
Parameterized Systems with Resource Sharing

Ahmed Bouajjani, Peter Habermehl, Tomáš Vojnar

LIAFA, Paris University 7

Parameterized Systems with Resource Sharing – p.1/37

1. Introduction 1/5

❖ Our original motivation: verifying the use of shared resources in
Ericsson’s AXD 301 switch.

Switch
Core

CP

CP

CP

CP

ATBATM

ATBCE

ATBFR

ATBL3F

Server
Device

ATM
Termination

Line
Termination

Control
Processors

Device Processor
on Each Board

Mandatory
Mated
Processor
Pair

Optional
Processors

 Clock &
Synchronization

❖ The problem is, however, common in operating systems, control software,
multithreaded programs, etc.

Parameterized Systems with Resource Sharing – p.2/37

1. Introduction 2/5

❖ A general view of the resource management problem:

an arbitrary number of client processes compete for an access to
an arbitrary number of resources under the supervision of a single
locker process

free/busy flags
0 1 1 0

1 2
13
1

queues of
requests

a locker

clients

resources

Parameterized Systems with Resource Sharing – p.3/37

1. Introduction 3/5

❖ Due to the broad importance of the problem, it is interesting to be able to
deal with

• different classes of clients and/or lockers and
• different classes of properties.

❖ In general, the problem is very complex – it involves coping with
• up to two parameters and
• (possibly several different) infinite data structures in lockers.

❖ In this work, we restrict ourselves to dealing with:
• queue-based locker strategies
• a fixed number of resources
• a parametric number of identical clients

Parameterized Systems with Resource Sharing – p.4/37

1. Introduction 3/5

❖ Due to the broad importance of the problem, it is interesting to be able to
deal with

• different classes of clients and/or lockers and
• different classes of properties.

❖ In general, the problem is very complex – it involves coping with
• up to two parameters and
• (possibly several different) infinite data structures in lockers.

❖ In this work, we restrict ourselves to dealing with:
• queue-based locker strategies
• a fixed number of resources
• a parametric number of identical clients

Parameterized Systems with Resource Sharing – p.4/37

1. Introduction 3/5

❖ Due to the broad importance of the problem, it is interesting to be able to
deal with

• different classes of clients and/or lockers and
• different classes of properties.

❖ In general, the problem is very complex – it involves coping with
• up to two parameters and
• (possibly several different) infinite data structures in lockers.

❖ In this work, we restrict ourselves to dealing with:
• queue-based locker strategies
• a fixed number of resources
• a parametric number of identical clients

Parameterized Systems with Resource Sharing – p.4/37

1. Introduction 4/5

❖ We split the problem into two parts:

1. verifying systems of clients provided they are controlled by a locker
with a certain locker strategy

2. checking that the locker implements the appropriate strategy

free/busy flags
0 1 1 0

1 2
13
1

queues of
requests

a locker

clients

resources

 locker
strategy

❖ We concentrate on the first issue for two important locker strategies:
FIFO and FIFO with priorities.

Parameterized Systems with Resource Sharing – p.5/37

1. Introduction 4/5

❖ We split the problem into two parts:

1. verifying systems of clients provided they are controlled by a locker
with a certain locker strategy

2. checking that the locker implements the appropriate strategy

free/busy flags
0 1 1 0

1 2
13
1

queues of
requests

a locker

clients

resources

 locker
strategy

❖ We concentrate on the first issue for two important locker strategies:
FIFO and FIFO with priorities.

Parameterized Systems with Resource Sharing – p.5/37

1. Introduction 5/5

❖ Different approaches to verifying parameterized/infinite-state systems
have been proposed: symbolic methods, network invariants, cut-offs, ...

❖ We have chosen the use of cut-offs:

We are looking for “cut-off” numbers of clients such that verifying
systems with up to this number of clients is enough to verify systems
with an arbitrary number of clients.

❖ We obtain three kinds of results:
• structure independent cut-offs
• structure dependent cut-offs
• undecidability

Parameterized Systems with Resource Sharing – p.6/37

1. Introduction 5/5

❖ Different approaches to verifying parameterized/infinite-state systems
have been proposed: symbolic methods, network invariants, cut-offs, ...

❖ We have chosen the use of cut-offs:

We are looking for “cut-off” numbers of clients such that verifying
systems with up to this number of clients is enough to verify systems
with an arbitrary number of clients.

❖ We obtain three kinds of results:
• structure independent cut-offs
• structure dependent cut-offs
• undecidability

Parameterized Systems with Resource Sharing – p.6/37

An Overview of the Rest of the Talk

❖ RTR families

❖ Specifying properties to be checked

❖ Verification of
• finite behaviour
• fair behaviour
• process deadlockability

❖ Undecidability

Parameterized Systems with Resource Sharing – p.7/37

2. RTR Families of Systems (1/3)

❖ An RTR family F of systems of identical processes is given by:

1. a finite set of resources R

2. a finite control of the processes defined by:
• a finite set of control states Q

• the initial control state q0 ∈ Q

• a transition relation T ⊆ Q × A × Q with A including:
– τ

– req(R′), take(R′), and rel(R′)
– rqt(R′)
– preq(R′), ptake(R′), and prqt(R′)

3. a locker policy L (FIFO or PRIO)

Parameterized Systems with Resource Sharing – p.8/37

2. RTR Families of Systems (1/3)

❖ An RTR family F of systems of identical processes is given by:

1. a finite set of resources R

2. a finite control of the processes defined by:
• a finite set of control states Q

• the initial control state q0 ∈ Q

• a transition relation T ⊆ Q × A × Q with A including:
– τ

– req(R′), take(R′), and rel(R′)
– rqt(R′)
– preq(R′), ptake(R′), and prqt(R′)

3. a locker policy L (FIFO or PRIO)

Parameterized Systems with Resource Sharing – p.8/37

2. RTR Families of Systems (1/3)

❖ An RTR family F of systems of identical processes is given by:

1. a finite set of resources R

2. a finite control of the processes defined by:
• a finite set of control states Q

• the initial control state q0 ∈ Q

• a transition relation T ⊆ Q × A × Q with A including:
– τ

– req(R′), take(R′), and rel(R′)
– rqt(R′)
– preq(R′), ptake(R′), and prqt(R′)

3. a locker policy L (FIFO or PRIO)

Parameterized Systems with Resource Sharing – p.8/37

2. RTR Families of Systems (2/3)

❖ The FIFO locker policy:

req(A,B)

take(A)

take(B)

rel(A,B)

rqt(A) rqt(B)

rel(A) rel(B)

2 3
1

A: B:

Parameterized Systems with Resource Sharing – p.9/37

2. RTR Families of Systems (2/3)

❖ The FIFO locker policy:

g(1)

req(A,B)

take(A)

take(B)

rel(A,B)

rqt(A) rqt(B)

rel(A) rel(B)

1
2 3 A: B:

