
Experiments on the PGM
protocol

Anahita Akhavan, Marius Bozga, Yassine Lakhnech

VERIMAG
Marc Boyer, Ahmed Bouajjani

LIAFA

Outline
• Modeling

– the protocol
– the environment

• Verification
– state-space generation
– model checking

• Conclusions
• Future work

The protocol
• source + node + receiver

• untimed models, few variables each
• several parameters

• only ODATA signals are lost
• NCF signal is not used

the models are written in IF-2.0

The protocol

source

node

receiver

ODATA, RDATA, SPM

NAK

ODATA, RDATA, SPM

NAK

IN

OUT, LOSS

The source

?IN, lead-trail < MAX_RTE →→→→
lead++

sqn < lead →→→→
!ODATA(sqn, trail), sqn++

trail < sqn, lead - trail ≥ MIN_RTE →→→→
trail++, !SPM(sqn-1, trail)

?NAK(x) →→→→
if trail ≤ x and x < sqn then

!RDATA(x,trail) fi

Parameters
MAX_RTE
MIN_RTE

Input queue
IN, NAK

Variables
int trail = 0 // trailing sqn no
int lead = 0 // leading sqn no
int sqn = 0 // next to be sent

trail sqn lead

The node
Input queue

ODATA, RDATA, SPM, NAK

Variables
set-of-int pending =∅

?ODATA(x,t) →→→→
!ODATA(x,t)

?ODATA(x,t) →→→→
ττττ

?RDATA(x,t) →→→→
if x ∈ pending then

pending \= {x}, !RDATA(x,t) fi

?SPM(x,t) →→→→
!SPM(x,t), pending \= {y | y < t}

?NAK(x) →→→→
if x ∉ pending then

pending ∪ = {x}, !NAK(x) fi

The receiver
Input queue

ODATA, RDATA, SPM

Variables
int sqn = 0 // next to deliver
int lead = 0 // next to receive
set-of-int window = ∅

sqn ∈ window →→→→
window \= {sqn}, !OUT(sqn), sqn++

?XDATA(x,t) →→→→
foreach y ∈ [sqn, t)

if y∈ window
then !OUT(y), window \= {y}
else !LOSS(y) fi

if sqn < t then sqn := t fi
if lead < sqn then lead := sqn fi
foreach y ∈ [lead, x)

!NAK(y)
if lead < x then lead := x fi

window ∪ = {x}
if lead = x then lead++

sqn lead

t x

The environment

• the data generator - send INs

• the noise - send NAKs
– on source : abstracts any number of nodes
– on node : abstracts any number of receivers

The PGM system

source

node

receiver

generator

noise

noise

ODATA, RDATA, SPM

NAK NAK

ODATA, RDATA, SPM

NAK NAK

IN

OUT, LOSS abstraction of
any number of receivers

abstraction of
any number of nodes

Fairness issue
The environment could be infinitely fast with

respect to the protocol...

Solutions
• bounded queues - limit the input queues of

protocol processes

• time - limit the number of messages that
environment processes could send per unit of time

• priorities - give lower priorities to environment
wrt to protocol processes

The generator
Parameters

MAX_SQN
MAX_SPEED

Variables
int sqn = 0 // next to be sent
int speed = 0 // current speed
clock c = 0 //

run

wait

speed > 0 →
 c := 0

c = 1 →
 speed := 0

sqn < MAX_SQN,
speed < MAX_SPEED →
 !IN, sqn++, speed++

The noise
Parameters

MAX_NOISE

Variables
int speed = 0 // current speed
clock c

run

wait

true →
 c := 0

c = 1 →
 speed := 0

speed < MAX_NOISE →
 !NAK(x), speed++

Verification
• state-space generation IF-2.0 MC

– without noise
– with noise on source
– with noise on node

• Model checking Aldebaran
– safety properties
– model minimisation

State-space generation

0
1000
2000
3000
4000
5000
6000
7000
8000

3 6 9 12
states
transitions

0

50000

100000

150000

200000

250000

3 6 9 12

states
transitions

0

500000

1000000

1500000

2000000

2500000

3000000

3 6 9 12

states
transitions

without noise

generator max speed =

{ 1, 2, 3 }

State-space generation

0

1000000

2000000

3000000

4000000

5000000

3 4 5 6 7 8

states
transitions

0

5000000

10000000

15000000

20000000

25000000

3 4 5 6 7 8

states
transitions

noise on source

generator max speed = 2

max noise = { 1, 2 }

State-space generation

0

5000000

10000000

15000000

20000000

25000000

3 4 5 6 7 8

states
transitions

0

5000000

10000000

15000000

20000000

25000000

3 4 5 6 7 8

states
transitions

noise on node

generator max speed = 2

max noise = { 1, 2 }

Model checking
• message delivery

∀∀∀∀ i ∈ [0, MAX_SQN)
eventually OUT(i) or LOSS(i)

• order preservation
∀∀∀∀ i,j ∈ [0, MAX_SQN) i < j

always OUT(i) or LOSS(i)
before OUT(j) or LOSS(j)

Model checking
• no livelocks

• no deadlocks

• safety bisimulation
reduction using
Aldebaran

• the two properties are
verified on all
generated models

loss(0)

loss(1)

loss(2)

loss(3)

out(0)

out(1)

out(2)

out(3)

Conclusions
• we developed a simple model

– abstract untimed model of PGM
– reasonable timed model of the PGM

environment

• verification by model-checking on
fixed configurations

• model-checking is not enough

Future work
• extending the model i.e,

– timing of the source
– timing of communication

• try some symbolic analysis
– abstraction
– invariant computation
– symbolic reachability
the model is simple but heterogeneous

The PGM system

source

node

receiver

generator

ODATA, RDATA, SPM

NAK

ODATA, RDATA, SPM

NAK

IN

OUT, LOSS

The PGM system

source

node

receiver

generator

noise

ODATA, RDATA, SPM

NAK NAK

ODATA, RDATA, SPM

NAK

IN

OUT, LOSS

abstraction of
any number of nodes

The PGM system

source

node

receiver

generator

noise

ODATA, RDATA, SPM

NAK

ODATA, RDATA, SPM

NAK NAK

IN

OUT, LOSS abstraction of
any number of receivers

