Automata with Parameterized Arrays and
Parameterized Networ ks of Automata

Tomas Vojnar, Ahmed Bouajjani

LIAFA

1. Automata with Arrays

1 generalized arrays — combining classical indexing in some dimensions
with path-based, tree-like addressing in other dimensions

L] dimensions/arity fixed, bounds/height may be parametric

1. Automata with Arrays

1 generalized arrays — combining classical indexing in some dimensions
with path-based, tree-like addressing in other dimensions

L] dimensions/arity fixed, bounds/height may be parametric

[l 'an automaton with arrays Mp = (P, A, S,Q, T, Co) where:
P, A, () — finite, disjoint sets of parameters, arrays, and states

1. Automata with Arrays

1 generalized arrays — combining classical indexing in some dimensions
with path-based, tree-like addressing in other dimensions

L] dimensions/arity fixed, bounds/height may be parametric

[l 'an automaton with arrays Mp = (P, A, S,Q, T, Co) where:
P, A, () — finite, disjoint sets of parameters, arrays, and states

foreach a € A, s(a) = (D%, (KY{, ..., K%)) where D € D and
Vnat : K¢ =0 e NTUPor K¢ = (r¢,h¢) € Nt x (NT U P)

1. Automata with Arrays

1 generalized arrays — combining classical indexing in some dimensions
with path-based, tree-like addressing in other dimensions

L] dimensions/arity fixed, bounds/height may be parametric

[l 'an automaton with arrays Mp = (P, A, S,Q, T, Co) where:
P, A, () — finite, disjoint sets of parameters, arrays, and states
foreach a € A, s(a) = (D%, (KY{, ..., K%)) where D € D and
Vnat : K¢ =0 e NTUPor K¢ = (r¢,h¢) € Nt x (NT U P)

T is a finite set of transitions ¢t = (g1, g2, 7) Where
r = [(V3)z | (V]3)ppal*
<guardon P, A, {x, ...} > — <assignmenton P, A,{x,...} >

1. Automata with Arrays

1 generalized arrays — combining classical indexing in some dimensions
with path-based, tree-like addressing in other dimensions

L] dimensions/arity fixed, bounds/height may be parametric

[l 'an automaton with arrays Mp = (P, A, S,Q, T, Co) where:
P, A, () — finite, disjoint sets of parameters, arrays, and states

foreach a € A, s(a) = (D%, (KY{, ..., K%)) where D € D and
Vpei : KE =0 € NFUPor K¢ = (rf,h%) € Nt x (NT U P)
T is a finite set of transitions ¢t = (g1, g2, 7) Where
r = (V3 | (V]D)pnal*
<guardon P, A, {x, ...} > — <assignmenton P, A,{x,...} >

guards and assignments built on terms and atomsw.r.t. D, I and
tp i=c¢|z|tptp|trandafp :=1tp <tp||tp| <tr | |tp| < |tP]

1. Automata with Arrays

1 generalized arrays — combining classical indexing in some dimensions
with path-based, tree-like addressing in other dimensions

L] dimensions/arity fixed, bounds/height may be parametric

[l 'an automaton with arrays Mp = (P, A, S,Q, T, Co) where:
P, A, () — finite, disjoint sets of parameters, arrays, and states

foreach a € A, s(a) = (D%, (KY{, ..., K%)) where D € D and
Vpei : KE =0 € NFUPor K¢ = (rf,h%) € Nt x (NT U P)
T is a finite set of transitions ¢t = (g1, g2, 7) Where
r = (V3 | (V]D)pnal*
<guardon P, A, {x, ...} > — <assignmenton P, A,{x,...} >

guards and assignments built on terms and atomsw.r.t. D, I and
tp i=c¢|z|tptp|trandafp :=1tp <tp||tp| <tr | |tp| < |tP]

C is a finite set of initial configurations (g, ¢)

] the associated modelling language constructs:

type ::=tree [r,h] of type-id
forall (b):|exists(b):|forall(r,h):|]exists(r,h):
tp eps| x| tp.tp|ti

afp = tp<=tp|#(tp)<=ti|#(tp)<=#(tp)

root(x)|leaf(r,h,x)|inner(r,h,x)|son(x,y)

2. Networ ks of Automata

(1D, I as a basis
[a set of global variables G (+ initial constraints)
[l a process infrastructure a = (K¢, ..., K%.) with K¢ as in arrays

2. Networ ks of Automata

(1D, I as a basis
[a set of global variables G (+ initial constraints)
[l a process infrastructure a = (K¢, ..., K%.) with K¢ as in arrays

] for each particular automaton (process):

a constraint on the identifiers of the instances of the process
corresponding to addresses in a

2. Networ ks of Automata

(1D, I as a basis
[a set of global variables G (+ initial constraints)
[l a process infrastructure a = (K¢, ..., K%.) with K¢ as in arrays

] for each particular automaton (process):

a constraint on the identifiers of the instances of the process
corresponding to addresses in a

a variable-based address with a constraint on the variables, i.e.,
(215 0y Tna),), .8, (), J2,0q : 0 < |g| <h Ap=q)

a simplification — using just constants, parameters, and
address constructors (root(r,h), leaf(r,h), inner(r,h), in(l,n)), e.g.,
process router(inner(2,h))

2. Networ ks of Automata

(1D, I as a basis
[a set of global variables G (+ initial constraints)
[l a process infrastructure a = (K¢, ..., K%.) with K¢ as in arrays

] for each particular automaton (process):

a constraint on the identifiers of the instances of the process

corresponding to addresses in a
a variable-based address with a constraint on the variables, i.e.,
(15 ey Tna), @), €0 ((p), I2,0q : 0 < |q| <h Ap=1q)
a simplification — using just constants, parameters, and
address constructors (root(r,h), leaf(r,h), inner(r,h), in(l,n)), e.g.,
process router(inner(2,h))

a set of local variables L, a set of states (), and local initial constraints
transitions (¢1, g2, 7) with guards and assignments over G, id, L, x, ...

(] may be relatively easily mapped onto an automaton with arrays

(] may be extended by:
global parameterized arrays

local parameterized arrays (yielding arrays whose structure is a
“concatenation’ of the process infrastructure and the local arrays)

[] some limitations/open problems:
parameterized dimensions/arities
general graph architectures
dynamic instantiation

	1. Automata with Arrays
	
	2. Networks of Automata
	