Parameterized Systems with Resource Sharing – p.9/37

2. RTR Families of Systems (2/3)

❖ The FIFO locker policy:

req(A,B)

take(A)

take(B)

rel(A,B)

rqt(A) rqt(B)

rel(A) rel(B)
1

2 3

u(1)

A: B:

Parameterized Systems with Resource Sharing – p.9/37

2. RTR Families of Systems (2/3)

❖ The FIFO locker policy:

r(3)
r(3)

req(A,B)

take(A)

take(B)

rel(A,B)

rqt(A) rqt(B)

rel(A) rel(B)
1

2

3

u(1)

A: B:

Parameterized Systems with Resource Sharing – p.9/37

2. RTR Families of Systems (2/3)

❖ The FIFO locker policy:

req(A,B)

take(B)

rel(A,B)

rqt(A) rqt(B)

rel(A) rel(B)
1

2

take(A)3

r(3)
t(3)
u(1)

A: B:

Parameterized Systems with Resource Sharing – p.9/37

2. RTR Families of Systems (2/3)

❖ The FIFO locker policy:

req(A,B)

take(B)

rel(A,B)

rqt(A) rqt(B)

rel(A) rel(B)
1

t(2)

take(A)

2

3

r(3)
t(3)
u(1)

A: B:

Parameterized Systems with Resource Sharing – p.9/37

2. RTR Families of Systems (2/3)

❖ The FIFO locker policy:

req(A,B)

take(B)

rel(A,B)

rqt(A) rqt(B)

rel(A) rel(B)

1

take(A)

2

3

t(2)
r(3)g(3)

A: B:

Parameterized Systems with Resource Sharing – p.9/37

2. RTR Families of Systems (2/3)

❖ The FIFO locker policy:

req(A,B)

take(B)

rel(A,B)

rqt(A) rqt(B)

rel(A) rel(B)

1

take(A)

2

3 t(2)
r(3)u(3)

A: B:

Parameterized Systems with Resource Sharing – p.9/37

2. RTR Families of Systems (3/3)

❖ The PRIO locker policy:

rqt(A,B)prqt(B)2 3

pt(2)
t(3)

t(3)
u(1)

A: B:

A: B:

rqt(A,B)prqt(B)2 3
pt(2)
t(3)t(3)

u(1) u(1)

Parameterized Systems with Resource Sharing – p.10/37

3. Properties to Checked

❖ We can build on the notion of ICTL∗.

❖ Global process quantification – valid along paths:
• mutual exclusion: ∀p1 6=p2

AG ¬(.p1 = qcs ∧ .p2 = qcs)

• absence of starvation: ∀p AG (.p = qreq ⇒ AF .p = qgrant)

❖ Local process quantification – valid within states:
• global response: AG ((∃p .p = qreq) ⇒ AF (∃p .p = qresp))

❖ We will consider the parametric verification problem in the form:

∀S ∈ F : S |= Φ or ∃S ∈ F : S |= Φ

Parameterized Systems with Resource Sharing – p.11/37

3. Properties to Checked

❖ We can build on the notion of ICTL∗.

❖ Global process quantification – valid along paths:
• mutual exclusion: ∀p1 6=p2

AG ¬(.p1 = qcs ∧ .p2 = qcs)

• absence of starvation: ∀p AG (.p = qreq ⇒ AF .p = qgrant)

❖ Local process quantification – valid within states:
• global response: AG ((∃p .p = qreq) ⇒ AF (∃p .p = qresp))

❖ We will consider the parametric verification problem in the form:

∀S ∈ F : S |= Φ or ∃S ∈ F : S |= Φ

Parameterized Systems with Resource Sharing – p.11/37

3. Properties to Checked

❖ We can build on the notion of ICTL∗.

❖ Global process quantification – valid along paths:
• mutual exclusion: ∀p1 6=p2

AG ¬(.p1 = qcs ∧ .p2 = qcs)

• absence of starvation: ∀p AG (.p = qreq ⇒ AF .p = qgrant)

❖ Local process quantification – valid within states:
• global response: AG ((∃p .p = qreq) ⇒ AF (∃p .p = qresp))

❖ We will consider the parametric verification problem in the form:

∀S ∈ F : S |= Φ or ∃S ∈ F : S |= Φ

Parameterized Systems with Resource Sharing – p.11/37

3. Properties to Checked

❖ We can build on the notion of ICTL∗.

❖ Global process quantification – valid along paths:
• mutual exclusion: ∀p1 6=p2

AG ¬(.p1 = qcs ∧ .p2 = qcs)

• absence of starvation: ∀p AG (.p = qreq ⇒ AF .p = qgrant)

❖ Local process quantification – valid within states:
• global response: AG ((∃p .p = qreq) ⇒ AF (∃p .p = qresp))

❖ We will consider the parametric verification problem in the form:

∀S ∈ F : S |= Φ or ∃S ∈ F : S |= Φ

Parameterized Systems with Resource Sharing – p.11/37

4. Verification of Finite Behaviour

❖ We consider properties of the form

Φk
fin ≡ [∃|∀]p1,...,pk|ι [E|A]fin ϕ(p1, ..., pk)

where:

1. ι is a conjunction of pi 6= pj (for i 6= j)

2. ϕ(p1, ..., pk) is an LTL\X formula over atoms of the kind .pi = q

and/or .pi = .pj

❖ Mutual exclusion is an example of such a property:

∀p1 6=p2
Afin G ¬(.p1 = qcs ∧ .p2 = qcs)

Parameterized Systems with Resource Sharing – p.12/37

4. Verification of Finite Behaviour

❖ We consider properties of the form

Φk
fin ≡ [∃|∀]p1,...,pk|ι [E|A]fin ϕ(p1, ..., pk)

where:

1. ι is a conjunction of pi 6= pj (for i 6= j)

2. ϕ(p1, ..., pk) is an LTL\X formula over atoms of the kind .pi = q

and/or .pi = .pj

❖ Mutual exclusion is an example of such a property:

∀p1 6=p2
Afin G ¬(.p1 = qcs ∧ .p2 = qcs)

Parameterized Systems with Resource Sharing – p.12/37

5. Finite Behaviour of RTRFIFO (1/3)

❖ In order to verify ∀S ∈ F : S |= Φk
fin within RTRFIFO, it is enough to

consider systems with up to k processes.

❖ In other words, the following holds:

∀S ∈ F : S |= Φk
fin ⇔

∧

S∈{Si∈F|1≤i≤k}

S |= Φk
fin

Parameterized Systems with Resource Sharing – p.13/37

5. Finite Behaviour of RTRFIFO (2/3)

❖ proof sketch:
• ∀l ≥ k : Sk |= ∃p1,...,pk|6= Efin ϕ ⇔ Sl |= ∃p1,...,pk|6= Efin ϕ

(⇒) Obvious—we let the additional processes of Sl idle.
(⇐) We take a witness from Sl, remove actions of invisible processes,

and obtain a witness in Sk:
• A removal of req, take makes the situation for other processes

“easier”.
• As we always start with empty queues, rel just neutralizes

req, take.
• We remove actions of invisible processes and LTL\X is

stuttering insensitive.

