174

the only state from which one process can send the message b. However, this cannot happen,175

since from an initial configuration, the only available action consists in sending the message176

a as a non-blocking request. Once there is one process in state q5, any other attempt to put177

another process in this state will induce a reception of message a by the process already in178

q5, which will hence leave q5. Finally, note that for any n ∈ N, the configuration Hn ⋅ q3I is179

coverable, even if P with q3 as final state is not a positive instance of Synchro.180

3 Coverability for Non-Blocking Counter Machines181

We first detour into new classes of counter machines, which we call non-blocking counter182

machines and non-blocking counter machines with restore, in which a new way of decrementing183

the counters is added to the classical one: a non-blocking decrement, which is an action that184

can always be performed. If the counter is strictly positive, it is decremented; otherwise it is185

let to 0. We show that the coverability of a control state in this model is Expspace-complete,186

and use this result to solve coverability problems in rendez-vous protocols.187

To define counter machines, given a set of integer variables (also called counters) X, we188

use the notation CAct(X) to represent the set of associated actions given by {x+, x−, x= 0 ∣189

x ∈X} ∪ {�}. Intuitively, x+ increments the value of the counter x, while x− decrements it190

and x= 0 checks if it is equal to 0. We are now ready to state the syntax of this model.191

▶ Definition 3.1. A counter machine (shortly CM) is a tuple M = (Loc, X, ∆, ℓin) such that192

Loc is a finite set of locations, ℓin ∈ Loc is an initial location, X is a finite set of counters,193

and ∆ ⊆ Loc × CAct(X) × Loc is finite set of transitions.194

We will say that a CM is test-free (shortly test-free CM) whenever ∆∩ {x= 0 ∣ x ∈X} = ∅.195

A configuration of a CM M = (Loc, X, ∆, ℓin) is a pair (ℓ, v) where ℓ ∈ Loc specifies the196

current location of the CM and v ∶X → N associates to each counter a natural value. Given197

two configurations (ℓ, v) and (ℓ′, v′) and a transition δ ∈ ∆, we define (ℓ, v) δ
⇝M (ℓ′, v′) if198

and only if δ = (ℓ, op, ℓ′) and one of the following holds:199

op = � and v = v′;
op = x+ and v′(x) = v(x) + 1 and

v′(x′) = v(x′) for all x′ ∈X ∖ {x};

op = x− and v′(x) = v(x) − 1 and v′(x′) =
v(x′) for all x′ ∈X ∖ {x};
op = x= 0 and v(x) = 0 and v′(x′) = v(x′)
for all x′ ∈X.

200

201

In order to simulate the non-blocking semantics of our rendez-vous protocols with counter202

machines, we extend the class of test-free CM with non-blocking decrement actions.203

▶ Definition 3.2. A non-blocking test-free counter machine (shortly NB-CM) is a tuple204

M = (Loc, X, ∆b, ∆nb, ℓin) such that (Loc, X, ∆b, ℓin) is a test-free CM and ∆nb ⊆ Loc ×205

{nb(x−) ∣ x ∈X} × Loc is a finite set of non-blocking transitions.206

Again, a configuration is given by a pair (ℓ, v) ∈ Loc ×NX . Given two configurations (ℓ, v)207

and (ℓ, v′) and δ ∈∆b ∪∆nb, we extend the transition relation (ℓ, v) δ
⇝M (ℓ, v′) over the set208

∆nb in the following way: for δ = (ℓ, nb(x−), ℓ′) ∈∆nb, we have (ℓ, v) δ
⇝M (ℓ′, v′) if and only209

if v′(x) =max(0, v(x) − 1), and v′(x′) = v(x′) for all x′ ∈X ∖ {x}.210

XX:6 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

ℓ′in ℓa ℓb ℓin ℓfRstInc Counter Machine M
� �

Restore transitions

Figure 2 The NB+R-CM N

We say that M is an NB-CM with restore (shortly NB+R-CM) when (ℓ,�, ℓin) ∈∆ for211

all ℓ ∈ Loc, i.e. from each location, there is a transition leading to the initial location with no212

effect on the counters values.213

For a CM M with set of transitions ∆ (resp. an NB-CM with sets of transitions ∆b and214

∆nb), we will write (ℓ, v)⇝M (ℓ′, v′) whenever there exists δ ∈∆ (resp. δ ∈∆b ∪∆nb) such215

that (ℓ, v) δ
⇝M (ℓ′, v′) and use ⇝∗M to represent the reflexive and transitive closure of ⇝M .216

When the context is clear we shall write ⇝ instead of ⇝M . We let 0X be the valuation217

such that 0X(x) = 0 for all x ∈ X. An execution is a finite sequence of configurations218

(ℓ0, v0) ⇝ (ℓ1, v1) ⇝ . . . ⇝ (ℓk, vk). It is said to be initial if (ℓ0, v0) = (ℓin, 0X). A219

configuration (ℓ, v) is called reachable if (ℓin, 0X)⇝∗ (ℓ, v).220

We shall now define the coverability problem for (non-blocking test-free) counter machines,221

which asks whether a given location can be reached from the initial configuration. We denote222

this problem Cover[M], for M ∈ {CM, test-free CM, NB-CM, NB+R-CM}. It takes as223

input a machine M inM (with initial location ℓin and working over a set X of counters) and224

a location ℓf and it checks whether there is a valuation v ∈ NX such that (ℓin, 0X)⇝∗ (ℓf , v).225

In the rest of this section, we will prove that Cover[NB+R-CM] is Expspace-complete.226

To this end, we first establish that Cover[NB-CM] is in Expspace, by an adaptation of227

Rackoff’s proof which shows that coverability in Vector Addition Systems is in Expspace228

[18]. This gives also the upper bound for NB +R −CM , since any NB+R-CM is a NB-CM.229

▶ Theorem 3.3. Cover[NB −CM] and Cover[NB +R −CM] are in Expspace.230

To obtain the lower bound, inspired by Lipton’s proof showing that coverability in Vector231

Addition Systems is Expspace-hard [8, 16], we rely on 2Exp-bounded-test-free CM. We say232

that a CM M = (Loc, X, ∆, ℓin) is 2EXP-bounded if there exists n ∈ O(∣Loc∣ + ∣X ∣ + ∣∆∣) such233

that any reachable configuration (ℓ, v) satisfies v(x) ≤ 22n

for all x ∈ X. We use then the234

following result.235

▶ Theorem 3.4 ([8, 16]). Cover[2Exp-bounded-test-free CM] is Expspace-hard.236

We now show how to simulate a 2Exp-bounded-test free-CM by a NB+R-CM, by carefully237

handling restore transitions that may occur at any point in the execution. We will ensure that238

each restore transition is followed by a reset of the counters, so that we can always extract239

from an execution of the NB+R-CM a correct initial execution of the original test free-CM.240

The way we enforce resetting of the counters is inspired by the way Lipton simulates 0-tests241

of a CM in a test-free CM. As in [16, 8], we will describe the final NB+R-CM by means of242

several submachines. To this end, we define procedural non-blocking counter machines that243

are NB-CM with several identified output states: formally, a procedural-NB-CM is a tuple244

N = (Loc, X, ∆b, ∆nb, ℓin, Lout) such that (Loc, X, ∆b, ∆nb, ℓin) is a NB-CM and Lout ⊆ Loc.245

Now fix a 2EXP-bounded-test-free CM M = (Loc, X, ∆, ℓin), ℓf ∈ Loc the location to be246

covered, and n ∈ O(∣M ∣) such that any reachable configuration (ℓ, v) satisfies v(x) ≤ 22n

for247

all x ∈ X. We build a NB+R-CM N as pictured in Figure 2. The goal of the procedural248

NB-CM RstInc is to ensure that all counters in X are reset. Hence, after each restore249

transition, we are sure that we start over a fresh execution of the test-free CM M . We will250

L. Guillou and A. Sangnier and N. Sznajder XX:7

ℓR,0
in ℓR,0

out
. . .nb(y0−) nb(y0−) nb(ȳ0−) nb(ȳ0−) nb(s̄0−)

Figure 3 Description of Rst0

ℓR,i+1
in ℓR,i+1

1 ℓR,i+1
2 ℓR,i+1

3 ℓR,i+1
4

ℓR,i+1
5 ℓR,i+1

6 ℓR,i+1
7 ℓTS,i,z

in

ℓTS,i,z
nz

ℓTS,i,z
z ℓTS,i,y

in

ℓTS,i,y
nz

ℓTS,i,y
z ℓR,i+1

out

TestSwapi(zi) TestSwapi(yi)

. . .

yi− yi+ zi− zi+

nb(yi+1−)

nb(ȳi+1−) � � �

�
�

Figure 4 Description of Rsti+1

need the mechanism designed by Lipton to test whether a counter is equal to 0. So, we251

define two families of counters (Yi)0≤i≤n and (Yi)0≤i≤n as follows. Let Yi = {yi, zi, si} and252

Y i = {yi, zi, si} for all 0 ≤ i < n and Yn = X and Y n = ∅ and X ′ = ⋃0≤i≤n Yi ∪ Y i. All the253

machines we will describe from now on will work over the set of counters X ′.254

Procedural-NB-CM TestSwapi(x). We use a family of procedural-NB-CM defined in [16,255

8]: for all 0 ≤ i < n, for all x ∈ Y i, TestSwapi(x) is a procedural-NB-CM with initial location256

ℓTS,i,x
in , and two output locations ℓTS,i,x

z and ℓTS,i,x
nz . It tests if the value of x is equal to 0, using257

the fact that the sum of the values of x and x is equal to 22i

. If x = 0, it swaps the values of258

x and x, and the execution ends in the output location ℓTS,i,x
z . Otherwise, counters values are259

left unchanged and the execution ends in ℓTS,i,x
nz . In any case, other counters are not modified260

by the execution. Note that TestSwapi(x) makes use of variables in ⋃1≤j<i Yi ∪ Y i.261

Procedural NB-CM Rsti. We use these machines to define a family of procedural-NB-262

CM (Rsti)0≤i≤n that reset the counters in Yi ∪ Yi, assuming that their values are less or263

equal than 22i

. Let 0 ≤ i ≤ n, we let Rsti = (LocR,i, X ′, ∆R,i
b , ∆R,i

nb , ℓR,i
in ,{ℓR,i

out}). The machine264

Rst0 is pictured Figure 3. For all 0 ≤ i < n, the machine Rsti+1 uses counters from Yi ∪ Yi265

and procedural-NB-CM Testswapi(zi) and Testswapi(yi) to control the number of times266

variables from Yi+1 and Y i+1 are decremented. It is pictured Figure 4. Observe that since267

Yn = X, and Yn = ∅, the machine Rstn will be a bit different from the picture : there will268

only be non-blocking decrements over counters from Yn, that is over counters X from the269

initial test-free CM M . If yi, zi (and si) are set to 22i

and yi, zi (and si) are set to 0,270

then each time this procedural-NB-CM takes an outer loop, the variables of Yi+1 ∪ Y i+1271

are decremented (in a non-blocking fashion) 22i

times. This is ensured by the properties272

of TestSwapi(x). Moreover, the location ℓTS,i,y
z will be reached only when the counter yi273

will be set to 0, and this will happen after 22i

taking of the outer loop, again thanks to the274

properties of TestSwapi(x). So, all in all, variables from Yi and Y i+1 will take a non-blocking275

decrement 22i

.22i

times, that is 22i+1
.276

For all x ∈X ′, we say that x is initialized in a valuation v if x ∈ Yi for some 0 ≤ i ≤ n and277

v(x) = 0, or x ∈ Y i for some 0 ≤ i ≤ n and v(x) = 22i

. For 0 ≤ i ≤ n, we say that a valuation278

v ∈ NX′

is i-bounded if for all x ∈ Yi ∪ Y i, v(x) ≤ 22i

.279

The construction ensures that when one enters Rsti with a valuation v that is i-bounded,280

and in which all variables in ⋃0≤j<i Yj ∪ Y j are initialized, the location ℓR,i
out is reached with281

a valuation v′ such that : v′(x) = 0 for all x ∈ Yi ∪ Y i and v′(x) = v(x) for all x ∉ Yi ∪ Y i.282

XX:8 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

ℓa ℓR,0
in ℓR,0

out ℓInc,0
in ℓInc,0

out ℓR,1
in ℓR,1

out ℓInc,n
in ℓInc,n

out ℓb

Rst0 Inc0 Rst1 Rstn

. . .� � � �

Figure 5 RstInc

Moreover, if v is j-bounded for all 0 ≤ j ≤ n, then any valuation reached during the execution283

remains j-bounded for all 0 ≤ j ≤ n.284

Procedural NB-CM Inci. The properties we seek for Rsti are ensured whenever the285

variables in ⋃0≤j<i Yj ∪ Y j are initialized. This is taken care of by a family of procedural-286

NB-CM introduced in [16, 8]. For all 0 ≤ i < n, Inci is a procedural-NB-CM with initial287

location ℓInc,i
in , and unique output location ℓInc,i

out . They enjoy the following property: for288

0 ≤ i < n, when one enters Inci with a valuation v in which all the variables in ⋃0≤j<i Yj ∪Y j289

are initialized and v(x) = 0 for all x ∈ Y i, then the location ℓInci
out is reached with a valuation290

v′ such that v′(x) = 22i

for all x ∈ Y i, and v′(x) = v(x) for all other x ∈ X ′. Moreover, if291

v is j-bounded for all 0 ≤ j ≤ n, then any valuation reached during the execution remains292

j-bounded for all 0 ≤ j ≤ n.293

Procedural NB-CM RstInc. Finally, let RstInc be a procedural-NB-CM with initial294

location ℓa and output location ℓb, over the set of counters X ′ and built as an alternation295

of Rsti and Inci for 0 ≤ i < n, finished by Rstn. It is described Figure 5. Thanks to the296

properties of the machines Rsti and Inci, in the output location of each Inci machine, the297

counters in Y i are set to 22i

, which allow counters in Yi+1 ∪ Y i+1 to be set to 0 in the output298

location of Rsti+1. Hence, in location ℓInc,n
out , counters in Yn =X are set to 0.299

From [16, 8], each procedural machine TestSwapi(x) and Inci has size at most C × n2
300

for some constant C. Hence, observe that N is of size at most B for some B ∈ O(∣M ∣3). One301

can show that (ℓin, 0X)⇝∗M (ℓf , v) for some v ∈ NX , if and only if (ℓ′in, 0X′)⇝∗N (ℓf , v′) for302

some v′ ∈ NX′

. Using Theorem 3.4, we obtain:303

▶ Theorem 3.5. Cover[NB+R-CM] is Expspace-hard.304

4 Coverability for Rendez-Vous Protocols305

In this section we prove that SCover and CCover problems are both Expspace-complete306

for rendez-vous protocols. To this end, we present the following reductions: CCover re-307

duces to Cover[NB-CM] and Cover[NB+R-CM] reduces to SCover. This will prove308

that CCover is in Expspace and SCover is Expspace-hard (from Theorem 3.3 and309

Theorem 3.5). As SCover is an instance of CCover, the two reductions suffice to prove310

Expspace-completeness for both problems.311

4.1 From Rendez-vous Protocols to NB-CM312

Let P = (Q, Σ, qin, qf , T) a rendez-vous protocol and CF a configuration of P to be covered.313

We shall also decompose CF as a sum of multisets Hq1I + Hq2I + ⋅ ⋅ ⋅ + HqsI. Observe that314

there might be qi = qj for i ≠ j. We build the NB-CM M = (Loc, X, ∆b, ∆nb, ℓin) with315

X = Q. A configuration C of P is meant to be represented in M by (ℓin, v), with v(q) = C(q)316

for all q ∈ Q. The only meaningful location of M is then ℓin. The other ones are here317

to ensure correct updates of the counters when simulating a transition. We let Loc =318

{ℓin}∪{ℓ1
(t,t′), ℓ2

(t,t′), ℓ3
(t,t′) ∣ t = (q, !a, q′), t′ = (p, ?a, p′) ∈ T}∪{ℓt, ℓa

t,p1
,⋯, ℓa

t,pk
∣ t = (q, !a, q′) ∈319

T, R(a) = {p1, . . . , pk}} ∪ {ℓq ∣ t = (q, τ, q′) ∈ T} ∪ {ℓ1 . . . ℓs}, with final location ℓf = ℓs, where320

L. Guillou and A. Sangnier and N. Sznajder XX:9

ℓin

qin+

Figure 6
Incrementing qin

ℓin

q−

q′+

Figure 7 Transitions for
(q, τ, q′) ∈ T

ℓin

q− p− q′+

p′+

Figure 8 Transitions for a rendez-vous
(q, !a, q′), (p, ?a, p′) ∈ T

ℓin

q− nb(p1−) nb(pk−)

q′+

. . .

Figure 9 Transitions for a non-blocking
sending (q, !a, q′) ∈ T and R(a) = {p1 . . . pk}

ℓin ℓf

q1− q2− qs−
. . .

Figure 10 Verification for the coverability
of CF = Hq1I + Hq2I + ⋅ ⋅ ⋅ + HqsI

R(m) for a message m ∈ Σ has been defined in Section 2. The sets ∆b and ∆nb are shown321

Figures 6–10. Transitions pictured Figures 6–8 and 10 show how to simulate a rendez-vous322

protocol with the classical rendez-vous mechanism. The non-blocking rendez-vous are handled323

by the transitions pictured Figure 9. If the NB-CM M faithfully simulates P , then this loop324

of non-blocking decrements is taken when the values of the counters in R(a) are equal to 0,325

and the configuration reached still corresponds to a configuration in P . However, it could be326

that this loop is taken in M while some counters in R(a) are strictly positive. In this case,327

a blocking rendez-vous has to be taken in P, e.g. (q, !a, q′) and (p, ?a, p′) if the counter p328

in M is strictly positive. Therefore, the value of the reached configuration (ℓin, v) and the329

corresponding configuration C in P will be different, nonetheless C ≥ v.Then, if it is possible330

to reach a configuration (ℓin, v) in M whose counters are high enough to cover ℓF , then the331

corresponding initial execution in P will reach a configuration C ≥ v which covers CF .332

▶ Theorem 4.1. CCover over rendez-vous protocols is in Expspace.333

4.2 From NB+R-CM to Rendez-Vous Protocols334

The reduction from Cover[NB+R-CM] to SCover in rendez-vous protocols mainly relies on335

the mechanism that can ensure that at most one process evolves in some given set of states, as336

explained in Example 2.5. This will allow to somehow select a “leader” among the processes337

that will simulate the behaviour of the NB+R-CM whereas other processes will simulate the338

values of the counters. Let M = (Loc, X, ∆b, ∆nb, ℓin) a NB+R-CM and ℓf ∈ Loc a final target339

location. We build the rendez-vous protocol P pictured in Figure 11, where P(M) is the part340

that will simulate the NB+R-CM M . The locations {1x ∣ x ∈X} will allow to encode the values341

of the different counters during the execution: for a configuration C, C(1x) will represent the342

value of the counter x. We give then P(M) = (QM , ΣM , ℓin, ℓf , TM) with QM = Loc ∪ {ℓδ ∣343

δ ∈∆b}, ΣM = {incx, incx, decx, decx, nbdecx ∣ x ∈ X}, and TM = {(ℓi, !incx, ℓδ), (ℓδ, ?incx, ℓj) ∣344

δ = (ℓi, x+, ℓj) ∈∆b} ∪ {(ℓi, !decx, ℓδ), (ℓδ, ?decx, ℓj) ∣ δ = (ℓi, x−, ℓj) ∈∆b} ∪ {(ℓi, !nbdecx, ℓj) ∣345

(ℓi, nb(x−), ℓj) ∈ ∆nb} ∪ {(ℓi, τ, ℓj) ∣ (ℓi,�, ℓj) ∈ ∆b}. Here, the reception of a message346

incx (respectively decx) works as an acknowledgement, ensuring that a process has indeed347

received the message incx (respectively decx), and that the corresponding counter has been348

incremented (resp. decremented). For non-blocking decrement, obviously no acknowledgement349

is required. The protocol P = (Q, Σ, qin, ℓf , T) is then defined with Q = QM ∪ {1x, qx, q′x ∣350

x ∈ X} ∪ {qin, q, q�}, Σ = ΣM ∪ {L, R} and T is the set of transitions TM along with the351

transitions pictured in Figure 11. Note that there is a transition (ℓ, ?L, q�) for all ℓ ∈ QM .352

XX:10 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

qin

qx q′x

1x

q ℓin ℓf

q�

P(M)
!L !R

?L
?L

?incx

?R ?R

!decx

!incx ?decx

?nbdecx

Figure 11 The rendez-vous protocol P built from the NB+R-CM M . Note that there is one
gadget with states {qx, q′x, 1x} for each counter x ∈X.

