Parameterized Systems with Resource Sharing

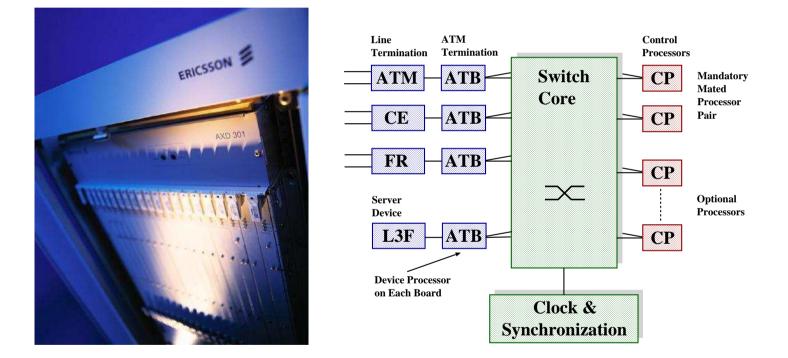
Ahmed Bouajjani, Peter Habermehl, Tomáš Vojnar

LIAFA, Paris University 7

Parameterized Systems with Resource Sharing - p.1/37

1. Introduction 1/5

***** Our original motivation: verifying the use of shared resources in Ericsson's AXD 301 switch.

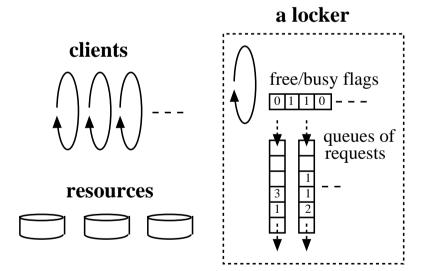


The problem is, however, common in operating systems, control software, multithreaded programs, etc.

1. Introduction 2/5

***** A general view of the resource management problem:

an arbitrary number of *client processes* compete for an access to an arbitrary number of *resources* under the supervision of a single *locker process*



1. Introduction 3/5

***** Due to the *broad importance* of the problem, it is interesting to be able to deal with

- different classes of clients and/or lockers and
- different classes of properties.

1. Introduction 3/5

* Due to the *broad importance* of the problem, it is interesting to be able to deal with

- different classes of clients and/or lockers and
- different classes of properties.

***** In general, the problem is very complex – it involves coping with

- up to two parameters and
- (possibly several different) infinite data structures in lockers.

1. Introduction 3/5

***** Due to the *broad importance* of the problem, it is interesting to be able to deal with

- different classes of clients and/or lockers and
- different classes of properties.

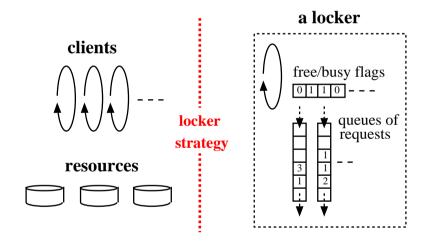
***** In general, the problem is very complex – it involves coping with

- up to two parameters and
- (possibly several different) infinite data structures in lockers.
- ***** In this work, we restrict ourselves to dealing with:
 - queue-based locker strategies
 - a fixed number of resources
 - a parametric number of identical clients

1. Introduction 4/5

We split the problem into two parts:

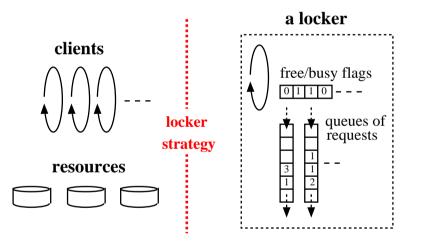
- 1. verifying *systems of clients* provided they are controlled by a locker with a certain locker strategy
- 2. checking that the *locker* implements the appropriate strategy



1. Introduction 4/5

***** We split the problem into two parts:

- 1. verifying *systems of clients* provided they are controlled by a locker with a certain locker strategy
- 2. checking that the *locker* implements the appropriate strategy



We concentrate on the first issue for two important locker strategies: FIFO and FIFO with priorities.

1. Introduction 5/5

***** Different approaches to verifying parameterized/infinite-state systems have been proposed: symbolic methods, network invariants, cut-offs, ...

We have chosen the use of cut-offs:

We are looking for *"cut-off"* numbers of clients such that verifying systems with up to this number of clients is enough to verify systems with an arbitrary number of clients.

1. Introduction 5/5

***** Different approaches to verifying parameterized/infinite-state systems have been proposed: symbolic methods, network invariants, cut-offs, ...

***** We have chosen the use of **cut-offs**:

We are looking for *"cut-off"* numbers of clients such that verifying systems with up to this number of clients is enough to verify systems with an arbitrary number of clients.

***** We obtain three kinds of results:

- structure independent cut-offs
- structure dependent cut-offs
- undecidability

An Overview of the Rest of the Talk

RTR families

- Specifying properties to be checked
- Verification of
 - finite behaviour
 - fair behaviour
 - process deadlockability
- Undecidability