• Identity of processes and transformations of the formulae.

Parameterized Systems with Resource Sharing – p.14/37

5. Finite Behaviour of RTRFIFO (2/3)

❖ proof sketch:
• ∀l ≥ k : Sk |= ∃p1,...,pk|6= Efin ϕ ⇔ Sl |= ∃p1,...,pk|6= Efin ϕ

(⇒) Obvious—we let the additional processes of Sl idle.

(⇐) We take a witness from Sl, remove actions of invisible processes,
and obtain a witness in Sk:
• A removal of req, take makes the situation for other processes

“easier”.
• As we always start with empty queues, rel just neutralizes

req, take.
• We remove actions of invisible processes and LTL\X is

stuttering insensitive.

• Identity of processes and transformations of the formulae.

Parameterized Systems with Resource Sharing – p.14/37

5. Finite Behaviour of RTRFIFO (2/3)

❖ proof sketch:
• ∀l ≥ k : Sk |= ∃p1,...,pk|6= Efin ϕ ⇔ Sl |= ∃p1,...,pk|6= Efin ϕ

(⇒) Obvious—we let the additional processes of Sl idle.
(⇐) We take a witness from Sl, remove actions of invisible processes,

and obtain a witness in Sk:

• A removal of req, take makes the situation for other processes
“easier”.

• As we always start with empty queues, rel just neutralizes
req, take.

• We remove actions of invisible processes and LTL\X is
stuttering insensitive.

• Identity of processes and transformations of the formulae.

Parameterized Systems with Resource Sharing – p.14/37

5. Finite Behaviour of RTRFIFO (2/3)

❖ proof sketch:
• ∀l ≥ k : Sk |= ∃p1,...,pk|6= Efin ϕ ⇔ Sl |= ∃p1,...,pk|6= Efin ϕ

(⇒) Obvious—we let the additional processes of Sl idle.
(⇐) We take a witness from Sl, remove actions of invisible processes,

and obtain a witness in Sk:
• A removal of req, take makes the situation for other processes

“easier”.
• As we always start with empty queues, rel just neutralizes

req, take.

• We remove actions of invisible processes and LTL\X is
stuttering insensitive.

• Identity of processes and transformations of the formulae.

Parameterized Systems with Resource Sharing – p.14/37

5. Finite Behaviour of RTRFIFO (2/3)

❖ proof sketch:
• ∀l ≥ k : Sk |= ∃p1,...,pk|6= Efin ϕ ⇔ Sl |= ∃p1,...,pk|6= Efin ϕ

(⇒) Obvious—we let the additional processes of Sl idle.
(⇐) We take a witness from Sl, remove actions of invisible processes,

and obtain a witness in Sk:
• A removal of req, take makes the situation for other processes

“easier”.
• As we always start with empty queues, rel just neutralizes

req, take.
• We remove actions of invisible processes and LTL\X is

stuttering insensitive.

• Identity of processes and transformations of the formulae.

Parameterized Systems with Resource Sharing – p.14/37

5. Finite Behaviour of RTRFIFO (2/3)

❖ proof sketch:
• ∀l ≥ k : Sk |= ∃p1,...,pk|6= Efin ϕ ⇔ Sl |= ∃p1,...,pk|6= Efin ϕ

(⇒) Obvious—we let the additional processes of Sl idle.
(⇐) We take a witness from Sl, remove actions of invisible processes,

and obtain a witness in Sk:
• A removal of req, take makes the situation for other processes

“easier”.
• As we always start with empty queues, rel just neutralizes

req, take.
• We remove actions of invisible processes and LTL\X is

stuttering insensitive.
• Identity of processes and transformations of the formulae.

Parameterized Systems with Resource Sharing – p.14/37

5. Finite Behaviour of RTRFIFO (3/3)

❖ If the control of processes of a given family does not contain a loop with
#req(r) > #take(r), r ∈ R, we suffice with finite-state techniques.

❖ The above restriction is relatively practical because if it does not hold,
there is either a possibility of a process deadlock, or the content of the
queues may grow over every bound.

❖ The case of the (RT)RFIFO families where only rqt is used is covered.

❖ The described result cannot be used within RTRPRIO nor (RT)RPRIO.

Parameterized Systems with Resource Sharing – p.15/37

5. Finite Behaviour of RTRFIFO (3/3)

❖ If the control of processes of a given family does not contain a loop with
#req(r) > #take(r), r ∈ R, we suffice with finite-state techniques.

❖ The above restriction is relatively practical because if it does not hold,
there is either a possibility of a process deadlock, or the content of the
queues may grow over every bound.

❖ The case of the (RT)RFIFO families where only rqt is used is covered.

❖ The described result cannot be used within RTRPRIO nor (RT)RPRIO.

Parameterized Systems with Resource Sharing – p.15/37

6. Finite Behaviour of (RT)RPRIO (1/3)

❖ In (RT)RPRIO, when we remove actions of some processes from a
behaviour, we need not obtain a behaviour:

rqt(A,B)

rel(A,B)

rqt(A) prqt(B)

rel(A) rel(B)
1

2 3
1.rqt(A)-start

3.rqt(A,B)-start
2.prqt(B)-start

2.rel(B)

B.1

B.2

AB.1

AB.2

1.rqt(A)-end

2.prqt(B)-end

pt(2)
t(3)

t(3)
u(1)

A: B:

❖ We cannot go down to k processes here:

∃S ∈ F : S |= ∃p1 6=p2
Efin

((.p2 6= B1) U (.p1 = AB1)) ∧ ((.p1 6= AB2) U (.p2 = B2))

Parameterized Systems with Resource Sharing – p.16/37

6. Finite Behaviour of (RT)RPRIO (1/3)

❖ In (RT)RPRIO, when we remove actions of some processes from a
behaviour, we need not obtain a behaviour:

rqt(A,B)

rel(A,B)

rqt(A) prqt(B)

rel(A) rel(B)
1

2 3
1.rqt(A)-start

3.rqt(A,B)-start
2.prqt(B)-start

2.rel(B)

B.1

B.2

AB.1

AB.2

1.rqt(A)-end

2.prqt(B)-end

pt(2)
t(3)

t(3)
u(1)

A: B:

❖ We cannot go down to k processes here:

∃S ∈ F : S |= ∃p1 6=p2
Efin

((.p2 6= B1) U (.p1 = AB1)) ∧ ((.p1 6= AB2) U (.p2 = B2))

Parameterized Systems with Resource Sharing – p.16/37

6. Finite Behaviour of (RT)RPRIO (2/3)

❖ For reachability/invariance properties based on [EF |AG] π(p1, ..., pk),
we suffice with k processes in (RT)RPRIO.