With two non-blocking transitions on L and R at the beginning, the protocol P can353

faithfully simulate the NB+R-CM M without further ado. Conversely, an initial execution354

of P can send multiple processes into the P(M) zone, which can mess up the simulation.355

However, the construction of the protocol ensures that there can only be one process in the356

set of states {qx, q′x ∣ x ∈X}. Then, each new process entering P(M) will send the message357

L, which will send the process already in {q} ∪QM in the deadlock state q�, and send the358

message R, which will be received by any process in {qx, q′x ∣ x ∈ X}. Therefore, sending a359

new process in the P(M) zone simply mimicks a restore transition of M . So every initial360

execution of P corresponds to an initial execution of M .361

▶ Theorem 4.2. SCover and CCover over rendez-vous protocols are Expspace complete.362

5 Coverability for Wait-Only Protocols363

In this section, we study a restriction on rendez-vous protocols in which we assume that a364

process waiting to answer a rendez-vous cannot perform another action by itself. This allows365

for a polynomial time algorithm for solving CCover.366

5.1 Wait–Only Protocols367

We say that a protocol P = (Q, Σ, qin, qf , T) is wait-only if the set of states Q can be368

partitioned into QA - the active states - and QW - the waiting states - with qin ∈ QA and:369

for all q ∈ QA, for all (q′, ?m, q′′) ∈ T , we have q′ ≠ q;370

for all q ∈ QW , there exists q′ ∈ Q and m ∈ Σ such that (q, ?m, q′) ∈ T and there does not371

exist q′′ ∈ Q such that (q, τ, q′′) ∈ T or (q, !m′, q′′) ∈ T for some m′ ∈ Σ.372

Hence, with such protocols, when a process is in a waiting state from QW , he is not able to373

request rendez-vous nor to perform an internal action. Examples of wait-only protocols are374

given by Figures 12 and 13.375

In the sequel, we will often refer to the paths of the underlying graph of the protocol.376

Formally, a path in a protocol P = (Q, Σ, qin, qf , T) is either a control state q ∈ Q or a finite377

sequence of transitions in T of the form (q0, a0, q1)(q1, a1, q2) . . . (qk, ak, qk+1), the first case378

representing a path from q to q and the second one from q0 to qk+1.379

5.2 Abstract Sets of Configurations380

To solve the coverability problem for wait-only protocols in polynomial time, we rely on a381

sound and complete abstraction of the set of reachable configurations. In the sequel, we382

consider a wait-only protocol P = (Q, Σ, qin, qf , T) whose set of states is partitioned into a383

set of active states QA and a set of waiting states QW . An abstract set of configurations γ is384

a pair (S, Toks) such that:385

L. Guillou and A. Sangnier and N. Sznajder XX:11

S ⊆ Q is a subset of states, and,386

Toks ⊆ QW ×Σ is a subset of pairs composed of a waiting state and a message, and,387

q /∈ S for all (q, m) ∈ Toks.388

We abstract then the set of reachable configurations as a set of states of the underlying389

protocol. However, as we have seen, some states, like states in QA, can host an unbounded390

number of processes together (this will be the states in S), when some states can only host a391

bounded number (in fact, 1) of processes together (this will be the states stored in Toks).392

This happens when a waiting state q answers a rendez-vous m, that has necessarily been393

requested for a process to be in q. Hence, in Toks, along with a state q, we remember the394

last message m having been sent in the path leading from qin to q, which is necessarily in395

QW . Observe that, since several paths can lead to q, there can be (q, m1), (q, m2) ∈ Toks396

with m1 ≠m2. We denote by Γ the set of abstract sets of configuration.397

Let γ = (S, Toks) be an abstract set of configurations. Before we go into the configurations398

represented by γ, we need some preliminary definitions. We note st(Toks) the set {q ∈ QW ∣399

there exists m ∈ Σ such that (q, m) ∈ Toks} of control states appearing in Toks. Given a400

state q ∈ Q, we let Rec(q) be the set {m ∈ Σ ∣ there exists q′ ∈ Q such that (q, ?m, q′) ∈ T}401

of messages that can be received in state q (if q is not a waiting state, this set is empty).402

Given two different waiting states q1 and q2 in st(Toks), we say q1 and q2 are conflict-free403

in γ if there exist m1, m2 ∈ Σ such that m1 ≠m2, (q1, m1), (q2, m2) ∈ Toks and m1 ∉ Rec(q2)404

and m2 ∉ Rec(q1). We now say that a configuration C ∈ C(P) respects γ if and only if for all405

q ∈ Q such that C(q) > 0 one of the following two conditions holds:406

1. q ∈ S, or,407

2. q ∈ st(Toks) and C(q) = 1 and for all q′ ∈ st(Toks) ∖ {q} such that C(q′) = 1, we have that408

q and q′ are conflict-free.409

Let JγK be the set of configurations respecting γ. Note that in JγK, for q in S there is no410

restriction on the number of processes that can be put in q and if q in st(Toks), it can host at411

most one process. Two states from st(Toks) can both host a process if they are conflict-free.412

Finally, we will only consider abstract sets of configurations that are consistent. This413

property aims to ensure that concrete configurations that respect it are indeed reachable414

from states of S. Formally, we say that an abstract set of configurations γ = (S, Toks) is415

consistent if (i) for all (q, m) ∈ Toks, there exists a path (q0, a0, q1)(q1, a1, q2) . . . (qk, ak, q) in416

P such that q0 ∈ S and a0 =!m and for all 1 ≤ i ≤ k, we have that ai =?mi and that there exist417

(q′i, !mi, q′′i) ∈ T with q′i ∈ S, and (ii) for two tokens (q, m), (q′, m′) ∈ Toks either m ∈ Rec(q′)418

and m′ ∈ Rec(q), or, m ∉ Rec(q′) and m′ ∉ Rec(q). Condition (i) ensures that processes in S419

can indeed lead to a process in the states from st(Toks). Condition (ii) ensures that if in a420

configuration C, a set of states in st(Toks) are pairwise conflict-free, then they can all host a421

process together.422

▶ Lemma 5.1. Given γ ∈ Γ and a configuration C, there exists C ′ ∈ JγK such that C ′ ≥ C if423

and only if C ∈ JγK. Checking that C ∈ JγK can be done in polynomial time.424

5.3 Computing Abstract Sets of Configurations425

Our polynomial time algorithm is based on the computation of a polynomial length sequence426

of consistent abstract sets of configurations leading to a final abstract set characterising in427

a sound and complete manner (with respect to the coverability problem), an abstraction428

for the set of reachable configurations. This will be achieved by a function F ∶ Γ→ Γ, that429

inductively computes this final abstract set starting from γ0 = ({qin},∅).430

XX:12 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

Construction of intermediate states S′′ and Toks′′

1. S ⊆ S′′ and Toks ⊆ Toks′′
2. for all (p, τ, p′) ∈ T with p ∈ S, we have p′ ∈ S′′

3. for all (p, !a, p′) ∈ T with p ∈ S, we have:
a. p′ ∈ S′′ if a ∉ Rec(p′) or if there exists (q, ?a, q′) ∈ T with q ∈ S;
b. (p′, a) ∈ Toks′′ otherwise (i.e. when a ∈ Rec(p′) and for all (q, ?a, q′) ∈ T , q ∉ S);

4. for all (q, ?a, q′) ∈ T with q ∈ S or (q, a) ∈ Toks, we have q′ ∈ S′′ if there exists (p, !a, p′) ∈ T with p ∈ S;
5. for all (q, ?a, q′) ∈ T with (q, m) ∈ Toks with m ≠ a, we have:

a. q′ ∈ S′′ if m ∉ Rec(q′) and there exists (p, !a, p′) ∈ T with p ∈ S;
b. (q′, m) ∈ Toks′′ if m ∈ Rec(q′) and there exists (p, !a, p′) ∈ T with p ∈ S;

Construction of state S′, the smallest set including S′′ and such that:

6. for all (q1, m1), (q2, m2) ∈ Toks′′ such that m1 ≠m2 and m2 ∉ Rec(q1) and m1 ∈ Rec(q2), we have q1 ∈ S′;
7. for all (q1, m1), (q2, m2), (q3, m2) ∈ Toks′′ s.t m1 ≠m2 and (q2, ?m1, q3) ∈ T , we have q1 ∈ S′;
8. for all (q1, m1), (q2, m2), (q3, m3) ∈ Toks′′ such that m1 ≠ m2 and m1 ≠ m3 and m2 ≠ m3 and m1 ∉ Rec(q2),

m1 ∈ Rec(q3) and m2 ∉ Rec(q1), m2 ∈ Rec(q3), and m3 ∈ Rec(q2) and m3 ∈ Rec(q1), we have q1 ∈ S′.

Construction of state Toks′

Toks′ = {(q, m) ∈ Toks′′ ∣ q /∈ S′}.

Table 1 Definition of F (γ) = (S′, Toks′) for γ = (S, Toks).

Formal definition of the function F is given by Table 1, and relies on intermediate sets431

S′′ ⊆ Q and Toks′′ ⊆ Q ×Σ, which are the smallest sets satisfying the conditions described.432

Observe that it might be that a state is both added to S′′ and Toks′′; in that case, it will be433

removed from Toks′ by application of the last rule of F . Hence, a state belongs either to S′434

or to st(Toks′).

qinq1

q2

q3 q4

q5

q6

q7
!a

!b
!d

!c?a, ?b

?c

?a, ?b

?c

?d

Figure 12 Wait-only protocol P1.

qin

q1

q2

q3 p2

p1

p3

p4

!a

!b

!m1

!m2

!m3

?a

?a, ?b

?m1, ?m3

?m2, ?m3

?m1, ?m2, ?m3

Figure 13 Wait-only protocol P2.
435

▶ Example 5.2. Consider the wait-only protocol P1 depicted on Figure 12. We have436

F (({qin},∅)) = ({qin, q4},{(q1, a), (q1, b), (q5, c)}). In P1, it is indeed possible to reach a437

configuration with as many processes as one wishes in the state q4 by repeating the transition438

(qin, !d, q4) (rule 3a). On the other hand, it is possible to put at most one process in the439

waiting state q1 (rule 3b), because any other attempt from a process in qin will yield a440

reception of the message a (resp. b) by the process already in q1. Similarly, we can put at441

most one process in q5. Note that in F (({qin},∅)), the states q1 and q5 are conflict-free and442

it is hence possible to have simultaneously one process in both of them.443

If we apply the function F one more time, we first get S′′ = {qin, q2, q4, q6, q7} and444

Toks′′ = {(q1, a), (q1, b), (q3, a), (q3, b), (q5, c)}. We can put at most one process in q3: to add445

one, a process will take the transition (q1, ?c, q3). Since (q1, a), (q1, b) ∈ Toks, there can be446

at most one process in state q1, and this process arrived by a path in which the last request447

of rendez-vous was !a or !b. Since {a, b} ⊆ Rec(q3), by rule 5b, (q3, a), (q3, b) are added. On448

the other hand we can put as many processes as we want in the state q7 (rule 5a): from a449

configuration with one process on state q5, successive non-blocking request on letter c, and450

rendez-vous on letter d will allow to increase the number of processes in state q7. Now, observe451

that the tokens (q5, c), (q1, a), (q3, a) allow for application of rule 7, since (q1, ?c, q3) ∈ T ,452

L. Guillou and A. Sangnier and N. Sznajder XX:13

and yields q5 in S′. Once two processes have been put on states q1 and q5 respectively453

(remember that q1 and q5 are conflict-free in F (γ)), iterating rendez-vous on letter c (with454

transition (q1, ?c, q3)) and rendez-vous on letter a put as many processes as one wants on state455

q5. Finally, F (F ({qin},∅)) = ({qin, q2, q4, q5, q6, q7},{(q1, a), (q1, b), (q3, a), (q3, b)}). Since456

q1 and q3 are not conflict-free, they won’t be reachable together in a configuration.457

We consider now the wait-only protocol P2 depicted on Figure 13. In that case, to compute458

F (({qin},∅)) we will first have S′′ = {qin} and Toks′′ = {(q1, a), (q2, b), (p1, m1), (p2, m2),459

(p3, m3)} (using rule 3b), to finally get F (({qin},∅)) = ({qin, q1, p1},{(q2, b), (p2, m2),460

(p3, m3)})). Applying rule 6 to tokens (q1, a) and (q2, b) from Toks′′, we obtain that q1 ∈ S′:461

whenever one manages to obtain one process in state q2, this process can answer the requests462

on message a instead of processes in state q1, allowing one to obtain as many processes as463

desired in state q1. Now since (p1, m1), (p2, m2) and (p3, m3) are in Toks′′ and respect the464

conditions of rule 8, p1 is added to the set S′ of unbounded states. This case is a generalisation465

of the previous one, with 3 processes. Once one process has been put on state p2 from qin,466

iterating the following actions: rendez-vous over m3, rendez-vous over m1, non-blocking467

request of m2, will ensure as many processes as one wants on state p1. Finally applying468

successively F , we get in this case the abstract set ({qin, q1, q3, p1, p2, p3, p4},{(q2, b)}).469

We show that F satisfies the following properties.470

▶ Lemma 5.3. 1. F (γ) is consistent and can be computed in polynomial time for all con-471

sistent γ ∈ Γ.472

2. If (S′, Toks′) = F (S, Toks) then S ⊊ S′ or Toks ⊆ Toks′.473

3. For all consistent γ ∈ Γ, if C ∈ JγK and C Ð→ C ′ then C ′ ∈ JF (γ)K.474

4. For all consistent γ ∈ Γ, if C ′ ∈ JF (γ)K, then there exists C ′′ ∈ C and C ∈ JγK such that475

C ′′ ≥ C ′ and C Ð→∗ C ′′.476

5.4 Polynomial Time Algorithm477

We now present our polynomial time algorithm to solve CCover for wait-only protocols.478

We define the sequence (γn)n∈N as follows : γ0 = ({qin},∅) and γi+1 = F (γi) for all i ∈ N.479

First note that γ0 is consistent and that Jγ0K = I is the set of initial configurations. Using480

Lemma 5.3, we deduce that γi is consistent for all i ∈ N. Furthermore, each time we apply481

F to an abstract set of configurations (S, Toks) either S or Toks increases. Hence for all482

n ≥ ∣Q∣2 ∗ ∣Σ∣, we have γn+1 = F (γn) = γn. Let γf = γ∣Q∣2∗∣Σ∣. Using Lemma 5.3, we get:483

▶ Lemma 5.4. Given C ∈ C, there exists C0 ∈ I and C ′ ≥ C such that C0 Ð→∗ C ′ if and only484

if there exists C ′′ ∈ Jγf K such that C ′′ ≥ C.485

We need to iterate ∣Q∣2 ∗ ∣Σ∣ times the function F to compute γf and each computation486

of F can be done in polynomial time. Furthermore checking whether there exists C ′′ ∈ Jγf K487

such that C ′′ ≥ C for a configuration C ∈ C can be done in polynomial time by Lemma 5.1,488

hence using the previous lemma we obtain the desired result.489

▶ Theorem 5.5. CCover and SCover restricted to wait-only protocols are in Ptime.490

6 Undecidability of Synchro491

It is known that Cover[CM] is undecidable in its full generality [17]. This result holds for a492

very restricted class of counter machines, namely Minsky machines (Minsky-CM for short),493

which are CM over 2 counters, x1 and x2. Actually, it is already undecidable whether there494

XX:14 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

qin

w w′ ℓf

q1 q2 ℓin

0i pi 1i p′i /

τ

!init
τ

?init !ackinit

?ackinit !w
?w

?inci !ackinci ?deci

?zeroi

!ackdeci

Figure 14 The protocol P - The coloured zone contains
transitions pictured in Figures 15–17

ℓ ℓ′
!inci ?ackinci

Figure 15 Translation of (ℓ, xi+, ℓ′)

ℓ ℓ′
!deci ?ackdeci

Figure 16 Translation of (ℓ, xi−, ℓ′).

