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C is a finite set of initial configurations (g, ¢)



] the associated modelling language constructs:

type ::=tree [r,h] of type-id
forall (b):|exists(b):|forall(r,h):|]exists(r,h):
tp eps| x| tp.tp|ti

afp = tp<=tp|#(tp)<=ti|#(tp)<=#(tp)

root(x)|leaf(r,h,x)|inner(r,h,x)|son(x,y)
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(1D, I as a basis
[ a set of global variables G (+ initial constraints)
[l a process infrastructure a = (K¢, ..., K%.) with K¢ as in arrays

] for each particular automaton (process):

a constraint on the identifiers of the instances of the process

corresponding to addresses in a
a variable-based address with a constraint on the variables, i.e.,
(15 ey Tna), @), €0 ((p), I2,0q : 0 < |q| <h Ap=1q)
a simplification — using just constants, parameters, and
address constructors (root(r,h), leaf(r,h), inner(r,h), in(l,n)), e.g.,
process router(inner(2,h))

a set of local variables L, a set of states (), and local initial constraints
transitions (¢1, g2, 7) with guards and assignments over G, id, L, x, ...



(] may be relatively easily mapped onto an automaton with arrays

(] may be extended by:
global parameterized arrays

local parameterized arrays (yielding arrays whose structure is a
“concatenation’ of the process infrastructure and the local arrays)

[] some limitations/open problems:
parameterized dimensions/arities
general graph architectures
dynamic instantiation
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