❖ proof sketch:
• ∀l ≥ k :

Sk |= ∃p1,...,pk|6= Efin F π ⇔ Sl |= ∃p1,...,pk|6= Efin F π

(⇒) Obvious—we let the additional processes of Sl idle.
(⇐) • We take a witness from Sl.

• We remove actions of invisible processes.
• We postpone rqt(R′) − start to be just after all

the “overtaking” prqt(R′′) − start.
• We obtain a behaviour in Sk.
• The visible final state is not changed.

• Transformations of the formulae.

1.rqt(A)-start

3.rqt(A,B)-start

2.rel(B)

1.rqt(A)-end

2.prqt(B)-end

2.prqt(B)-start

Parameterized Systems with Resource Sharing – p.17/37

6. Finite Behaviour of (RT)RPRIO (2/3)

❖ For reachability/invariance properties based on [EF |AG] π(p1, ..., pk),
we suffice with k processes in (RT)RPRIO.

❖ proof sketch:
• ∀l ≥ k :

Sk |= ∃p1,...,pk|6= Efin F π ⇔ Sl |= ∃p1,...,pk|6= Efin F π

(⇒) Obvious—we let the additional processes of Sl idle.
(⇐) • We take a witness from Sl.

• We remove actions of invisible processes.
• We postpone rqt(R′) − start to be just after all

the “overtaking” prqt(R′′) − start.
• We obtain a behaviour in Sk.
• The visible final state is not changed.

• Transformations of the formulae.

1.rqt(A)-start

3.rqt(A,B)-start

2.rel(B)

1.rqt(A)-end

2.prqt(B)-end

2.prqt(B)-start

Parameterized Systems with Resource Sharing – p.17/37

6. Finite Behaviour of (RT)RPRIO (2/3)

❖ For reachability/invariance properties based on [EF |AG] π(p1, ..., pk),
we suffice with k processes in (RT)RPRIO.

❖ proof sketch:
• ∀l ≥ k :

Sk |= ∃p1,...,pk|6= Efin F π ⇔ Sl |= ∃p1,...,pk|6= Efin F π

(⇒) Obvious—we let the additional processes of Sl idle.

(⇐) • We take a witness from Sl.
• We remove actions of invisible processes.
• We postpone rqt(R′) − start to be just after all

the “overtaking” prqt(R′′) − start.
• We obtain a behaviour in Sk.
• The visible final state is not changed.

• Transformations of the formulae.

1.rqt(A)-start

3.rqt(A,B)-start

2.rel(B)

1.rqt(A)-end

2.prqt(B)-end

2.prqt(B)-start

Parameterized Systems with Resource Sharing – p.17/37

6. Finite Behaviour of (RT)RPRIO (2/3)

❖ For reachability/invariance properties based on [EF |AG] π(p1, ..., pk),
we suffice with k processes in (RT)RPRIO.

❖ proof sketch:
• ∀l ≥ k :

Sk |= ∃p1,...,pk|6= Efin F π ⇔ Sl |= ∃p1,...,pk|6= Efin F π

(⇒) Obvious—we let the additional processes of Sl idle.
(⇐) • We take a witness from Sl.

• We remove actions of invisible processes.

• We postpone rqt(R′) − start to be just after all
the “overtaking” prqt(R′′) − start.

• We obtain a behaviour in Sk.
• The visible final state is not changed.

• Transformations of the formulae.

1.rqt(A)-start

3.rqt(A,B)-start

2.rel(B)

1.rqt(A)-end

2.prqt(B)-end

2.prqt(B)-start

Parameterized Systems with Resource Sharing – p.17/37

6. Finite Behaviour of (RT)RPRIO (2/3)

❖ For reachability/invariance properties based on [EF |AG] π(p1, ..., pk),
we suffice with k processes in (RT)RPRIO.

❖ proof sketch:
• ∀l ≥ k :

Sk |= ∃p1,...,pk|6= Efin F π ⇔ Sl |= ∃p1,...,pk|6= Efin F π

(⇒) Obvious—we let the additional processes of Sl idle.
(⇐) • We take a witness from Sl.

• We remove actions of invisible processes.

• We postpone rqt(R′) − start to be just after all
the “overtaking” prqt(R′′) − start.

• We obtain a behaviour in Sk.
• The visible final state is not changed.

• Transformations of the formulae.

1.rqt(A)-start

3.rqt(A,B)-start
2.prqt(B)-start

2.rel(B)

1.rqt(A)-end

2.prqt(B)-end

1.rqt(A)-start

3.rqt(A,B)-start

2.rel(B)

1.rqt(A)-end

2.prqt(B)-end

2.prqt(B)-start

Parameterized Systems with Resource Sharing – p.17/37

6. Finite Behaviour of (RT)RPRIO (2/3)

❖ For reachability/invariance properties based on [EF |AG] π(p1, ..., pk),
we suffice with k processes in (RT)RPRIO.

❖ proof sketch:
• ∀l ≥ k :

Sk |= ∃p1,...,pk|6= Efin F π ⇔ Sl |= ∃p1,...,pk|6= Efin F π

(⇒) Obvious—we let the additional processes of Sl idle.
(⇐) • We take a witness from Sl.

• We remove actions of invisible processes.

• We postpone rqt(R′) − start to be just after all
the “overtaking” prqt(R′′) − start.

• We obtain a behaviour in Sk.
• The visible final state is not changed.

• Transformations of the formulae.

1.rqt(A)-start

3.rqt(A,B)-start
2.prqt(B)-start

2.rel(B)

1.rqt(A)-end

2.prqt(B)-end

1.rqt(A)-start

3.rqt(A,B)-start

2.rel(B)

1.rqt(A)-end

2.prqt(B)-end

2.prqt(B)-start

Parameterized Systems with Resource Sharing – p.17/37

6. Finite Behaviour of (RT)RPRIO (2/3)

❖ For reachability/invariance properties based on [EF |AG] π(p1, ..., pk),
we suffice with k processes in (RT)RPRIO.

❖ proof sketch:
• ∀l ≥ k :

Sk |= ∃p1,...,pk|6= Efin F π ⇔ Sl |= ∃p1,...,pk|6= Efin F π

(⇒) Obvious—we let the additional processes of Sl idle.
(⇐) • We take a witness from Sl.

• We remove actions of invisible processes.
• We postpone rqt(R′) − start to be just after all

the “overtaking” prqt(R′′) − start.

• We obtain a behaviour in Sk.
• The visible final state is not changed.

• Transformations of the formulae.

1.rqt(A)-start

3.rqt(A,B)-start
2.prqt(B)-start

2.rel(B)

1.rqt(A)-end

2.prqt(B)-end

1.rqt(A)-start

3.rqt(A,B)-start

2.rel(B)

1.rqt(A)-end

2.prqt(B)-end

2.prqt(B)-start

Parameterized Systems with Resource Sharing – p.17/37

6. Finite Behaviour of (RT)RPRIO (2/3)

❖ For reachability/invariance properties based on [EF |AG] π(p1, ..., pk),
we suffice with k processes in (RT)RPRIO.