***** An RTR family \mathcal{F} of systems of identical processes is given by:

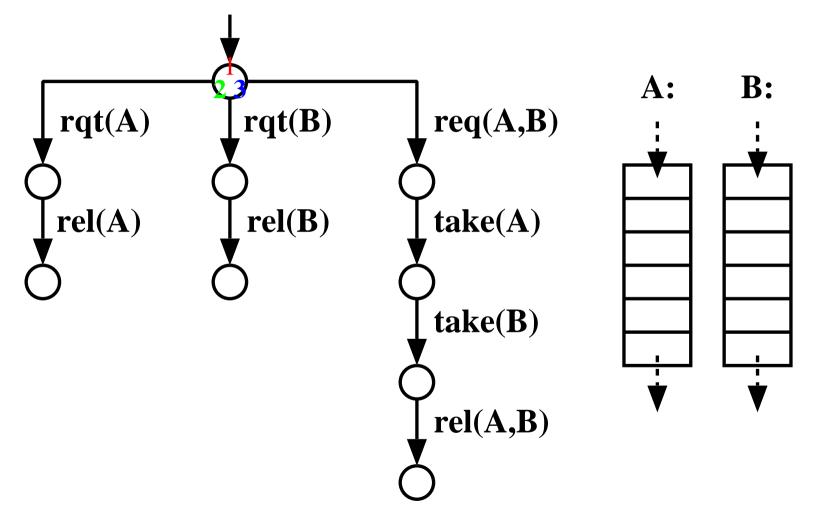
1. a finite set of resources R

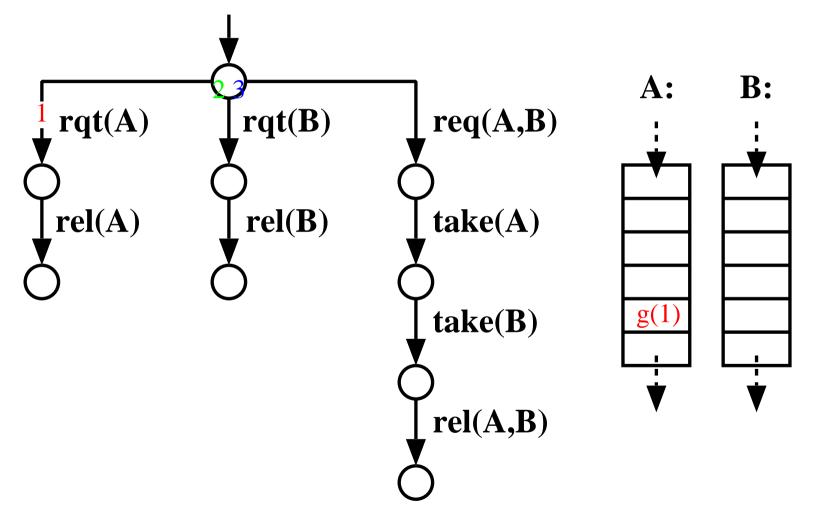
An **RTR family** \mathcal{F} of systems of identical processes is given by:

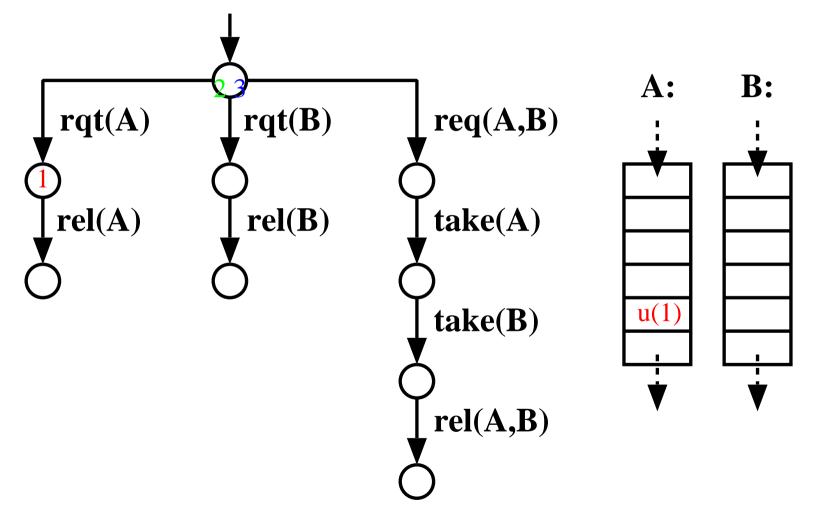
- **1.** a finite set of resources R
- 2. a finite *control* of the processes defined by:
 - a finite set of control states Q
 - the initial control state $q_0 \in Q$
 - a transition relation $T \subseteq Q \times A \times Q$ with A including:
 - $-\tau$
 - $\operatorname{req}(R')$, $\operatorname{take}(R')$, and $\operatorname{rel}(R')$
 - rqt(R')
 - $\operatorname{preq}(R')$, $\operatorname{ptake}(R')$, and $\operatorname{prqt}(R')$

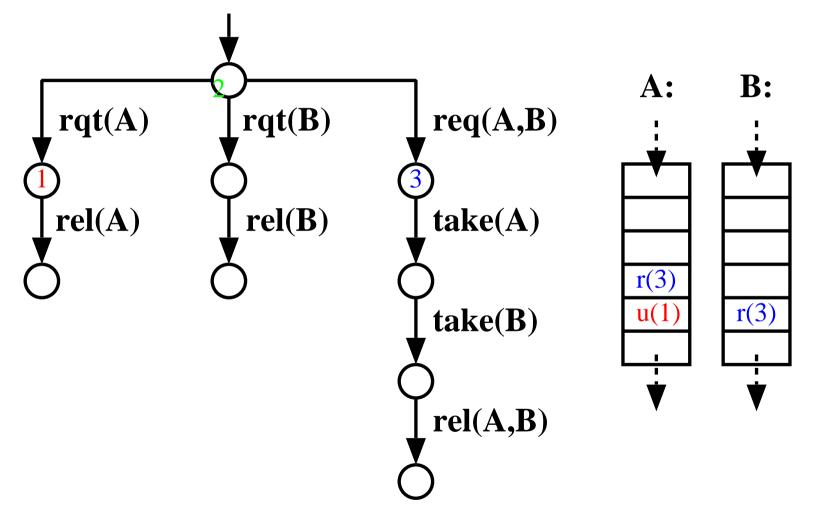
An **RTR family** \mathcal{F} of systems of identical processes is given by:

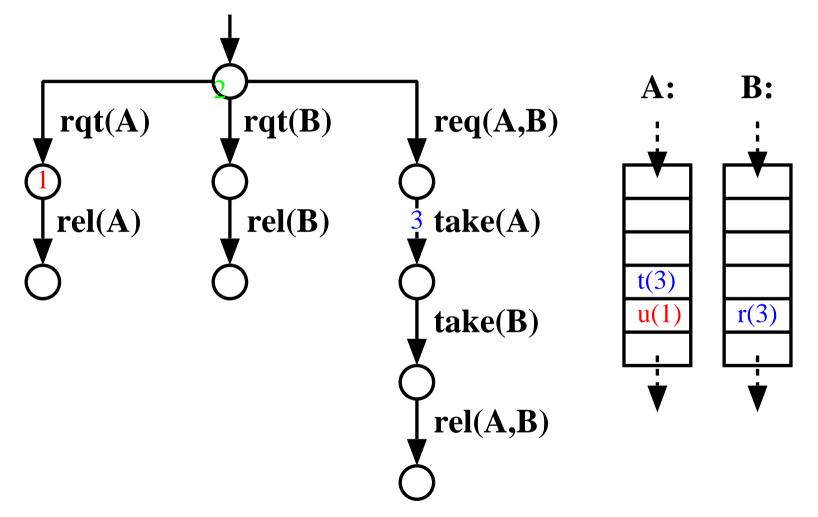
- **1.** a finite set of resources R
- 2. a finite *control* of the processes defined by:
 - a finite set of control states Q
 - the initial control state $q_0 \in Q$
 - a transition relation $T \subseteq Q \times A \times Q$ with A including:
 - τ - $\operatorname{req}(R')$, $\operatorname{take}(R')$, and $\operatorname{rel}(R')$
 - rqt(R')- preq(R'), ptake(R'), and prqt(R')
- **3.** a *locker* policy *L* (FIFO or PRIO)

