PGM protocol: Experiments with LASH

Louis Latour

Université de Liège

1. LASH toolkit

2. Protocol Model

- Messages transfered through SYNCHRONIZATION
- 1 LOSS (at a given sequence number)
- NO SPMs
- NO signal, NO clock
- <u>Sender</u> Window size: variable but bounded, non-deterministic advance (TRAIL and LEAD)
- <u>Receiver</u> Window size: variable and unbounded, non-deterministic advance (TRAIL only)
- + Meta-transitions.

- 3. Verification Task
 - Debugging the model
 - Impact of meta-transitions
 - Values of auxiliary variables
 - Analysis Goals :
 - Relationships between variables
 - Is there a bound (mod NO_MAX_SEQ) on LEAD TRAIL ?

4.a Analysis: SENDER (TRAIL vs LEAD) (MAX_SEQ = 20)

4.b Analysis: RECEIVER (TRAIL vs LEAD) (MAX_SEQ = 20)

4.c Analysis: SENDER (TRAIL vs LEAD) (MAX_SEQ = 20)

4.d Analysis: Trace (manual)

ACTION	(Sender)	Network	(Receiver)	
	(LEAD, TRAIL)	(lead, trail)	(LEAD, TRAIL)	
init	(7,8)	-		
send	(7,8)	(8,8)	-	
receive (a-b)	(7,8)	-	(8,8)	
Sender.LEAD++	(8,8)	-	(8,8)	
send	(8,8)	(9,8)	(8,8)	
receive (a-b)	(8,8)	-	(9,8)	
Sender.LEAD++	(9,8)	-	(9,8)	
Sender.TRAIL++	(9,10)	-	(9,8)	
loss	(9,10)	-	(9,8)	
Sender.LEAD++	(10,10)	-	(9,8)	
Sender.TRAIL++	(10,11)	-	(9,8)	
send	(10,11)	(11,11)	(9,8)	
receive (a)	(10,11)	-	(11,8)	
Sender.LEAD++	(11,11)	-	(11,8)	
Sender.TRAIL++	(11, 12)	-	(11,8)	
send	(11, 12)	(12, 12)	(11,8)	
Sender.LEAD++	(12, 12)	(12, 12)	(11,8)	
Sender.TRAIL++	(12, 13)	(12, 12)	(11,8)	
receive (b)	(12, 13)	(12, 12)	(11, 11)	

4.e Analysis: SENDER (TRAIL vs LEAD) (MAX_SEQ = free)

4.f Analysis: RECEIVER (TRAIL vs LEAD) (MAX_SEQ = free)

4.g Analysis: RECEIVER (TRAIL vs LEAD) (MAX_SEQ = 10)

5. Experimental Results (Window size = 2)

MAX_SEQ	Nb_steps	Max. Mem.	Nb. NDD	Nb.	Time
			States	States	
20	62	125 Mb	100 K	26 K	7h42
200	62	283 Mb	160 K	249 K	10h19
2000	62	467 Mb	219 K	2,479 K	17h09
20000	62	719 Mb	294 K	24,781 K	35h59
ND	76	279 Mb	225 K	INF.	23h52

6. Property

```
not (
(Sender.LOST = 0 and
   ( ( Receiver.loop_LEAD = 0 and Receiver.loop_TRAIL = 0 and
       Receiver.RXW_LEAD - Receiver.RXW_TRAIL <= 2 and
       Receiver.RXW_LEAD - Receiver.RXW_TRAIL >= -1)
     or
     ( Receiver.loop\_LEAD = 1 and
       Receiver.RXW_LEAD + global.TXW_MAX_SEQ - Receiver.RXW_TRAIL <= 2 and
       Receiver.RXW_LEAD + global.TXW_MAX_SEQ - Receiver.RXW_TRAIL >= -1)
     or
     ( Receiver.loop_TRAIL = 1 and
       Receiver.RXW_LEAD - global.TXW_MAX_SEQ - Receiver.RXW_TRAIL <= 2 and
       Receiver.RXW_LEAD - global.TXW_MAX_SEQ - Receiver.RXW_TRAIL >= -1)))
 or
 (Sender, LOST = 1 and
   ( ( Receiver.loop_LEAD = 0 and Receiver.loop_TRAIL = 0 and
       Receiver.RXW_LEAD - Receiver.RXW_TRAIL <= 3 and
       Receiver.RXW_LEAD - Receiver.RXW_TRAIL >= -1)
     or
     ( Receiver.loop_LEAD = 1 and
       Receiver.RXW_LEAD + global.TXW_MAX_SEQ - Receiver.RXW_TRAIL <= 3 and
       Receiver.RXW_LEAD + global.TXW_MAX_SEQ - Receiver.RXW_TRAIL >= -1)
     or
     ( Receiver.loop_TRAIL = 1 and
       Receiver.RXW_LEAD - global.TXW_MAX_SEQ - Receiver.RXW_TRAIL <= 3 and
       Receiver.RXW_LEAD - global.TXW_MAX_SEQ - Receiver.RXW_TRAIL >= -1))))
```

7. Conclusion

- Exact reachability analysis of a PGM model with a parametric value of MAX_SEQ.
- Visualization tool gives essential feedback on the model behavior.
- Slow ... but once !

- 8. Future Work
 - Incorporate Reals.
 - Increase efficiency (better representation, better algorithm, heuristics).
 - Add tracing features.