❖ proof sketch:
• ∀l ≥ k :

Sk |= ∃p1,...,pk|6= Efin F π ⇔ Sl |= ∃p1,...,pk|6= Efin F π

(⇒) Obvious—we let the additional processes of Sl idle.
(⇐) • We take a witness from Sl.

• We remove actions of invisible processes.
• We postpone rqt(R′) − start to be just after all

the “overtaking” prqt(R′′) − start.

• We obtain a behaviour in Sk.
• The visible final state is not changed.

• Transformations of the formulae.

1.rqt(A)-start

3.rqt(A,B)-start

2.rel(B)

1.rqt(A)-end

2.prqt(B)-end

2.prqt(B)-start

Parameterized Systems with Resource Sharing – p.17/37

6. Finite Behaviour of (RT)RPRIO (2/3)

❖ For reachability/invariance properties based on [EF |AG] π(p1, ..., pk),
we suffice with k processes in (RT)RPRIO.

❖ proof sketch:
• ∀l ≥ k :

Sk |= ∃p1,...,pk|6= Efin F π ⇔ Sl |= ∃p1,...,pk|6= Efin F π

(⇒) Obvious—we let the additional processes of Sl idle.
(⇐) • We take a witness from Sl.

• We remove actions of invisible processes.
• We postpone rqt(R′) − start to be just after all

the “overtaking” prqt(R′′) − start.
• We obtain a behaviour in Sk.
• The visible final state is not changed.

• Transformations of the formulae.

1.rqt(A)-start

3.rqt(A,B)-start

2.rel(B)

1.rqt(A)-end

2.prqt(B)-end

2.prqt(B)-start

Parameterized Systems with Resource Sharing – p.17/37

6. Finite Behaviour of (RT)RPRIO (2/3)

❖ For reachability/invariance properties based on [EF |AG] π(p1, ..., pk),
we suffice with k processes in (RT)RPRIO.

❖ proof sketch:
• ∀l ≥ k :

Sk |= ∃p1,...,pk|6= Efin F π ⇔ Sl |= ∃p1,...,pk|6= Efin F π

(⇒) Obvious—we let the additional processes of Sl idle.
(⇐) • We take a witness from Sl.

• We remove actions of invisible processes.
• We postpone rqt(R′) − start to be just after all

the “overtaking” prqt(R′′) − start.
• We obtain a behaviour in Sk.
• The visible final state is not changed.

• Transformations of the formulae.

1.rqt(A)-start

3.rqt(A,B)-start

2.rel(B)

1.rqt(A)-end

2.prqt(B)-end

2.prqt(B)-start

Parameterized Systems with Resource Sharing – p.17/37

6. Finite Behaviour of (RT)RPRIO (3/3)

❖ The result holds also for general LTL\X formulae not distinguishing the
control pre- and post-conditions of rqt(R′) − start.

rqt(A)

Parameterized Systems with Resource Sharing – p.18/37

7. Verification of Fair Behaviour

❖ We consider properties of the form

Φk
wf ≡ [∃|∀]p1,...,pk|ι [E|A]wf ϕ(p1, ..., pk)

where:

1. ι and ϕ are as in Φk
fin

2. wf represents weak (process) fairness

❖ Weak fairness coincides with strong fairness in our case.

Parameterized Systems with Resource Sharing – p.19/37

7. Verification of Fair Behaviour

❖ We consider properties of the form

Φk
wf ≡ [∃|∀]p1,...,pk|ι [E|A]wf ϕ(p1, ..., pk)

where:

1. ι and ϕ are as in Φk
fin

2. wf represents weak (process) fairness

❖ Weak fairness coincides with strong fairness in our case.

Parameterized Systems with Resource Sharing – p.19/37

8. Fair Behaviour of (RT)RFIFO (1/3)

❖ In order to verify ∀S ∈ F : S |= Φk
wf within (RT)RFIFO families with

|R| = m, it is enough to consider systems with up to m + k processes.

❖ proof sketch:
∀l ≥ m + k : Sm+k |= ∃p1,...,pk|6= Ewf ϕ ⇔ Sl |= ∃p1,...,pk|6= Ewf ϕ

(⇐) m invisible processes can block all resources if need be.

(⇒) Additional processes can be added:
• No process is running – trivial.
• All processes are running – cf. the next slide.
• Otherwise – a combination of the above.

Parameterized Systems with Resource Sharing – p.20/37

8. Fair Behaviour of (RT)RFIFO (1/3)

❖ In order to verify ∀S ∈ F : S |= Φk
wf within (RT)RFIFO families with

|R| = m, it is enough to consider systems with up to m + k processes.

❖ proof sketch:
∀l ≥ m + k : Sm+k |= ∃p1,...,pk|6= Ewf ϕ ⇔ Sl |= ∃p1,...,pk|6= Ewf ϕ

(⇐) m invisible processes can block all resources if need be.

(⇒) Additional processes can be added:
• No process is running – trivial.
• All processes are running – cf. the next slide.
• Otherwise – a combination of the above.

Parameterized Systems with Resource Sharing – p.20/37

8. Fair Behaviour of (RT)RFIFO (1/3)

❖ In order to verify ∀S ∈ F : S |= Φk
wf within (RT)RFIFO families with

|R| = m, it is enough to consider systems with up to m + k processes.

❖ proof sketch:
∀l ≥ m + k : Sm+k |= ∃p1,...,pk|6= Ewf ϕ ⇔ Sl |= ∃p1,...,pk|6= Ewf ϕ

(⇐) m invisible processes can block all resources if need be.

(⇒) Additional processes can be added:
• No process is running – trivial.
• All processes are running – cf. the next slide.
• Otherwise – a combination of the above.

Parameterized Systems with Resource Sharing – p.20/37

8. Fair Behaviour of (RT)RFIFO (2/3)

❖ Adding new processes when all original processes run forever:

At least one resource is always eventually released:

• There is a state s where at least 1 resource is unused.
• At most m − 1 processes may use some resources in s.
• At least k + 1 processes do not use any resource in s.
• There is an invisible process p not using anything in s.
• The behaviour of p can be mimicked.

s

p p1 2

rel(...r...)

1 2

s’

No resource is ever released in the loop:

• At most m processes use some resources in the loop.
• At least k processes use no resources in the loop.
• Any of the latter can be mimicked.

Parameterized Systems with Resource Sharing – p.21/37

8. Fair Behaviour of (RT)RFIFO (2/3)

❖ Adding new processes when all original processes run forever:

At least one resource is always eventually released:

• There is a state s where at least 1 resource is unused.
• At most m − 1 processes may use some resources in s.
• At least k + 1 processes do not use any resource in s.
• There is an invisible process p not using anything in s.
• The behaviour of p can be mimicked.

s

p p1 2

rel(...r...)

1 2

s’

No resource is ever released in the loop:

• At most m processes use some resources in the loop.
• At least k processes use no resources in the loop.
• Any of the latter can be mimicked.