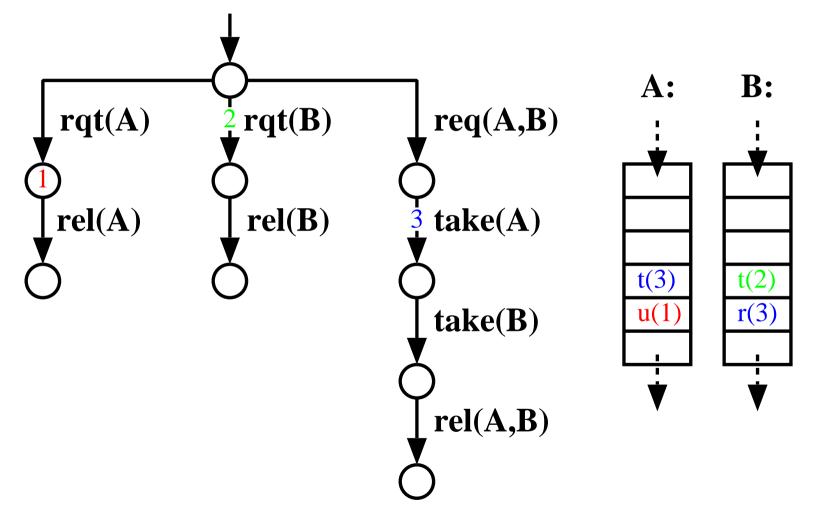


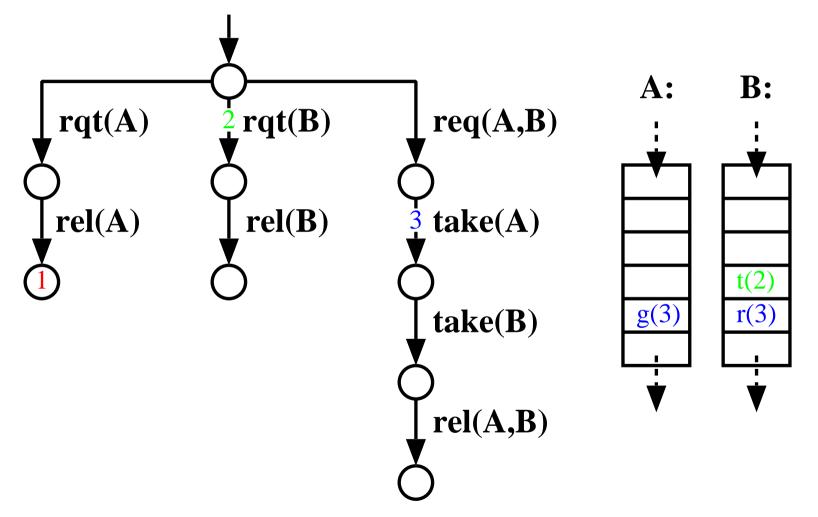


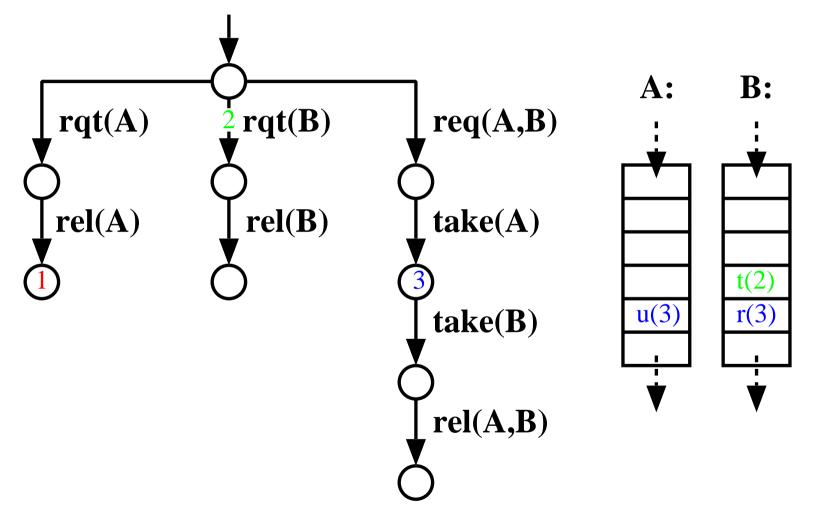












2. RTR Families of Systems (3/3)

***** The **PRIO** locker policy: **A: B**: $\frac{1}{2} \operatorname{prqt}(\mathbf{B}) \quad \frac{1}{3} \operatorname{rqt}(\mathbf{A},\mathbf{B})$ t(3) pt(2) t(3) u(1)**B**: **A:** $\frac{1}{2}$ prqt(B) $\frac{1}{3}$ rqt(A,B) pt(2)t(3) t(3) u(1)u(1

***** We can build on the notion of **ICTL***.

***** We can build on the notion of **ICTL***.

- Global process quantification valid along paths:
 - mutual exclusion: $\forall_{p_1 \neq p_2} AG \neg (.p_1 = q_{cs} \land .p_2 = q_{cs})$
 - absence of starvation: $\forall_p AG (.p = q_{req} \Rightarrow AF .p = q_{grant})$

***** We can build on the notion of **ICTL***.

- Global process quantification valid along paths:
 - mutual exclusion: $\forall_{p_1 \neq p_2} AG \neg (.p_1 = q_{cs} \land .p_2 = q_{cs})$
 - **absence of starvation:** $\forall_p AG (.p = q_{req} \Rightarrow AF .p = q_{grant})$
- Local process quantification valid within states:
 - global response: $AG((\exists_p . p = q_{req}) \Rightarrow AF(\exists_p . p = q_{resp}))$

We can build on the notion of ICTL*.

