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Introduction 
This report describes the main contributions of the Advance project concerning the integration 
of abstraction and model-checking tools.  This integration is essentially realized through the 
IF-2.0 language and its environment. 

Semantics 
Deliverable D10/a describes the operational semantics underlying the IF-2.0 language.  This 
semantics is taken as a reference point for integrating the tools.  The key issue in defining the 
semantics concerns the smooth combination of process dynamic creation, handling process 
identifiers (pids), real-time aspects as well as asynchronous communication via timed-fifo 
queues. 

Static Analysis revisited 
Our experience with IF-1.0 has shown that simplification by means of static analysis is crucial 
for dealing successfully with real specifications.  Moreover, even simple analysis such as live 
variables analysis or dead-code elimination can significantly reduce the size of the state-space 
of the model. 

By moving up to IF-2.0, we must review all these static analysis.  Several novel features of 
the language such as dynamic creation and destruction of processes and communication 
channels, plus the private/public scope of variables make them much more difficult to apply 
than in the previous version.  In IF-1.0, specifications were completely static, the set of 
processes, queues, and variables is fixed and apriori known. 

During this year, the following analysis have been adapted to work on IF-2.0 specifications: 

Live variables 

This analysis transforms an IF-2.0 specifications into an equivalent smaller one by removing 
globally dead variables and signal parameters and by adding systematic resets of locally dead 
variables.  For a definition of live variables see [1]. 

Initially, all the private variables and signal parameters are supposed to be dead, unless 
otherwise specified by the user.  Public variables are supposed to be always live.  The analysis 
alternates local (standard) live variables computation on each process and inter-process live 
propagation through input/output signal parameters until a global fixpoint is reached. 

The example below illustrates the results obtained on a version of the alternating bit protocol 
extended with data.  The live analysis is clever enough to detect that the data variables (m) are 
transparent for the protocol (both on transmitter and receiver side) and can be eliminated.  
Also, some resets of control variables (b) and (c) are introduced. 

 
system bitalt; 
 
type data = range 0 .. 3; 
 
signal get(data); 
signal put(data); 
signal ack(boolean); 
signal sdt(data, boolean); 
 
signalroute et(1) 

  from env to transmitter 
  with put; 
 
signalroute tr(1) #unicast #lossy 
  from transmitter to receiver 
  with sdt; 
 
signalroute rt(1) #unicast #lossy 
  from receiver to transmitter  
  with ack; 



 
signalroute re(1) 
  from receiver to env 
  with get; 
 
process transmitter(1); 
 
var t clock; 
var b boolean := false; 
var c boolean; 
var m data; 
 
state idle #start; 
  input put(m); 
    output sdt(m, b) via {tr}0; 
    set t := 0; 
      nextstate busy; 
endstate; 
state busy; 
  input ack(c); 
      nextstate q8; 
  when t = 1; 
    output sdt(m, b) via {tr}0; 
    set t := 0; 
      nextstate busy; 
endstate; 
state q8 #unstable ; 
  provided c = b; 
    task b := not b; 

    reset t; 
    reset c; 
      nextstate idle; 
  provided c <> b; 
    reset c; 
      nextstate busy; 
endstate; 
endprocess; 
 
process receiver(1); 
 
var b boolean :=false; 
var c boolean; 
var m data; 
 
state idle #start; 
  input sdt(m, c); 
    if b = c then 
      output ack(b) via {rt}0; 
      output get(m); 
      task b := not b; 
    else 
      output ack(not b) via {rt}0; 
    endif 
    reset c; 
    nextstate idle; 
endstate; 
endprocess; 
endsystem; 

 

Dead-code elimination 

This analysis transforms an IF-2.0 specification by removing unreachable control states and 
control transitions under some user-given assumptions about the environment.  More 
precisely, the user may indicate the set (by default empty) of signals the environment may 
sent to the system at execution. 

This analysis solves a simple static reachability problem : it computes, for each process 
separately, the set of control states (transitions) which may be statically reached (executed) 
starting from the initial control state.  Meantime, it computes the set of processes that may 
have running instances : either they have instances in the initial configuration or some 
corresponding fork action may be reached and therefore executed.  When done, processes 
without instances are removed from the specification.  The other processes are restricted to 
the set of reachable states and transitions. 

Variable abstraction 

This analysis provides a simple and efficient way of computing abstractions by eliminating 
variables and their dependencies from a specification.  Some initial set of abstract variables 
have to be specified by the user.  Then, using data and input/output dependencies, the largest 
set of variables which may be influenced by these variables is computed, at each control state.  
The computation proceeds as for live analysis: processes are analyzed separately, and the 
results obtained are propagated between them using the input/output dependencies.  Finally, 
actions and guards involving abstract variables are removed from the specifications 



Contrarily to previous analysis which are exact, variable abstraction may introduce more 
behaviors.  Nevertheless, it always simplifies the state vector, and therefore, we can extract 
automatically abstracted systems allowing for symbolic verification with tools like TreX[2] or 
Lash[3] which make strong assumptions about the input (systems with counters, clocks, 
queues only).  Moreover, if we are interested in explicit enumerative finite-state model 
checking, this technique allows to reduce the overall number of states in the semantic model. 