ℓ ℓ′
!zeroi

Figure 17 Translation of (ℓ, xi= 0, ℓ′).

is an execution (ℓin, 0{x1,x2})⇝∗ (ℓf , 0{x1,x2}). Reduction from this last problem gives the495

following result.496

▶ Theorem 6.1. Synchro is undecidable, even for wait-only protocols.497

Fix M = (Loc, ℓ0, C = {x1, x2}, ∆) with ℓf ∈ Loc the final state. Wlog, we assume that498

there is no outgoing transition from state ℓf in the machine. The protocol P is described499

in Figures 14–16. The states {0i, pi, 1i, p′i ∣ i = 1, 2} will be visited by processes simulating500

values of counters, while the states in Loc will be visited by a process simulating the different501

locations in the Minsky-CM. If at the end of the computation, the counters are equal to 0, it502

means that each counter has been incremented and decremented the same number of times,503

so that all processes simulating the counters end up in the state ℓf . The first challenge is to504

appropriately check when a counter equals 0. This is achieved thanks to the non-blocking505

semantics: the process sends a message !zeroi to check if the counter i equals 0. If it is does506

not, the message will be received by a process that will end up in the deadlock state /.507

The second challenge is to ensure that only one process simulates the Minsky-CM in the508

states in Loc. This is ensured by the states {w, w′}. Each time a process arrives in the ℓin509

state, another must arrive in the w′ state, as a witness that the simulation has begun. This510

witness must reach ℓf for the computation to be an instance of Synchro, but it should be511

the first to do so, otherwise a process already in ℓf will receive the message “w” and reach512

the deadlock state /. Thus, if two processes simulate the Minsky-CM, there will be two513

witnesses, and they won’t be able to reach ℓf together.514

7 Conclusion515

We have introduced the model of parameterised networks communicating by non-blocking516

rendez-vous, and showed that safety analysis of such networks becomes much harder than in517

the framework of classical rendez-vous. Indeed, CCover and SCover become Expspace-518

complete and Synchro undecidable in our framework, while these problems are solvable519

in polynomial time in the framework of [13]. We have introduced a natural restriction of520

protocols, in which control states are partitioned between active states (that allow requesting521

of rendez-vous) and waiting states (that can only answer to rendez-vous) and showed that522

CCover can then be solved in polynomial time. Future work includes finding further523

restrictions that would yield decidability of Synchro. A candidate would be protocols in524

which waiting states can only receive one message. Observe that in that case, the reduction525

of Section 6 can be adapted to simulate a test-free CM, hence Synchro for this subclass of526

protocols is as hard as reachability in Vector Addition Systems with States, i.e. non-primitive527

recursive [15]. Decidability remains open though.528

L. Guillou and A. Sangnier and N. Sznajder XX:15

References529

1 P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for530

infinite-state systems. In LICS’96, pages 313–321. IEEE Computer Society, 1996.531

2 P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. Algorithmic analysis of programs with532

well quasi-ordered domains. Information and Computation, 160(1-2):109–127, 2000.533

3 K. R. Apt and D. C. Kozen. Limits for automatic verification of finite-state concurrent systems.534

Inf. Process. Lett., 22(6):307–309, 1986.535

4 A. R. Balasubramanian, J. Esparza, and M. A. Raskin. Finding cut-offs in leaderless rendez-536

vous protocols is easy. In FOSSACS’21, volume 12650 of LNCS, pages 42–61. Springer,537

2021.538

5 G. Delzanno, J. F. Raskin, and L. Van Begin. Towards the automated verification of mul-539

tithreaded java programs. In TACAS’02, volume 2280 of LNCS, pages 173–187. Springer,540

2002.541

6 G. Delzanno, A. Sangnier, R. Traverso, and G. Zavattaro. On the complexity of parameterized542

reachability in reconfigurable broadcast networks. In FSTTCS’12, volume 18 of LIPIcs, pages543

289–300. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.544

7 A. Durand-Gasselin, J. Esparza, P. Ganty, and R. Majumdar. Model checking parameterized545

asynchronous shared-memory systems. Formal Methods in System Design, 50(2-3):140–167,546

2017.547

8 J. Esparza. Decidability and complexity of petri net problems—an introduction. In Advanced548

Course on Petri Nets, pages 374–428. Springer, 1998.549

9 J. Esparza. Keeping a crowd safe: On the complexity of parameterized verification (invited550

talk). In Ernst W. Mayr and Natacha Portier, editors, Proceedings of 31st International551

Symposium on Theoretical Aspects of Computer Science (STACS 2014), volume 25 of LIPIcs,552

pages 1–10. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.553

10 J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In LICS’99,554

pages 352–359. IEEE Comp. Soc. Press, July 1999.555

11 J. Esparza, P. Ganty, and R. Majumdar. Parameterized verification of asynchronous shared-556

memory systems. In CAV’13, volume 8044 of LNCS, pages 124–140. Springer-Verlag, 2013.557

12 A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theoretical558

Computer Science, 256(1-2):63–92, 2001.559

13 S. M. German and A. P. Sistla. Reasoning about systems with many processes. Journal of the560

ACM, 39(3):675–735, 1992.561

14 F. Horn and A. Sangnier. Deciding the existence of cut-off in parameterized rendez-vous562

networks. In CONCUR’20, volume 171 of LIPIcs, pages 46:1–46:16. Schloss Dagstuhl -563

Leibniz-Zentrum für Informatik, 2020.564

15 Jérôme Leroux. The reachability problem for petri nets is not primitive recursive. In FOCS’21,565

pages 1241–1252. IEEE, 2021.566

16 R.J. Lipton. The reachability problem requires exponential space. Research report (Yale Uni-567

versity. Department of Computer Science). Department of Computer Science, Yale University,568

1976.569

17 Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., 1967.570

18 C. Rackoff. The covering and boundedness problems for vector addition systems. Theoretical571

Computer Science, 6:223–231, 1978.572

19 J. F. Raskin and L. Van Begin. Petri nets with non-blocking arcs are difficult to analyze. In573

INFINITY’03, volume 98 of Electronic Notes in Theoretical Computer Science, pages 35–55.574

Elsevier, 2003.575

XX:16 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

A Proofs of Section 3576

We present here the omitted proofs of Section 3.577

A.1 Proof of Theorem 3.3578

We will in fact prove the Expspace upper bound for a more general model: Non-Blocking579

Vector Addition Systems (NB-VAS). A NB-VAS is composed of a set of transitions over580

vectors of dimension d, sometimes called counters, and an initial vector of d non-negative581

integers, like in VAS. However, in a NB-VAS, a transition is a couple of vectors: one is a582

vector of d integers and is called the blocking part of the transition and the other one is a583

vector of d non-negative integers and is called the non-blocking part of the transition.584

▶ Definition A.1. Let d ∈ N. A Non-blocking Vector Addition System (NB-VAS) of dimension585

d is a tuple (T, v0) such that T ⊆ Zd ×Nd and v0 ∈ Nd.586

Formally, for two vectors v, v′ ∈ Nd, and a transition t = (tb, tnb) ∈ T , we write v
t
⇝ v′ if587

there exists v′′ ∈ Nd such that v′′ = v + tb and, for all i ∈ [1, d], v′(i) =max(0, v′′(i) − tnb(i)).588

We write ⇝ for ⋃t∈T
t
⇝. We define an execution as a sequence of vectors v1v2 . . . vk such589

that for all 1 ≤ i < k, vi⇝ vi+1.590

Intuitively, the blocking part tb of the transition has a strict semantics: to be taken, it591

needs to be applied to a vector large enough so no value goes below 0. The non-blocking part592

tnb can be taken even if it decreases one component below 0: the corresponding component593

will simply be set to 0.594

We can now define what is the SCover problem on NB-VAS.595

▶ Definition A.2. SCover problem for a NB-VAS V = (T, v0) of dimension d ∈ N and a596

target vector vf , asks if there exists v ∈ Nd, such that v ≥ vf and v0⇝∗ v.597

Adapting the proof of [18] to the model of NB-VAS yields the following result.598

▶ Lemma A.3. The SCover problem for NB-VAS is in Expspace.599

Proof. Fix a NB-VAS (T, v0) of dimension d, we will extend the semantics of NB-VAS to a600

slighter relaxed semantics: let v, v′ ∈ Nd and t = (tb, tnb) ∈ T , we will write v
tÐ⇁ v′ when for601

all 1 ≤ j ≤ d, v′(j) =max(0, (v + tb − tnb)(j)).602

Note that v
t
⇝ v′ implies that v

tÐ⇁ v′ but the converse is false: consider an NB-VAS of603

dimension d = 2, with t = (tb, tnb) ∈ T such that tb = (−3, 0) and tnb = (0, 1), and let v = (1, 2)604

and v′ = (0, 1). One can easily see that there does not exist v′′ ∈ N2 such that v′′ = v + tb, as605

1 − 3 < 0. So, t cannot be taken from v and it is not the case that v
t
⇝ v′, however, v

tÐ⇁ v′.606

We use ⇁ for ⋃t∈T
tÐ⇁.607

Let J ⊆ [1, d], a path v0 ⇁ v1 ⇁ . . . ⇁ vm is said to be J-correct if for all vi such that608

i <m, there exists t = (tb, tnb) ∈ T , such that vi ⇁t vi+1 and for all j ∈ J , (vi + tb)(j) ≥ 0. We609

say that the path is correct if the path is [1, d]-correct.610

It follows from the definitions that for all v, v′ ∈ Nd, v⇝∗ v′ if and only if there exists a611

correct path between v and v′.612

Fix a target vector vf ∈ Nd, and define N = ∣vf ∣ +max(tb,tnb)∈T (∣tb∣ + ∣tnb∣)), where ∣ ⋅ ∣ is613

the norm 1 of vectors in Zd. Let ρ = v0 ⇁ v1 ⇁ . . . ⇁ vm and J ⊆ [1, d]. We say the path614

ρ is J-covering if it is J-correct and for all j ∈ J , vm(j) ≥ vf(j). Let r ∈ N, we say that ρ615

is (J, r)-bounded if for all vi, for all j ∈ J , vi(j) < r. Let v ∈ Nd, we define m(J, v) as the616

length of the shortest J-covering path starting with v, 0 if there is none.617

L. Guillou and A. Sangnier and N. Sznajder XX:17

Note Ji = {J ⊆ [1, d] ∣ ∣J ∣ = i} and we define the function f as follows: for 1 ≤ i ≤ d,618

f(i) =max{m(Ji, v) ∣ Ji ∈ Ji, v ∈ Nd}. We will see that f is always well defined, in N.619

▷ Claim A.4. f(0) = 1.620

Proof. From any vector v ∈ Nd, the path with one element v is ∅-covering. ◀621

▷ Claim A.5. For all 0 ≤ i < d, f(i + 1) ≤ (N.f(i))i+1 + f(i).622

Proof. Let J ∈ Ji+1 and v ∈ Nd such that there exists a J-covering path starting with v.623

Note ρ = v0
t1

Ð⇁ . . .
tm

Ð⇁ vm the shortest such path.624

625

First case: ρ is (J, N.f(i))-bounded. Assume, for sake of contradiction, that for some
k < ℓ, for all j ∈ J , vk(j) = vℓ(j). Then we show that v0 ⇁ . . . vk ⇁ vℓ+1 . . . ⇁ vm is also a
J-correct path, with the vectors (vℓ′)ℓ<ℓ′≤m, defined as follows.

vℓ+1(j) =
⎧⎪⎪⎨⎪⎪⎩

vℓ+1(j) for all j ∈ J

max(0, (vk(j) + tℓ+1
b (j) − tℓ+1

nb (j))) otherwise.

And for all ℓ + 1 < ℓ′ ≤m,

vℓ′(j) =
⎧⎪⎪⎨⎪⎪⎩

vℓ′(j) for all j ∈ J

max(0, (vℓ′−1(j) + tℓ′

b (j) − tℓ′

nb(j))) otherwise.

Then v0 ⇁ . . . vk ⇁ vℓ+1 . . .⇁ vm is also a J-correct path. Indeed, since vk(j) = vℓ(j) for626

all j ∈ J , we have that vℓ+1(j) = vℓ+1(j) =max(0, (vℓ(j)+tℓ+1
b (j)−tℓ+1

nb (j))) =max(0, (vk(j)+627

tℓ+1
b (j)−tℓ+1

nb (j))). Moreover, for j ∈ J , since vℓ(j)+tℓ+1
b (j) ≥ 0, we get that vk(j)+tℓ+1

b (j) ≥ 0.628

By definition, for j ∉ J , vℓ+1(j) = max(0, (vk(j) + tℓ+1
b (j) − tℓ+1

nb (j))). Hence, vk ⇁tℓ+1
vℓ+1,629

and v0 ⇁t1
. . . vk ⇁tℓ+1

vℓ+1 is J-correct. Now let ℓ < ℓ′ < m. By definition, for j ∈ J ,630

vℓ′+1(j) = vℓ′+1(j). Then, vℓ′+1(j) = max(0, (vℓ′(j) + tℓ′+1
b (j) − tℓ′+1

nb (j))) = max(0, (vℓ′(j) +631

tℓ′+1
b (j)− tℓ′+1

nb (j))). Again, since ρ is J-correct, we deduce that for j ∈ J , vℓ′(j)+ tℓ′+1
b (j) ≥ 0,632

hence vℓ′(j) + tℓ′+1
b (j) ≥ 0. For j ∉ J , vℓ′+1(j) = max(0, (vℓ′(j) + tℓ′+1

b (j) − tℓ′+1
nb (j))). So633

vℓ′ ⇁tℓ′+1
vℓ′+1, and v0 ⇁t1

. . . vk ⇁tℓ′+1
vℓ′+1 is J-correct.634

Then, ρ′ = v0 ⇁ . . . vk ⇁ vℓ+1 . . . ⇁ vm is a J-correct path, and since vm(j) = vm(j) for635

all j ∈ J , it is also J-covering, contradicting the fact that ρ is minimal.636

Hence, for all k < ℓ, there exists j ∈ J such that vk(j) /= vℓ(j). The length of such a path637

is at most (N.f(i))i+1, so m(J, v) ≤ (N.f(i))i+1 ≤ (N.f(i))i+1 + f(i).638

639

Second case: ρ is not (J, N.f(i))-bounded. We can then split ρ into two paths ρ1ρ2640

such that ρ1 is (J, N.f(i))-bounded and ρ2 = v′0 . . . v′n is such that v′0(j) ≥ N.f(i) for some641

j ∈ J . As we have just seen, ∣ρ1∣ ≤ (N.f(i))i+1.642

Note J ′ = J∖{j} with j such that v′0(j) ≥ N.f(i). Note that ρ2 is J ′-covering, therefore, by643

definition of f , there exists a J ′-covering execution ρ = w0 . . . wk with w0 = v′0, and such that644

∣ρ∣ ≤ f(i). Also, by definition of N , for all 1 ≤ j′ ≤ d, for all (tb, tnb) ∈ T , N ≥ ∣tb(j′)∣+ ∣tnb(j′)∣,645

then tb(j′) ≥ −N , and tb(j′) − tnb(j′) ≥ −N . Hence, for all v ∈ Nd, 1 ≤ j′ ≤ d, and c ∈ N646

such that v(j′) ≥ N + c, for all (tb, tnb) ∈ T , (v + tb)(j′) ≥ c and (v + tb − tnb)(j′) ≥ c. Now,647

since w0 = v′0, we get w0(j) ≥ N.f(i). We deduce two things: first, for all 0 ≤ ℓ < k, if648

t = (tb, tnb) ∈ T is such that wℓ ⇁t wℓ+1, it holds that (wℓ + tb)(j) ≥ N.(f(i) − ℓ − 1). Since649

k = f(i)−1, it yields that ρ is J-correct. Second, for all 0 ≤ ℓ ≤ k, wℓ(j) ≥ N(f(i)− ℓ). Again,650

k = f(i) − 1, so wk(j) ≥ N ≥ vf(j). Hence ρ is also J-covering.651

Since ρ is the shortest J-covering path, we conclude that ∣ρ∣ ≤ (N.f(i))i+1 + f(i), and so652

m(J, v) ≤ (N.f(i))i+1 + f(i). ◀653

XX:18 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

We define a function g such that g(0) = 1 and g(i + 1) = (N + 1)d(g(i))d for 0 ≤ i < d;654

then f(i) ≤ g(i) for all 1 ≤ i ≤ d. Hence, f(d) ≤ g(d) ≤ (N + 1)dd+1 ≤ 22cn log n

for some655

n ≥max(d, N, ∣v0∣) and a constant c which does not depend on d, v0, nor vf or the NB-VAS.656

Hence, we can cover vector vf from v0 if and only if there exists a path (from v0) of length657

≤ 22cn log n

which covers vf . Hence, there is a non-deterministic procedure that guesses a path658

of length ≤ 22cn log n

, checks if it is a valid path and accepts it if and only if it covers vf . As659

∣v0∣ ≤ n, ∣vf ∣ ≤ n and for all (tb, tnb) ∈ T , ∣tb∣ + ∣tnb∣ ≤ n, this procedure takes an exponential660

space in the size of the protocol. By Savitch theorem, there exists a deterministic procedure661

in exponential space for the same problem. ◀662

We are now ready to prove that the SCover problem for NB-VAS is as hard as the663

SCover problem for NB-CM.664

▶ Lemma A.6. Cover[NB-CM] reduces to SCover in NB-VAS.665

Proof. Let a NB-CM M = (Loc, X, ∆b, ∆nb, ℓin), for which we assume wlog that it does not666

contain any self-loop (replace a self loop on a location by a cycle using an additional internal667

transition and an additional location). We note X = {x1, . . . , xm}, and Loc = {ℓ1 . . . ℓk}, with668

ℓ1 = ℓin and ℓk = ℓf , and let d = k +m. We define the NB-VAS V = (T, v0) of dimension d as669

follows: it has one counter by location of the NB-CM, and one counter by counter of the670

NB-CM. The transitions will ensure that the sum of the values of the counters representing671

the locations of M will always be equal to 1, hence a vector during an execution of V will672

always represent a configuration of M . First, for a transition δ = (ℓi, op, ℓi′) ∈∆, we define673

(tδ, t′δ) ∈ Zd ×Nd by tδ(i) = −1, tδ(i′) = 1 and,674

if op = �, then tδ(y) = 0 for all other 1 ≤ y ≤ d, and t′δ = 0d (where 0d is the null vector of675

dimension d), i.e. no other modification is made on the counters.676

if op = xj+, then tδ(k + j) = 1, and tδ(y) = 0 for all other 1 ≤ y ≤ d, and t′δ = 0d, i.e. the677

blocking part of the transition ensures the increment of the corresponding counter, while678

the non-blocking part does nothing.679

if op = xj−, then tδ(k + j) = −1, and tδ(y) = 0 for all other 1 ≤ y ≤ d, and t′δ = 0d, i.e. the680

blocking part of the transition ensures the decrement of the corresponding counter, while681

the non-blocking part does nothing. .682

if op = nb(xj−), then tδ(y) = 0 for all other 1 ≤ y ≤ d, and t′δ(k + j) = −1 and t′δ(y) = 0 for683

all other 1 ≤ y ≤ d, i.e. the blocking part of the transition only ensures the change in the684

location, and the non-blocking decrement of the counter is ensured by the non-blocking685

part of the transition.686

We then let T = {tδ ∣ δ ∈ ∆}, and v0 is defined by v0(1) = 1 and v0(y) = 0 for all 2 ≤ y ≤ d.687