- Global process quantification valid along paths:
 - mutual exclusion: $\forall_{p_1 \neq p_2} AG \neg (.p_1 = q_{cs} \land .p_2 = q_{cs})$
 - **absence of starvation:** $\forall_p AG (.p = q_{req} \Rightarrow AF .p = q_{grant})$
- Local process quantification valid within states:
 - global response: $AG((\exists_p . p = q_{req}) \Rightarrow AF(\exists_p . p = q_{resp}))$

***** We will consider the parametric verification problem in the form:

$$\forall S \in \mathcal{F} : S \models \Phi \qquad \text{or} \qquad \exists S \in \mathcal{F} : S \models \Phi$$

4. Verification of Finite Behaviour

***** We consider properties of the form

$$\Phi_{fin}^k \equiv [\exists |\forall]_{p_1,...,p_k|\iota} [E|A]_{fin} \varphi(p_1,...,p_k)$$

where:

- **1.** ι is a conjunction of $p_i \neq p_j$ (for $i \neq j$)
- 2. $\varphi(p_1, ..., p_k)$ is an LTL\X formula over atoms of the kind $.p_i = q$ and/or $.p_i = .p_j$

4. Verification of Finite Behaviour

***** We consider properties of the form

$$\Phi_{fin}^k \equiv [\exists |\forall]_{p_1,...,p_k|\iota} [E|A]_{fin} \varphi(p_1,...,p_k)$$

where:

- **1.** ι is a conjunction of $p_i \neq p_j$ (for $i \neq j$)
- 2. $\varphi(p_1, ..., p_k)$ is an LTL\X formula over atoms of the kind $.p_i = q$ and/or $.p_i = .p_j$
- ***** Mutual exclusion is an example of such a property:

$$\forall_{p_1 \neq p_2} A_{fin} G \neg (.p_1 = q_{cs} \land .p_2 = q_{cs})$$

♦ In order to verify $\forall S \in \mathcal{F} : S \models \Phi_{fin}^k$ within \mathbf{RTR}_{FIFO} , it is enough to consider systems with up to k processes.

In other words, the following holds:

$$\forall S \in \mathcal{F} : S \models \Phi_{fin}^k \qquad \Leftrightarrow \bigwedge_{S \in \{S_i \in \mathcal{F} | 1 \le i \le k\}} S \models \Phi_{fin}^k$$

•
$$\forall l \ge k : S_k \models \exists_{p_1, \dots, p_k \mid \neq} E_{fin} \varphi \Leftrightarrow S_l \models \exists_{p_1, \dots, p_k \mid \neq} E_{fin} \varphi$$

* proof sketch:

•
$$\forall l \ge k : S_k \models \exists_{p_1, \dots, p_k \mid \neq} E_{fin} \varphi \Leftrightarrow S_l \models \exists_{p_1, \dots, p_k \mid \neq} E_{fin} \varphi$$

 (\Rightarrow) Obvious—we let the additional processes of S_l idle.

•
$$\forall l \ge k : S_k \models \exists_{p_1, \dots, p_k \not\models} E_{fin} \varphi \Leftrightarrow S_l \models \exists_{p_1, \dots, p_k \not\models} E_{fin} \varphi$$

- (\Rightarrow) Obvious—we let the additional processes of S_l idle.
- (\Leftarrow) We take a witness from S_l , remove actions of invisible processes, and obtain a witness in S_k :

•
$$\forall l \ge k : S_k \models \exists_{p_1, \dots, p_k \not\models} E_{fin} \varphi \Leftrightarrow S_l \models \exists_{p_1, \dots, p_k \not\models} E_{fin} \varphi$$

- (\Rightarrow) Obvious—we let the additional processes of S_l idle.
- (\Leftarrow) We take a witness from S_l , remove actions of invisible processes, and obtain a witness in S_k :
 - A removal of req, take makes the situation for other processes "easier".
 - As we always start with empty queues, rel just neutralizes req, take.

•
$$\forall l \ge k : S_k \models \exists_{p_1, \dots, p_k \mid \neq} E_{fin} \varphi \Leftrightarrow S_l \models \exists_{p_1, \dots, p_k \mid \neq} E_{fin} \varphi$$

- (\Rightarrow) Obvious—we let the additional processes of S_l idle.
- (\Leftarrow) We take a witness from S_l , remove actions of invisible processes, and obtain a witness in S_k :
 - A removal of req, take makes the situation for other processes "easier".
 - As we always start with empty queues, rel just neutralizes req, take.
 - We remove actions of invisible processes and LTL\X is stuttering insensitive.

•
$$\forall l \ge k : S_k \models \exists_{p_1, \dots, p_k \not\models} E_{fin} \varphi \Leftrightarrow S_l \models \exists_{p_1, \dots, p_k \not\models} E_{fin} \varphi$$

- (\Rightarrow) Obvious—we let the additional processes of S_l idle.
- (\Leftarrow) We take a witness from S_l , remove actions of invisible processes, and obtain a witness in S_k :
 - A removal of req, take makes the situation for other processes "easier".
 - As we always start with empty queues, rel just neutralizes req, take.
 - We remove actions of invisible processes and LTL\X is stuttering insensitive.
- Identity of processes and transformations of the formulae.

5. Finite Behaviour of RTR_{FIFO} (3/3)

* If the control of processes of a given family does not contain a loop with $\#req(r) > \#take(r), r \in R$, we suffice with finite-state techniques.

* The above restriction is relatively practical because if it does not hold, there is either a possibility of a process deadlock, or the content of the queues may grow over every bound.

* The case of the $(\mathbf{RT})\mathbf{R}_{FIFO}$ families where only rqt is used is covered.

5. Finite Behaviour of RTR_{FIFO} (3/3)

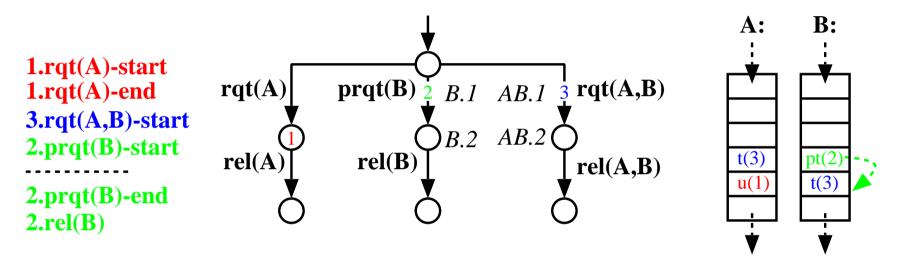
♦ If the control of processes of a given family does not contain a loop with $\#req(r) > \#take(r), r \in R$, we suffice with finite-state techniques.