The example below illustrates the abstraction obtained on the file system example from [5], 
when ones want to remove the status variable.  The gray parts are remove from the 
specification. 

 
process filesys(1); 
 
type FileControlBlockType = array [NUSERS] of FileStatusType; 
type SystemStatusType = array [NFILES] of FileControlBlockType; 
 
var f FileIdType; 
var u UserIdType; 
var response ResponseType; 
var reason ReasonType; 
var systemStatus SystemStatusType; 
var available boolean; 
 
procedure File_Available_For_Read; 
  fpar in f FileIdType, in u UserIdType, in systemStatus SystemStatusType; 
  returns boolean; 
… 
endprocedure; 
 
procedure File_Available_For_Write; 
  fpar in f FileIdType, in u UserIdType, in systemStatus SystemStatusType; 
  returns boolean; 
… 
endprocedure; 
 
 
state start #start ; 
    task f := 0; 
    while (f < NFILES) do 
      task u := 0; 
      while (u < NUSERS) do 
        task systemStatus[f][u] := Closed; 
        task u := (u + 1); 
      endwhile 
      task f := (f + 1); 
    endwhile 
    nextstate idle; 
endstate; 
 
state idle; 
  input close(f, u); 
    task response := AcceptCommand; 
    if (systemStatus[f][u] <> Closed) then 
      task reason := FileClosed; 
      task systemStatus[f][u] := Closed; 
    else 
      task reason := FileStatusUnchanged; 
    endif 
    output answer(response, reason) to ({user}u); 



    nextstate idle; 
  input openForRead(f, u); 
    if ((systemStatus[f][u] = Reading) or  
        (systemStatus[f][u] = Writing)) then 
      task response := AcceptCommand; 
      task reason := FileStatusUnchanged; 
    else 
      available := call File_Available_For_Read(f,u,systemStatus); 
      if available then 
        task response := AcceptCommand; 
        task reason := FileOpenForRead; 
        task systemStatus[f][u] := Reading; 
      else 
        task response := RejectCommand; 
        task reason := FileLocked; 
      endif 
    endif 
    output answer(response, reason) to ({user}u); 
    nextstate idle; 
  input openForWrite(f, u); 
    if (systemStatus[f][u] = Writing) then 
      task response := AcceptCommand; 
      task reason := FileStatusUnchanged; 
    else 
      available := call File_Available_For_Write(f,u,systemStatus); 
      if available then 
        task response := AcceptCommand; 
        task reason := FileOpenForWrite; 
        task systemStatus[f][u] := Writing; 
      else 
        task response := RejectCommand; 
        task reason := FileLocked; 
      endif 
    endif 
    output answer(response, reason) to ({user}u); 
    nextstate idle; 
endstate; 
endprocess; 

 

State Space Exploration 
State-space exploration is one of the successful techniques used for the analysis of concurrent 
systems and also the core component of any model-based validation tool (i.e. model-checker, 
test-generator, etc).  Nevertheless, exploration is far from being trivial for dynamic systems 
that, in addition, use complex data, involve various communication mechanisms, mix several 
description languages, and moreover, depend on time constraints.  The solution we propose is 
an open, modular and extensible exploration platform designed to cope with the complexity 
and the heterogeneity of actual concurrent systems. 

The IF-2.0 exploration platform relies on a clear separation between the individual behaviour 
of processes and processes (i.e. memory update, transition firing) and the coordination 
mechanisms between processes (i.e. communication, creation, destruction).  More precisely, 
each process or communication channel is represented as an object (in the sense of object-
oriented languages) that has an internal state and may have one or more fireable (local) 
transitions, depending on its current state.  Time is also a specialized process dealing with the 
management of all (running) clocks. Coordination is then realized by a kind of process 



manager: it scans the set of local transitions, choose the fireable one(s) with respect to global 
(system) constraints, ask the corresponding processes to execute these transitions and update 
the global state accordingly. 

 

 

 

This architecture provides the possibility to validate complex heterogeneous systems.  
Exploration is not limited to IF-2.0 specifications: any kind of processes may be run in 
parallel on the exploration platform as long as they implement the interface required by the 
process manager.  It is indeed possible to use code (either directly, or instrumented 
accordingly) of already implemented components, instead of extracting an intermediate model 
to be put into some global specification. 

