An Algebraic Approach to the Static Analysis

of Concurrent Software

Javier Esparza

Laboratory for Foundations of Computer Science
School of Informatics, University of Edinburgh

Joint work with Ahmed Bouajjani and Tayssir Touili

Motivation

Interprocedural dataflow analysis

Extension to concurrency badly needed

Object oriented languages
e methods — procedures

e multithreads — concurrency

Extension to concurrency very hard: undecidability results

Former work

Not very much!

[Duesterwald and Soffa, '91]: dataflow equations
e efficient and simple
e approximates the effects of both procedures and concurrency

e N0 way to trade efficiency for precision

Flanagan,Qadeer,Seshia, '02 : assume-guarantee approach

e relies on specification by programmer

This work

Extends our approach to interprocedural model-checking
[Bouajjani, E., Maler '97], [E., Schwoon '01]

Conservative extension: exact for sequential programs
Abstract interpretation framework for computing abstractions of program paths
Generic computation of commutative abstractions of path languages

An abstraction is commutative if it ‘forgets’ the order in which actions occur (and
maybe more)

The program model. Sequential programs

Sequential programs determined by
control flow of procedures

— assignments, conditionals, loops
— procedure calls with parameter passing / return values

local variables of each procedure
global variables

State space determined by

program pointer

values of global variables

values of local variables (of current procedure)
activation records (return addresses, copies of locals)

The program model: Concurrent programs

Concurrent program: a tuple of sequential programs

e NO process creation in this talk

Communication through rendezvous
e primitives a!'x and a?x, where a is a channel
e channels are unidirectional and point-to-point

e no dynamic broadcasts (compare with notifyAll)

An example (control flow only)

Proc m

Component 1 Component 2

The formal model. Communicating pushdown pystems

A pushdown system (PDS) is a fivetuple P = (P, Act, ", cg, A), where
e P is a finite set of control locations
e Act is a finite set of actions
e [is a finite stack alphabet
A configuration of P is a pairc = (p,v), wherepe P,veTl"*
e Cg Is the initial configuration

e A C(PxActu{e} xI') x (P xI*)is a finite set of rules.

If (p,~) S (p’,v) € A then (p,yw) —2 ., (p’,vw) for every w € I*

Normalisation: |v| < 2

A communicating pushdown system is a tuple (Pq, ... ,Pn) of pushdown
systems

A global configuration is a tuple g = (cq, ... , cn) of configurations
go = (c10, ... ,Cno) is the initial global configuration
Letg = (c1,...,cn)and g’ = (cf,...,cp)

g——g' if ¢;——c/ forsome 1 <i <n,and

cj’ = ¢ forevery j # i

g——g' if CiLci’ and cjiwj’ for somei %= j, and

c, = cy foreveryi #k # |

Semantic mapping

Interpretation of (p,yv)
e p holds values of global variables of the component
e ~ holds (program pointer, values of local variables)

e Vv holds stack of (return address, saved locals)

Restriction: finite datatypes

Correspondence between statements and rules

P, 7) — (', simple statement

(P, ") 2, p’, 7" communication of value v through channel a
(p,~v) — (p’,~'+") procedure call

p,v) — (p/, €) return statement

10

11

Mo —— My
Mo <—— Mo
my <L> MoMms
Mo —— M3

€
M3 — €

12

Reachability iIn communicating pushdown systems

Given: a communicating pushdown system (Pq,...,Pn),

a set F of final global configurations

To decide: is F reachable from the initial global configuration gg,

l.e.,istheref € F suchthatgg —*f ?

Key to many analysis problems

Unfortunately: undecidable, even forn = 2, F = {f}
[Ramalingam, TOPLAS 2000]

13

A proof sketch of the undecidability result

Reduction from Given: two context-free grammars G1, G»
To decide: isL(G1)NL(Gy) =072

Let G1, G> be context-free grammars

Construct a communicating pushdown system (P71, P»>) and global
configurations gg = (cg1,Co2), f = (f1,f>) such that

