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The protocol
• source + node + receiver

• untimed models, few variables each
• several parameters

• only ODATA signals are lost
• NCF signal is not used

the models are written in IF-2.0
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The source

?IN, lead-trail < MAX_RTE →→→→
lead++

sqn < lead →→→→
!ODATA(sqn, trail), sqn++

trail < sqn, lead - trail ≥ MIN_RTE →→→→
trail++, !SPM(sqn-1, trail)

?NAK(x) →→→→
if trail ≤ x and x < sqn then

!RDATA(x,trail) fi

Parameters
MAX_RTE
MIN_RTE

Input queue
IN, NAK

Variables
int trail = 0 // trailing sqn no
int lead = 0 // leading sqn no
int sqn = 0 // next to be sent

trail sqn lead



The node
Input queue

ODATA, RDATA, SPM, NAK

Variables
set-of-int pending =∅

?ODATA(x,t) →→→→
!ODATA(x,t)

?ODATA(x,t) →→→→
ττττ

?RDATA(x,t) →→→→
if x ∈  pending then

pending \= {x},  !RDATA(x,t) fi

?SPM(x,t) →→→→
!SPM(x,t), pending \= {y | y < t}

?NAK(x) →→→→
if x ∉  pending then

pending ∪ = {x}, !NAK(x) fi



The receiver
Input queue

ODATA, RDATA, SPM

Variables
int sqn = 0 // next to deliver
int lead = 0 // next to receive
set-of-int window = ∅

sqn ∈  window →→→→
window \= {sqn}, !OUT(sqn), sqn++

?XDATA(x,t) →→→→
foreach y ∈ [sqn, t)

if y∈ window
then !OUT(y), window \= {y}
else !LOSS(y) fi

if sqn < t then sqn := t fi
if lead < sqn then lead := sqn fi
foreach y ∈ [lead, x)

!NAK(y)
if lead < x then lead := x fi

window ∪ = {x}
if lead = x then lead++

sqn lead

t x



The environment

• the data generator - send INs

• the noise - send NAKs
– on source : abstracts any number of nodes
– on node : abstracts any number of receivers
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Fairness issue
The environment could be infinitely fast with

respect to the protocol...

Solutions
• bounded queues - limit the input queues of

protocol processes

• time - limit the number of messages that
environment processes could send per unit of time

• priorities - give lower priorities to environment
wrt to protocol processes



The generator
Parameters

MAX_SQN
MAX_SPEED

Variables
int sqn = 0 // next to be sent
int speed = 0 // current speed
clock c = 0 //

run

wait

speed > 0 →
    c := 0

c = 1 →
    speed := 0

sqn < MAX_SQN,
speed < MAX_SPEED →
    !IN, sqn++, speed++ 



The noise
Parameters

MAX_NOISE

Variables
int speed = 0 // current speed
clock c

run

wait

true →
    c := 0

c = 1 →
    speed := 0

speed < MAX_NOISE →
    !NAK(x), speed++ 



Verification
• state-space generation IF-2.0 MC

– without noise
– with noise on source
– with noise on node

• Model checking Aldebaran
– safety properties
– model minimisation
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Model checking
• message delivery

∀∀∀∀  i ∈ [0, MAX_SQN)
eventually OUT(i) or LOSS(i)

• order preservation
∀∀∀∀  i,j ∈ [0, MAX_SQN) i < j

always OUT(i) or LOSS(i)
before OUT(j) or LOSS(j)



Model checking
• no livelocks

• no deadlocks

• safety bisimulation
reduction using
Aldebaran

• the two properties are
verified on all
generated models

loss(0)

loss(1)

loss(2)

loss(3)

out(0)

out(1)

out(2)

out(3)



Conclusions
• we developed a simple model

– abstract untimed model of PGM
– reasonable timed model of the PGM

environment

• verification by model-checking on
fixed configurations

• model-checking is not enough



Future work
• extending the model i.e,

– timing of the source
– timing of communication

• try some symbolic analysis
– abstraction
– invariant computation
– symbolic reachability
the model is simple but heterogeneous
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