A lower bound for the complexity of Presburger arithmetic

$\langle \mathbb{R}, +, \leq \rangle$ is the first-order theory over real numbers with addition.

Theorem 1

For all $n \in \mathbb{N}$ there is a formula $\text{prod}_n(x, y, z)$ in $\langle \mathbb{R}, + \rangle$ such that for real numbers A, B, C we have

$\text{prod}_n(A, B, C) \text{ is true } \iff A \in \mathbb{N} \land A < 2^{2^n} \land AB = C$

Furthermore, the size of $\text{prod}_n(x, y, z)$ is linear in n.
Proof of theorem 1

By induction. Base \(n = 0 \) obvious.

Step:

- \(x \in \mathbb{N} \) and \(x < 2^{2^{n+1}} \) iff there exists \(x_1, x_2, x_3, x_4 \in \mathbb{N} \) all smaller than \(2^{2^n} \) such that \(x = x_1x_2 + x_3 + x_4 \).

- We have \(z = xy = x_1(x_2y) + x_3y + x_4y \). Therefore, \(\text{prod}_{n+1}(x, y, z) \) is equivalent to
 \[
 \exists u_1, \ldots, u_5, x_1, \ldots, x_4. \text{prod}_n(x_1, x_2, u_1) \land \text{prod}_n(x_2, y, u_2) \land \text{prod}_n(x_1, u_2, u_3) \land \text{prod}_n(x_3, y, u_4) \land \text{prod}_n(x_4, y, u_5) \land x = u_1 + x_3 + x_4 \land z = u_3 + u_4 + u_5
 \]

- Problem: The size of the formula grows exponentially.
 Solution: Formulae like \(\phi = \varphi(x_1, y_1) \land \varphi(x_2, y_2) \land \varphi(x_3, y_3) \) can be equivalently written as
 \[
 \forall x. \forall y(((x = x_1 \land y = y_1) \lor (x = x_2 \land y = y_2) \lor (x = x_3 \land y = y_3)) \implies \varphi(x, y))
 \]
 Then, the size of \(\text{prod}_{n+1} \) is the size of \(\text{prod}_n \) + some constant.
Lower bound on the complexity of $\langle \mathbb{R}, + \rangle$

Theorem 2

For all $n \in \mathbb{N}$ there is a formula $\text{pow}_n(x, y, z)$ in $\langle \mathbb{R}, + \rangle$ such that for integers a, b, c with $0 \leq a, b^a, c < 2^{2^n}$, $\text{pow}_n(a, b, c)$ is true iff $b^a = c$. Furthermore, the size of $\varphi_n(x, y, z)$ is linear in n.

The proof is similar to the proof of Theorem 1.
Proof of Theorem 2

By induction, we construct formulae \(e_k(x, y, z, u, v, w) \) such that for integers \(a, b, c \) with \(0 \leq a < 2^{2^k} \), \(0 \leq b^a, c < 2^{2^n} \) and real numbers \(A, B \) and \(C \),
\(e_k(a, b, c, A, B, C) \) is true in \(\langle \mathbb{R}, + \rangle \) iff \(A \in \mathbb{N}, A < 2^{2^n}, b^a = c \) and \(AB = C \).

We have \(e_k(0, 1, 1, A, B, C) \) iff \(\text{prod}_n(A, B, C) \)

- Induction base \(k = 0 \): We choose \(e_0 \) as
 \(((x = 0 \land z = 1) \lor (x = 1 \land z = y)) \land \text{prod}_n(u, v, w)\)

- Induction step:
 - \(x \in \mathbb{N} \) and \(x < 2^{2^{k+1}} \) iff there exists \(x_1, x_2, x_3, x_4 \in \mathbb{N} \) all smaller than \(2^{2^k} \) such that \(x = x_1x_2 + x_3 + x_4 \).
 - Now, \(y^x = (y^{x_1})^{x_2}y^{x_3}y^{x_4} \). \(y^{x_1} \) is expressed by a \(z_1 \) such that \(e_k(x_1, y, z_1, 0, 0, 0) \) etc. For a product we use \(e_k(0, 1, 1, u, v, w) \).
 - Therefore, we can write \(e_{k+1}(x, y, z, u, v, w) \) using \(e_k \). With the same trick as in the proof of theorem 1 we need only one occurrence of \(e_k \).

- Finally, we have \(\text{pow}_n(x, y, z) \) iff \(e_n(x, y, z, 0, 0, 0) \).
Theorem 3

There exists a formula \(s_n(x, y) \) in \(\langle \mathbb{R}, + \rangle \) which is true iff \(x \) and \(y \) are integers, \(x < 2^{2^n} \) and \(y < 2^n \) and the \((y + 1)\)st digit \(x(y) \) of \(x \) is 1. Furthermore, the size of \(s_n(x, y, z) \) is linear in \(n \).

Proof: Exercise using the preceding theorems.

- With a natural number \(< 2^{2^n} \) one can code all binary sequences of length \(2^n \).
- One can encode all computations of Turing machines up to length \(2^n \). If the Turing machine makes at most \(2^n \) steps, then it is necessary to consider configurations of size up to \(2^n \). A computation is then a binary sequence of size \(2^n2^n = 2^{2n} \).
- Therefore \(\langle \mathbb{R}, + \rangle \) is NEXPTIME-hard.
Theorem 4

For all n there is a formula $\varphi_n(x, y, z)$ in $\langle \mathbb{N}, + \rangle$ such that for positive integer numbers A, B, C we have

$$\varphi_n(A, B, C) \text{ is true } \iff A = BC \land A, B, C < \prod_{\substack{p \text{ prime} \\ p < f(n+2)}} p$$

where $f(n) = 2^{2^n}$. Furthermore, the size of $\varphi_n(A, B, C)$ is linear in n.

Basic idea of the proof: multiplication is addition of exponents in the decomposition of an integer in its prime factors (which is unique). It follows from the Prime Number Theorem that

$$\prod_{\substack{p \text{ prime} \\ p < f(n+2)}} p \geq 2^{f(n)^2} \geq 2^{2^{2n}}$$

- One can encode all computations of Turing machines with length 2^{2^n}.
- Therefore $\langle \mathbb{Z}, + \rangle$ is 2-NEXPTIME-hard.