L(G1) = L(co1,f1) = {w € Act* |cop ——T1}
L(G2) = L(coa,f2) = {w € Act* | cop —— o}

go —*f iff weL(cgy,f1) NL(cgp,fr) forsomew € Act™®

So gg —* f iff L(G1) NL(Go) % 0

14

Our approach: Abstract path languages

Assume F = Fq X F»

ldea: Compute abstract languages A1 D L(cpo1,F1) and A> D L(cgo, Fo)
such that A; N A, £ 0 is decidable

Then: If A; N A> = (), we have proved L(cg1,F1) NL(cgo,Fo) =0
A1, A> must be finitely represented through abstract objects d4 and d»
A1 N A> must be replaced by an abstract operation d{ M d»

Formal framework: abstract interpretation

15

Abstract interpretation of path languages

Let £ = (24¢” C, U, N, 0, Act™) be the complete lattice of languages over Act

An abstraction consists of

an abstract lattice D = (D, C, U, M, 1, T), and

. . (@7
a Galois connection £L = D

S
v(a(l)) 2 L (ADL)
~v(dy Mds) = ~(dy) N~(dy) (M matches N)

a(L) is the abstract object representing the language A D L

~(a(L)) is the language A

16

An abstraction

a1 (L) is the pair [F,R], F,R C Act, where

F (for forbidden) is the set of actions that do not occur in any word of L
R (for required) is the set of actions that occur in all words of L
Example: for Act = {a,b,c}, aq(ab*) = [{c}, {a}]
~1([F, R]) = all words containing no letter of F and all letters of R

[Fl, Rl] W [FQ, RQ] — [Fl UFs, R U RQ] (well, almost true ...)

17

Another abstraction

Let al(w) be the alphabet of w (i.e., the set of letters that occur in w)
Define ax(L) = {al(w) | w € L}

Example: as(ab*) = {{a}, {a,b}}

vo>({al1,... ,aln}) = all words over the alphabets alq, ... , aln

{aly,...,aln} n{aly,... ,al} ={al,... ,alh}n{alf,... ,all}

18

Yet another abstraction

Let p(w): Act — N be the Parikh image of w (occurrence count for each letter)
Define az(L) = {p(w) | w € L}

Example: az(ab*) = {(1,n) | n > 0}

~3(L) = all the permutations of the words of L

{vi,vo,. ..., b {vy,vh, oo b =A{vi,vo, .. b0 {vy, v,)

19

The common feature?

Commutativity: If w € A, then w’ € A for every permutation of w

Commutative abstractions: abstractions in which v(«a(L)) is

a commutative language for all L

We provide a generic algorithm for computing (L) when « is a commutative
abstraction

20

The approach

In order to compute a(L(cg, F))
e compute pre*(F) ={c|If e F: c —*f}
e compute for each ¢ € pre*(F) the language a(L(c,F))

e return a(L(cq,F))

(It is also possible to use post™(cqg))
Problem: pre*(F) can be an infinite set (even F can be infinite)

This can be dealt with when F is regular.

21

Regular sets and multi-automata

A set of configurations C is regular if for every control point p, the set
{weTl™*|(p,w) e C}isregular

Regular sets can be finitely represented by multi-automata:
e P as set of initial states and " as alphabet

e (p,V) recognized if p —— q for some final state q

Example: multi-automaton for the set (pg,v0v7170) Y (P1,71) :

22

The basic theory

Theorem [Bulchi ’64], [Book and Otto '93], [Caucal '92] . ..

If C is regular, then so is pre*(C)

Theorem [Bouajjani, E., Maler '97], [E.et al '00], [E. and Schwoon '01]
Given a multi-automaton A recognizing F,
It is possible to effectively (and efficiently) construct

another multi-automaton A,,,.« recognizing pre*(F)

23

The saturation algorithm for computing A,

- Mg——mq mo M1
> Mg L mo Mo 13
rs . My <L> MoMms '
g . Mo i> ms3 ms

s - m3<L>p,e :p:

24

The saturation algorithm for computing A,

- Mg——mq mo My
> Mg L mo Mo 13
rs . My <L> MoMms '
g - Mo i> ms3 ms

s - m3<L>p,e :p:

25

The saturation algorithm for computing A,

- Mg——mq mo My
> Mg i> mo Mo 13
rs . My <L> MoMms '
4 - M2 R ms3 ms 1Mo

s . m3<i>€ :p:

26

The saturation algorithm for computing A,

- Mg——mq mo M1
> Mg L mo Mo 13
rs . My <L> MoMms '
4 M2 R ms3 ms3 1Mo

s . m3<i>€ :p:

27

The saturation algorithm for computing A,

- Mg——mq mo My
o> Mg L Mo o 13
rs . My <L> MoMms '
4 - M2 . ms3 ms 1Mo

s . m3<i>€ :p:

28

The saturation algorithm for computing A,

r{: Mg <— My mo My
> Mg L Mo Mo 13
rs . My <L> MoMms '
4 - M2 . ms3 ms 1Mo My

s . m3<i>€ :p:

29

The saturation algorithm for computing A,

r{: Mg <— My mo My
> Mg L Mo Mo 13
rs . My <L> MoMms '
4 M2 R ms3 ms Mo My

s . m3<i>€ :p:

30

The saturation algorithm for computing A,

- Mg——mq mo My
> Mg L mo ™Mo 113
3 Mmq <—— MgMms '
4 ° M2 . ms3 ms Mo My

s . m3<i>€ :p:

31

The saturation algorithm for computing A,

ri: mg—my mo My
> Mg i> mo Mo 13
rs . My CL> MoMms '
4 - Mo S m3 ms Mo Mg 1M

s . m3<i>e 4’@

32

The saturation algorithm for computing A,

r{: Mg <— My mo My
> Mg L mo Mo 113
rs . My CL> MoMms '
4 - Mo S m3 ms Mo Mg 1M

s . m3<i>e 4’@

33

The saturation algorithm for computing A,

r{: Mg <— My mo My
> Mg L mo Mo 113
rs . My CL> MoMms '
4 - Mo S m3 ms Mo Mg 1M

s . m3;€>e 4’@

34

The saturation algorithm for computing A,

r{: mMp— my Mo My
>: Mg L, mo ms ma 13
rs . My <L> MoMms '
4 - Mo S m3 ms Mo Mg 1M

€
s . M3 — € p

35

The saturation algorithm for computing A,

r{: mMp— my Mo My
>: Mg L, mo ms ma 13
rs . My <L> MoMms '
4 - Mo S m3 ms Mo Mg 1M

s . m3<i>€ p

36

The saturation algorithm for computing A,

- Mg——mq mo My
b
o Mg <—— My ms ma 13

€
r3: My <—— MpoMms

4 - My —— M3 D ms ™o Mg M7

€
s . M3 — €

37

The saturation algorithm for computing A,

Mg — My
Mo <—— Mo
my CL> MoMms
Mo —— M3

€
M3 — €

ms3 7112

p

ms3 Mmoo Mo My

o 1
mo 113

38

The saturation algorithm for computing A,

Mg — My
Mo <—— Mo
my CL> MoMms
Mo —— M3

€
M3 — €

m3 Mma

p

ms3 Mmoo 1Mo My

o 1
mao 113

39

The saturation algorithm for computing A,

Mg — My
Mo <—— Mo
my CL> MoMms
Mo —— M3

€
M3 — €

ms3 7112

p

ms3 Mmoo Mo My

o 1
mo 113

40

The saturation algorithm for computing A,

Mg — My
Mo <—— Mo
my CL> MoMms
Mo —— M3

€
M3 — €

m3 M2

p

ms3 Mmoo Mo My

o 1
mo 113

41

The saturation algorithm for computing A,

Mg — My
Mo <—— Mo
my CL> MoMms
Mo —— M3

€
M3 — €

m3 Mma

p

ms3 Mmoo 1Mo My

o 1
mao 113

42

The saturation algorithm for computing A,

Mg — My
Mo <—— Mo
My ; MoMms
Mo —— M3

€
M3 — €

m3 Mma

p

ms3 Mmoo Mo My

o 1
mo 113

43

The saturation algorithm for computing A,

- Mg ——mM mo M mo Mi
b
o Mg <—— My m3 M2 m2 M3

€
r3: My <—— MpoMms

4 - Mo —— M3 D ms Mo Mg 1M

€
s . M3 — €

44

The saturation algorithm for computing A,

- Mg ——mM mo M1 mo Mj
b
o Mg <—— My mg3 12 m2 M3

€
r3: My <—— MpoMms

4 - Mo —— M3 D ms Mo Mg 1M

€
s . M3 — €

45

The approach once more ...