Parameterized Systems with Resource Sharing – p.21/37

8. Fair Behaviour of (RT)RFIFO (2/3)

❖ Adding new processes when all original processes run forever:

At least one resource is always eventually released:

• There is a state s where at least 1 resource is unused.
• At most m − 1 processes may use some resources in s.
• At least k + 1 processes do not use any resource in s.
• There is an invisible process p not using anything in s.
• The behaviour of p can be mimicked.

s

p p1 2

rel(...r...)

1 2

s’

No resource is ever released in the loop:

• At most m processes use some resources in the loop.
• At least k processes use no resources in the loop.
• Any of the latter can be mimicked.

Parameterized Systems with Resource Sharing – p.21/37

8. Fair Behaviour of (RT)RFIFO (3/3)

❖ Adding new processes when b < m + k processes block forever:

1. At least 1 process p out of the b processes does not use any resource
(it is just asking for some).
• p can be easily mimicked.

2. All of the b processes use some resources.
• b ≤ m

• At least b resources cannot be used by the looping processes.
• At most m − b = m′ resources can be used by these processes.
• There are m + k − b = m′ + k looping processes.
• With m′ and m′ + k, we can use similar arguments as on the

previous slide.

Parameterized Systems with Resource Sharing – p.22/37

8. Fair Behaviour of (RT)RFIFO (3/3)

❖ Adding new processes when b < m + k processes block forever:

1. At least 1 process p out of the b processes does not use any resource
(it is just asking for some).
• p can be easily mimicked.

2. All of the b processes use some resources.
• b ≤ m

• At least b resources cannot be used by the looping processes.
• At most m − b = m′ resources can be used by these processes.
• There are m + k − b = m′ + k looping processes.
• With m′ and m′ + k, we can use similar arguments as on the

previous slide.

Parameterized Systems with Resource Sharing – p.22/37

9. Fair Behaviour of (RT)RPRIO (1/5)

❖ The same result as for (RT)RFIFO cannot be obtained for (RT)RPRIO.

❖ Even for 1-process queries, there is no cut-off based just on m and k here.

❖ For example, we need l + 2 invisible process to show starvation in:

rqt(B)
prqt(A)
rel(A)
prqt(A)
rel(A)
........
rel(B)

rqt(A)
rel(A)

l

2l

prqt(A)
rel(A)
rqt(B)
rel(B)
prqt(A)
rel(A)
rqt(B)
rel(B)
........

Parameterized Systems with Resource Sharing – p.23/37

9. Fair Behaviour of (RT)RPRIO (1/5)

❖ The same result as for (RT)RFIFO cannot be obtained for (RT)RPRIO.

❖ Even for 1-process queries, there is no cut-off based just on m and k here.

❖ For example, we need l + 2 invisible process to show starvation in:

rqt(B)
prqt(A)
rel(A)
prqt(A)
rel(A)
........
rel(B)

rqt(A)
rel(A)

l

2l

prqt(A)
rel(A)
rqt(B)
rel(B)
prqt(A)
rel(A)
rqt(B)
rel(B)
........

Parameterized Systems with Resource Sharing – p.23/37

9. Fair Behaviour of (RT)RPRIO (2/5)

❖ A structure-dependent cut-off bound F (|R|, |Q| + |T |) exists for
(RT)RPRIO and 1-process queries.

❖ proof idea – showing that we can bound the number of invisible processes
that keep running and block the visible process forever:

• By reordering of transition occurrences, we show that the queue
content may be bounded.

• The loop of the witness can be encoded such that:
• We remember which control locations are occupied by processes

using or requesting some resources.
• We remember the number of other processes at each location.

(continued on the next slide)

Parameterized Systems with Resource Sharing – p.24/37

9. Fair Behaviour of (RT)RPRIO (2/5)

❖ A structure-dependent cut-off bound F (|R|, |Q| + |T |) exists for
(RT)RPRIO and 1-process queries.

❖ proof idea – showing that we can bound the number of invisible processes
that keep running and block the visible process forever:

• By reordering of transition occurrences, we show that the queue
content may be bounded.

• The loop of the witness can be encoded such that:
• We remember which control locations are occupied by processes

using or requesting some resources.
• We remember the number of other processes at each location.

(continued on the next slide)

Parameterized Systems with Resource Sharing – p.24/37

9. Fair Behaviour of (RT)RPRIO (2/5)

❖ A structure-dependent cut-off bound F (|R|, |Q| + |T |) exists for
(RT)RPRIO and 1-process queries.

❖ proof idea – showing that we can bound the number of invisible processes
that keep running and block the visible process forever:

• By reordering of transition occurrences, we show that the queue
content may be bounded.

• The loop of the witness can be encoded such that:
• We remember which control locations are occupied by processes

using or requesting some resources.
• We remember the number of other processes at each location.

(continued on the next slide)

Parameterized Systems with Resource Sharing – p.24/37

9. Fair Behaviour of (RT)RPRIO (2/5)

❖ A structure-dependent cut-off bound F (|R|, |Q| + |T |) exists for
(RT)RPRIO and 1-process queries.

❖ proof idea – showing that we can bound the number of invisible processes
that keep running and block the visible process forever:

• By reordering of transition occurrences, we show that the queue
content may be bounded.

• The loop of the witness can be encoded such that:
• We remember which control locations are occupied by processes

using or requesting some resources.
• We remember the number of other processes at each location.

(continued on the next slide)

Parameterized Systems with Resource Sharing – p.24/37

9. Fair Behaviour of (RT)RPRIO (3/5)

❖ The proof idea continued:
• We construct a system of linear equations whose solutions describe

loops over states encoded as above and guaranteeing that the visible
process remains blocked.

• All constants in the equations may be bounded, a solution exists (it is
the given witness), and thus the theory of Linear Programming shows
that there is a bounded solution.

❖ The presented cut-off shows that the given problem is decidable,
but the cut-off is not practical. We can further try to

• optimize the bound,
• which can be especially successful for subclasses of (RT)RPRIO.

Parameterized Systems with Resource Sharing – p.25/37

9. Fair Behaviour of (RT)RPRIO (3/5)

❖ The proof idea continued:
• We construct a system of linear equations whose solutions describe

loops over states encoded as above and guaranteeing that the visible
process remains blocked.

• All constants in the equations may be bounded, a solution exists (it is
the given witness), and thus the theory of Linear Programming shows
that there is a bounded solution.

❖ The presented cut-off shows that the given problem is decidable,
but the cut-off is not practical. We can further try to

• optimize the bound,
• which can be especially successful for subclasses of (RT)RPRIO.

Parameterized Systems with Resource Sharing – p.25/37

9. Fair Behaviour of (RT)RPRIO (3/5)

❖ The proof idea continued:
• We construct a system of linear equations whose solutions describe

loops over states encoded as above and guaranteeing that the visible
process remains blocked.