We also fix vf by vf(k) = 1, and vf(y) = 0 for all other 1 ≤ y ≤ d. One can prove that vf is688

covered in V if and only if ℓf is covered in M . ◀689

Putting together Lemma A.3 and Lemma A.6, we obtain the proof of Theorem 3.3.690

A.2 Proof of Theorem 3.5691

In this subsection, we prove Theorem 3.5 by proving that the SCover[NB+R-CM] problem692

is Expspace hard. Put together with Theorem 3.3, it will prove the Expspace-completeness693

of SCover[NB+R-CM].694

L. Guillou and A. Sangnier and N. Sznajder XX:19

A.2.1 Proofs on the Pocedural NB-CM Defined in Section 3695

We formalize some properties on the procedural NB-CM presented in Section 3 used in the696

proof.697

About the procedural NB-CM TestSwapi, we use this proposition from [16, 8].698

▶ Proposition A.7 ([16, 8]). Let 0 ≤ i < n, and x ∈ Y i. For all v, v′ ∈ NX′

, for ℓ ∈699

{ℓTS,i,x
z , ℓTS,i,x

nz }, we have (ℓTS,i
in , v)⇝∗ (ℓ, v′) in TestSwapi(x) if and only if :700

(PreTest1): for all 0 ≤ j < i, for all xj ∈ Y j, v(xj) = 22j

and for all xj ∈ Yj, v(xj) = 0;701

(PreTest2): v(si) = 22i

and v(si) = 0;702

(PreTest3): v(x) + v(x) = 22i

;703

(PostTest1): For all y ∉ {x, x}, v′(y) = v(y);704

(PostTest2): either (i) v(x) = v′(x) = 0, v(x) = v′(x) and ℓ = ℓi
z, or (ii) v′(x) = v(x) > 0,705

v′(x) = v(x) and ℓ = ℓTS,i,x
nz .706

Moreover, if for all 0 ≤ j ≤ n, and any counter x ∈ Yj ∪ Y j, v(x) ≤ 22j

, then for all 0 ≤ j ≤ n,707

and any counter x ∈ Yj ∪ Y j, the value of x will never go above 22j

during the execution.708

Note that for a valuation v ∈ NX′

that meets the requirements (PreTest1), (PreTest2)709

and (PreTest3), there is only one configuration (ℓ, v′) with ℓ ∈ {ℓTS,i,x
z , ℓTS,i,x

nz } such that710

(ℓin, v)⇝∗ (ℓ, v′).711

Procedural NB-CM Rsti.712

We shall now prove that the procedural NB-CMs we defined and displayed in Section 3 meet713

the desired requirements. For all 0 ≤ i ≤ n, any procedural NB-CM Rsti enjoys the following714

property:715

▶ Proposition A.8. For all 0 ≤ i ≤ n, for all v ∈ NX′

such that716

(PreRst1): for all 0 ≤ j < i, for all x ∈ Y j, v(x) = 22j

and for all x ∈ Yj, v(x) = 0,717

for all v′ ∈ NX′

, if (ℓR,i
in , v)⇝∗ (ℓR,i

out, v′) in Rsti then718

(PostRst1): for all x ∈ Yi ∪ Y i, v′(x) =max(0, v(x) − 22i),719

(PostRst2): for all x /∈ Yi ∪ Y i, v′(x) = v(x).720

Proof of Proposition A.8. For Rst0, (PreRst1) trivially holds, and it is easy to see that721

(PostRst1) and (PostRst2) hold. Now fix 0 ≤ i < n, and consider the procedural-NB-722

CM Rsti+1. Let v0 ∈ NX′

such that for all 0 ≤ j < i + 1, for all x ∈ Y j , v0(x) = 22j

and for all723

x ∈ Yj , v0(x) = 0, and let vf such that (ℓR,i
in , v0)⇝+ (ℓR,i

out, vf) in Rsti.724

First, we show the following property.725

Property (∗): if there exist v, v′ ∈ NX′

such that v(zi) = k, (ℓTS,i,z
in , v) ⇝∗ (ℓTS,i,z

z , v′)726

with no other visit of ℓTS,i,z
z in between, then v′(zi) = 22i

, v′(zi) = 0, for all x ∈ Yi+1 ∪ Y i+1,727

v′(x) =max(0, v(x) − k), and v′(x) = v(x) for all other x ∈X ′.728

729

If k = 0, then Proposition A.7 ensures that v′(zi) = 22i

, v′(zi) = 0, and for all other730

x ∈X ′, v′(x) = v(x). Otherwise, assume that the property holds for some k ≥ 0 and consider731

(ℓTS,i,z
in , v) ⇝∗ (ℓTS,i,z

z , v′) with no other visit of ℓTS,i,z
z in between, and v(zi) = k + 1. Here,732

since v(zi) = k + 1, Proposition A.7 and the construction of the procedural-NB-CM ensure733

that (ℓTS,i,z
in , v)⇝∗ (ℓTS,i,z

nz , v)⇝ (ℓR,i+1
2 , v)⇝∗ (ℓTS,i,z

in , v1) with v1(zi) = k, v1(zi) = v(zi) + 1,734

for all x ∈ Yi+1 ∪ Y i+1, v1(x) = max(0, v(x) − 1), and for all other x ∈ X ′, v1(x) = v(x).735

XX:20 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

Induction hypothesis tells us that (ℓTS,i,z
in , v1)⇝∗ (ℓTS,i,z

z , v′) with v′(zi) = 22i

, v′(zi) = 0, for736

all x ∈ Yi+1 ∪ Y i+1, v′(x) =max(0, v(x) − k − 1), and v′(x) = v(x) for all other x ∈X ′.737

Next, we show the following.738

Property (∗∗): if there exist v, v′ ∈ NX′

such that v(yi) = k, v(zi) = 22i

, v(zi) = 0, and739

(ℓTS,i,y
in , v)⇝∗ (ℓTS,i,y

z , v′) with no other visit of ℓTS,i,y
z in between, then v′(yi) = 22i

, v′(yi) = 0,740

for all x ∈ Yi+1 ∪ Y i+1, v′(x) =max(0, v(x) − k.22i), and v′(x) = v(x) for all other x ∈X ′.741

742

If k = 0, then Proposition A.7 ensures that v′(yi) = 22i

, v′(yi) = 0, and v′(x) = v(x) for743

all other x ∈ X ′. Otherwise, assume that the property holds for some k ≥ 0 and consider744

(ℓTS,i,y
in , v)⇝∗ (ℓTS,i,y

z , v′) with no other visit of ℓTS,i,y
z in between, and v(yi) = k + 1. Again,745

since v(yi) = k + 1, Proposition A.7 and the construction of the procedural-NB-CM ensure746

that (ℓTS,i,y
in , v)⇝∗ (ℓTS,i,y

nz , v)⇝ (ℓR,i+1
in , v)⇝∗ (ℓTS,i,z

in , v1)⇝∗ (ℓTS,i,z
z , v′1)⇝ (ℓ

TS,i,y
in , v′1), with747

v1(yi) = v(yi) − 1 = k, v1(yi) = v(yi) + 1, v1(zi) = v(zi) − 1 = 22i − 1, v1(zi) = v(zi) + 1 = 1,748

for all x ∈ Yi+1 ∪ Y i+1, v1(x) = max(0, v(x) − 1), and for all other x ∈ X ′, v1(x) = v(x). By749

Property (∗), v′1(zi) = 22i

, v′1(zi) = 0, for all x ∈ Yi+1 ∪ Y i+1, v′1(x) = max(0, v(x) − 22i),750

and v′1(x) = v1(x) for all other x ∈ X ′. Induction hypothesis allows to conclude that751

since (ℓTS,i,y
in , v′1) ⇝∗ (ℓ

TS,i,y
z , v′), v′(yi) = 22i

, v′(yi) = 0, for all x ∈ Yi+1 ∪ Y i+1, v′(x) =752

max(0, v′1(x) − k.22i) = max(0, v(x) − (k + 1).22i), and v′(x) = v′1(x) = v(x) for all other753

x ∈X ′.754

Since (ℓR,i
in , v0) ⇝+ (ℓR,i

out, vf), we know that (ℓR,i
in , v0) ⇝∗ (ℓTS,i,z

in , v) ⇝∗ (ℓTS,i,z
z , v′) ⇝755

(ℓTS,i,y
in , v′) ⇝∗ (ℓTS,i,y

z , v′′) ⇝ (ℓR,i
out, vf). By construction, v(yi) = 22i − 1, v(zi) = 22i − 1,756

v(zi) = 1, v(zi) = 1, for all x ∈ Yi+1 ∪ Y i+1, v(x) = max(0, v0(x) − 1), and for all other757

counter x, v(x) = v0(x). By Property (∗), v′(zi) = 22i = v0(zi), v′(zi) = 0 = v0(zi), for758

all x ∈ Yi ∪ Yi+1, v′(x) = max(0, v0(x) − 22i) and for all other x ∈ X ′, v′(x) = v(x). By759

Property (∗∗), v′′(yi) = 22i = v0(yi), v′′(yi) = 0 = v0(yi), for all x ∈ Yi ∪ Yi+1, v′′(x) =760

max(0, v0(x)− 22i −(22i − 1).22i) =max(0, v0(x)− 22i

.22i) =max(0, v0(x)− 22i+1), and for all761

other x ∈X ′, v′′(x) = v′(x) = v0(x). ◀762

We get the immediate corollary:763

▶ Lemma A.9. Let 0 ≤ i ≤ n, and v ∈ NX′

satisfying (PreRst1) for Rsti. If v is i-bounded,764

then the unique configuration such that (ℓR,i
in , v)⇝+ (ℓR,i

out, v′) in Rsti is defined v′(x) = 0 for765

all x ∈ Yi ∪ Y i and v′(x) = v(x) for all x ∉ Yi ∪ Y i.766

▶ Proposition A.10. Let 0 ≤ i ≤ n, and let v ∈ NX′

satisfying (PreRst1) for Rsti. If for all767

0 ≤ j ≤ n, v is j-bounded, then for all (ℓ, v′) ∈ LocR,i × NX′

such that (ℓR,i
in , v)⇝∗ (ℓ, v′) in768

Rsti, v′ is j-bounded for all 0 ≤ j ≤ n.769

Proof. We will prove the statement of the property along with some other properties: (1)770

if ℓ is not a state of TestSwapi(zi) or TestSwapi(yi), then for all 0 ≤ j < i, for all x ∈ Yj ,771

v′(x) = 22j

and for all x ∈ Yj , v′(x) = 0, and v′(si) = 22i

and v′(si) = 0. (2) if ℓ is not a772

state of TestSwapi(zi) or TestSwapi(yi) and if ℓ ≠ ℓR,i+1
1 , then v′(yi) + v′(yi) = 22i

, and if773

ℓ ≠ ℓR,i+1
3 , then v′(zi) + v′(zi) = 22i

.774

For Rst0, the property is trivial. Let 0 ≤ i < n, and a valuation v ∈ NX′

such that for775

all 0 ≤ j ≤ i, for all x ∈ Y j , v(x) = 22j

and for all x ∈ Yj , v(x) = 0, and such that, for all776

0 ≤ j ≤ n, v is j-bounded. Let now (ℓ, v′) such that (ℓR,i+1
in , v)⇝∗ (ℓ, v′) in Rsti+1. We prove777

the property by induction on the number of occurences of ℓTS,i,z
in and ℓTS,i,y

in . If there is no778

occurence of such state between in (ℓR,i+1
in , v)⇝∗ (ℓ, v′), then, for all x ∈ Yj ∪Yj ∪{si, si} and779

j ≠ i, j ≠ i+ 1, then v′(x) = v(x) and so v′ is j-bounded. Furthermore, for x ∈ Yi ∪Yi+1 ∪Yi+1,780

L. Guillou and A. Sangnier and N. Sznajder XX:21

v′(x) ≤ v(x), and for all x ∈ Yi, v′(x) ≤ v(x)+ 1 = 1. The property (2) is easily verified. Hence781

the properties hold.782

Assume now we proved the properties for k occurrences of ℓTS,i,z
in and ℓTS,i,y

in , and let us783

prove the clam for k + 1 such occurrences. Note ℓk+1 ∈ {ℓTS,i,z
in , ℓTS,i,y

in } the last occurence784

such that: (ℓR,i+1
in , v)⇝+ (ℓk, vk)⇝ (ℓk+1, vk+1)⇝∗ (ℓ, v′). By induction hypothesis, vk is785

j-bounded for all 0 ≤ j ≤ n and it respects (1) and (2), and by construction, (ℓk,�, ℓk+1)786

and ℓk ≠ ℓR,i+1
1 , ℓk ≠ ℓR,i+1

3 , hence vk+1 is j-bounded for all 0 ≤ j ≤ n and respects (PreTest1),787

(PreTest2), and (PreTest3) for TestSwapi(zi) and TestSwapi(yi). As a consequence, if ℓ is788

a state of one of this machine such that (ℓk+1, vk+1)⇝∗ (ℓ, v′), then by Proposition A.7, for789

all 0 ≤ j ≤ n, as vk+1 is j-bounded, so is v′.790

Assume now ℓ to not be a state of one of the two machines. And keep in mind that vk+1791

respects (1) and (2). Then, either ℓ = ℓR,i+1
out and so v′(x) = vk+1(x) for all x ∈ Yj∪Y j for all j ≠ i,792

and v′(yi) = 22i

and v′(yi) = 0 and so the claim holds, either ℓ ∈ {ℓR,i+1
in , ℓR,i+1

j′ }j′=1,2,3,4,5,6,...,7.793

In this case, the execution is such that: (ℓk+1, vk+1)⇝+ (ℓnz,k+1, vk+1)⇝∗ (ℓ, v′), where if794

ℓk+1 = ℓTS,i,z
in , ℓnz,k+1 = ℓTS,i,z

nz and otherwise ℓnz,k+1 = ℓTS,i,y
nz . In any cases, for all j ≠ i, j ≠ i+1,795

x ∈ Yj ∪ Ȳj ∪ {si, si}, v′(x) = vk+1(x), hence (1) holds and v′ is j-bounded for all j < i and796

j > i + 1.797

Observe as well that for all x ∈ Yi+1 ∪ Y i+1, v′(x) ≤ vk+1(x), and so v′ is i + 1-bounded.798

The last thing to prove is that (2) holds. This is direct from the fact that vk+1 respects (2).799

◀800

About the procedural NB-CM Inci, we use this proposition from [16, 8].801

▶ Proposition A.11 ([16, 8]). For all 0 ≤ i < n, for all v, v′ ∈ NX′

, (ℓInc,i
in , v)⇝∗ (ℓInc,i

out , v′)802

in Inci if and only if:803

(PreInc1) for all 0 ≤ j < i, for all x ∈ Y j, v(x) = 22j

and for all x ∈ Yj, v(x) = 0;804

(PreInc2) for all x ∈ Y i, v(x) = 0,805

(PostInc1) for all x ∈ Y i, v′(x) = 22i

;806

(PostInc2) for all x /∈ Yi, v′(x) = v(x).807

Moreover, if for all 0 ≤ j ≤ n, v is j-bounded, then for all (ℓ, v′′) such that (ℓInc,i
in , v)⇝∗ (ℓ, v′′)808

in Inci, then v′′ is j-bounded for all 0 ≤ j ≤ n.809

Procedural NB-CM RstInc.810

We shall now prove the properties in the procedural NB-CM RstInc defined in Section 3.811

The next proposition establishes the correctness of the construction RstInc.812

▶ Proposition A.12. Let v ∈ NX′

be a valuation such that for all 0 ≤ i ≤ n and for all813

x ∈ Yi ∪ Y i, v(x) ≤ 22i

. Then the unique valuation v′ ∈ NX′

such that (ℓa, v)⇝∗ (ℓb, v′) in814

RstInc satisfies the following: for all 0 ≤ i ≤ n, for all x ∈ Y i, v′(x) = 22i

and for all x ∈ Yi,815

v′(x) = 0. Moreover, for all (ℓ, v′′) such that (ℓa, v)⇝∗ (ℓ, v′′) in RstInc, for all 0 ≤ i ≤ n,816

v′′ is i-bounded.817

Proof of Proposition A.12. We can split the execution in (ℓa, v)⇝ (ℓR,0
in , v)⇝∗ (ℓR,0

out, v0)⇝818

(ℓInc,0
in , v0)⇝∗ (ℓInc,0

out , v′0)⇝ (ℓ
R,1
in , v′0)⇝∗ (ℓ

R,1
out, v1)⇝∗ (ℓInc,n−1

in , vn−1)⇝∗ (ℓInc,n−1
out , v′n−1)⇝819

(ℓR,n
in , v′n−1)⇝∗ (ℓ

R,n
out, vn)⇝ (ℓb, v′), with v′ = vn and v = v′−1. We show that for all 0 ≤ i ≤ n:820

P1(i): For all x ∈ Yi ∪ Y i, vi(x) = 0, and for all x ∉ (Yi ∪ Y i), vi(x) = v′i−1(x).821

P2(i): For all 0 ≤ j < i, for all x ∈ Yj , v′i−1(x) = 0 and for all x ∈ Y j , v′i−1(x) = 22j

, and for822

all other x ∈X ′, v′i(x) = vi(x).823

XX:22 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

P3(i): For all v′′ such that (ℓa, v) ⇝∗ (ℓ, v′′) ⇝∗ (ℓR,i
out, vi), v′′ is i-bounded, for all824

0 ≤ i ≤ n.825

For k = 0, Lemma A.9 implies that for all x ∈ Y0 ∪ Y 0, v0(x) = 0, and that for all826

other x ∈ X ′, v0(x) = v(x). Moreover, for all v′′ such that (ℓR,0
in , v)⇝∗ (ℓ, v′′)⇝∗ (ℓR,0

out, v0),827

Proposition A.10 ensures that v′′ is i-bounded, for all 0 ≤ i ≤ n. P2(0) is trivially true.828

Let 0 ≤ k < n, and assume that P1(k), P2(k) and P3(k) hold. P1(k) and P2(k) and829

Proposition A.11 imply that for all x ∈ Y k, v′k(x) = 22k

, and that for all other counter x ∈X ′,830

v′k(x) = vk(x). Thanks to P1(k), P2(k+1) holds. Moreover, we also know by Proposition A.11831

that for all v′′ such that (ℓR,k
out, vk)⇝ (ℓInc,k

in , vk)⇝∗ (ℓ, v′′)⇝∗ (ℓInc,k
out , v′k), v′′ is i-bounded832

for all 0 ≤ i ≤ n. Since v′k is then i-bounded for all 0 ≤ i ≤ n, and since P2(k) holds,833

Lemma A.9 implies that vk+1(x) = 0 for all x ∈ Yk+1 ∪ Y k+1, and that, for all other x ∈ X ′,834

vk+1(x) = v′kx). So P1(k + 1) holds. Moreover, by Proposition A.10, for all v′′ such that835

(ℓInc,k
out , v′k)⇝ (ℓ

R,k+1
in , v′k)⇝∗ (ℓ, v′′)⇝∗ (ℓR,k+1

out , vk+1), v′′ is i-bounded for all 0 ≤ i ≤ n. Hence836

P3(k + 1) holds.837

By P1(n), v′(x) = 0 for all x ∈ Yn, and since Y n = ∅, v′(x) = 22n

for all x ∈ Y n. Let838

x ∉ (Yn∪Y n). Then v′(x) = v′n−1(x), and by P2(n), for all 0 ≤ i < n, for all x ∈ Y i, v′(x) = 22i