In order to compute a(L(cg, F))
e compute pre*(F) ={c|If e F: c —*f} \/
e compute for each ¢ € pre*(F) the language a(L(c,F))

e return a(L(cg,F))

46

How to compute a(L(c,F)) ?

<

47

ldea: annotate each transition t = (4., q’ of Aprex With the language

L(t) = language transforming t into a run of A (‘black run’)

In our example: ab € L(p Lq)

Givenarun p = tyto...tp, define L(p) = L(t1) - ... - L(tn)
It holds
L(c,F) = union of L(p) for all runs p that recognize c

a(L(c,F)) = union of a(L(p)) for all transitions runs p that recognize c

So it remains to show how to compute a(L(t))

48

How to compute the languages a(L(t)) ?

Assume we have

YO ‘L Y1772 // \\
// \\
Y Y

Then it holds
Lp—"L-q) = a - L(qu@ . L(d
a(Llp—=0q)) = a@) ©® all(p——9)) © alL(

where @ is defined by a(L1 - L) = a(L1) ® a(L>)
and & is defined by a(L1 + Lo) = a(L1) ® a(Ly)

——q)
——q))

49

If we denote di = a(L(tj)), this yields equations of the form

f(di,...,dn) =d; 1<i<n

where the fi’s are polynomials constructed out of dq, . .

(dq,...dpn) is the least solution of

.,dn, ®, and &

fi(X1,...,Xn) =% 1<i<n

50

In our example

(X4 ©®Xg) @ (Xg © X3)
a(a) © X3

a(e)

(a(a) ©x1) @ (a(b) © x2)
Xg © Xg

a(e)

a(a) © Xeg

(a(b) ©x7) ® (a(a) © Xs)
a(e)

51

How to solve the system of equations

I’m not proud of the books I've written,
but of the books I've read.
Jorge Luis Borges

In the non-commutative case: No closed form solution

In the commutative case: Beautiful solution by Hopkins and Kozen, LICS ’99

52

Hopkins and Kozen'’s procedure

L is a Kleene algebra: -, 4+, x,0 = 0, 1 = {¢}

D is a commutative Kleene algebra: ©, @, x, 0= 1,1 = a(e),
where d* = @p>pd"

Define the partial differential operator % by
|

D
D

i: =1, 8—XJ, 0 fori # j, and 8)(' — 0 fora € D.

o
X

0 — Of og
. Tm(f@g)—a—xi@ﬁ—xi
e Hfog=>0(oghe@og)

o () =104

53

Rejoice in this ...

The least solution of

fi(X1,...,%xn) <X 1<i<n

IS the fixpoint of the chain

dg <dy <d,...
given by
dg = £(0)
d1 = A od,

54

The solution

d; = ds = dg
ds = dg = do
ds = d-

ds

a(a)* © a(a) © a(b)

a(e)

a(a)

(a(a) ©a(a)*©ala) © a(h)) & (a(a) © a(b))

55

Instantiating the solution

ai(a)
as(a)
az(a)

[{b},{a}] a1(b) = [{b},{a}] ai(e) [Act, 0]
1iaj} as(b) 11b}} as(e) {0}
= {(1,0)} a3(b) = {(0,1)} a3z(e) = {(0,0)}

Letcg = mgand F = m3l*. Then a(L(co,F)) = da

[0,{a,b}] (a and b required to reach ms3)
{{a,b}} ({a, b} only possible alphabet to reach m3)
{(k,1) |k > 1} (only one b, otherwise not possible)

56

Complexity of the fixpoint algorithm

The complexity is O(r3 -t - ¢), where
e r is the number of rules of the pushdown system
e t is the number of iterations of the fixpoint algorithm

e C is the maximal cost of an &, ®, x operation

Forbidden and required sets: O(Act - r3)
Alphabets; 20(Act) .3

Parikh images (worst case): double exponential in r

57

Conclusions

Extension of our automata-theoretic approach to interprocedural analysis

Automatic, possible to trade efficiency for precision

Generic fixpoint algorithm, which can be also generically implemented

To be implemented as an extension of Moped (Schwoon)

58