* The above restriction is relatively practical because if it does not hold, there is either a possibility of a process deadlock, or the content of the queues may grow over every bound.

* The case of the $(\mathbf{RT})\mathbf{R}_{FIFO}$ families where only rqt is used is covered.

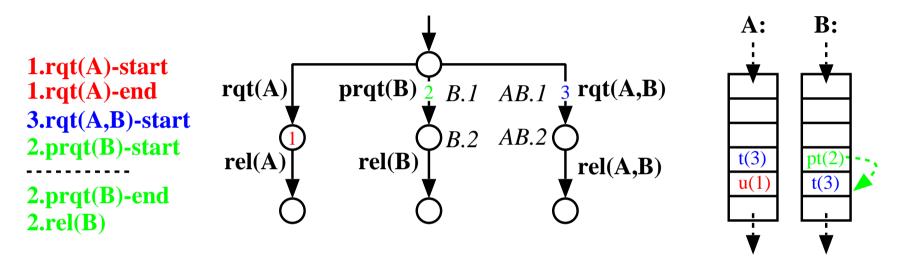
***** The described result *cannot be used* within \mathbf{RTR}_{PRIO} nor $(\mathbf{RT})\mathbf{R}_{PRIO}$.

♦ In (RT)R_{PRIO}, when we remove actions of some processes from a behaviour, we need not obtain a behaviour:



6. Finite Behaviour of (RT)R_{PRIO} (1/3)

♦ In (RT)R_{PRIO}, when we remove actions of some processes from a behaviour, we need not obtain a behaviour:



We cannot go down to *k* **processes here:**

 $\exists S \in \mathcal{F} : S \models \exists_{p_1 \neq p_2} E_{fin} \\ ((.p_2 \neq B_1) \ U \ (.p_1 = AB_1)) \land ((.p_1 \neq AB_2) \ U \ (.p_2 = B_2))$

***** For reachability/invariance properties based on $[EF|AG] \pi(p_1, ..., p_k)$, we suffice with k processes in (RT)R_{PRIO}.

***** For reachability/invariance properties based on $[EF|AG] \pi(p_1, ..., p_k)$, we suffice with k processes in (RT)R_{PRIO}.

***** proof sketch:

•
$$\forall l \ge k :$$

 $S_k \models \exists_{p_1,\dots,p_k \not\models} E_{fin} F \pi \Leftrightarrow S_l \models \exists_{p_1,\dots,p_k \not\models} E_{fin} F \pi$

***** For reachability/invariance properties based on $[EF|AG] \pi(p_1, ..., p_k)$, we suffice with k processes in (RT)R_{PRIO}.

* proof sketch:

- $\forall l \ge k :$ $S_k \models \exists_{p_1,...,p_k \not\models} E_{fin} F \pi \Leftrightarrow S_l \models \exists_{p_1,...,p_k \not\models} E_{fin} F \pi$
 - (\Rightarrow) Obvious—we let the additional processes of S_l idle.

***** For reachability/invariance properties based on $[EF|AG] \pi(p_1, ..., p_k)$, we suffice with k processes in (RT)R_{PRIO}.

* proof sketch:

- $\forall l \ge k :$ $S_k \models \exists_{p_1,...,p_k \not\models} E_{fin} F \pi \Leftrightarrow S_l \models \exists_{p_1,...,p_k \not\models} E_{fin} F \pi$
 - (\Rightarrow) Obvious—we let the additional processes of S_l idle.
 - (\Leftarrow) We take a witness from S_l .
 - We remove actions of invisible processes.

***** For reachability/invariance properties based on $[EF|AG] \pi(p_1, ..., p_k)$, we suffice with k processes in (RT)R_{PRIO}.

* proof sketch:

- $\forall l \ge k :$ $S_k \models \exists_{p_1,...,p_k \not\models} E_{fin} F \pi \Leftrightarrow S_l \models \exists_{p_1,...,p_k \not\models} E_{fin} F \pi$
 - (\Rightarrow) Obvious—we let the additional processes of S_l idle.
 - (\Leftarrow) We take a witness from S_l .
 - We remove actions of invisible processes.

***** For reachability/invariance properties based on $[EF|AG] \pi(p_1, ..., p_k)$, we suffice with k processes in (RT)R_{PRIO}.

* proof sketch:

- $\forall l \ge k :$ $S_k \models \exists_{p_1,...,p_k \not\models} E_{fin} F \pi \Leftrightarrow S_l \models \exists_{p_1,...,p_k \not\models} E_{fin} F \pi$
 - (\Rightarrow) Obvious—we let the additional processes of S_l idle.
 - (\Leftarrow) We take a witness from S_l .
 - We remove actions of invisible processes.

***** For reachability/invariance properties based on $[EF|AG] \pi(p_1, ..., p_k)$, we suffice with k processes in (RT)R_{PRIO}.

* proof sketch:

- $\forall l \ge k :$ $S_k \models \exists_{p_1,...,p_k \not\models} E_{fin} F \pi \Leftrightarrow S_l \models \exists_{p_1,...,p_k \not\models} E_{fin} F \pi$
 - (\Rightarrow) Obvious—we let the additional processes of S_l idle.
 - (\Leftarrow) We take a witness from S_l .
 - We remove actions of invisible processes.
 - We postpone rqt(R') start to be just after all the "overtaking" prqt(R'') start.

***** For reachability/invariance properties based on $[EF|AG] \pi(p_1, ..., p_k)$, we suffice with k processes in (RT)R_{PRIO}.

* proof sketch:

- $\forall l \ge k :$ $S_k \models \exists_{p_1,...,p_k \not\models} E_{fin} F \pi \Leftrightarrow S_l \models \exists_{p_1,...,p_k \not\models} E_{fin} F \pi$
 - (\Rightarrow) Obvious—we let the additional processes of S_l idle.
 - (\Leftarrow) We take a witness from S_l .
 - We remove actions of invisible processes.
 - We postpone rqt(R') start to be just after all the "overtaking" prqt(R'') start.

***** For reachability/invariance properties based on $[EF|AG] \pi(p_1, ..., p_k)$, we suffice with k processes in (RT)R_{PRIO}.