,839

and for all x ∈ Yi, v′(x) = 0. By P3(n), for all (ℓ, v′′) such that (ℓa, v)⇝∗ (ℓ, v′′) in RstInc,840

for all 0 ≤ i ≤ n, v′′ is i-bounded. ◀841

A.2.2 Proofs of the Reduction842

We are now ready to prove Theorem 3.5, i.e that the reduction is sound and complete. For843

some subset of counters Y , we will note v∣Y for the valuation v on counters Y , formally,844

v∣Y ∶ Y → N and is equal to v on its domain.845

▶ Lemma A.13. If there exists v ∈ NX such that (ℓin, 0X) ⇝∗M (ℓf , v), then there exists846

v′ ∈ NX′

such that (ℓ′in, 0X′)⇝∗N (ℓf , v′).847

Proof. From Proposition A.12, we have that (ℓ′in, 0′X)⇝∗N (ℓin, v0) where v0 is such that,848

for all 0 ≤ j ≤ n, for all x ∈ Y j , v0(x) = 22j

and for all x ∈ Yj , v0(x) = 0. By construction of N ,849

(ℓin, v0)⇝∗N (ℓf , v′) with v′ defined by: for all 0 ≤ i < n, for all x ∈ Y j , v′(x) = 22j

, for all850

x ∈ Yj , v′(x) = 0, and, for all x ∈X, v′(x) = v(x). Note that in this path, there is no restore851

step. ◀852

▶ Lemma A.14. If there exists v′ ∈ NX′

such that (ℓ′in, 0X′)⇝∗N (ℓf , v′), then there exists853

v ∈ NX such that (ℓin, 0X)⇝∗M (ℓf , v).854

Proof. We will note v0 the function such that for all 0 ≤ i ≤ n, and for all x ∈ Y i, v0(x) = 22i

855

and for all x ∈ Yi, v0(x) = 0. Observe that there might be multiple visits of location ℓin in856

the execution of N , because of the restore transitions. The construction of RstInc ensures857

that, every time a configuration (ℓin, v) is visited, v = v0. Formally, we show that for all858

(ℓin, v) such that (ℓ′in, 0X′)⇝∗N (ℓin, v), we have that v = v0. First let (ℓ′in, w)⇝∗N (ℓ′in, w′),859

with w(x) ≤ 22i

, and ℓ′in, ℓin not visited in between. Then for all 0 ≤ i ≤ n, for all860

x ∈ Yi ∪ Y i, w′(x) ≤ 22i

. Indeed, let (ℓ, w) be such that (ℓ′in, w)⇝∗N (ℓ, w)⇝N (ℓ′in, w′). By861

Proposition A.12, we know that, for all 0 ≤ i ≤ n, for all x ∈ Yi ∪ Y i, w(x) ≤ 22i

. Since the862

last transition is a restore transition, we deduce that, for all 0 ≤ i ≤ n, for all x ∈ Yi ∪ Y i,863

w′(x) = w(x) ≤ 22i

.864

Let v ∈ NX′

be such that (ℓ′in, 0X′)⇝∗N (ℓin, v), and (ℓin, v) is the first configuration where865

ℓin is visited. The execution is thus of the form (ℓ′in, 0X′)⇝∗N (ℓ′in, w)⇝∗N (ℓin, v), with866

L. Guillou and A. Sangnier and N. Sznajder XX:23

(ℓ′in, w) the last time ℓ′in is visited. We have stated above that w(x) ≤ 22i

. Then, we have867

that (ℓ′in, 0X′)⇝∗N (ℓ′in, w)⇝N (ℓa, w)⇝∗N (ℓb, v)⇝N (ℓin, v), and by Proposition A.12,868

v = v0.869

Let now vk, vk+1 ∈ NX′

be such that (ℓ′in, 0X′) ⇝∗N (ℓin, vk) ⇝∗N (ℓin, vk+1), and vk870

and vk+1 are respectively the kth and the (k + 1)th time that ℓin is visited, for some871

k ≥ 0. Assume that vk = v0. We have (ℓin, vk) ⇝∗N (ℓ, v) ⇝N (ℓ′in, v) ⇝∗N (ℓ′in, v) ⇝N872

(ℓa, v)⇝∗N (ℓb, vk+1)⇝N (ℓin, vk+1). Since the test-free CM M is 2EXP-bounded, and873

vk = v0, we obtain that for all x ∈X = Yn, v(x) ≤ 22n

. For all 0 ≤ i < n, for all x ∈ Yi ∪ Y i,874

v(x) = v0(x), then for all 0 ≤ i ≤ n, for all x ∈ Yi ∪ Y i, v(x) ≤ 22i

. Then, as proved above,875

v(x) ≤ 22i

for all 0 ≤ i ≤ n, for all x ∈ Yi ∪ Y i. By Proposition A.12, v′ = v0.876

Consider now the execution (ℓ′in, 0X′)⇝∗N (ℓin, v)⇝∗N (ℓf , v′), where (ℓin, v) is the last877

time the location ℓin is visited. Then, as proved hereabove, v = v0. From the execution878

(ℓin, v)⇝∗N (ℓf , v′), we can deduce an execution (ℓin, v∣X)⇝∗M (ℓf , v′∣X). Since v = v0 and879

for all x ∈X = Yn, v(x) = 0, we can conclude the proof. ◀880

The two previous lemmas prove that the reduction is sound and complete. By Theorem 3.4,881

we proved the Expspace-hardness of the problem, and so Theorem 3.5.882

B Proofs of Section 4883

In this section, we present proofs omitted in Section 4.884

B.1 Proof of Theorem 4.1885

We present here the proof of Theorem 4.1, the two lemmas of this subsection prove the886

soundness and completeness of the reduction presented in Section 4.1, put together with887

Theorem 3.3, it proves Theorem 4.1.888

▶ Lemma B.1. Let C0 ∈ I, Cf ≥ CF . If C0 Ð→∗P Cf , then there exists v ∈ NQ such that889

(ℓin, 0X)⇝∗ (ℓf , v).890

Proof. For all q ∈ Q, we let vq(q) = 1 and vq(q′) = 0 for all q′ ∈ X such that q′ ≠ q. Let891

n = ∣∣C0∣∣ = C0(qin), and let C0C1⋯CmCf be the configurations visited in P . Then, applying892

the transition (ℓin, qin+, ℓin), we get (ℓin, 0X)⇝ (ℓin, v1)⇝ . . .⇝ (ℓin, vn) with v0 = vn and893

v0(qin) = n and v0(x) = 0 for all x ≠ qin. Let i ≥ 0 and assume that (ℓin, 0X)⇝∗ (ℓin, Ci).894

We show that (ℓin, Ci)⇝∗ (ℓin, Ci+1).895

If Ci
mÐ→P Ci+1, let t = (q1, !m, q′1), t′ = (q2, ?m, q′2) ∈ T such that Ci(q1) > 0, Ci(q2) > 0,896

Ci(q1) + Ci(q2) ≥ 2, and Ci+1 = Ci − Hq1, q2I + Hq′1, q′2I. Then (ℓin, Ci) ⇝ (ℓ1
(t,t′), v1

i) ⇝897

(ℓ2
(t,t′), v2

i) ⇝ (ℓ3
(t,t′), v3

i) ⇝ (ℓin, v4
i), with v1

i = Ci − vq1 , v2
i = v1

i − vq2 , v3
i = v2

i + vq′1
,898

v4
i = v3

i + vq′2
. Observe that v4

i = Ci+1 and then (ℓin, Ci)⇝∗ (ℓin, Ci+1).899

If Ci
τÐ→P Ci+1, let t = (q, τ, q′) such that Ci(q) > 0 and Ci+1 = Ci − HqI + Hq′I. Then,900

(ℓin, Ci)⇝ (ℓq, v1
i)⇝ (ℓin, v2

i) with v1
i = Ci −vq and v2

i = v1
i +vq′ . Observe that v2

i = Ci+1,901

then (ℓin, Ci)⇝∗ (ℓin, Ci+1).902

If Ci
nb(m)ÐÐÐÐ→P Ci+1, let t = (q, !m, q′) such that Ci+1 = Ci − HqI + Hq′I, and R(m) =903

{q1, . . . , qk}. Then Ci(pj) = 0 for all 1 ≤ j ≤ k. We then have that (ℓin, Ci)⇝ (ℓt, v1
i)⇝904

(ℓm
t,q1

, v1
i) ⇝ ⋯ ⇝ (ℓm

t,qk
, v1

i) ⇝ (ℓin, v2
i) with v1

i = Ci − vq and v2
i = v1

i + vq′ . Indeed,905

v1
i (qj) = 0 for all qj ∈ R(m), so the transitions (ℓm

t,qj
, nb(qj+1−)), ℓm

t,qj+1
) do not change906

the value of the counters. Hence, v2
i = Ci+1 and (ℓin, Ci)⇝∗ (ℓin, Ci+1).907

XX:24 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

So we know that (ℓin, 0X) ⇝∗ (ℓin, Cf). Moreover, since Cf ≥ CF , it holds that Cf ≥908

vq1 + vq2 + ⋅ ⋅ ⋅ + vqs . Then (ℓin, Cf)⇝s (ℓf , v) with v = Cf − (vq1 + vq2 + ⋅ ⋅ ⋅ + vqs). ◀909

▶ Lemma B.2. Let v ∈ NQ. If (ℓin, 0X)⇝∗ (ℓf , v), then there exists C0 ∈ I, Cf ≥ CF such910

that C0 Ð→∗P Cf .911

Proof. Let (ℓin, v0), (ℓin, v1) . . . (ℓin, vn) be the projection of the execution of M on {ℓin}×NX .912

We prove that, for all 0 ≤ i ≤ n, there exists C0 ∈ I, and C ≥ vi such that C0 Ð→∗P C. For i = 0,913

we let C0 be the empty multiset, and the property is trivially true. Let 0 ≤ i < n, and assume914

that there exists C0 ∈ I, C ≥ vi such that C0 Ð→∗P C.915

If (ℓin, vi)
δ
⇝ (ℓin, vi+1) with δ = (ℓin, qin+, ℓin), then vi+1 = vi + vqin . The execution916

C0 Ð→∗P C built so far cannot be extended as it is, since it might not include enough917

processes. Let N be such that C0 Ð→P C1 Ð→P . . . Ð→P CN = C, and let C ′0 ∈ I with918

C ′0(qin) = C0(qin) + N + 1. We build, for all 0 ≤ j ≤ N , a configuration C ′j such that919

C ′0 Ð→
j
P C ′j , C ′j ≥ Cj and C ′j(qin) > Cj(qin) +N − j. For j = 0 it is trivial. Assume now920

that, for 0 ≤ j < N , C ′j ≥ Cj and that C ′j(qin) > Cj(qin) +N − j.921

If Cj
mÐ→P Cj+1 for m ∈ Σ, with t1 = (q1, !m, q′1) and t2 = (q2, ?m, q′2). Then, Cj+1 =922

Cj − Hq1, q2I + Hq′1, q′2I. Moreover, C ′j(q1) ≥ Cj(q1) > 0 and C ′j(q2) ≥ Cj(q2) > 0 and923

C ′j(q1) +C ′j(q2) ≥ Cj(q1) +Cj(q2) ≥ 2. We let C ′j+1 = C ′j − Hq1, q2I + Hq′1, q′2I, and C ′j
mÐ→P924

C ′j+1. It is easy to see that C ′j+1 ≥ Cj+1. Moreover, C ′j+1(qin) > Cj+1(qin) + N − j >925

Cj+1 +N − j − 1.926

If Cj
nb(m)ÐÐÐÐ→P Cj+1 and for all q ∈ R(m), C ′j−Hq1I(q) = 0, with t = (q1, !m, q2), (respectively927

Cj
τÐ→P Cj+1 with t = (q1, τ, q2)), we let C ′j+1 = C ′j − Hq1I + Hq2I, and C ′j

nb(m)ÐÐÐÐ→P C ′j+1928

(respectively C ′j
τÐ→P C ′j+1). Again, thanks to the induction hypothesis, we get that929

C ′j+1 ≥ Cj+1, and C ′j+1(qin) > Cj+1(qin) +N − j > Cj+1(qin) +N − j − 1.930

If now Cj
nb(m)ÐÐÐÐ→P Cj+1, with t1 = (q1, !m, q2) and there exists q′1 ∈ R(m) such that931

C ′j − Hq1I(q′1) > 0. Let (q′1, ?m, q′2) ∈ T , and then C ′j+1 = C ′j − Hq1, q′1I + Hq2, q′2I. Since932

C ′j ≥ Cj , C ′j(q1) ≥ 1, and since C ′j − Hq1I(q′1) > 0, C ′j(q′1) ≥ 1 and C ′j(q1) + C ′j(q′1) ≥ 2.933

Hence, C ′j
mÐ→P C ′j+1. We have that C ′j(q′1) > Cj(q′1), so C ′j+1(q′1) ≥ Cj+1(q′1) and934

C ′j+1(q) ≥ Cj+1(q) for all other q ∈ Q. Hence C ′j+1 > Cj+1. Also, Cj+1(qin) = Cj(qin) + x,935

with x ∈ {0, 1}. If q′1 ≠ qin, then C ′j+1(qin) = C ′j(qin) + y, with y ≥ x. Hence, since936

C ′j(qin) > Cj(qin) +N − j, we get C ′j+1(qin) > Cj+1(qin) +N − j > Cj+1(qin) +N − j − 1. If937

q′1 = qin, then we can see that C ′j+1(qin) = C ′j(qin) + y, with x − 1 ≤ y ≤ x. In that case,938

C ′j+1(qin) > Cj(qin) +N − j + y ≥ Cj(qin) +N − j + x − 1 ≥ Cj+1(qin) +N − j − 1.939

So we have built an execution C ′0 Ð→∗P C ′N such that C ′N ≥ CN and C ′N(qin) > CN(qin).940

Hence, C ′N ≥ vi+1.941

If (ℓin, vi) ⇝ (ℓ1
(t,t′), v1

i) ⇝ (ℓ2
(t,t′), v2

i) ⇝ (ℓ3
(t,t′), v3

i) ⇝ (ℓin, vi+1), with t = (q1, !m, q2)942

and t′ = (q′1, ?m, q′2), then v1
i = vi − vq1 , v2

i = v1
i − vq′1

, v3
i = v2

i + vq2 , and vi+1 = v3
i + vq′2

.943

Then by induction hypothesis, C(q1) ≥ 1, C(q′1) ≥ 1, and C(q1) + C(q′1) ≥ 2. We let944

C ′ = C − Hq1, q′1I + Hq2, q′2I. We have C
mÐ→P C ′ and C ′ ≥ vi+1.945

If (ℓin, vi)⇝ (ℓq, v1
i)⇝ (ℓin, vi+1) with (q, τ, q′) ∈ T and v1

i = vi − vq and vi+1 = v1
i + vq′ ,946

then by induction hypothesis, C ≥ 1, and if we let C ′ = C − HqI+ Hq′I, then C
τÐ→P C ′, and947

C ′ ≥ vi+1.948

If (ℓin, vi) ⇝ (ℓt, v1
i) ⇝ (ℓm

t,p1
, v2

i) ⇝ . . . ⇝ (ℓm
t,pk

, vk+1
i) ⇝ (ℓin, vi+1) with t = (q, !m, q′)949

and R(m) = {p1, . . . , pk}, and (C −HqI)(p) = 0 for all p ∈ R(m). We let C ′ = C −HqI+Hq′I,950

hence C
nb(m)ÐÐÐÐ→P C ′. Moreover, v1

i = vi − vq, and, for all 1 ≤ j < k, it holds that vj+1
i (pj) =951

L. Guillou and A. Sangnier and N. Sznajder XX:25

max(0, vj
i (pj) − 1) and vj+1

i (p) = vj
i (p) for all p ≠ pj . By induction hypothesis, C ≥ vi,952

hence vj
i (p) = 0 for all p ∈ R(m), for all 1 ≤ j ≤ k + 1. Hence, vi+1 = vk+1

i + vq′ = v1
i + vq′ ,953

and C ′ ≥ vi+1.954

If (ℓin, vi) ⇝ (ℓt, v1
i) ⇝ (ℓm

t,p1
, v2

i) ⇝ . . . ⇝ (ℓm
t,pk

, vk+1
i) ⇝ (ℓin, vi+1) with t = (q, !m, q′)955

and R(m) = {p1, . . . , pk}, and (C − HqI)(pj) > 0 for some pj ∈ R(m). Let (pj , ?m, p′j) ∈ T956

and C ′ = C − Hq, pjI + Hq′, p′jI. Obviously, C
mÐ→P C ′. It remains to show that C ′ ≥ vi+1.957

This is due to the fact that in the NB+R-CM M , the counter p′j will not be incremented,958

unlike C(p′j). Moreover, in the protocol P , only pj will lose a process, whereas in M , other959

counters corresponding to processes in R(m) may be decremented. Formally, by definition960

and by induction hypothesis, C−HqI ≥ v1
i . Also, for all p ∈ R(m), either v1

i (p) = vk+1
i (p) = 0,961

or vk+1
i (p) = v1

i (p) − 1. Remark that since C ≥ vi, then C − HqI ≥ vi − vq = v1
i , hence962

(C − Hq, pjI)(pj) = (C − HqI)(pj) − 1 ≥ v1
i (pj) − 1. Also, (C − HqI)(pj) − 1 ≥ 0, hence963

(C − HqI)(pj)−1 ≥max(0, v1
i (pj)−1) = vk+1

i (pj). Observe also that, for all p ≠ pj ∈ R(m),964

if v1
i (p) > 0, then (C − Hq, pjI)(p) = (C − HqI)(p) ≥ v1

i (p) > vk+1
i (p). If v1

i (p) = 0, then965

(C − Hq, pjI)(p) ≥ v1
i (p) = vk+1

i (p). For all other p ∈ Q, (C − Hq, pjI)(p) = (C − HqI)(p) ≥966

v1
i (p) = vk+1

i (p). Hence, C − Hq, pjI ≥ vk+1
i . By definition, vi+1 = vk+1

i + vq′ . Hence,967

(C −Hq, pjI+Hq′, p′jI)(p) ≥ vi+1(p), for all p ≠ p′j , and (C −Hq, pjI+Hq′, p′jI)(p′j) > vi+1(p′j).968

So, C ′ > vi+1.969

Now we know that the initial execution of M is : (ℓin, 0X)⇝∗ (ℓin, vn)⇝∗ (ℓf , vf) with970

vf = vn − (vq1 + vq2 + ⋅ ⋅ ⋅ + vqs). Thus vn > vq1 + vq2 + ⋅ ⋅ ⋅ + vqs
. We have proved that we971

can build an initial execution of P : C0 Ð→∗P Cn and that Cn ≥ vq1 + vq2 + ⋅ ⋅ ⋅ + vqs . Hence972

Cn ≥ CF . ◀973

B.2 Proofs of Theorem 4.2974

To prove Theorem 4.2, we shall use Theorem 4.1 along with the reduction presented in975

Section 4.2. If the reduction is sound and complete, it will prove that SCover is Expspace-976

hard. As SCover is a particular instance of the CCover problem, this is sufficient to prove977

Theorem 4.2. The two lemmas of this subsection prove the soundness and completeness978

of the reduction presented in Section 4.2, put together with Theorem 3.5, it proves that979

SCover is Expspace-hard.980

▶ Lemma B.3. For all v ∈ Nd, if (ℓin, 0X) ⇝∗M (ℓf , v), then there exists C0 ∈ I, Cf ∈ F∃981

such that C0 Ð→∗P Cf .982

Proof. For all x ∈ X, we let Nx be the maximal value taken by x in the initial execution983

