Modeling PGM: From huge code to smaller models for relevant properties

Marc Boyer

LIAFA - Univ. Paris 7 - France

Work done

VERIMAG IF 2.0 Spec [VerIF]

 the translation of the SDL version from FT, in IF 2.0, have been commented (Join work from LIAFA & VERIMAG) available at

http://liafa.jussieu.fr/~haberm/ADVANCE/main

- too "huge" to be handled:
- written in IF 2.0

 \Rightarrow need to write from the scratch smaller models

IETF draft [DRAFT]

- natural language
- 116 pages
- no details about the data structure
- few details about the underlying network
- \Rightarrow an abstract automata in pseudo-IF

Differences [VerIF] [DRAFT]

- No NAK filtering in nodes
- NAK policy in node and receiver different
- Receiver must receive a SPM as first message
- **Reset IHB_TMR once IHM_MAX overtaken**
- Enhancement of the window advance anticipation
 → add of a spm_inc in SPM packets
- No communication delay

Properties to be verified

Basic tests

Just designed to test if the modeling is not 'too bugged'

- Finite memory need:
 - **TXW_LEAD TXW_TRAIL** $\leq k$
 - $\texttt{RXW_LEAD} \texttt{RXW_TRAIL} \leq k$
 - number of NAK states in each node $\leq k'$
 - number of NAK states in each receiver $\leq k''$
- No time lock

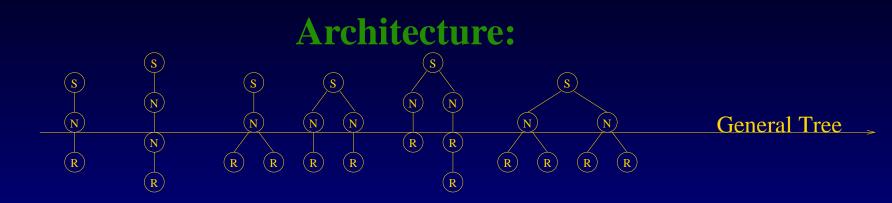
The property

A receiver in the group either receives all data packets from transmissions and repairs, or is able to detect unrecoverable data packet loss.[DRAFT]

Other properties (1/2)

Protocol efficiency:

- Under which assumption are all losses recovered?
- Synthesis of parameters ?


Protocol load:

- How many useless RDATA?
- Are NAK filtered? (if filtering is on)
- number of NAK received by the source (compared to number of receivers and nodes)

Other properties (2/2) Flow control: • no (or few) loss in buffers Circular sequence number space:

• 2³¹ can only be checked using abstraction...

Complexity dimensions (1/3)

Policy of loss:			
1 fixed loss	1 random loss	1 loss per window	N over M
ODATA	NACK	RDATA	NCF
Buffers:			
1-buffer	1-buffer + delay	N-bouded buffer	unbounded buffers
		(+delay)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Complexity dimensions (2/3)

Transmission length:

Few	messages
-----	----------

1 window 2 windows

infinite

Data flow:

Generator rate = bandwith Generator rate >> bandwith

Generator rate << bandwith

3 windows

Bursty generator rate

Random generator rate

Joining:

All members Late Join Random Join/Quit

from the start

Complexity dimensions (3/3)

- Adding/Removing mechanisms:
 - Complex NAK generation
 - (2-3 states based + random)
 - Heartbeat SPM
 - NAK filtering
- Implementation choices:
 - Ambient SPM rate
 - Window advance

Abstraction

- Un-timed version:
 - **but** time-triggered protocol
 - periodic ambient SPM as discrete time
 - bounded buffers + blocking writing ⇒ some time-progress
- Undeterministic:
 - do not store messages numbers
 - send randomly some messages
 - \Rightarrow which kind of property preserved

Configuration comparisons

Scalability of the protocol ? How is the load for the source ?

- Same behavior for one or two receivers ?
- Same behavior for one or two network nodes ?

• •••

Work under progress

very-simple-pgm.if

- 1 source 1 network node 1 receiver
- 1 ODATA loss
- 1-bounded buffer (without delay)
- no heartbeat
- no NAK filtering in nodes
- 1-state NAK repeat rate
- no NAK repeat in nodes
- the receiver is member from the start