* proof sketch:

- $\forall l \ge k :$ $S_k \models \exists_{p_1,\dots,p_k \not\models} E_{fin} F \pi \Leftrightarrow S_l \models \exists_{p_1,\dots,p_k \not\models} E_{fin} F \pi$
 - (\Rightarrow) Obvious—we let the additional processes of S_l idle.
 - (\Leftarrow) We take a witness from S_l .
 - We remove actions of invisible processes.
 - We postpone rqt(R') start to be just after all the "overtaking" prqt(R'') start.
 - We obtain a behaviour in S_k .
 - The visible final state is not changed.

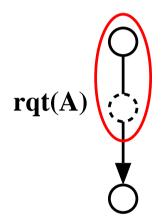
6. Finite Behaviour of (RT)R_{PRIO} (2/3)

***** For reachability/invariance properties based on $[EF|AG] \pi(p_1, ..., p_k)$, we suffice with k processes in (RT)R_{PRIO}.

* proof sketch:

- $\forall l \ge k :$ $S_k \models \exists_{p_1,\dots,p_k \not\models} E_{fin} F \pi \Leftrightarrow S_l \models \exists_{p_1,\dots,p_k \not\models} E_{fin} F \pi$
 - (\Rightarrow) Obvious—we let the additional processes of S_l idle.
 - (\Leftarrow) We take a witness from S_l .
 - We remove actions of invisible processes.
 - We postpone rqt(R') start to be just after all the "overtaking" prqt(R'') start.
 - We obtain a behaviour in S_k .
 - The visible final state is not changed.
- Transformations of the formulae.

* The result holds also for general LTL X formulae not distinguishing the control pre- and post-conditions of rqt(R') - start.



7. Verification of Fair Behaviour

***** We consider properties of the form

$$\Phi_{wf}^k \equiv [\exists |\forall]_{p_1,\dots,p_k|\iota} [E|A]_{wf} \varphi(p_1,\dots,p_k)$$

where:

- **1.** ι and φ are as in Φ_{fin}^k
- 2. wf represents weak (process) fairness

7. Verification of Fair Behaviour

***** We consider properties of the form

$$\Phi_{wf}^k \equiv [\exists |\forall]_{p_1,\dots,p_k|\iota} \ [E|A]_{wf} \ \varphi(p_1,\dots,p_k)$$

where:

- **1.** ι and φ are as in Φ_{fin}^k
- 2. wf represents weak (process) fairness

***** Weak fairness coincides with strong fairness in our case.

8. Fair Behaviour of $(RT)R_{FIFO}$ (1/3)

* In order to verify $\forall S \in \mathcal{F} : S \models \Phi_{wf}^k$ within (RT)R_{*FIFO*} families with |R| = m, it is enough to consider systems with up to m + k processes.

8. Fair Behaviour of $(RT)R_{FIFO}$ (1/3)

♦ In order to verify $\forall S \in \mathcal{F} : S \models \Phi_{wf}^k$ within (RT)R_{*FIFO*} families with |R| = m, it is enough to consider systems with up to m + k processes.

proof sketch:

$$\forall l \ge m+k : S_{m+k} \models \exists_{p_1,\dots,p_k \mid \neq} E_{wf} \varphi \Leftrightarrow S_l \models \exists_{p_1,\dots,p_k \mid \neq} E_{wf} \varphi$$

(\Leftarrow) *m* invisible processes can block all resources if need be.

8. Fair Behaviour of $(RT)R_{FIFO}$ (1/3)

♦ In order to verify $\forall S \in \mathcal{F} : S \models \Phi_{wf}^k$ within (RT)R_{*FIFO*} families with |R| = m, it is enough to consider systems with up to m + k processes.

proof sketch:

 $\forall l \geq m+k: S_{m+k} \models \exists_{p_1, \dots, p_k \mid \neq} E_{wf} \varphi \Leftrightarrow S_l \models \exists_{p_1, \dots, p_k \mid \neq} E_{wf} \varphi$

(\Leftarrow) *m* invisible processes can block all resources if need be.

(\Rightarrow) Additional processes can be added:

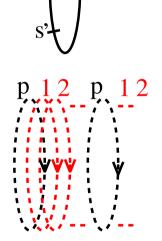
- No process is running trivial.
- All processes are running cf. the next slide.
- Otherwise a combination of the above.

***** Adding new processes when all original processes run forever:

***** Adding new processes when all original processes run forever:

At least one resource is always eventually released:

- There is a state *s* where at least 1 resource is unused.
- At most m-1 processes may use some resources in s.
- At least k + 1 processes do not use any resource in s.
- There is an invisible process p not using anything in s.
- The behaviour of *p* can be mimicked.



rel(...r...

***** Adding new processes when all original processes run forever:

At least one resource is always eventually released:

- There is a state *s* where at least 1 resource is unused.
- At most m-1 processes may use some resources in s.
- At least k + 1 processes do not use any resource in s.
- There is an invisible process p not using anything in s.
- The behaviour of p can be mimicked.

No resource is ever released in the loop:

- At most *m* processes use some resources in the loop.
- At least k processes use no resources in the loop.
- Any of the latter can be mimicked.

rel(...r...

8. Fair Behaviour of $(RT)R_{FIFO}$ (3/3)

- ***** Adding new processes when b < m + k processes block forever:
 - **1.** At least 1 process p out of the b processes does not use any resource (it is just asking for some).
 - p can be easily mimicked.

8. Fair Behaviour of $(RT)R_{FIFO}$ (3/3)

- ***** Adding new processes when b < m + k processes block forever:
 - **1.** At least 1 process p out of the b processes does not use any resource (it is just asking for some).
 - *p* can be easily mimicked.
 - 2. All of the *b* processes use some resources.
 - $b \le m$
 - At least *b* resources cannot be used by the looping processes.
 - At most m b = m' resources can be used by these processes.
 - There are m + k b = m' + k looping processes.
 - With m' and m' + k, we can use similar arguments as on the previous slide.