• All constants in the equations may be bounded, a solution exists (it is
the given witness), and thus the theory of Linear Programming shows
that there is a bounded solution.

❖ The presented cut-off shows that the given problem is decidable,
but the cut-off is not practical. We can further try to

• optimize the bound,
• which can be especially successful for subclasses of (RT)RPRIO.

Parameterized Systems with Resource Sharing – p.25/37

9. Fair Behaviour of (RT)RPRIO (4/5)

❖ We call an (RT)RPRIO family simple iff its control automaton contains
just one “free area” through which processes may loop.

rqt(A)
τ
rel(A)

rqt(B)
τ
rel(B)

rqt(A)
τ
rqt(B)
τ
rel(A)
rel(B)

prqt(A,B)
τ
rel(A,B)

.....

τ

ττ τ τ

τ

τ

τ

τ

τ

❖ When verifying fair behaviour of simple (RT)RPRIO families against
1-process formulae, we suffice with considering up to 2m + 2 processes.

Parameterized Systems with Resource Sharing – p.26/37

9. Fair Behaviour of (RT)RPRIO (4/5)

❖ We call an (RT)RPRIO family simple iff its control automaton contains
just one “free area” through which processes may loop.

rqt(A)
τ
rel(A)

rqt(B)
τ
rel(B)

rqt(A)
τ
rqt(B)
τ
rel(A)
rel(B)

prqt(A,B)
τ
rel(A,B)

.....

τ

ττ τ τ

τ

τ

τ

τ

τ

❖ When verifying fair behaviour of simple (RT)RPRIO families against
1-process formulae, we suffice with considering up to 2m + 2 processes.

Parameterized Systems with Resource Sharing – p.26/37

9. Fair Behaviour of (RT)RPRIO (5/5)

❖ proof idea:

Ensuring that the blocked visible process will remain blocked when
removing some processes from the witness:

• We have 2m + 2 processes: 1 visible blocked, up to m invisible
blocked, at least m + 1 running forever.

• When a process releases l resources, at most m − l processes can be
using some resources.

• We have (m + 1) − (m − l) − 1 = l processes ready in the free area to
start blocking the released resources.

Parameterized Systems with Resource Sharing – p.27/37

10. Process Deadlockability

❖ To check whether a process deadlock is possible in some system of an
RTRFIFO or (RT)RPRIO family F , it suffices to examine the system
Smax(m,2) ∈ F where m = |R|.

❖ The proof is simple for RTRFIFO where (besides some trivial cases) a
process deadlock arises due to cyclic dependencies in the queues of the m

resources.

❖ In (RT)RPRIO, a process deadlock may arise due to unavoidable
overtaking among some processes. Here, processes that always eventually
do not use any resources are to be eliminated.

Parameterized Systems with Resource Sharing – p.28/37

10. Process Deadlockability

❖ To check whether a process deadlock is possible in some system of an
RTRFIFO or (RT)RPRIO family F , it suffices to examine the system
Smax(m,2) ∈ F where m = |R|.

❖ The proof is simple for RTRFIFO where (besides some trivial cases) a
process deadlock arises due to cyclic dependencies in the queues of the m

resources.

❖ In (RT)RPRIO, a process deadlock may arise due to unavoidable
overtaking among some processes. Here, processes that always eventually
do not use any resources are to be eliminated.

Parameterized Systems with Resource Sharing – p.28/37

10. Process Deadlockability

❖ To check whether a process deadlock is possible in some system of an
RTRFIFO or (RT)RPRIO family F , it suffices to examine the system
Smax(m,2) ∈ F where m = |R|.

❖ The proof is simple for RTRFIFO where (besides some trivial cases) a
process deadlock arises due to cyclic dependencies in the queues of the m

resources.

❖ In (RT)RPRIO, a process deadlock may arise due to unavoidable
overtaking among some processes. Here, processes that always eventually
do not use any resources are to be eliminated.

Parameterized Systems with Resource Sharing – p.28/37

11. Some Undecidability Results (1/7)

❖ In RTRFIFO, general reachability referring arbitrarily both to the
current control locations of processes and to the content of queues is
undecidable.

❖ We can also show the following is undecidable:
• for RTRFIFO: the EF fragment of ICTL∗ with only global as well as

only local process quantification
• even for (RT)RFIFO: the LTL\X fragment of ICTL∗ based on atomic

formulae of the kind ∀p .p = q

❖ Proof by reduction from testing nonemptiness of PDAs with two stacks –
highly nontrivial because the queues are not communication queues, but just
waiting queues.

Parameterized Systems with Resource Sharing – p.29/37

11. Some Undecidability Results (1/7)

❖ In RTRFIFO, general reachability referring arbitrarily both to the
current control locations of processes and to the content of queues is
undecidable.

❖ We can also show the following is undecidable:
• for RTRFIFO: the EF fragment of ICTL∗ with only global as well as

only local process quantification
• even for (RT)RFIFO: the LTL\X fragment of ICTL∗ based on atomic

formulae of the kind ∀p .p = q

❖ Proof by reduction from testing nonemptiness of PDAs with two stacks –
highly nontrivial because the queues are not communication queues, but just
waiting queues.

Parameterized Systems with Resource Sharing – p.29/37

11. Some Undecidability Results (2/7)

❖ proof idea:

• We show how to simulate PDAs in a way that can easily be generalized
to using two stacks.

ΣU{ε}, Γ/Γ*
s1 s2

• The role of states, input symbols, and stack symbols is played by
processes running in different control branches.

g Γ s1 Q a Σ∋ ∋ ∋

Parameterized Systems with Resource Sharing – p.30/37

11. Some Undecidability Results (2/7)

❖ proof idea:

• We show how to simulate PDAs in a way that can easily be generalized
to using two stacks.

ΣU{ε}, Γ/Γ*
s1 s2

• The role of states, input symbols, and stack symbols is played by
processes running in different control branches.

g Γ s1 Q a Σ∋ ∋ ∋

Parameterized Systems with Resource Sharing – p.30/37

11. Some Undecidability Results (2/7)

❖ proof idea:

• We show how to simulate PDAs in a way that can easily be generalized
to using two stacks.

ΣU{ε}, Γ/Γ*
s1 s2

• The role of states, input symbols, and stack symbols is played by
processes running in different control branches.

g Γ s1 Q a Σ∋ ∋ ∋

Parameterized Systems with Resource Sharing – p.30/37

11. Some Undecidability Results (3/7)

❖ proof idea (continued):
• The content of the queues may be viewed by projecting PIDs to the

control states of the appropriate processes (resp. the branches they are
a part of).

3 59
53 9

a: c:
ca c

output queue

Parameterized Systems with Resource Sharing – p.31/37

11. Some Undecidability Results (4/7)

❖ proof idea (continued):
• The simulation is controlled by state processes; if the current-state

process p deadlocks, the whole system deadlocks.