Another advantage of the architecture is the extensibility concerning coordination primitives 
and exploration strategies.  Presently, the exploration platform supports asynchronous 
(interleaved) execution and asynchronous point-to-point communication between processes.  
Different execution modes, like synchronous or run-to-completion, or additional 
communication mechanisms, such as broadcast or rendez-vous, simply by extending the 
process interfaces and the process manager functionality.  Concerning the exploration 
strategies, reduction heuristics such as partial-order reduction or symmetry reduction are 
currently incorporated into the process manager.  More specific heuristics may be added 
depending on the application domain. 

In the near future, we plan to integrate the scheduling framework of [4] in order to improve 
the standard execution modes provided by the exploration engine (e.g. asynchronous or 
synchronous).  Based on dynamic priorities, this scheduling framework is flexible and general 
enough to ensure a fine-grained control of execution of real-time systems, depending on 
various constraints.  This framework fits also well in our exploration engine architecture.  For 
instance, it is possible to extend the process manager with scheduling capabilities, in order to 
evaluate dynamic priorities at run-time and to restrict the set of fireable transitions 
accordingly. 

Using Observers 
The observer mechanism has been introduced in IF 2.0 to serve the following purposes: 

- to provide a simple and flexible mechanism for controlling model generation. Thus, 
observers can select parts of the model to be explored, and cut off execution paths that are 



irrelevant with respect to certain criteria. Consequently, they can resolve non-
deterministic choices and thus act as dynamic schedulers. Observers can also be used to 
model the reactions of a system’s environment. 

- to allow expressing (timed) linear properties of a system in an operational way.  
Observers may express properties that refer both to the state of a system and to the actions 
performed by it.  

The general idea behind observers is that their behavior is described in the same way as for 
the IF processes (i.e. by an extended timed state machine), but they can react 
“synchronously”1 to various events and conditions occurring in the observed system. 

Observation mechanisms 

For monitoring system state, observers dispose of special operators for retrieving:  
- values of system and process variables 
- current states of the processes 
- content of  queues 

For monitoring the actions performed by a system, observers dispose of constructs that 
retrieve events together with data relative to those events. Events are generated whenever the 
system executes an action such as: signal output/delivery/ input, process creation/destruction, 
informal statements. 

At every moment, an observer can see the events that have occurred in the previous system 
step1. 

Expressing properties 

Properties are expressed by observers by way of classifying the states into ordinary, error or 
success states. The precise semantics of this depends on the way observers are use 
subsequently in verification. More precisely, an observer may be used to express a safety 
property, case in which the success/error states are considered as final states of a finite 
automaton. Alternatively, an observer may be used to express a liveness  property, case in 
which the success/error states are considered as accepting/non-accepting states of a Büchi 
automaton. 

Observers themselves are classified into: 
- pure - which only express a property 
- cut  -  which also guide the simulation by cutting execution paths 
- intrusive - which may also alter the system behavior (e.g. by injecting signals, etc.) 

Execution model 

Observers are executed in parallel with an IF specification. During model generation, the 
semantics is that of a “weak synchronous composition”, i.e.: 

- the observer receives the control after each atomic step (transition) of the system 
- depending on the events and conditions occurring in the system, the observer executes 

0 or more steps, in a run-to-completion fashion 

Note that: 
- an observer always watches the configuration reached by the IF system after the 

concerned system step 

                                                 
1 See the “Execution model” subsection for the precise meaning of this. 



- an observer always watches the events that have occurred during the previous system 
step 

Example 

In the following we present a small example, a property relative to a simple protocol with one 
transmitter and one receiver, such as the alternating bit protocol. 

The property: every time a put(m) message is received by the transmitter, the transmitter  
does not return in state idle until a get(m) with the same m is issued by the receiver. 

 

pure observer safety1; 
 
var m data; 
var n data; 
 
state idle #start ; 
    match input put(m); 
 nextstate wait; 
endstate; 
state wait; 
    provided ({transmitter}0)  
        instate idle; 
 nextstate err; 

    match output get(n); 

 nextstate dec; 
endstate; 
state dec #unstable ; 
    provided n = m; 
 nextstate idle; 
    provided n <> m; 
 nextstate wait; 
endstate; 
state err #error ; 
endstate; 
endobserver; 

Model Checking Java Monitors 
Deliverable D10/b describes a method for verifying monitoring properties for static Java.  By 
static Java we mean Java programs that do not include dynamic creation.   

Java contains programming primitives for synchronizing and implementing mutual exclusion 
of method calls.  These are called Java’s monitoring primitives.  It is the programmer’s 
responsibility to use these primitives to ensure and implement the desired synchronization and 
mutual exclusion properties.  It’s not surprising that this task is error prone. 

This deliverable first formally describes the semantics of Java’s monitoring primitives and 
then shows how using this semantics Java programs are translated to IF models.  The so 
obtained IF models are analyzed by model checking techniques to verify the desired 
synchronization properties. 
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