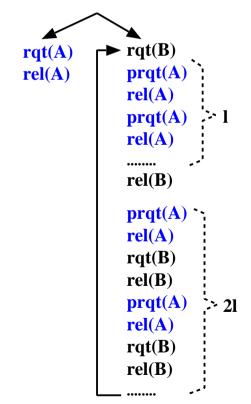
9. Fair Behaviour of (RT)R_{PRIO} (1/5)

***** The same result as for $(\mathbf{RT})\mathbf{R}_{FIFO}$ cannot be obtained for $(\mathbf{RT})\mathbf{R}_{PRIO}$.

***** Even for 1-process queries, there is *no* cut-off based just on *m* and *k* here.

9. Fair Behaviour of (RT)R_{PRIO} (1/5)

- ***** The same result as for $(\mathbf{RT})\mathbf{R}_{FIFO}$ cannot be obtained for $(\mathbf{RT})\mathbf{R}_{PRIO}$.
- ***** Even for 1-process queries, there is *no cut-off based just on m and k* here.
- **\bullet** For example, we need l + 2 invisible process to show starvation in:



* A structure-dependent cut-off bound F(|R|, |Q| + |T|) exists for (RT)R_{PRIO} and 1-process queries.

* A structure-dependent cut-off bound F(|R|, |Q| + |T|) exists for (RT)R_{PRIO} and 1-process queries.

* proof idea – showing that we can bound the number of invisible processes that keep running and block the visible process forever:

* A structure-dependent cut-off bound F(|R|, |Q| + |T|) exists for (RT)R_{PRIO} and 1-process queries.

* proof idea – showing that we can bound the number of invisible processes that keep running and block the visible process forever:

• By reordering of transition occurrences, we show that the queue content may be bounded.

* A structure-dependent cut-off bound F(|R|, |Q| + |T|) exists for (RT)R_{PRIO} and 1-process queries.

* proof idea – showing that we can bound the number of invisible processes that keep running and block the visible process forever:

- By reordering of transition occurrences, we show that the queue content may be bounded.
- The loop of the witness can be encoded such that:
 - We remember which control locations are occupied by processes using or requesting some resources.
 - We remember the number of other processes at each location.

(continued on the next slide)

- ***** The proof idea continued:
 - We construct a system of linear equations whose solutions describe loops over states encoded as above and guaranteeing that the visible process remains blocked.

- ***** The proof idea continued:
 - We construct a system of linear equations whose solutions describe loops over states encoded as above and guaranteeing that the visible process remains blocked.
 - All constants in the equations may be bounded, a solution exists (it is the given witness), and thus the theory of Linear Programming shows that there is a bounded solution.

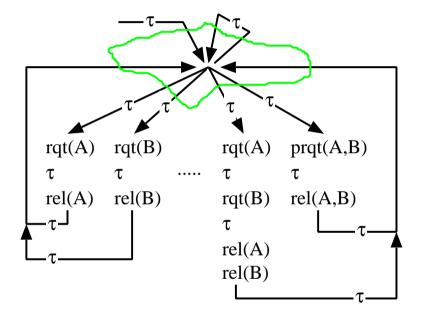
- ***** The proof idea continued:
 - We construct a system of linear equations whose solutions describe loops over states encoded as above and guaranteeing that the visible process remains blocked.
 - All constants in the equations may be bounded, a solution exists (it is the given witness), and thus the theory of Linear Programming shows that there is a bounded solution.

* The presented cut-off shows that the given problem is decidable, but the cut-off is not practical. We can further try to

- optimize the bound,
- which can be especially successful for subclasses of (RT)R_{PRIO}.

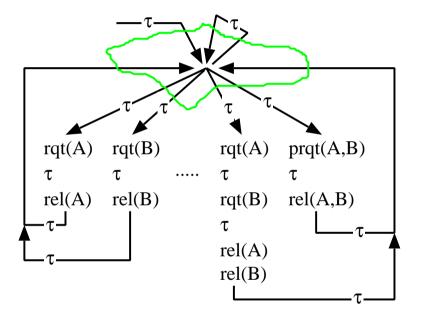
9. Fair Behaviour of (RT)R_{PRIO} (4/5)

***** We call an $(RT)R_{PRIO}$ family simple iff its control automaton contains just one "free area" through which processes may loop.



9. Fair Behaviour of (RT)R_{PRIO} (4/5)

***** We call an $(\mathbf{RT})\mathbf{R}_{PRIO}$ family simple iff its control automaton contains just one "free area" through which processes may loop.



***** When verifying fair behaviour of simple (RT) R_{PRIO} families against 1-process formulae, we suffice with considering up to 2m + 2 processes.

9. Fair Behaviour of $(RT)R_{PRIO}$ (5/5)

proof idea:

Ensuring that the blocked visible process will remain blocked when removing some processes from the witness:

- We have 2m + 2 processes: 1 visible blocked, up to m invisible blocked, at least m + 1 running forever.
- When a process releases l resources, at most m l processes can be using some resources.
- We have (m+1) (m-l) 1 = l processes ready in the free area to start blocking the released resources.

10. Process Deadlockability

* To check whether a process deadlock is possible in some system of an \mathbf{RTR}_{FIFO} or $(\mathbf{RT})\mathbf{R}_{PRIO}$ family \mathcal{F} , it suffices to examine the system $S_{max(m,2)} \in \mathcal{F}$ where m = |R|.

10. Process Deadlockability

* To check whether a process deadlock is possible in some system of an \mathbf{RTR}_{FIFO} or $(\mathbf{RT})\mathbf{R}_{PRIO}$ family \mathcal{F} , it suffices to examine the system $S_{max(m,2)} \in \mathcal{F}$ where m = |R|.

* The proof is simple for RTR_{FIFO} where (besides some trivial cases) a process deadlock arises due to cyclic dependencies in the queues of the m resources.

10. Process Deadlockability

* To check whether a process deadlock is possible in some system of an \mathbf{RTR}_{FIFO} or $(\mathbf{RT})\mathbf{R}_{PRIO}$ family \mathcal{F} , it suffices to examine the system $S_{max(m,2)} \in \mathcal{F}$ where m = |R|.

* The proof is simple for \mathbf{RTR}_{FIFO} where (besides some trivial cases) a process deadlock arises due to cyclic dependencies in the queues of the m resources.

 In (RT)R_{PRIO}, a process deadlock may arise due to unavoidable overtaking among some processes. Here, processes that always eventually do not use any resources are to be eliminated.

11. Some Undecidability Results (1/7)

* In RTR_{FIFO} , general reachability referring arbitrarily both to the current control locations of processes and to the content of queues is undecidable.

***** We can also show the following is **undecidable**:

- for RTR_{*FIFO*}: the EF fragment of ICTL^{*} with only global as well as only local process quantification
- even for $(RT)R_{FIFO}$: the LTL\X fragment of ICTL* based on atomic formulae of the kind $\forall_p . p = q$

11. Some Undecidability Results (1/7)

* In RTR_{FIFO} , general reachability referring arbitrarily both to the current control locations of processes and to the content of queues is undecidable.