(ℓin, 0X)⇝∗ (ℓf , v), and N = Σx∈XNx. Now, we let C0 ∈ I ∩CN+1 be the initial configuration984

with N + 1 processes. In the initial execution of P that we will build, one of the processes985

will evolve in the P(M) part of the protocol, simulating the execution of the NB+R-CM,986

the others will simulate the values of the counters in the execution.987

Now, we show by induction on k that, for all k ≥ 0, if (ℓin, 0X)⇝k (ℓ, w), then C0 Ð→∗ C,988

with C(1x) = w(x) for all x ∈X, C(ℓ) = 1, C(qin) = N −Σx∈Xw(x), and C(s) = 0 for all other989

s ∈ Q.990

C0
nb(L)ÐÐÐ→ C1

0
nb(R)ÐÐÐ→ C2

0 , and C2
0(qin) = N , C2

0(ℓin) = 1, and C2
0(s) = 0 for all other s ∈ Q.991

So the property holds for k = 0. Suppose now that the property holds for k ≥ 0 and consider992

(ℓin, 0X)⇝k (ℓ, w) δ
⇝ (ℓ′, w′).993

if δ = (ℓ, x+, ℓ′), then C
incxÐÐ→P C1 with C1 = C − Hℓ, qinI + Hℓδ, qxI. Indeed, by induction994

hypothesis, C(ℓ) = 1 > 0, and C(qin) > 0, otherwise Σx∈Xw(x) = N and w(x) is already995

XX:26 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

the maximal value taken by x so no increment of x could have happened at that point996

of the execution of M . We also have C1
incxÐÐ→P C ′, since C1(ℓδ) > 0 and C1(qx) > 0 by997

construction, and C ′ = C1 − Hℓδ, qxI + Hℓ′, 1xI. So C ′(ℓ′) = 1, for all x ∈X, C ′(1x) = w′(x),998

and C ′(qin) = N −Σx∈Xw′(x).999

if δ = (ℓ, x−, ℓ′), then C(ℓ) = 1 > 0 and C(1x) > 0 since w(x) > 0. Then C
decxÐÐ→P C11000

with C1 = C − Hℓ, 1xI + Hℓδ, q′xI. Then C1
decxÐÐ→P C ′, with C ′ = C1 − Hq′x, ℓδI + Hqin, ℓ′I. So1001

C ′(ℓ′) = 1, C ′(1x) = C(1x) − 1, C ′(qin) = C(qin) + 1.1002

if δ = (ℓ, nb(x−), ℓ′) and w(x) > 0 then C
nbdecxÐÐÐÐ→P C ′, and C ′ = C − Hℓ, 1xI + Hℓ′, qinI and1003

the case is proved.1004

if δ = (ℓ, nb(x−), ℓ′) and w(x) = 0 then by induction hypothesis, C(1x) = 0 and C
nb(nbdecx)ÐÐÐÐÐÐ→P1005

C ′, with C ′ = C − HℓI + Hℓ′I. Then, C ′(1x) = 0 = w′(x), and C ′(ℓ′) = 1.1006

if δ = (ℓ,�, ℓ′), then C
τÐ→P C ′, avec C ′ = C−HℓI+Hℓ′I. This includes the restore transitions.1007

Then C0 Ð→∗ C with C(ℓf) = 1 and C ∈ F∃. ◀1008

▶ Lemma B.4. Let C0 ∈ I, Cf ∈ F∃ such that C0 Ð→∗P Cf , then (ℓ0, 0X)⇝∗M (ℓf , v) for some1009

v ∈ NX .1010

Before proving this lemma we establish the following useful result.1011

▶ Lemma B.5. Let C0 ∈ I. For all C ∈ C such that C0 Ð→+P C, we have Σp∈{q}∪QM
C(p) = 1.1012

Proof of Lemma B.4. Note C0 Ð→ C1 Ð→ . . . Ð→ Cn = Cf . Now, thanks to Lemma B.5, for1013

all 1 ≤ i ≤ n, we can note leader(Ci) the unique state s in {q} ∪QM such that Ci(s) = 1. In1014

particular, note that leader(Cn) = ℓf . We say that a configuration C is M -compatible if1015

leader(C) ∈ Loc. For any M -compatible configuration C ∈ C, we define the configuration of1016

the NB+R-CM π(Ci) = (leader(C), v) with v = C(1x) for all x ∈X.1017

We let Ci1⋯Cik
be the projection of C0C1 . . . Cn onto the M -compatible configurations.1018

We show by induction on j that :1019

P (j): For all 1 ≤ j ≤ k, (ℓin, 0X)⇝∗M π(Cij), and Σx∈XCij(qx) +Cij(q′x) = 0. Moreover,1020

for all C such that C0 Ð→∗P C Ð→P Cij , Σx∈XC(qx) +C(q′x) ≤ 1.1021

By construction of the protocol, C0
nb(L)ÐÐÐ→ C1(

LÐ→)kC2
nb(R)ÐÐÐ→ Ci1 for some k ∈ N. So1022

π(Ci1) = (ℓin, 0X), and for all C such that C0 Ð→∗P C Ð→P Ci1 , Σx∈XC(qx) + C(q′x) = 0, so1023

P (0) holds true.1024

Let now 1 ≤ j < k, and suppose that (ℓin, 0X)⇝∗M π(Cij), and Σx∈XCij(qx) +Cij(q′x) = 0.1025

We know that Cij Ð→+ Cij+1 .1026

If there is no C ∈ C such that C(q) = 1 and Cij Ð→+ C Ð→∗ Cij+1 , the only possible1027

transitions from Cij are in TM . Let π(Cij) = (ℓ, v).1028

if Cij

incxÐÐ→ C then C = Cij
− Hℓ, qinI + Hℓδ, qxI for δ = (ℓ, x+, ℓ′) ∈ ∆b. Σx∈XC(qx) +1029

C(q′x) = 1. Note that the message incx is necessarily received by some process,1030

otherwise C(qx) = 0 and C has no successor, which is in contradiction with the fact1031

the the execution reaches Cf . Moreover, the only possible successor configuration is1032

C
incxÐÐ→ Cij+1 , with Cij+1 = C − Hqx, ℓδI + H1x, ℓ′I. Hence, obviously, π(Cij)⇝ π(Cij+1).1033

if Cij

decxÐÐ→ C then C = Cij −Hℓ, 1xI+Hℓδ, q′xI for δ = (ℓ, x−, ℓ′) ∈ ∆b. Σx∈XC(qx)+C(q′x) =1034

1. Note that the message decx is necessarily received by some process, otherwise1035

C(q′x) = 0 and C has no successor, which is in contradiction with the fact the the1036

execution reaches Cf . Besides, Cij(1x) > 0 hence v(x) > 0. Moreover, the only possible1037

L. Guillou and A. Sangnier and N. Sznajder XX:27

successor configuration is C
decxÐÐ→ Cij+1 , with Cij+1 = C − Hq′x, ℓδI + Hqin, ℓ′I. Hence,1038

obviously, π(Cij)⇝ π(Cij+1).1039

if Cij

nbdecxÐÐÐÐ→ Cij+1 then Cij+1 = Cij − Hℓ, 1xI + Hℓ′, qinI for δ = (ℓ, nb(x−), ℓ′) ∈ ∆nb.1040

Σx∈XC(qx) + C(q′x) = 0. Besides, Cij(1x) > 0 hence v(x) > 0. Hence, obviously,1041

π(Cij)⇝ π(Cij+1).1042

if Cij

nb(nbdecx)ÐÐÐÐÐÐ→ Cij+1 then Cij+1 = Cij − HℓI + Hℓ′I for δ = (ℓ, nb(x−), ℓ′) ∈ ∆nb.1043

Σx∈XC(qx) + C(q′x) = 0. Besides, Cij(1x) = 0 hence v(x) = 0. Hence, obviously,1044

π(Cij)
nb(x−)
⇝ π(Cij+1).1045

if Cij

τÐ→ Cij+1 then Cij+1 = Cij −HℓI+Hℓ′I for δ = (ℓ,�, ℓ′) ∈ ∆nb. Σx∈XC(qx)+C(q′x) = 0.1046

Besides, Cij(1x) = C ′ij+1
(1x) for all x ∈X. Hence, obviously, π(Cij)

�
⇝ π(Cij+1).1047

Otherwise, let C be the first configuration such that C(q) = 1 and Cij Ð→+ C Ð→∗ Cij+1 .1048

The transition leading to C is necessarily a transition where the message L has been sent.1049

Remember also that by induction hypothesis, Σx∈XCij(qx) +Cij(q′x) = 0.1050

if Cij

LÐ→ C, then C(q) = 1, and by induction hypothesis, Σx∈XC(qx) + C(q′x) = 0.1051

Then the only possible successor configuration is C
nb(R)ÐÐÐ→ Cij+1 , with Σx∈XCij+1(qx) +1052

Cij+1(q′x) = 0, and π(Cij+1) = (ℓin, v), so π(Cij)
�
⇝ π(Cij+1), by a restore transition.1053

if Cij

incxÐÐ→ C1
LÐ→ C then C1 = Cij − Hℓ, qinI + Hℓδ, qxI for δ = (ℓ, x+, ℓ′) ∈ ∆b and1054

Σx∈XC1(qx) + C1(q′x) = 1. Now, C = C1 − Hℓδ, qinI + Hq�, qI, so C(q) = 1 = C(qx), and1055

Σx∈XC(qx) +C(q′x) = 1.1056

∗ If C
RÐ→ Cij+1 , then Cij+1 = C − Hq, qxI + Hℓin, qinI, then Σx∈XCij+1(qx) +Cij+1(q′x) = 01057

and π(Cij+1) = (ℓin, v), hence π(Cij)
�
⇝ π(Cij+1) by a restore transition.1058

∗ Now C(qx) = 1 so it might be that C
nb(incx)ÐÐÐÐÐ→ C ′, with C ′ = C − HqxI + H1xI. Here,1059

Σx∈XC ′(qx) + C ′(q′x) = 0. However, leader(C ′) = {q} so C ′ is not M -compatible.1060

The only possible transition from C ′ is now C ′
nb(R)ÐÐÐ→ Cij+1 with Cij+1 = C ′ − HqI +1061

HℓinI. Hence, Cij+1(1x) = C ′(1x) = Cij(1x) + 1 = v(x) + 1, and Cij+1(1y) = C ′(1y) =1062

Cij(1y) = v(y) for all y ≠ x. So π(Cij) = (ℓ, v) δ
⇝ (ℓ′, v+vx)

�
⇝ (ℓin, v+vx) = π(Cij+1),1063

the last step being a restore transition. Finally, Σx∈XCij+1(qx) +Cij+1(q′x) = 0.1064

if Cij

decxÐÐ→ C1
LÐ→ C, then C1 = Cij − Hℓ, 1xI + Hℓδ, q′xI for δ = (ℓ, x−, ℓ′) ∈ ∆b and1065

Σx∈XC1(qx) + C1(q′x) = 1. Now, C = C1 − Hℓδ, qinI + Hq�, qI, so C(q) = 1 = C(q′x), and1066

Σx∈XC(qx) +C(q′x) = 1. Again, two transitions are available :1067

∗ If C
RÐ→ Cij+1 , then Cij+1 = C − Hq, q′xI + Hℓin, qinI, then Σx∈XCij+1(qx) +Cij+1(q′x) = 01068

and π(Cij+1) = (ℓin, v), hence π(Cij)
�
⇝ π(Cij+1) by a restore transition.1069

∗ Now C(q′x) = 1 so it might be that C
nb(decx)ÐÐÐÐÐ→ C ′, with C ′ = C − Hq′xI + HqinI. Here,1070

Σx∈XC ′(qx) + C ′(q′x) = 0. However, leader(C ′) = {q} so C ′ is not M -compatible.1071

The only possible transition from C ′ is now C ′
nb(R)ÐÐÐ→ Cij+1 with Cij+1 = C ′ − HqI +1072

HℓinI. Hence, Cij+1(1x) = C ′(1x) = Cij(1x) − 1 = v(x) − 1, and Cij+1(1y) = C ′(1y) =1073

Cij(1y) = v(y) for all y ≠ x. So π(Cij) = (ℓ, v) δ
⇝ (ℓ′, v−vx)

�
⇝ (ℓin, v+vx) = π(Cij+1),1074

the last step being a restore transition. Finally, Σx∈XCij+1(qx) +Cij+1(q′x) = 0.1075

If Cij

nb(incx)ÐÐÐÐÐ→ C1 then, it means that Cij(qin) = 0. In that case, let δ = (ℓ, x+, ℓ′) ∈ ∆b,1076

and C1 = Cij − HℓI+ HℓδI. Since, by induction hypothesis, C1(qx) = Cij(x) = 0, the only1077

possible transition from C1 would be C1
LÐ→ Cij+1 . However, Cij(qin) = C1(qin) = 0, so1078

XX:28 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

this transition is not possible, and C1 is a deadlock configuration, a contradiction with1079

the hypothesis that Cij Ð→ Cij+1 .1080

If Cij

nb(decx)ÐÐÐÐÐ→ C1 then it means that Cij(1x) = 0. In that case, let δ = (ℓ, x−, ℓ′) ∈∆b,1081

and C1 = Cij − HℓI + HℓδI. Since, by induction hypothesis, Σx∈XC1(qx) + C1(q′x) =1082

Σx∈XCij(qx) + Cij(q′x) = 0, the only possible transition from C1 is C1
LÐ→ C, with1083

C = C1 − Hqin, ℓδI + Hq, q�I. Again, Σx∈XC(qx) +C(q′x) = 0, and C(ℓ) = for all ℓ ∈ QM ,1084

so the only possible transition is C
nb(R)ÐÐÐ→ Cij+1 . Observe that Cij+1 is M -compatible,1085

with Cij+1(ℓin) = 1, and Cij+1(1x) = Cij(1x) for all x ∈ X. Hence π(Cij+1) = (ℓin, v),1086

and π(Cij)
�
⇝ π(Cij+1), thanks to a restore transition of M .1087

We then have, by P (k), that (ℓin, 0X)⇝∗M π(Cik
), with Cik

M -compatible and such that1088

Cik
Ð→∗ Cf , and Cik

is the last M -compatible configuration. Then, by definition of an1089

M -compatible configuration, Cik
= Cf , and π(Cik

) = (ℓf , v) for some v ∈ NX . ◀1090

C Proof of Section 51091

We present here omitted proofs of Section 51092

C.1 Technical Lemma1093

We provide here a lemma which will be useful in different parts of this section.1094

▶ Lemma C.1. Let P be rendez-vous protocol and C, C ′ ∈ C such that C = C0 Ð→ C1⋯ Ð→1095

Cℓ = C ′. Then we have the two following properties.1096

1. For all q ∈ Q verifying C(q) = 2.ℓ + a for some a ∈ N, we have C ′(q) ≥ a.1097

2. For all D0 ∈ C such that D0 ≥ C0, there exist D1, . . . , Dℓ such that D0 Ð→ D1⋯ Ð→ Dℓ and1098

Di ≥ Ci for all 1 ≤ i ≤ ℓ.1099

Proof. According to the semantics associated to (non-blocking) rendez-vous protocols, each1100

step in the execution from C to C ′ consumes at most two processes in each control state q,1101

hence the result of the first item.1102

Let C, C ′ ∈ C such that C Ð→ C ′. Let D ∈ C such that D ≥ C. We reason by a case analysis1103

on the operation performed to move from C to C ′ and show that there exists D′ such that1104

D Ð→ D′ and D′ ≥ C ′. (To obtain the final result, we repeat k times this reasoning).1105

Assume C
mÐ→P C ′ then there exists (q1, !m, q′1) ∈ T and (q2, ?m, q′2) ∈ T such that1106

C(q1) > 0 and C(q2) > 0 and C(q1) +C(q2) ≥ 2 and C ′ = C − Hq1, q2I + Hq′1, q′2I. But since1107

D ≥ C, we have as well D(q1) > 0 and D(q2) > 0 and D(q1) +D(q2) ≥ 2 and as a matter1108

of fact D
mÐ→P D′ for D′ =D − Hq1, q2I + Hq′1, q′2I. Since D ≥ C, we have D′ ≥ C ′.1109

The case C
τÐ→P C ′ can be treated in a similar way.1110

Assume C
nb(m)ÐÐÐÐ→P C ′, then there exists (q1, !m, q′1) ∈ T , such that C(q1) > 0 and1111

(C − Hq1I)(q2) = 0 for all (q2, ?m, q′2) ∈ T and C ′ = C − Hq1I + Hq′1I. We have as well that1112

D(q1) > 0. But we need to deal with two cases :1113

1. If (D − Hq1I)(q2) = 0 for all (q2, ?m, q′2) ∈ T . In that case we have D
nb(m)ÐÐÐÐ→P D′ for1114

D′ =D − Hq1I + Hq′1I and D′ ≥ C ′.1115

2. If there exists (q2, ?m, q′2) ∈ T such that (D − Hq1I)(q2) > 0. Then we have that1116

D
mÐ→P D′ for D′ =D−Hq1, q2I+Hq′1, q′2I. Note that since (C −Hq1I)(q2) = 0 and D ≥ C,1117

we have here again D′ ≥ C ′.1118

◀1119

L. Guillou and A. Sangnier and N. Sznajder XX:29

C.2 Properties of Consistent Abstract Sets of Configurations1120

C.2.1 Proof of Lemma 5.11121

Proof. Let C ′ ∈ JγK such that C ′ ≥ C. Let q ∈ Q such that C(q) > 0. Then we have1122

C ′(q) > 0. If q ∉ S, then q ∈ st(Toks) and C ′(q) = 1 and C(q) = 1 too. Furthermore for all1123

q′ ∈ st(Toks)∖{q} such C(q′) = 1, we have that C ′(q′) = 1 and q and q′ are conflict-free. This1124

allows us to conclude that C ∈ JγK.1125

Checking whether C belongs to JγK can be done in polynomial time applying the definition1126

of J⋅K. ◀1127

C.2.2 Building Configurations from a Consistent Abstract Set1128

▶ Lemma C.2. Let γ be a consistent abstract set of configurations. Given a subset of states1129

U ⊆ Q, if for all N ∈ N and for all q ∈ U there exists Cq ∈ JγK and C ′q ∈ C such that Cq Ð→∗ C ′q1130

and C ′q(q) ≥ N , then for all N ∈ N, there exists C ∈ JγK and C ′ ∈ C such that C Ð→∗ C ′ and1131

C ′(q) ≥ N for all q ∈ U .1132

Proof. We suppose γ = (S, Toks) and reason by induction on the number of elements in1133

U ∖ S. The base case is obvious. Indeed assume U ∖ S = ∅ and let N ∈ N. We define the1134

configuration C such that C(q) = N for all q ∈ S and C(q) = 0 for all q ∈ st(Toks). It is clear1135

that C ∈ JγK and that C(q) ≥ N for all q ∈ U (since U ∖ S = ∅, we have in fact U ⊆ S).1136