• The stack is simulated by a resource that is normally owned by p and
stack-symbol processes wait in its queue; the top of the stack
corresponds to the tail of the queue:

hs1 ig

top

current state
process

stack resource
queue:

Parameterized Systems with Resource Sharing – p.32/37

11. Some Undecidability Results (4/7)

❖ proof idea (continued):
• The simulation is controlled by state processes; if the current-state

process p deadlocks, the whole system deadlocks.
• The stack is simulated by a resource that is normally owned by p and

stack-symbol processes wait in its queue; the top of the stack
corresponds to the tail of the queue:

hs1 ig

top

current state
process

stack resource
queue:

Parameterized Systems with Resource Sharing – p.32/37

11. Some Undecidability Results (5/7)

❖ proof idea (continued):

• Reading of the top symbol can be implemented by p releasing a stack,
taking it again, and ensuring that after some symbol process releases
the stack and does not take it back, all further symbol processes will
block before releasing the stack.

hs1 ig

s1

s1

h s1ig

s1

hs1i g

s1

hs1

i

g

s1 i

Parameterized Systems with Resource Sharing – p.33/37

11. Some Undecidability Results (6/7)

❖ proof idea (continued):
• To test whether a process plays the role p expects it to play, p may let it

take and release a resource characteristic for its control branch and
release only a certain resource before such a check.

s1 s1

gate_g gate_h gate_i

req(gate_i)
take(gate_i)

req(gate_h)
take(gate_h)

rel(gate_i)

Parameterized Systems with Resource Sharing – p.34/37

11. Some Undecidability Results (7/7)

❖ proof idea (continued):

• For the output to be valid, there must appear a word from a certain
regular language in a checksum queue –this ensures that some process
always did what p needed to be done.

... Q ΓQ ΣQ ΓQ ΓQ Q’Q ...

pop out push next state

• The use of the checksum queue may be replaced by checking
satisfaction of suitable temporal logic formulae.

Parameterized Systems with Resource Sharing – p.35/37

11. Some Undecidability Results (7/7)

❖ proof idea (continued):

• For the output to be valid, there must appear a word from a certain
regular language in a checksum queue –this ensures that some process
always did what p needed to be done.

... Q ΓQ ΣQ ΓQ ΓQ Q’Q ...

pop out push next state

• The use of the checksum queue may be replaced by checking
satisfaction of suitable temporal logic formulae.

Parameterized Systems with Resource Sharing – p.35/37

12. Conclusions (1/2)

❖ We have provided practical cut-off results for parametric verification of
many important properties of the considered systems with resource sharing.

❖ We have also established some undecidability bounds and bounds of
structure-independence for the application of cut-offs in the given domain.

❖ In the future, we can try to
• improve the decidability/undecidability bounds,
• optimize the cut-off bound for verification of fair behaviour in

(RT)RPRIO,
• establish some further practical cut-offs for interesting subcases of the

problems found difficult in general.

Parameterized Systems with Resource Sharing – p.36/37

12. Conclusions (1/2)

❖ We have provided practical cut-off results for parametric verification of
many important properties of the considered systems with resource sharing.

❖ We have also established some undecidability bounds and bounds of
structure-independence for the application of cut-offs in the given domain.

❖ In the future, we can try to
• improve the decidability/undecidability bounds,
• optimize the cut-off bound for verification of fair behaviour in

(RT)RPRIO,
• establish some further practical cut-offs for interesting subcases of the

problems found difficult in general.

Parameterized Systems with Resource Sharing – p.36/37

12. Conclusions (2/2)

❖ For the cases where no cut-off or no small cut-off can be found, we can
try to apply some other methods (e.g. symbolic verification).

❖ Finally, the following is also worth considering:
• dealing with some other locker strategies than FIFO and PRIO
• considering non-exclusive access to resources
• verifying user-described lockers

Parameterized Systems with Resource Sharing – p.37/37

12. Conclusions (2/2)

❖ For the cases where no cut-off or no small cut-off can be found, we can
try to apply some other methods (e.g. symbolic verification).

❖ Finally, the following is also worth considering:
• dealing with some other locker strategies than FIFO and PRIO
• considering non-exclusive access to resources
• verifying user-described lockers

Parameterized Systems with Resource Sharing – p.37/37

	large 1. Introduction �lack 	iny 1/5
	large 1. Introduction �lack 	iny 2/5
	large 1. Introduction �lack 	iny 3/5
	large 1. Introduction �lack 	iny 4/5
	large 1. Introduction �lack 	iny 5/5
	large An Overview of the Rest of the Talk �lack 	iny
	large 2. RTR Families of Systems �lack 	iny (1/3)
	large 2. RTR Families of Systems �lack 	iny (2/3)
	large 2. RTR Families of Systems �lack 	iny (3/3)
	large 3. Properties to Checked
	large 4. Verifihspace {-1mm}cation of Finite Behaviour �lack 	iny
	large 5. Finite Behaviour of RTR$_{FIFO}$ �lack 	iny (1/3)
	large 5. Finite Behaviour of RTR$_{FIFO}$ �lack 	iny (2/3)
	large 5. Finite Behaviour of RTR$_{FIFO}$ �lack 	iny (3/3)
	large 6. Finite Behaviour of (RT)R$_{PRIO}$
�lack 	iny (1/3)
	large 6. Finite Behaviour of (RT)R$_{PRIO}$
�lack 	iny (2/3)
	large 6. Finite Behaviour of (RT)R$_{PRIO}$
�lack 	iny (3/3)
	large 7. Verifihspace {-1mm}cation of Fair Behaviour
	large 8. Fair Behaviour of (RT)R$_{FIFO}$
�lack 	iny (1/3)
	large 8. Fair Behaviour of (RT)R$_{FIFO}$
�lack 	iny (2/3)
	large 8. Fair Behaviour of (RT)R$_{FIFO}$
�lack 	iny (3/3)
	large 9. Fair Behaviour of (RT)R$_{PRIO}$
�lack 	iny (1/5)
	large 9. Fair Behaviour of (RT)R$_{PRIO}$
�lack 	iny (2/5)
	large 9. Fair Behaviour of (RT)R$_{PRIO}$
�lack 	iny (3/5)
	large 9. Fair Behaviour of (RT)R$_{PRIO}$
�lack 	iny (4/5)
	large 9. Fair Behaviour of (RT)R$_{PRIO}$
�lack 	iny (5/5)
	large 10. Process Deadlockability �lack 	iny
	large 11. Some Undecidability Results �lack 	iny (1/7)
	large 11. Some Undecidability Results �lack 	iny (2/7)
	large 11. Some Undecidability Results �lack 	iny (3/7)
	large 11. Some Undecidability Results �lack 	iny (4/7)
	large 11. Some Undecidability Results �lack 	iny (5/7)
	large 11. Some Undecidability Results �lack 	iny (6/7)
	large 11. Some Undecidability Results �lack 	iny (7/7)
	large 12. Conclusions �lack 	iny (1/2)
	large 12. Conclusions �lack 	iny (2/2)