***** We can also show the following is **undecidable**:

- for RTR_{*FIFO*}: the EF fragment of ICTL^{*} with only global as well as only local process quantification
- *even for (RT)* R_{FIFO} : the LTL\X fragment of ICTL* based on atomic formulae of the kind $\forall_p . p = q$

Proof by reduction from testing nonemptiness of PDAs with two stacks – highly nontrivial because the queues are not communication queues, but just waiting queues.

11. Some Undecidability Results (2/7)

* proof idea:

• We show how to simulate PDAs in a way that can easily be generalized to using two stacks.

11. Some Undecidability Results (2/7)

* proof idea:

• We show how to simulate PDAs in a way that can easily be generalized to using two stacks.

$$\mathbf{s1} \xrightarrow{\Sigma \cup \{\epsilon\}, \, \Gamma / \Gamma^*} \mathbf{s2}$$

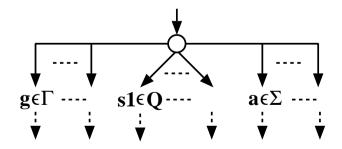
11. Some Undecidability Results (2/7)

* proof idea:

• We show how to simulate PDAs in a way that can easily be generalized to using two stacks.

sl
$$\Sigma U\{\varepsilon\}, \Gamma/\Gamma^*$$

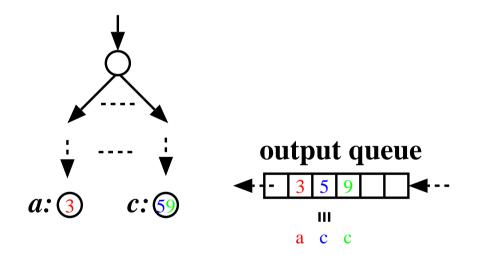
• The role of states, input symbols, and stack symbols is played by processes running in different control branches.



11. Some Undecidability Results (3/7)

* proof idea (continued):

• The content of the queues may be viewed by projecting PIDs to the control states of the appropriate processes (resp. the branches they are a part of).



11. Some Undecidability Results (4/7)

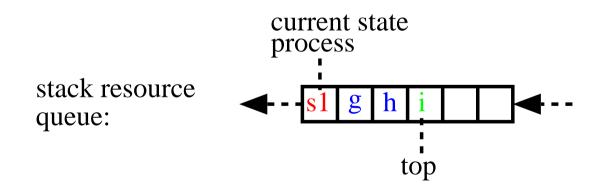
* proof idea (continued):

• The simulation is controlled by state processes; if the current-state process *p* deadlocks, the whole system deadlocks.

11. Some Undecidability Results (4/7)

* proof idea (continued):

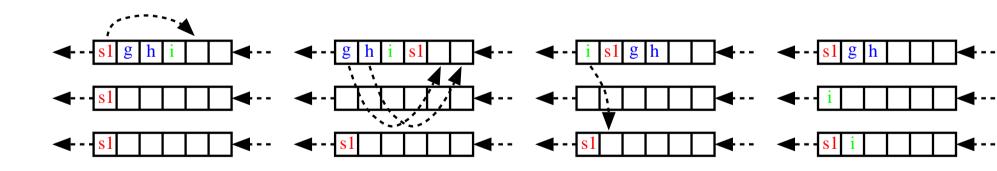
- The simulation is controlled by state processes; if the current-state process *p* deadlocks, the whole system deadlocks.
- The stack is simulated by a resource that is normally owned by p and stack-symbol processes wait in its queue; the top of the stack corresponds to the tail of the queue:



11. Some Undecidability Results (5/7)

* proof idea (continued):

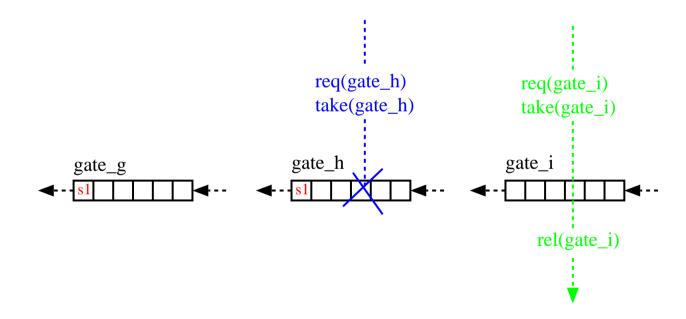
• Reading of the top symbol can be implemented by p releasing a stack, taking it again, and ensuring that after some symbol process releases the stack and does not take it back, all further symbol processes will block before releasing the stack.



11. Some Undecidability Results (6/7)

* proof idea (continued):

• To test whether a process plays the role *p* expects it to play, *p* may let it take and release a resource characteristic for its control branch and release only a certain resource before such a check.



11. Some Undecidability Results (7/7)

* proof idea (continued):

• For the output to be valid, there must appear a word from a certain regular language in a checksum queue —this ensures that some process always did what p needed to be done.

11. Some Undecidability Results (7/7)

* proof idea (continued):

• For the output to be valid, there must appear a word from a certain regular language in a checksum queue —this ensures that some process always did what p needed to be done.

• The use of the checksum queue may be replaced by checking satisfaction of suitable temporal logic formulae.

12. Conclusions (1/2)

***** We have provided practical cut-off results for parametric verification of many important properties of the considered systems with resource sharing.

***** We have also established some **undecidability** bounds and bounds of **structure-independence** for the application of cut-offs in the given domain.

12. Conclusions (1/2)

***** We have provided practical cut-off results for parametric verification of many important properties of the considered systems with resource sharing.

We have also established some undecidability bounds and bounds of structure-independence for the application of cut-offs in the given domain.

- ***** In the future, we can try to
 - improve the decidability/undecidability bounds,
 - optimize the cut-off bound for verification of fair behaviour in (RT)R_{PRIO},
 - establish some further practical cut-offs for interesting subcases of the problems found difficult in general.

12. Conclusions (2/2)

***** For the cases where no cut-off or no small cut-off can be found, we can try to apply some other methods (e.g. symbolic verification).

12. Conclusions (2/2)

***** For the cases where no cut-off or no small cut-off can be found, we can try to apply some other methods (e.g. symbolic verification).

***** Finally, the following is also worth considering:

- dealing with some other locker strategies than FIFO and PRIO
- considering non-exclusive access to resources
- verifying user-described lockers