We now assume that the property holds for a set U and we shall see it holds for U ∪ {p},1137

p ∉ S. We assume hence that for all N ∈ N and for all q ∈ U ∪ {p} there exists Cq ∈ JγK and1138

C ′q ∈ C such that Cq Ð→∗ C ′q and C ′q(q) ≥ N . Let N ∈ N. By induction hypothesis, there exists1139

CU ∈ JγK and C ′U ∈ C such that CU Ð→∗ C ′U and C ′U(q) ≥ N for all q ∈ U . We denote by ℓU1140

the number of steps in the execution from CU to C ′U . We will see that that we can build1141

a configuration C ∈ JγK such that C Ð→∗ C ′′U with C ′′U ≥ CU and C ′′U(p) ≥ N + 2 ∗ ℓU . Using1142

Lemma C.1, we will then have that C ′′U Ð→∗ C ′ with C ′ ≥ C ′U and C ′(p) ≥ N . This will allow1143

us to conclude.1144

We as well know that there exist Cp ∈ JγK and C ′p ∈ C such that Cp Ð→∗ C ′p and C ′p(p) ≥1145

N +2∗ ℓU +(k ∗ ℓ). We denote by ℓp the number of steps in the execution from Cp to C ′p. We1146

build the configuration C as follows: we have C(q) = CU(q) + 2 ∗ ℓp + (k ∗ ℓ) +Cp(q) for all1147

q ∈ S, and we have C(q) = Cp(q) for all q ∈ st(Toks). Note that since Cp ∈ JγK, we have that1148

C ∈ JγK. Furthermore, we have C ≥ Cp, hence using again Lemma C.1, we know that there1149

exists a configuration C ′′p such that C Ð→∗ C ′′p and C ′′p ≥ C ′p (i.e. C ′′p (p) ≥ N + 2 ∗ ℓU + (k ∗ ℓ)1150

and C ′′p (q) ≥ CU(q) + (k ∗ ℓ) +Cp(q) for all q ∈ S by Lemma C.1,Item 1)1151

Having CU ∈ JγK, we name (q1, m1) . . . (qk, mk) the tokens in Toks such that CU(qj) = 11152

for all 1 ≤ j ≤ k, and for all q ∈ st(Toks) ∖ {qj}1≤j≤k, CU(q) = 0. Since γ is consistent, for each1153

(qj , mj) there exists a path (q0,j , !mj , q1,j)(q1,j , ?m1,j , q2,j) . . . (qℓj ,j , ?mℓj ,j , qj) in P such1154

that q0,j ∈ S and such that there exists (q′i,j , !mi,j , q′′i,j) ∈ T with q′i,j ∈ S for all 1 ≤ i ≤ ℓj . We1155

denote by ℓ =max1≤j≤k(ℓj) + 1.1156

Assume there exists 1 ≤ i ≤ j ≤ k such that (qi, mi), (qj , mj) ∈ Toks and CU(qi) =1157

CU(qj) = 1, and mi ∈ Rec(qj) and mj ∈ Rec(qi). Since CU respects JγK, qi and qj are conflict-1158

free: there exist (qi, m), (qj , m′) ∈ Toks such that m ∉ Rec(qj) and m′ ∉ Rec(qi). Hence,1159

(qi, mi), (qi, m), (qj , mj), (qj , m′) ∈ Toks, and m ∉ Rec(qj) and mj ∈ Rec(qi). Therefore, we1160

have (qi, m), (qj , mj) ∈ Toks and m ∉ Rec(qj) and mj ∈ Rec(qi), which is in contradiction1161

with the fact that γ is consistent. Hence, for all 1 ≤ i ≤ j ≤ k, for all (qi, mi), (qj , mj) ∈ Toks,1162

mi ∉ Rec(qj) and mj ∉ Rec(qi).1163

XX:30 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

We shall now explain how from C ′′p we reach C ′′U in k∗ℓ steps, i.e. how we put (at least) one1164

token in each state qj such that qj ∈ st(Toks) and CU(qj) = 1 in order to obtain a configuration1165

C ′′U ≥ CU . We begin by q1. Let a process on q0,1 send the message m1 (remember that q0,11166

belongs to S) and let ℓ1 other processes on states of S send the messages needed for the1167

process to reach q1 following the path (q0,1, !m1, q1,1)(q1,1, ?m1,1, q2,1) . . . (qℓ1,1, ?mℓ1,1, q1).1168

At this stage, we have that the number of processes in each state q in S is bigger than1169

CU(q) + ((k − 1) ∗ ℓ) and we have (at least) one process in q1. We proceed similarly to put a1170

process in q2, note that the message m2 sent at the beginning of the path cannot be received1171

by the process in q1 since, as explained above, m2 ∉ Rec(q1).1172

We proceed again to put a process in the states q1 to qK and at the end we obtain the1173

configuration C ′′U with the desired properties. ◀1174

C.3 Proof of Lemma 5.31175

In this subsection, the different items of Lemma 5.3 have been separated in distinct lemmas.1176

▶ Lemma C.3. F (γ) is consistent and can be computed in polynomial time for all consistent1177

γ ∈ Γ.1178

Proof. The fact that F (γ) can be computed in polynomial time is a direct consequence of1179

the definition of F (see Table 1).1180

Assume γ = (S, Toks) ∈ Γ to be consistent. Note (S′′, Toks′′) the intermediate sets1181

computed during the computation of F (γ), and note F (γ) = (S′, Toks′).1182

To prove that F (γ) is consistent, we need to argue that (1) for all (q, m) ∈ Toks′′ ∖Toks,1183

there exists a finite sequence of transitions (q0, a0, q1) . . . (qk, ak, q) such that q0 ∈ S, and1184

a0 =!m and for all 1 ≤ i ≤ k, we have that ai =?mi and that there exists (q′i, !mi, q′i+1) ∈ T1185

with q′i ∈ S, and (2) for all (q, m), (q′, m′) ∈ Toks′ either m ∈ Rec(q′) and m′ ∈ Rec(q) or1186

m ∉ Rec(q′) and m′ ∉ Rec(q).1187

We start by proving property (1). If (q, m) has been added to Toks′′ with rule 3b, then1188

by construction, there exists p ∈ S such that (p, !a, p′) ∈ T , and (q, m) = (p′, a). The sequence1189

of transition is the single transition is (p, !a, q).1190

If (q, m) has been added to Toks′′ with rule 5b, then there exists (q′, m) ∈ Toks, and1191

(q′, ?a, q) with m ≠ a. Furthermore, m ∈ Rec(q) and there exists (p, !a, p′) ∈ T with1192

p ∈ S. By hypothesis, γ is consistent, hence there exists a finite sequence of transitions1193

(q0, q0, q1) . . . (qk, ak, q′) such that q0 ∈ S, and a0 =!m and for all 1 ≤ i ≤ k, we have that1194

ai =?mi and that there exists (q′i, !mi, q′i+1) ∈ T with q′i ∈ S. By completing this sequence1195

with transition (q′, ?a, q) we get an appropriate finite sequence of transitions.1196

It remains to prove property (2). Assume there exists (q, m), (q′, m′) ∈ Toks′ such that1197

m ∈ Rec(q′) and m′ ∉ Rec(q), then as Toks′ ⊆ Toks′′, (q, m), (q′, m′) ∈ Toks′′. By condition1198

6, q ∈ S′, therefore, as Toks′ = {(p, a) ∈ Toks′′ ∣ p ∉ S′}, we have that (q, m) ∉ Toks′, and we1199

reached a contradiction. ◀1200

▶ Lemma C.4. If (S′, Toks′) = F (S, Toks) then S ⊊ S′ or Toks ⊆ Toks′.1201

Proof. From the construction of F (see Table 1), we have S ⊆ S′′ ⊆ S′.1202

Assume now that S = S′. First note that Toks ⊆ Toks′′ (see Table 1) and that st(Toks)∩S =1203

∅. But Toks′ = {(q, m) ∈ Toks′′ ∣ q /∈ S′} = {(q, m) ∈ Toks′′ ∣ q /∈ S}. Hence the elements1204

that are removed from Toks′′ to obtain Toks′ are not elements of Toks. Consequently1205

Toks ⊆ Toks′. ◀1206

▶ Lemma C.5. For all consistent γ ∈ Γ, if C ∈ JγK and C Ð→ C ′ then C ′ ∈ JF (γ)K.1207

L. Guillou and A. Sangnier and N. Sznajder XX:31

Proof. Let γ = (S, Toks) ∈ Γ be a consistent abstract set of configurations, and C ∈ C such1208

that C ∈ JγK and C Ð→ C ′. Note F (γ) = (S′, Toks′) and γ′ = (S′′, Toks′′) the intermediate1209

sets used to compute F (γ). We will first prove that for all state q such that C ′(q) > 0, q ∈ S′1210

or q ∈ st(Toks′), and then we will prove that for all states q such that q ∈ st(Toks′) and1211

C ′(q) > 0, C ′(q) = 1 and for all other state p ∈ st(Toks′) such that C ′(p) > 0, p and q are1212

conflict-free.1213

Observe that S ⊆ S′′ ⊆ S′, Toks ⊆ Toks′′, and st(Toks′′) ⊆ st(Toks′) ∪ S′.1214

First, let us prove that for every state q such that C ′(q) > 0, it holds that q ∈ S′∪st(Toks′).1215

Note that for all q such that C(q) > 0, because C respects γ, q ∈ st(Toks)∪S. As st(Toks)∪S ⊆1216

st(Toks′) ∪ S′, the property holds for q. Hence, we only need to consider states q such that1217

C(q) = 0 and C ′(q) > 0. If C
τÐ→ C ′ then q is such that there exists (q′, τ, q) ∈ T , q′ is therefore1218

an active state and so q′ ∈ S, (recall that Toks ⊆ QW × Σ). Hence, q should be added to1219

st(Toks′′) ∪ S′′ by condition 2. As st(Toks′′) ∪ S′′ ⊆ st(Toks′) ∪ S′, it concludes this case. If1220

C
nb(a)ÐÐÐ→ C ′ then q is such that there exists (q′, !a, q) ∈ T , with q′ an active state. With the1221

same argument, q′ ∈ S and so q should be added to st(Toks′′) ∪ S′′ by condition 3a or 3b.1222

If C
aÐ→ C ′, then q is either a state such that (q′, !a, q) ∈ T and the argument is the same1223

as in the previous case, or it is a state such that (q′, ?a, q) ∈ T , and it should be added to1224

st(Toks′′) ∪ S′′ by condition 4, 5a, or 5b. Therefore, we proved that for all state q such that1225

C ′(q) > 0, it holds that q ∈ st(Toks′) ∪ S′.1226

It remains to prove that if q ∈ st(Toks), then C ′(q) = 1 and for all q′ ∈ st(Toks′) ∖ {q}1227

such that C ′(q′) = 1, we have that q and q′ are conflict-free. Note that if q ∈ st(Toks) and1228

C(q) = C ′(q) = 1, then for every state p such that p ∈ st(Toks) and C(p) = C ′(p) = 1, it holds1229

that q and p are conflict-free.1230

Observe that if C
τÐ→ C ′, then note q the state such that (q′, τ, q), it holds that {p ∣ p ∈1231

st(Toks′) and C ′(p) > 0} ⊆ {p ∣ p ∈ st(Toks) and C(p) = 1}: q′ is an active state, q might be1232

in st(Toks) but it is added to S′′ ⊆ S′ with rule 2, and for all other states, C ′(p) = C(p). If1233

p ∈ st(Toks′) and C(p) > 0, it implies that C ′(p) = C(p) = 1 and p ∈ st(Toks) (otherwise p is1234

in S ⊆ S′). Hence, there is nothing to do as C respects γ.1235

Take now q ∈ st(Toks′) ∖ st(Toks) with C ′(q) > 0, we shall prove that C ′(q) = 1 and1236

for all p ∈ st(Toks′) and C ′(p) > 0, q and p are conflict-free. If q ∈ st(Toks′) ∖ st(Toks), it1237

implies that C(q) = 0 because C respects γ. Hence: either (1) C
nb(a)ÐÐÐ→ C ′ with transition1238

(q′, !a, q) ∈ T , either (2) C
aÐ→ C ′ with transitions (q1, !a, q′1) ∈ T and (q2, ?a, q′2) ∈ T and q = q′11239

or q = q′2. In the latter case, we should be careful as we need to prove that q′2 ≠ q′1, otherwise,1240

C ′(q) = 2.1241

Case (1): Note that as only one process moves between C and C ′ and C(q) = 0, it is1242

trivial that C ′(q) = 1. In this first case, as it is a non-blocking request on a between C and1243

C ′, it holds that: for all p ∈ st(Toks) such that C(p) = 1, a ∉ Rec(p). Take p ∈ st(Toks′), such1244

that p ≠ q and C ′(p) = 1, then C ′(p) = C(p) = 1 and so p ∈ st(Toks), and a ∉ Rec(p). Suppose1245

(p, m) ∈ Toks′ such that m ∈ Rec(q), then we found two tokens in Toks′ such that m ∈ Rec(q)1246

and a ∉ Rec(p) which contradicts F (γ)’s consistency. Hence, p and q are conflict-free.1247

Case (2): Note that if q′2 ∈ st(Toks′), then q2 ∈ st(Toks) (otherwise, q′2 should be in S′ by1248

condition 4), and note (q2, m) ∈ Toks, with (q′2, m) ∈ Toks′. Note as well that if q′1 ∈ st(Toks′),1249

then a ∈ Rec(q′1) (otherwise, q′1 should be in S′ by condition 3a) and (q′1, a) ∈ Toks′ by1250

condition 3b. Furthermore, if q′1 ∈ st(Toks′), q2 ∈ st(Toks) as well as otherwise q′1 should be1251

added to S′ by condition 3a.1252

We first prove that either q′1 ∈ S′, or q′2 ∈ S′. For the sake of contradiction, assume this is1253

not the case, then there are three tokens (q′1, a), (q2, m), (q′2, m) ∈ Toks′ ⊆ Toks′′, such that1254

(q2, ?a, q′2) ∈ T . From condition 7, q′1 should be added to S′ and so (q′1, a) ∉ Toks′. Note that,1255

XX:32 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

as a consequence q′1 ≠ q′2 or q′1 = q′2 ∈ S′. Take q ∈ st(Toks′) ∖ st(Toks) such that C ′(q) > 0, if1256

such a q exists, then q = q′1 or q = q′2 and q′1 ≠ q′2. As a consequence, C ′(q) = 1 (note that if1257

q′1 = q2, C(q2) = 1).1258

Take p ∈ st(Toks′)∖{q} such that C ′(p) > 0, it is left to prove that q and p are conflict-free.1259

If p ≠ q and p ∈ st(Toks′), then C ′(p) = C(p) (because q′1 ∈ S′ or q′2 ∈ S′). Hence, p ∈ st(Toks)1260

and C ′(p) = 1.1261

Assume q = q′1 and assume q and p are not conflict-free. Remember that we justified1262

that q2 ∈ st(Toks), and therefore, C(q2) = 1. Hence, either C ′(q2) = 0, or q2 = q′2 and in1263

that case q2, q′2 ∈ S′ or q′2 = q′1 and then q2 = q. In any cases, p ≠ q2. As C respects γ, there1264

exists (p, mp) and (q2, m) ∈ Toks such that mp ∉ Rec(q2) and m ∉ Rec(p) (q2 and p are1265

conflict-free). As p ∈ st(Toks′), (p, mp) ∈ Toks′ and so mp ∈ Rec(q) or a ∈ Rec(p) (q and p1266

are not conflict-free). As F (γ) is consistent, mp ∈ Rec(q) and a ∈ Rec(p). Note that a ≠mp1267

because a ∈ Rec(q2), a ≠ m because m ∉ Rec(p), and obviously m ≠ mp. Note also that1268

if m ∉ Rec(q), then we found two tokens (q, a) and (q2, m) in Toks′ such that a ∈ Rec(q2)1269

and m ∉ Rec(q), which contradicts the fact that F (γ) is consistent (Lemma C.3). Hence,1270

m ∈ Rec(q). Note that even if q2 is added to S′′, it still is in Toks′′. As Toks′ ⊆ Toks′′ we1271

found three tokens (p, mp), (q2, m), (q, a) in Toks′′, satisfying condition 8, and so p should1272

be added to S′, which is absurd as p ∈ st(Toks′). We reach a contradiction and so q and p1273

should be conflict-free.1274

Finally assume q = q′2. If q = q2, then, because C respects γ, q and p are conflict-free.1275

Otherwise, as q2 is conflict-free with p, there exists (q2, m) and (p, mp) in Toks such that1276

m ∉ Rec(p) and mp ∉ Rec(q2). Note that (q, m) ∈ Toks′′ from condition 5b (otherwise, q ∈ S′′1277

which is absurd). Hence, (q, m) ∈ Toks′ and, as p ∈ st(Toks′), (p, mp) is conserved from Toks1278

to Toks′. It remains to show that mp ∉ Rec(q). Assume this is not the case, then there exists1279

(p, mp) and (q, m) ∈ Toks′ such that m ∉ Rec(p) and mp ∈ Rec(q) which is absurd given1280

F (γ)’s consistency. As a consequence, q and p are conflict-free.1281

We managed to prove that for all q such that C ′(q) > 0, q ∈ S′ ∪ st(Toks′), and if1282

q ∈ st(Toks′), then C ′(q) = 1 and for all others p ∈ st(Toks′) such that C ′(p) = 1, p and q are1283

conflict-free.1284

◀1285

▶ Lemma C.6. For all consistent γ ∈ Γ, if C ′ ∈ JF (γ)K, then there exists C ′′ ∈ C and C ∈ JγK1286

such that C ′′ ≥ C ′ and C Ð→∗ C ′′.1287

Proof. Let γ be a consistent abstract set of configurations and C ′ ∈ JF (γ)K. We suppose1288

that γ = (S, Toks) and F (γ) = γ′ = (S′, Toks′). We will first show that for all N ∈ N, for all1289

q ∈ S′ there exists a configuration Cq ∈ JγK and a configuration C ′q ∈ C such that Cq Ð→∗ C ′q1290

and C ′q(q) ≥ N . This will allow us to rely then on Lemma C.2 to conclude.1291

Take N ∈ N and q ∈ S′, if q ∈ S, then take Cq ∈ JγK to be HN ⋅ qI. Clearly Cq ∈ JF (γ)K,1292

Cq(q) ≥ N and Cq Ð→∗ Cq. Now let q ∈ S′ ∖ S. Note (Toks′′, S′′) the intermediate sets of1293

F (γ)’s computation.1294

1295

Case 1: q ∈ S′′. As a consequence q was added to S′′ either by one of the conditions1296

2, 3a, 4 or 5a. In cases 2 and 3a when a ∉ Rec(q), note q′ the state such that (q′, τ, q) or1297

(q′, !a, q), and consider the configuration Cq = HN ⋅ q′I. By doing N internal transitions or1298

non-blocking requests, we reach C ′q = HN ⋅ qI. Note that the requests on a are non-blocking1299

as q′ ∈ QA and a ∉ Rec(q). C ′q ∈ JF (γ)K.1300

In cases 3a with a ∈ Rec(q) and in case 4, note (q1, !a, q′1) and (q2, ?a, q′2) the two1301

transitions realizing the conditions. As a consequence q1, q2 ∈ S. Take the configuration1302

L. Guillou and A. Sangnier and N. Sznajder XX:33

Cq = HN ⋅ q1, N ⋅ q2I. Cq ∈ JγK and by doing N successive rendez-vous on letter a, we reach1303

configuration C ′q = HN ⋅ q′1I + HN ⋅ q′2I. C ′q ∈ JF (γ)K, and as q ∈ {q′1, q′2}, C ′q(q) ≥ N .1304

In case 5a, there exists (q′, m) ∈ Toks such that (q′, ?a, q) ∈ T , m ∉ Rec(q), and there1305

exists p ∈ S such that (p, !a, p′) ∈ T . Remember that γ is consistent, and so there ex-1306

ists a finite sequence of transitions (q0, !m, q1)(q1, a1, q2) . . . (qk, ak, q′) such that q0 ∈ S1307

and for all 1 ≤ i ≤ k, ai =?mi and there exists (q′i, !mi, q′′i) ∈ T with q′i ∈ S. Take1308

Cq = H(N − 1) ⋅ q0I + H(N − 1) ⋅ q′1I + ⋅ ⋅ ⋅ + H(N − 1) ⋅ q′kI + HN ⋅ pI + Hq′I. Clearly Cq ∈ JγK1309

as all states except q′ are in S and q′ ∈ st(Toks), Cq(q′) = 1. We shall show how to put1310

2 processes on q from Cq and then explain how to repeat the steps in order to put N .1311

Consider the following execution: Cq
aÐ→ C1

xmÐÐ→ C2
m1ÐÐ→ . . .

mkÐÐ→ Ck+2
aÐ→ Ck+3. The1312

first rendez-vous on a is made with transitions (p, !a, p′) and (q′, ?a, q). Then either1313

m ∉ Rec(p′) and xm = nb(m), otherwise, xm = m, in any cases, the rendez-vous or1314

non-blocking sending is made with transition (q0, !m, q1) and the message is not received1315

by the process on q (because m ∉ Rec(q)) and so C2 ≥ HqI + Hq1I. Then, each rendez-1316

vous on mi is made with transitions (q′i, !mi, q′′i) and (qi, ?mi, qi+1) (qk+1 = q′), . Hence1317

Ck+3 ≥ H(N −2) ⋅q0I+H(N −2) ⋅q′1I+ ⋅ ⋅ ⋅ +H(N −2) ⋅q′kI+H(N −2) ⋅pI+H2 ⋅qI. We can reiterate1318

this execution (without the first rendez-vous on a) N − 2 times to reach a configuration C ′q1319

such that C ′q ≥ HN ⋅ qI.1320

1321

Case 2: q ∉ S′′. Hence, q should be added to S′ by one of the conditions 6, 7, and 8.1322

If it was added with condition 6, let (q1, m1), (q2, m2) ∈ Toks′′ such that q = q1, m1 ≠ m2,1323

m2 ∉ Rec(q1) and m1 ∈ Rec(q2). From the proof of Lemma C.3, one can actually observe1324

that all tokens in Toks′′ correspond to "feasible" paths regarding states in S, i.e there exists1325

a finite sequence of transitions (p0, !m1, p1)(p1, a1, p2) . . . (pk, ak, q1) such that p0 ∈ S and1326

for all 1 ≤ i ≤ k, ai =?bi and there exists (p′i, !bi, p′′i) ∈ T with p′i ∈ S. The same such1327

sequence exists for the token (q2, m2), we note the sequence (s0, !m2, s1) . . . (sℓ, aℓ, q2) such1328

that s0 ∈ S and for all 1 ≤ i ≤ ℓ, ai =?ci and there exists (s′i, !ci, s′′i) ∈ T with s′i ∈ S. Take1329

Cq = HN ⋅p0I+HN ⋅s0I+HNp′1I+⋅ ⋅ ⋅+HNp′kI+HN ⋅s′1I+⋅ ⋅ ⋅+HN ⋅s′ℓI. Clearly, Cq ∈ JγK, as all states1330

are in S. Consider the following execution: Cq
nb(m1)ÐÐÐÐ→ C1

b1Ð→ . . .
bkÐ→ Ck+1, the non-blocking1331

sending of m1 is made with transition (p0, !m1, p1) and each rendez-vous on letter bi is made1332

with transitions (p′i, !bi, p′′i) and (pi, ?bi, pi+1) (pk+1 = q1). Hence, Ck+1 is such that Ck+1 ≥ Hq1I.1333

From Ck+1, consider the following execution: Ck+1
xm2ÐÐ→ Ck+2

c1Ð→ . . .
cℓÐ→ Ck+ℓ+2

m1ÐÐ→ Ck+ℓ+3,1334

where xm2 = nb(m2) if no process is on a state in R(m2), or xm2 =m2 otherwise. In any case,1335

as m2 ∉ Rec(q1), Ck+2 ≥ Hq1I. And each rendez-vous on letter ci is made with transitions1336

(s′i, !ci, s′′i) and (si, ?ci, si+1) (sk+1 = q2), the last rendez-vous on m1 is made with transitions1337

(p0, !m1, p1) and (q2, ?m1, q′2) (such a q′2 exists as m1 ∈ Rec(q2)). Hence, Ck+ℓ+3 ≥ Hp1I+ Hq1I.1338

By repeating the two sequences of steps (without the first non blocking sending of m1) N − 11339

times (except for the last time where we don’t need to repeat the second execution), we1340

reach a configuration C ′q such that C ′q ≥ HN ⋅ q1I.1341

If it was added with condition 7, then let (q1, m1), (q2, m2), (q3, m2) ∈ Toks′′ such that1342

m1 ≠ m2 and (q2, ?m1, q3) ∈ T with q = q1. From the proof of Lemma C.3, Toks′′ is1343

made of "feasible" paths regarding S and so there exists a finite sequence of transitions1344

(p0, !m2, p1)(p1, a1, p2) . . . (pk, ak, q2) such that p0 ∈ S and for all 1 ≤ i ≤ k, ai =?bi and there1345

exists (p′i, !bi, p′′i) ∈ T with p′i ∈ S. The same such sequence exists for the token (q1, m1), we1346

note the sequence (s0, !m1, s1) . . . (sℓ, aℓ, q1) such that s0 ∈ S and for all 1 ≤ i ≤ ℓ, ai =?ci and1347

there exists (s′i, !ci, s′′i) ∈ T with s′i ∈ S. Take Cq = HN ⋅p0I+HN ⋅s0I+HNp′1I+⋅ ⋅ ⋅+HNp′kI+HN ⋅1348

s′1I+ ⋅ ⋅ ⋅ + HN ⋅s′ℓI. Clearly, Cq ∈ JγK, as all states are in S. We do the same execution from Cq1349

XX:34 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

to Ck+1 as in the previous case: Cq
nb(m2)ÐÐÐÐ→ C1

a1Ð→ . . .
akÐ→ Ck+1. Here Ck+1 is then such that1350

Ck+1 ≥ Hq2I. Then, from Ck+1 we do the following: Ck+1
m1ÐÐ→ Ck+2

c1Ð→ . . .
cℓÐ→ Ck+ℓ+2

m2ÐÐ→1351

Ck+ℓ+3: the rendez-vous on letter m1 is made with transitons (s0, !m1, s1) and (q2, ?m1, q3).1352

Then, each rendez-vous on letter ci is made with transitions (s′i, !ci, s′′i) and (si, ?ci, si+1)1353

(sk+1 = q1), and the last rendez-vous on letter m2 is made with transitions (p0, !m2, p1) and1354

(q3, ?m2, q′3) (such a state q′3 exists as (q3, m2) ∈ Toks′′ and so m2 ∈ Rec(q3)). Hence, Ck+ℓ+31355

is such that Ck+ℓ+3 ≥ Hq1I + Hp1I. We can repeat the steps from C1 N − 1 times (except for1356

the last time where we don’t need to repeat the second execution), to reach a configuration1357

C ′q such that C ′q ≥ HN ⋅ q1I.1358

If it was added with condition 8, then let (q1, m1), (q2, m2), (q3, m3) ∈ Toks′′, such1359

that m1 ≠ m2, m2 ≠ m3, m1 ≠ m3, and m1 ∉ Rec(q2), m1 ∈ Rec(q3), and m2 ∉ Rec(q1),1360

m2 ∈ Rec(q3) and m3 ∈ Rec(q2) and m3 ∈ Rec(q1), and q1 = q. Then there exists three finite se-1361

quences of transitions (p0, !m1, p1)(p1, ?b1, p2) . . . (pk, ?bk, pk+1), and (s0, !m2, s1)(s1, ?c1, s2)1362

. . . (sℓ, ?ck, sℓ+1), and (r0, !m3, r1)(r1, ?d1, r2) . . . (rj , ?dj , rj+1) such that pk+1 = q1, sℓ+1 = q21363

and rj+1 = q3, and for all messages a ∈ {bi1 , ci2 , di3}1≤i1≤k,1≤i2≤ℓ,1≤i3≤j = M , there exists1364

qa ∈ S such that (qa, !a, q′a). Take Cq = HNp0I + HNs0I + HNr0I + ∑a∈MHNqaI. From Cq1365

there exists the following execution: Cq
nb(m1)ÐÐÐÐ→ C1

b1Ð→ . . .
bkÐ→ Ck+1 where the non-blocking1366

sending is made with the transition (p0, !m1, p1) and each rendez-vous with letter bi is made1367

with transitions (qbi , !bi, q′bi
) and (pi, ?bi, pi+1). Hence, Ck+1 ≥ Hq1I. Then, we continue the1368

execution in the following way: Ck+1
xm2ÐÐ→ Ck+2

c1Ð→ . . .
cℓÐ→ Ck+ℓ+2 where xm2 = nb(m2) if1369

there is no process on R(m2), and xm2 =m2 otherwise. In any case, the rendez-vous is not1370

answered by a process on state q1 because m2 ∉ Rec(q1). Furthermore, each rendez-vous with1371

letter ci is made with transitions (qci , !ci, q′ci
) and (si, ?ci, si+1). Hence, Ck+ℓ+2 ≥ Hq2I + Hq1I.1372

From Ck+ℓ+2 we do the following execution: Ck+ℓ+2
m3ÐÐ→ Ck+ℓ+3

d1Ð→ . . .
djÐ→ Ck+ℓ+j+3 where the1373

rendez-vous on letter m3 is made with transitions (r0, !m3, r1) and (q2, ?m3, q′2) (this trans-1374

ition exists as m3 ∈ Rec(q2)). Each rendez-vous on di is made with transitions (qdi , !di, q′di
)1375

and (ri, ?di, ri+1). Hence, the configuration Ck+ℓ+j+3 is such that Ck+ℓ+j+3 ≥ Hq3I + Hq1I.1376

Then from Ck+ℓ+j+3: Ck+ℓ+j+3
m1ÐÐ→ Ck+ℓ+j+4 where the rendez-vous is made with transitions1377

(p0, !m1, p1) and (q3, ?m1, q′3) (this transition exists as m1 ∈ Rec(q3)). By repeating N − 11378

times the execution from configuration C1, we reach a configuration C ′q such that C ′q(q1) ≥ N .1379

1380

Hence, for all N ∈ N, for all q ∈ S′, there exists Cq ∈ JγK, such that Cq Ð→ C ′q and C ′q(q) ≥ N .1381

From Lemma C.2, there exists C ′N and CN ∈ JγK such that CN Ð→∗ C ′N and for all q ∈ S′,1382

CN(q) ≥ N .1383

Take C ′ ∈ JF (γ)K, we know how to build for any N ∈ N, a configuration C ′N such that1384

C ′N(q) ≥ N for all states q ∈ S′ and there exists CN ∈ JγK, such that CN Ð→∗ C ′N , in particular1385

for N bigger than the maximal value C ′(q) for q ∈ S′, C ′N is greater than C ′N on all the1386

states in S′.1387

To conclude the proof, we need to prove that from a configuration C ′N ′ for a particular1388

N ′, we can reach a configuration C ′′ such that C ′′(q) ≥ C ′(q) for q ∈ S′ ∪ st(Toks′). As C ′1389

respects F (γ), remember that for all q ∈ st(Toks′), C ′(q) = 1. The execution is actually1390

built in the manner of the end of the proof of Lemma C.2.1391

Note Nmax the maximum value for any C ′(q). We enumerate states q1, . . . , qm in st(Toks′)1392

such that C ′(qi) = 1. As C ′ respects F (γ), for i ≠ j, qi and qj are conflict free.1393

From Lemma C.3, F (γ) is consistent, and so we note (pj
0, !mj , pj

1) (p
j
1, ?mj

1, pj
2) . . .1394

(pj
kj

, ?mj
kj

, pj
kj+1) the sequence of transitions associated to state qj such that: pj

kj+1 = qj ,1395

(qj , mj) ∈ Toks and for all mj
i , there exists (qmj

i
, !mj

i , q′
mj

i

) with qmj
i
∈ S′. Note that for1396

L. Guillou and A. Sangnier and N. Sznajder XX:35

all i ≠ j, qi and qj are conflict-free and so there exists (qi, m), (qj , m′) ∈ Toks′ such that1397

m ∉ Rec(qj) and m′ ∉ Rec(qi). As F (γ) is consistent, it should be the case for all pairs of1398

tokens (qi, a), (qj , a′). Hence mj ∉ Rec(qi) and mi ∉ Rec(qj).1399

Note ℓj = kj + 1. For N ′ = Nmax +∑1≤j≤m ℓj , there exists a configuration C ′N ′ such that1400

there exists CN ′ ∈ JγK, CN ′ Ð→∗ C ′N ′ , and C ′N ′(q) ≥ N ′ for all q ∈ S′. In particular, for all1401

q ∈ S′, C ′N ′(q) ≥ C ′(q) +∑1≤j≤m ℓj .1402

Then, we still have to build an execution leading to a configuration C ′′ such that for1403

all q ∈ st(Toks′), C ′′(q) ≥ C ′(q). We then use the defined sequences of transitions for1404

each state qj . With ℓ1 processes we can reach a configuration C1 such that C1(q1) ≥ 1:1405

C1
xm1ÐÐ→ C2

m1
1ÐÐ→ . . .

m1
k1ÐÐ→ Cℓ1+1. xm1 = nb(m1) if there is no process on R(m1), and1406

xm1 =m1 otherwise. Each rendez-vous on m1
i is made with transitions (p1

i , ?m1
i , p1

i+1) and1407

(qm1
i
, !m1

i , q′m1
i). As a result, for all q ∈ S′, Cℓ1+1(q) ≥ C ′(q) + ∑2≤j≤m ℓj and Cℓ1+1(q1) ≥ 1.1408

We then do the following execution form Cℓ1+1: Cℓ1+1
xm2ÐÐ→ Cℓ1+2

m2
1ÐÐ→ . . .

m2
k2ÐÐ→ Cℓ1+ℓ2+2.1409

xm2 = nb(m2) if there is no process on R(m2), and xm2 = m2 otherwise. Remember1410

that we argued that m2 ∉ Rec(q1), and therefore Cℓ1+2(q1) ≥ Cℓ1+1(q1) ≥ 1. Each rendez-1411

vous on m2
i is made with transitions (p2

i , ?m2
i , p2

i+1) and (qm2
i
, !m2

i , q′m2
i). As a result,1412

Cℓ1+ℓ2+2(q) ≥ C ′(q) +∑3≤j≤m ℓj for all q ∈ S′ and Cℓ1+ℓ2+2 ≥ Hq1I + Hq2I. We can then repeat1413

the reasoning for each state qi and so reach a configuration C ′′ such that C ′′(q) ≥ C ′(q) for all1414

q ∈ S′ and, C ′′ ≥ Hq1I+ Hq2I+ . . . HqmI. We built the following execution: CN ′ Ð→∗ C ′N ′ Ð→∗ C ′′,1415

such that C ′′ ≥ C ′, and C ′N ′ ∈ JγK.1416

◀1417

C.4 Proof of Lemma 5.41418

Proof. Assume that there exists C0 ∈ I and C ′ ≥ C such that C0 Ð→ C1 Ð→ . . . Ð→ Cℓ = C ′.1419

Then using iteratively Lemma C.5, we get that C ′ ∈ JγℓK. From the definition of F and J⋅K,1420

one can furthermore easily check that JγK ⊆ JF (γ)K for all γ ∈ Γ. Hence we have JγℓK ⊆ Jγf K1421

and C ′ ∈ Jγf K.1422

Before proving the other direction, we first prove by induction that for all i ∈ N and for1423

all D ∈ JγiK, there exists C0 ∈ I and D′ ≥ D such that C0 Ð→∗ D′. The base case for i = 0 is1424

obvious. Assume the property holds for γi and let us show it is true for γi+1. Let E ∈ Jγi+1K.1425

Since γi+1 = F (γi), using Lemma C.6, we get that there exists E′ ∈ C and D ∈ JγiK such that1426

E′ ≥ E and D Ð→∗ E′. By induction hypothesis, there exists C0 ∈ I and D′ ≥ D such that1427

C0 Ð→∗ D′. Using the monotonicity property stated in Lemma C.1, we deduce that there1428

exists E′′ ∈ C such that E′′ ≥ E′ ≥ E and C0 Ð→∗ D′ Ð→∗ E′′.1429

Suppose now that there exists C ′′ ∈ Jγf K such that C ′′ ≥ C. By the previous reasoning,1430

we get that there exists C0 ∈ I and C ′ ≥ C ′′ ≥ C such that C0 Ð→∗ C ′. ◀1431

	1 Introduction
	2 Rendez-vous Networks with Non-Blocking Semantics
	2.1 Rendez-Vous Protocols
	2.2 Verification Problems

	3 Coverability for Non-Blocking Counter Machines
	4 Coverability for Rendez-Vous Protocols
	4.1 From Rendez-vous Protocols to NB-CM
	4.2 From NB+R-CM to Rendez-Vous Protocols

	5 Coverability for Wait-Only Protocols
	5.1 Wait–Only Protocols
	5.2 Abstract Sets of Configurations
	5.3 Computing Abstract Sets of Configurations
	5.4 Polynomial Time Algorithm

	6 Undecidability of Synchro
	7 Conclusion
	A Proofs of sec:cover-nb-machines
	A.1 Proof of thm:cover-nbcm-in-expspace
	A.2 Proof of th:expspace-hard
	A.2.1 Proofs on the Pocedural NB-CM Defined in sec:cover-nb-machines
	A.2.2 Proofs of the Reduction

	B Proofs of sec:cover-rdv-protocols
	B.1 Proof of cor:ccover-expspace
	B.2 Proofs of th:ccover-expspace-complete

	C Proof of Section 5
	C.1 Technical Lemma
	C.2 Properties of Consistent Abstract Sets of Configurations
	C.2.1 Proof of Lemma 5.1
	C.2.2 Building Configurations from a Consistent Abstract Set

	C.3 Proof of Lemma 5.3
	C.4 Proof of Lemma 5.4

